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TRIFORCE AND CORNERS

JACOB FOX, ASHWIN SAH, MEHTAAB SAWHNEY, DAVID STONER, AND YUFEI ZHAO

Abstract. May the triforce be the 3-uniform hypergraph on six vertices with edges {123′, 12′3, 1′23}.

We show that the minimum triforce density in a 3-uniform hypergraph of edge density δ is δ4−o(1)

but not O(δ4).
Let M(δ) be the maximum number such that the following holds: for every ǫ > 0 and G = F

n
2

with n sufficiently large, if A ⊆ G × G with A ≥ δ|G|2, then there exists a nonzero “popular
difference” d ∈ G such that the number of “corners” (x, y), (x + d, y), (x, y + d) ∈ A is at least

(M(δ) − ǫ)|G|2. As a corollary via a recent result of Mandache, we conclude that M(δ) = δ4−o(1)

and M(δ) = ω(δ4).
On the other hand, for 0 < δ < 1/2 and sufficiently large N , there exists A ⊆ [N ]3 with |A| ≥ δN3

such that for every d 6= 0, the number of corners (x, y, z), (x+ d, y, z), (x, y + d, z), (x, y, z + d) ∈ A

is at most δc log(1/δ)N3. A similar bound holds in higher dimensions, or for any configuration with
at least 5 points or affine dimension at least 3.

The Triforce . . . the sacred triangle . . . it is a balance that weighs the three forces:
Power, Wisdom and Courage. If the heart of the one who holds the sacred triangle
has all three forces in balance, that one will gain the True Force to govern all.

— The Legend of Zelda: Ocarina of Time

1. Introduction

Green [10] (k = 3) and Green–Tao [12] (k = 4) proved the following strengthening of Szemerédi’s
theorem, confirming a conjecture of Bergelson, Host, and Kra [4]: for every k ∈ {3, 4} and ǫ > 0
there exists N0 such that if N ≥ N0 and A ⊆ [N ] := {1, 2, . . . , N} has |A| = δN , then there exists
some d > 0 such there are at least (δk − ǫ)N different k-term arithmetic progressions with common
difference d in A, i.e.,

|{x : x, x+ d, . . . , x+ (k − 1)d ∈ A}| ≥ (δk − ǫ)N.

We abbreviate “k-term arithmetic progression” as k-AP from now on. Note that the above estimate
is tight for a random subset of [N ] of density δ. Even though there exist sets A where the total
number of k-APs is much less than the random example, the above results say that, for k ∈ {3, 4},
there always exists some “popular difference” d shared by lots of k-APs in A.

Curiously, the above k-AP popular difference result is specific to k ∈ {3, 4}, as it was shown [4]
(with appendix by Ruzsa) that the statement is false for every k ≥ 5. In particular, it was shown
that for each fixed k ≥ 5, there exists a constant ck > 0 such that for every 0 < δ < 1/2, there
exists A ⊆ [N ] with |A| ≥ δN such that for every d > 0,

|{x : x, x+ d, . . . , x+ (k − 1)d ∈ A}| ≤ δck log(1/δ)N.

We are interested in a multidimensional variant of the above result. A corner is a pattern of the
form (x, y), (x+d, y), (x, y+d) ∈ G×G where G is an abelian group and d 6= 0 (we can also consider
an interval [N ] instead of G). It is a classic result of Ajtai and Szemerédi [1], known as the corners
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theorem, that every corner-free subset of G×G has density o(1). Solymosi [19] gave a simpler proof
of the corners theorem, showing that it follows from the diamond-free lemma.1 The diamond-free
lemma states that any graph on n vertices in which each edge is in exactly one triangle has o(n2)
edges. The diamond-free lemma in turn follows easily from the triangle removal lemma, that any
graph on n vertices with o(n3) triangles can be made triangle-free by removing o(n2) edges.

Given A ⊆ G×G and d ∈ G, let

Sd(A) = {(x, y) ∈ G×G : (x, y), (x+ d, y), (x, y + d) ∈ A}.
Then |Sd(A)| is the number of corners in A with common difference d. The naive extension of the
popular difference statement is false for corners, as Mandache [14] showed, improving an earlier
construction by Chu [5], that there exists A ⊆ G×G with |A| ≥ δ|G|2 and |Sd(A)| = O(δ3.13|G|2).
That is, we cannot always expect to find popular differences shared by as many corners as the
random case. Though, perhaps we can hope for a bit less and look for popular differences that are
shared by at least δC |G|2 corners—less than random, but still plenty. Note that here the exponent
C here should depend only on the pattern and not on the groups.

Fixing a sequence of abelian groups G = Gn with |G| → ∞, let M(δ) denote the maximum
number such that for every ǫ > 0, if n is sufficiently large and A ⊆ G×G, then there exists d 6= 0
such that |Sd(A)| ≥ (M(δ) − ǫ)|G|2.

Mandache related M(δ) to the following extremal problem. Let a triforce, denoted , be a
3-uniform hypergraphs on 6 vertex with edges {123′, 12′3, 1′23}. Given a measurable function2

W : [0, 1]3 → [0, 1], write

(W ) :=

∫

[0,1]6
W (x′, y, z)W (x, y′, z)W (x, y, z′) dxdydzdx′dy′dz′

for the triforce density of W . Let m(δ) denote the infimum (actually a minimum due to compact-
ness3) of (W ) among all W with

∫

W = δ.

Theorem 1.1 (Mandache). For all Gn, one has M(δ) ≤ m(δ). Furthermore, if mconvex : [0, 1] →
[0, 1] is any convex function with mconvex ≤ m pointwise, then for Gn = F

n
p with fixed prime p, one

has M(δ) ≥ mconvex(δ).

The first part of Theorem 1.1 was proved via the following randomized construction. For every
a ∈ G, let Xa, Ya, Za be i.i.d. uniform random variables in [0, 1]. Given W , construct A ⊆ G × G
by including every (a, b) in A with probability W (Xa, Yb, Z−a−b). It is then easy to check that
for every d 6= 0, |Sd|/|G|2 has expectation (W ) and is concentrated near its mean by Azuma–
Hoeffding/McDiarmid’s inequality.

The second part of Theorem 1.1 was proved via an arithmetic regularity style argument, combined
with ideas from the Fourier analytic proof of the corners theorem. It seems likely that the result
can be extended to all abelian groups via Bohr sets, though as far as we know this has not yet been
worked out.

Mandache showed that δ4 ≤ m(δ) . δ3.13 and asked what is the optimal exponent on δ. Here we
show that the answer is 4, and that the lower bound can be improved by an arbitrarily large factor.
(We write f = O(g) and f . g both to mean f ≤ Cg for some constant C, and f = ω(g) to mean
f/g → ∞.)

1The corner theorem was originally stated within the integer grid [n]2, but the graph-theoretic proof extends to
G × G where G is a finite group as observed by Solymosi [20]. The diamond-free lemma is also often stated in
equivalent versions known as the induced matching theorem or the (6, 3)-theorem.

2In [14], the function W was restricted to piecewise constant functions, but these two formulations are equivalent
by a standard approximation argument.

3The compactness in this case essentially follows from Lovász–Szegedy [13] as the triforce is a linear hypergraph.
See [6, 23] for general compactness results about hypergraph limits.
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Theorem 1.2. m(δ) = δ4−o(1) and m(δ) = ω(δ4) as δ → 0.

It is not hard to show that for any m(δ) with m(δ) = δ4−o(1) and m(δ) = ω(δ4) is lower bounded

by a convex function mconvex ≤ m with mconvex(δ) = δ4−o(1) and mconvex(δ) = ω(δ4).

Corollary 1.3 (Popular corners). For all sequence of finite abelian groups Gn with |Gn| → ∞, one

has M(δ) ≤ δ4−o(1). Furthermore, for Gn = F
n
p with fixed prime p, one has M(δ) = ω(δ4).

This result solves Problem 19 from Ben Green’s collection of open problems [11]. For more precise
dependencies, the lower bound on m(δ) is tied to the bound in the triangle removal lemma, and the
upper bound on m(δ) is tied to the bound in the diamond-free lemma, which itself can be bounded
using Behrend’s construction of 3-AP-free sets [3].

The problem of computing m(δ) is a tripartite analog of the following extremal problem for
3-uniform hypergraphs: determine the minimum density g(δ) of triforces among 3-uniform hyper-
graphs with edge density at least δ. Here the density of H in G is defined to be the number of
homomorphisms from H to G divided by |V (G)||V (H)|. By a standard graph limit argument, this
problem is equivalent to the modified extremal problem for m(δ) where we restrict W (x, y, z) to
functions that are symmetric with respect to permutations of its arguments (x, y, z), and as a result,
we have m(δ) ≤ g(δ). On the other hand, one has g(δ) . m(δ) by viewing a tripartite 3-uniform
hypergraph with n vertices in each part as a 3-uniform hypergraph on 3n vertices. Thus, to show
Theorem 1.2, it suffices to show that g(δ) = δ4−o(1) and g(δ) = ω(δ4). In fact, our proof works
directly in both settings even without referring to the above relationship between g and m.

Theorem 1.4. Let g(δ) be the minimum triforce density in a 3-uniform hypergraph with edge density

at least δ. Then g(δ) = δ4−o(1) and g(δ) = ω(δ4).

The natural generalization to k-uniform hypergraphs holds with essentially the same proof. We
state it explicitly below. Let a k-force be the k-uniform hypergraph with 2k vertices and edges
1′2 · · · k,12′ · · · k, . . . , 12 · · · k′.
Theorem 1.5. Fix k ≥ 3. Let gk(δ) be the the minimum k-force density in a k-uniform hypergraph

with edge density at least δ. Then gk(δ) = δk+1−o(1) and gk(δ) = ω(δk+1).

One might suspect that the k-force density result would lead to consequences for popular (k−1)-
dimensional corners. However, this is not the case, as our second main result below says.

Theorem 1.6. Let 0 < δ < 1/2. For all sufficiently large N , there exists A ⊆ [N ]3 with |A| ≥ δN3

such that for all nonzero integer d, there are at most δc log(1/δ)N3 triples (x, y, z) with (x, y, z), (x+
d, y, z), (x, y + d, z), (x, y, z + d) ∈ A. Here c > 0 is some absolute constant.

As we will see in the proof of Theorem 1.6, this construction is closely related to the construction
in [4] of a set lacking popular differences for 5-APs. We also extend the counterexample of [4] to all
5-point patterns in N.

Theorem 1.7. Let 0 < δ < 1/2 and fix five distinct integers a1, a2, a3, a4, a5. For all sufficiently
large N , there exists A ⊆ [N ] with |A| ≥ δN such that for all nonzero integer d, there are at most

δc log(1/δ)N values of x ∈ Z such that x+ a1d, x+ a2d, x+ a3d, x+ a4d, x+ a5d ∈ A. Here c > 0
is a constant depending only on (a1, a2, a3, a4, a5).

A simple padding and projection of these constructions gives analogous constructions for avoiding
popular differences for all patterns with affine dimension at least 3 or at least 5 points, in particular,
k-dimensional corners for all k ≥ 3.

Corollary 1.8. Fix a finite subset T ⊆ Z
k with affine dimension at least 3 or at least 5 distinct

points. Let 0 < δ < 1/2. For all sufficiently large N , there exists A ⊆ [N ]k with |A| ≥ δNk such

that for all nonzero integers d, there are at most δc log(1/δ)Nk points x ∈ Z
k such that x+ d · T :=

{x+ dt : t ∈ T} ⊆ A, where c = cT > 0 is a constant.
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2. Minimum triforce densities

Now we begin the proof of Theorem 1.4. We present the proof in the way that highlights the
dependencies between the bounds in Roth’s theorem, the diamond-free lemma, the triangle removal
lemma, and the minimum triforce density function g(δ).

Let ǫ(δ) be the minimum ǫ such that every graph on n vertices with at most δn3 triangles can
be made triangle-free by removing at most ǫn2 edges. The triangle removal lemma [17] states that
ǫ(δ) → 0 as δ → 0. Note that, by definition, ǫ(δ) is a monotonically decreasing function.

A diamond-free graph is a graph in which each edge is in exactly one triangle. Define d(n) so that
d(n)n2 is the maximum number of edges of a diamond-free graph on n vertices. The diamond-free
lemma states that d(n) = o(1). The diamond-free lemma is an easy consequence of the triangle
removal lemma. Indeed, in a diamond-free graph on n vertices with d(n)n2 edges, the number of
triangles is d(n)n2/3 < n2 = δn3 with δ = 1/n, so we can remove ǫn2 edges to make it triangle-free
with ǫ = ǫ(1/n). However, in such a graph we need to delete an edge from each of these d(n)/3
edge-disjoint triangles, so d(n) ≤ 3ǫ(1/n).

Let r(n) be the maximum possible density of a subset of Z/NZ without a 3-term arithmetic
progression. By Roth’s theorem [16], r(n) = o(1), and Behrend’s construction [3] implies that

r(n) ≥ e−O(
√
logn). The proof of Roth’s theorem from the diamond-free lemma gives a construction

of a graph on 3n vertices with 3r(n)n2 edges, and each edge is in exactly one triangle. Indeed, every
3-AP-free A ⊂ Z/NZ gives rise to the following diamond-free graph: take the tripartite graph with
vertex parts X,Y,Z with X = Y = Z = Z/NZ and edges (x, x + a) ∈ X × Y , (y, y + a) ∈ Y × Z
and (x, x+ 2a) ∈ X × Z, ranging over all a ∈ A, x ∈ X, y ∈ Y, z ∈ Z. Thus, 3r(n)n2 ≤ d(3n)(3n)2,

or equivalently, d(3n) ≥ r(n)/3 ≥ e−O(
√
logn).

The next lemma implies the claimed upper bound on g(δ). To avoid confusion, we use “triple” to
refer to an edge of a 3-uniform hypergraph, “edge” to refer to an edge of a graph, and “triangle” to
refer to a triangle in a graph.

Lemma 2.1. For every integer n ≥ 3 and δ = 2d(n)/n, we have g(δ) ≤ δ4

8d(n)3
.

Proof. Let G be a graph with n vertices and d(n)n2 edges such that every edge is in exactly one
triangle. Let H be the 3-uniform hypergraph on the same vertex set as G in which the triples of H
are precisely the triangles of G. The triple density of H is δ = 2d(n)/n. The only homomorphisms
from the triforce to H map the vertices of the triforce to those of a single triple of H, so the triforce

density is 2d(n)n2/n6 = δ4

8d(n)3
. �

From the above lemma and the Behrend bound described above, we get g(δ) ≤ δ4−O(1/
√

log(1/δ)).
In particular, g(δ) = δ4−o(1).

The next lemma implies the claimed lower bound on g(δ).

Lemma 2.2. For every δ > 0, we have g(6δ) ≥ δ4

3ǫ (δ/ǫ(δ))
.

Proof. Let H be a 3-uniform hypergraph with at least δn3 triples (i.e., triple density at least 6δ).
If H has a pair of vertices in at most δn triples, then delete all triples of H containing that pair of
vertices, and repeat. In total, we delete at most

(n
2

)

δn triples, so the remaining subhypergraph H ′

has at least (δ/2)n3 triples, and each pair of vertices lying in some triple of H ′ actually lies in at
least δn triples of H ′.

Let G be the graph with the same vertex set as H, where uv ∈ E(G) if u and v both lie in some
triple of H ′ (and hence in at least δn triples of H ′). We can extend each triangle in G to at least
6(δn)3 triforces (as homomorphisms). Hence, if G has at least δn3/ǫ(δ) triangles, then H ′ (and
hence H) has at least 6(δn)3 · δn3/ǫ(δ) = 6δ4n6/ǫ(δ) triforces, and we would be done.
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We have reduced the problem to the case where G has fewer than δn3/ǫ(δ) triangles. By the
triangle removal lemma, there is an edge subset S ⊆ E(G) such that |S| ≤ ǫ(δ/ǫ(δ))n2 and every
triangle of G contains at least one edge in S. Note that every triple of H ′ forms a triangle in G,
so every triple of H ′ contains at least one edge in S. Call an edge uv ∈ S strong if u and v are
contained in at least δ

4|S|n
3 triples of H ′. The number of triples of H ′ that contain a strong edge is

at least e(H ′)− |S| · δ
4|S|n

3 ≥ δ
4n

3. Every triple of H ′ that contains a strong edge can be extended

to at least 6(δn)2 · δ
4|S|n

3 ≥ 3δ3

2ǫ(δ/ǫ(δ))n
3 triforces. Thus, the number of triforces is at least

δ

4
n3 · 3δ3

2ǫ(δ/ǫ(δ))
n3 >

δ4

3ǫ(δ/ǫ(δ))
n6.

�

As ǫ(δ) = δo(1) (this follows from the Behrend bound as described above), and ǫ(δ) → 0 as δ → 0,
Lemma 2.2 implies that g(δ) = ω(δ4).

Lemmas 2.1 and 2.2 complete the proof of Theorem 1.4.

The proof of Theorem 1.5 is almost verbatim the same as that of Theorem 1.4. In modifying the
above proofs, H becomes a k-uniform hypergraph and G becomes a (k − 1)-uniform hypergraph.
Instead of the triangle removal lemma, we would apply the simplex removal lemma for hypergraphs.
We omit the details.

3. Constructions avoiding popular differences

In this section we prove Theorems 1.6 and 1.7.

3.1. Motivation of proof. Before diving into the proof it is worth considering the relationship
between this result and the counterexample given by Bergelson, Host, Kra, and Ruzsa [4] for popular
differences for 5-AP’s. The counterexample for 5-AP popular difference in [4] essentially4 implies the
analogous version of Theorem 1.6 for 4-dimensional corners by pulling back the 5-AP counterexample
via the map (x, y, z, w) → x+ 2y + 3z + 4w.

This pull-back construction and the Green-Tao [12] result on popular differences for 4-APs may
suggest that the popular difference result for 2-dimensional corners extends to 3-dimensional corners.
However, the Green-Tao [12] proof (based on [4]) ultimately boils down to the identity P (0)−3P (1)+
3P (2) − P (3) = 0 for quadratic polynomials P . This identity yields a critical positivity as it can
be rewritten as P (0) − 3P (1) = P (3) − 3P (2) and there is an inherent symmetry between the left
and right hand sides. However, a 3-dimensional corner can project not only to a 4-AP but other
4-term progressions, e.g., x, x+y, x+2y, x+4y and such patterns do not posses the same “magical”
positivity.

Ruzsa’s construction relies on the property that if P is a nonconstant univariate quadratic polyno-
mial taking R

n values, then P (0), P (1), P (2), P (3), P (4) cannot all lie on the unit sphere. This can
be proved using the identities P (0)−3P (1)+3P (2)−P (3) = 0 and P (1)−3P (2)+3P (3)−P (4) = 0,
and observing that no 5 points on a sphere can satisfy these linear relations.

If there were an identity expressing P (3), say, as a convex combination of P (0), P (2), and P (6),
over all quadratic polynomials P , then one can mimic the proof given in [4] to construct a subset
of [N ]3 without popular 3-dimensional corners. However, this approach fails as no such identity
can exist, since if a1P (b1) + · · · + a4P (b4) = 0 for all quadratic polynomials P , where ai, bi’s are
constants with a1 + a2 + a3 + a4 = 0, all bi’s distinct, and ai’s not all zero, then by Lagrange
interpolation one can deduce that there must be two positive and two negative values among the

4Note that in [4] the counterexample is only stated for infinitely many N . We require additional considerations in
order for the result to apply for all sufficiently large N and these can be adapted to the setting in [4]. Conversely the
number theoretic considerations in our proof are simplified when giving a counterexample for only infinitely many N .
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ai’s. However, we do not know if there are subsets of [N ], in the style of Behrend’s construction,

with N1−o(1) elements avoiding such patterns (e.g., 2x+ 2y = 3w + z).
However, the above discussion is limited to univariate polynomials. We can circumvent this

difficulty by constructing a quadratic polynomial f(x, y, z) satisfying f(x+d, y, z)+ f(x, y+d, z)+
f(x, y, z + d) = 3f(x, y, z) and then carry out the strategy in [4].

3.2. Proof of Theorem 1.6. Define

f(x, y, z) = (x− y)(x+ y − 2z), (1)

which satisfies the following useful identity:

f(x+ d, y, z) + f(x, y + d, z) + f(x, y, z + d) = 3f(x, y, z). (2)

Lemma 3.1. There is an absolute constant c > 0 such that the following holds. For every integer
L > 0 there exists a subset Λ of {0, 1, . . . , L − 1} having at least L exp(−c

√
logL) elements that

does not contain any nontrivial solutions to x + y + z = 3w (here a trivial solution is one with
x = y = z = w).

Proof. This follows from a standard modification from Behrend’s construction [3] of a large 3-AP-
free set (e.g., see [2, Lemma 3.1]). �

For the equation x+ y + z = 3w this construction is known be essentially the best possible due
to the work of Schoen and Sisask [18]. The next lemma is similar to Lemma 2.3 in [4].

Lemma 3.2. Let Λ be a subset of {0, 1, . . . , L − 1} not containing any nontrivial solutions to
a+ b+ c = 3d and α be a fixed real constant. For each j ∈ Λ, let

Ij :=

[

j

3L
,
j

3L
+

1

9L

)

⊆ T := R/Z,

and let

B =
⋃

j∈Λ
Ij .

Let f be the polynomial in (1). Let w = αf(n1, n2, n3), x = αf(n1+d, n2, n3), y = αf(n1, n2+d, n3),
and z = αf(n1, n2, n3 + d) and suppose that w, x, y, z (mod 1) all lie in B. Then

‖2α(n1 − n2)d‖R/Z <
1

9L
,

where ‖x‖
R/Z denotes the distance from x ∈ R to the closest integer.

Proof. By (2), we have x+y+z = 3w. Let W,X, Y,Z ∈ Λ be such that w ∈ IW , x ∈ IX , y ∈ IY , and
z ∈ IZ . Then x+y+z (mod 1) lies in [X+Y+Z

3L , X+Y+Z
3L + 1

3L) and 3w (mod 1) lies in [3W3L , 3W3L + 1
3L ).

Since X+Y +Z < 3L, these two intervals intersects exactly when W +X+Y = 3Z, which implies
that W = X = Y = Z since Λ has no nontrivial solutions to this equation. The conclusion follows
from the identity 2αd(n1 − n2) = w − z and that w and z both lie in the interval IW with length
1/(9L). �

Finally, as in [4], we need irrational numbers well-approximable by fractions with a special prop-
erty ([4] only contains a sketch of this part of the argument). In [4] the result for 5-APs is proved
only for infinitely many values of N . In order to make the construction work for all sufficiently large
N , we need to construct a set of such irrational numbers rather than the single number α used in
[4], which explains some of the technicalities to follow. Later, we explain how to extend the 5-AP
construction for infinitely many N in [4] to all sufficiently large N for any fixed five point pattern.
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Before proceeding with the proof of the next lemma, we require several elementary facts regarding
continued fractions. Here we use the standard notation that

(c0; c1, c2, . . .) := c0 +
1

c1 +
1

c2+...

and (c0; c1, c2, . . . , ck) := c0 +
1

c1 +
1

c2+... 1
ck

.

Let the k-th approximant of the continued fraction be

(c0; c1, c2, . . . , ck) = Pk/Qk,

where Pk and Qk are relatively prime positive integers. By standard facts about continued fractions,
we have the double recurrence

Pk = ckPk−1 + Pk−2 and Qk = ckQk−1 +Qk−2 (3)

for k ≥ 0 with Q−1 = 0 and Q−2 = 1. Finally if α = (c0; c1, c2, . . .) and n ≥ 1, then
∣

∣

∣

∣

α− Pn

Qn

∣

∣

∣

∣

<
1

QnQn+1
. (4)

Lemma 3.3. Fix a positive integer m > 1. Then there is a real b ∈ (1, 22m+1] such that the following
holds. For all real r > 0, there is an irrational number α and infinitely many fractions pi/qi with
relatively prime positive integers pi < qi and qi having no prime factor smaller than m such that
|α− pi/qi| < 1/(mq2i ), and rbi < qi < 2rbi for i ≥ i(r,m, b) sufficiently large.

Proof. In order to construct the desired irrational α we build its continued fraction expansion

(c0; c1, c2, . . .) iteratively. Let a = lcm(1, 2, . . . ,m) and set b = a+
√
a2+4
2 . Then a < 4m (see [15])

and thus 2 ≤ b ≤ 22m+1. Choose K such that rbK > 2m. It follows from Bertrand’s postulate that
there exist primes x, y such that x ∈ (rbN , 2rbN ) and y ∈ (rbN+1, 2rbN+1). Since 2m < x < y and
x and y are primes, we have gcd(xy, a) = 1 and gcd(x, y) = 1.

Now we check that there exist sequences {ci}i≥0, {Pi}i≥0, {Qi}i≥0 of positive integers with the
following properties:

• Pk/Qk = (c0; c1, c2, . . . , ck) for each k ≥ 1, where Pk and Qk are relatively prime, and
• there exists a positive integer t with Qt = x,Qt+1 = y.

Indeed, this follows from running the Euclidean algorithm on x, y and using the recurrence relation
(3). This establishes the value of ci for all i ≤ t + 1. Set ci = a for all i ≥ t + 2, and set
α = (c0; c1, c2, . . .) Now since Qt = x ∈ (rbK , 2rbK) and Qt+1 = y ∈ (rbK+1, 2rbK+1), it inductively
follows that Qn ∈ (rbn−t+K , 2rbn−t+K), since Qn = aQn−1 + Qn−2 for i ≥ t + 2 and b satisfies
b2 = ab+1. Furthermore, by construction, we have Qn ≡ Qn−2 (mod a) for n ≥ t+2. Thus either
Qn ≡ x (mod a) or Qn = y (mod a) for all n ≥ t, each of which is relatively prime to a. Thus Qn

for n ≥ t is relatively prime to a, and since a = lcm(1, 2, . . . ,m), we see that Qn for n ≥ t has no
prime factors of size at most m. We can now let (pi, qi) = (Pi+t−K , Qi+t−K) for sufficiently large i,
and by construction these integers satisfy the required conditions. Finally, by (4) we have

∣

∣

∣

∣

α− Pn

Qn

∣

∣

∣

∣

<
1

QnQn+1
<

1

aQ2
n

≤ 1

mQ2
n

.

�

We are ready to prove Theorem 1.6.

Proof of Theorem 1.6. We may assume that δ is sufficiently small or otherwise we can take A =
[N/2] × [N ]× [N ] and then the theorem is true if the constant is chosen appropriately.

Let L = exp(c log(1/δ)2) for an appropriately chosen sufficiently small constant c > 0. Apply
Lemma 3.3 for m = L and t = 2L + 1 different values of r, namely r = 2j for 1 ≤ j ≤ 2L + 1.
The lemma gives a single b ∈ (1, 22L+1] and irrationals α1, . . . , αt as well as positive integers pj,i, qj,i
with gcd(pj,i, qj,i) = 1 so that for all j ∈ [t],
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• qj,i ∈ (2jbi, 2j+1bi) for sufficiently large i ≥ i(j), and
• gcd(qj,i, lcm(1, . . . , L)) = 1 for i ≥ i(j), and
• |αj − pj,i

qj,i
| < 1

Lq2j,i
for i ≥ i(j).

Let I = max{i(1), . . . , i(t)}. Then the above properties hold for all 1 ≤ j ≤ t and i ≥ I. Observe
that all sufficiently large N (here “sufficiently large” depends on δ) are within a factor of 4 from
some qj,i with 1 ≤ j ≤ t and i ≥ I. Therefore, to prove the theorem for all sufficiently large integers
N , it suffices to prove it for numbers of the form N = qj,i.

Let N = qj,i with 1 ≤ j ≤ t and i ≥ I. Let α = αj . Define

F = {n ∈ N : nα ∈ B (mod 1)},
where, as in Lemma 3.2,

B =
⋃

k∈Λ

[

k

3L
,
k

3L
+

1

9L

)

⊆ T

and Λ is a subset of {0, 1, . . . , L − 1} of size Le−O(
√
logL) not containing nontrivial solutions to

a+ b+ c = 3d (by Lemma 3.1). Let f(x, y, z) = (x− y)(x+ y − 2z) as in (1), and

A = {(x1, x2, x3) ∈ [N ]3 : f(x1, x2, x3) ∈ F}. (5)

By the Weyl equidistribution criterion (e.g., see [21]), using m(·) for Lebesgue measure, as N → ∞,

|A|
N3

→ m(B) =
|Λ|
9L

= e−O(
√
logL) ≥ 2δ

as long as we have chosen the constant c in L = exp(c log(1/δ)2) so that the last inequality is true.
Thus, for sufficiently large N , we have |A| ≥ δN3.

A key point here is that while the rate of convergence of the equidistribution claim may depend
on α, since there are only finitely many α’s that we need to consider, there is a single N0(δ) such
that |A| ≥ δN3 whenever N = qj,i ≥ N0(δ) with j ∈ [t] and i ≥ I as above.

Fix a nonzero integer s with |s| < N , which will be the common difference of the corners that we
are counting. Suppose (a1, a2, a3) ∈ A generates a corner of common difference s within A, i.e.

(a1, a2, a3), (a1 + s, a2, a3), (a1, a2 + s, a3), (a1, a2, a3 + s) ∈ A.

Then

f(a1, a2, a3), f(a1 + s, a2, a3), f(a1, a2 + s, a3), f(a1, a2, a3 + s) ∈ F

by the construction (5). By Lemma 3.2, ‖2s(a1 − a2)α‖R/Z < 1/(9L). So
∥

∥

∥

∥

2s(a2 − a3)
pj,i
qj,i

∥

∥

∥

∥

R/Z

≤ ‖2s(a1 − a2)α‖R/Z +

∣

∣

∣

∣

2s(a1 − a2)α− 2s(a1 − a2)
pj,i
qj,i

∣

∣

∣

∣

≤ 1

9L
+ 2s |a1 − a2|

∣

∣

∣

∣

α− pj,i
qj,i

∣

∣

∣

∣

≤ 1

9L
+ 2N2 · 1

Lq2j,i
=

1

9L
+

2

L
≤ 3

L

Recall that N = qj,i is relatively prime to all of [L] as well as to pj,i. In particular, N is odd.
Also |s| < N , so s is not divisible by N . It follows that 2spj,i/qj,i is not an integer. Writing
2spj,i/qj,i = P/Q where P and Q are relatively prime integers with Q positive, one has Q > L since
all prime divisors of qj,i are greater than L.

Thus ‖(a2 − a3)P/Q‖
R/Z ≤ 3/L. So (a2−a3)P (mod Q) ∈ [−⌊3Q/L⌋ , ⌊3Q/L⌋]. Since multipli-

cation by P is a bijection in Z/QZ, there are at most 1+6Q/L ≤ 7Q/L possible values that a2−a3
can take in Z/QZ, and hence there are 7N/L possible values (recall N/Q ∈ Z) that a2 − a3 can
take in [0, N). This gives at most 14N/L possible values a2 − a3 can take in (−N,N). Therefore
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there are at most 14N3/L ≤ 14e−c log(1/δ)2N3 different points (a1, a2, a3) ∈ [N ]3 that generates a
corner of common difference s. �

3.3. Proof of Theorem 1.7. The construction for 5-point patterns is a modification of Ruzsa’s
construction for 5-APs in [4].

Definition 3.4. Let a = (a1, . . . , ak) ∈ Z
k be a vector of distinct integer coordinates. A quadratic

configuration of type a, abbreviated QC(a), is a vector of the form (P (a1), . . . , P (ak)) ∈ Z
k where

P is some non-constant polynomial of degree at most 2.
We say that some set of integers S contains a QC(a) if P (a1), . . . , P (ak) ∈ S for some nonconstant

polynomial P of degree at most 2.

Remark. For 5-APs, [4] only considers a = (0, 1, 2, 3, 4), in which case QC(a) was called a QC5.

Lemma 3.5. Let k ≥ 4. Given a = (a1, . . . , ak) ∈ Z
k with distinct coordinates, there exists a vector

(γi,0, . . . , γi,3) ∈ (Z \ {0})4 for each 1 ≤ i ≤ k− 3 such that y = (y1, . . . , yk) ∈ Z
k is a QC(a) if and

only if not all entries of y are equal and

γi,0yi + γi,1yi+1 + γi,2yi+2 + γi,3yi+3 = 0 for each 1 ≤ i ≤ k − 3. (6)

Proof. For each 1 ≤ i ≤ k − 3 and 0 ≤ j ≤ 3, set

γi,j = M
∏

s∈{0,1,2,3}\{j}
(ai+j − ai+s)

−1

where M is some positive integer so that all γi,j ’s are integers. We have that for all polynomials P
of degree at most 2, and all 1 ≤ i ≤ k − 3,

γi,0P (ai) + γi,1P (ai+1) + γi,2P (ai+2) + γi,3P (ai+3) = 0 for each 1 ≤ i ≤ k − 3. (7)

The above identity is essentially the Lagrange polynomial interpolation formula. It can also be
verified, for each i, by checking the identity on three linearly independent polynomials P (x) =
∏

s∈{0,1,2}\{j}(x − ai+s) for j ∈ {0, 1, 2}. Both the linear independence claim and the quadratic

polynomial identity can be verified by evaluations at x = ai, ai+1, ai+2.
If y is QC(a), then by definition yi = P (ai) for some nonconstant polynomial P of degree at

most 2, and thus y satisfies (6). Furthermore, P cannot take the same value more than twice since
it has degree at most 2, so not all coordinates of y are equal.

Conversely, suppose some non-constant vector y satisfies (6). Let P be a polynomial of degree
at most 2 such that P (aj) = yj for j = 1, 2, 3. Comparing (6) and (7) for each i = 1, 2, . . . , k − 3
sequentially, noting that γi,j 6= 0 for all i, j, we find that P (aj) = yj for all 1 ≤ j ≤ k. Since y is
non-constant, P is non-constant as well. �

The next lemma is a modification of Behrend’s construction, following Ruzsa’s appendix [4].

Lemma 3.6. Fix a vector a = (a1, . . . , a5) of five distinct integers. There exists a constant C = Ca

such that for every positive integer L, there exists Λ ⊆ {0, 1, . . . , L− 1} with |Λ| ≥ Le−C
√
logL that

does not contain any QC(a).

Proof. Let γi,j , i ∈ {1, 2}, j ∈ {0, 1, 2, 3} be the integer coefficients from Lemma 3.5. Let Γ =
4maxi,j |γi,j |. Define

Λ = {x0 + x1m+ · · · + xd−1m
d−1 : each xj ∈ {0, 1, . . . , ⌊m/Γ⌋ − 1} and

d−1
∑

j=0

x2j = r}

where d =
⌊√

logL
⌋

, m =
⌊

L1/d
⌋

, and r < d(m/Γ)2 chosen so that |Λ| is as large as possible. Then

|Λ| ≥ ⌊m/Γ⌋d /(d(m/Γ)2) ≥ Le−C
√
logL.
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It remains to show that Λ contains no QC(a). Indeed, suppose y1, . . . , y5 ∈ Λ form a QC(a) via
non-constant polynomial P of degree at most 2 so that yi = P (ai) for each i ∈ [5]. For each i ∈ [5],
let

yi = xi,0 + xi,1m+ · · ·+ xi,d−1m
d−1

with integers xj,i ∈ {0, 1, . . . , ⌊m/Γ⌋ − 1}. By (6), we have, for each i = 1, 2,

d−1
∑

j=0

(γi,0xi,j + γi,1xi+1,j + γi,2xi+2,j + γi,3xi+3,j)m
j = 0.

The coefficient of each mj is an integer less than m in absolute value, so they must all be zero due
to the uniqueness of base-m expansion. It follows that

γi,0xi,j + γi,1xi+1,j + γi,2xi+2,j + γi,3xi+3,j = 0

for each i ∈ {1, 2} and j ∈ {0, . . . , d− 1}. Then, for each j ∈ {0, . . . , d− 1} there exist a polynomial
Pj of degree at most 2 such that Pj(ai) = xi,j for each i ∈ [5]. Let P (t) = (P0(t), . . . , Pd−1(t)).
Then |P (ai)|2 = r for each i ∈ [5] by the construction of Λ. So |P (t)|2 − r is a polynomial of
degree at most 4 with 5 distinct real roots t = a1, . . . , a5, and thus P (t) must be a constant, and
so y1 = · · · = y5. Hence Λ has no QC(a). �

The next lemma is analogous to Lemma 3.2.

Lemma 3.7. Fix a vector a = (a1, . . . , a5) of five distinct integers. There exist positive integers
Θ1,Θ2,Θ3 depending only on a such that the following holds. Let Λ be a subset of {0, 1, . . . , L− 1}
not containing any QC(a). For each j ∈ Λ, let

Ij :=

[

j

Θ1L
,

j

Θ1L
+

1

Θ2
1L

)

⊆ T := R/Z,

and let
B =

⋃

j∈Λ
Ij .

Let α ∈ R, n, d ∈ Z, and ui = α(n+ aid)
2 for 1 ≤ i ≤ 5, and suppose that ui (mod 1) lies in B for

each i ∈ [5]. Then ‖Θ2αnd‖R/Z < Θ3/L.

Proof. Let γi,j , i ∈ {1, 2}, j ∈ {0, 1, 2, 3}, be the integer coefficients from Lemma 3.5. Let Θ1 =
4maxi,j |γi,j |. Let U1, . . . , U5 ∈ Λ such that ui (mod 1) ∈ IUi for each i ∈ [5]. Since the linear
relations (7) holds for the quadratic polynomial P (t) = α(n + dt)2, we have

γ1,0u1 + γ1,1u2 + γ1,2u3 + γ1,3u4 = 0.

For each i, we have ui (mod 1) ∈ IUi , and so ‖ui − Ui/(Θ1L)‖ < 1/(Θ2
1L). Considering the above

displayed equality, we have
∥

∥

∥

∥

γ1,0U1 + γ1,1U2 + γ1,2U3 + γ1,3U4

Θ1L

∥

∥

∥

∥

R/Z

<
Θ1

Θ2
1L

=
1

Θ1L
.

Since |γ1U1 + γ2U2 + γ3U3 + γ4U4| < Θ1L, it follows that

γ1,0U1 + γ1,1U2 + γ1,2U3 + γ1,3U4 = 0

as integers. Likewise,
γ2,0U2 + γ2,1U3 + γ2,2U4 + γ2,3U5 = 0.

Since U1, . . . , U5 ∈ Λ and Λ has no QC(a), we must have U1 = · · · = U5 due to the characterization
of QC(a) in Lemma 3.5.

We have the identity

2(a1 − a2)(a2 − a3)(a3 − a1)nd = (a22 − a23)(n + da1)
2 + (a23 − a21)(n+ da2)

2 + (a21 − a22)(n + da3)
2.
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Thus, setting Θ2 = |2(a1 − a2)(a2 − a3)(a3 − a1)| and Θ3 =
⌈

3maxi∈[3] |ai|2/Θ2
1

⌉

, we have

‖Θ2αnd‖R/Z
=

∥

∥(a22 − a23)u1 + (a23 − a21)u2 + (a21 − a22)u3
∥

∥

R/Z

≤
∥

∥

∥

∥

(a22 − a23)
U1

Θ1L
+ (a23 − a21)

U2

Θ1L
+ (a21 − a22)

U3

Θ1L

∥

∥

∥

∥

R/Z

+ (3max
i∈[3]

|ai|2)max
i∈[3]

∥

∥

∥

∥

ui −
Ui

Θ1L

∥

∥

∥

∥

R/Z

= (3max
i∈[3]

|ai|2)max
i∈[3]

∥

∥

∥

∥

ui −
Ui

Θ1L

∥

∥

∥

∥

R/Z

<
Θ3

L
,

In the last equality step we are using that U1 = U2 = U3. �

Proof of Theorem 1.7. The construction is nearly identical to the proof of Theorem 1.6, except that
now we apply Lemma 3.7 instead of Lemma 3.2. In particular, let Λ be as in Lemma 3.6, construct
B as in Lemma 3.7, and let F = {n ∈ N : nα ∈ B (mod 1)} where α is a suitable irrational number
(as in the proof of Theorem 1.6). Then A = {x ∈ [N ] : x2 ∈ F} is the desired set. �

3.4. Proof of Corollary 1.8. We first consider the case when the pattern T has at least 5 points.
By removing extra points, it suffices to prove the result with |T | = 5. Fix an integer C larger than
the sum of the magnitudes of the coordinates of all points in T . Define the map ϕ : (x1, . . . , xk) 7→
∑k

i=1C
ixi. Let A be a set in [C ′N ] coming from Theorem 1.7 containing at most δc log(1/δ)N

translates of every dilate of ϕ(T ). Then ϕ−1(A)∩ [N ]k is the desired construction that has at most

δc
′ log(1/δ)Nk translates of every dilate of T .
We now consider patterns T with affine dimension at least 3. First let us consider the case where

0,e1,e2,e3 ∈ T , where ei is the i-th coordinate vector. Let A ⊂ [N ]3 as in Theorem 1.6. Then
A× [N ]k−3 ⊂ [N ]k has the desired property.

Now for an arbitrary T of affine dimension at least 3, we find four points v1, v2, v3, v4 ∈ T
with affine span of dimension 3 (i.e., not all lying on a plane). Consider the d-dimension lattice
L generated by v2 − v1, v3 − v1, v4 − v1 as well as d − 3 other independent integer vectors in the
complementary subspace. Let Φ be the linear transformation sending Z

d to L and the first three
coordinate vectors to v2−v1, v3−v1, v4−v1. Then the image of A×[N ]k−3 ⊂ [N ]k (from the previous
paragraph) under Φ has the desired property (one loses only a constant factor in size depending on
the map Φ). �

4. Open problems

We end on a list of open problems.

4.1. Quantitative dependence. Let N0(ǫ) be the minimum N0 so that Green’s theorem [10] on
popular difference for 3-APs holds for all N ≥ N0(ǫ), i.e., for every ǫ > 0, N ≥ N0(ǫ), and A ⊆ [N ]
with |A| ≥ δN , there is some d > 0 such that A contains at least (δ3 − ǫ)N different 3-APs with
common difference d. Green proved that N0(ǫ) is at most an exponential tower of 2’s with height
ǫ−O(1). The bounds are due to the use of a Szemerédi-type regularity lemma argument adapted
to the arithmetic setting. Recently, Fox, Pham, and Zhao [7, 8, 9] showed that the regularity-type
bounds are necessary, namely that N0 grows as an exponential tower of twos of height Θ(log(1/ǫ)).

It remains to be explored the quantitative dependencies of N0 on ǫ for other popular difference
patterns such as 4-APs and 2-dimensional corners.

4.2. Four-point patterns in one and two dimensions. Corollary 1.8 addresses all patterns
with affine dimension 3 or at least 5 points. This leaves open the cases of popular differences all
4-point patterns in dimensions 1 and 2 except those resolved positively by Green and Tao [12]
(namely 4-APs and other patterns of the form {0, a, b, a + b}).
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A particular enticing open case is the axis-aligned square: {(0, 0), (0, 1), (1, 0), (1, 1)}. The 1-
dimensional projection of this pattern yields a pattern of the form {0, a, b, a + b}, and this 1-
dimensional pattern has the positivity property used in the 4-AP popular difference proof [12].

4.3. Finite fields versus integers (or other groups). The claim in Mandache’s Theorem 1.1
that mconvex ≤ M for 2-dimensional corners (and also Corollary 1.3) is currently only proved for
G = F

n
p with fixed p. It seems likely that the methods can be extended to all abelian groups via

Bohr sets, similar to [10]. However, this has yet to be worked out.
On the other hand, our counterexample construction Theorem 1.6 for 3-dimensional corners only

works over the integers, and not, say F
n
p . It remains to explore the problem over other groups.
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