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ABSTRACT: We have investigated the chemical bath deposition (CBD) of CuS using
thioacetamide on functionalized self-assembled monolayers (SAMs) using scanning electron and
optical microscopies, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass
spectrometry. For all SAMs studied, the amount of CuS deposited is strongly dependent on the
bath pH and can be attributed to the interaction of the SAM terminal groups with the
chalcogenide ions present in solution. For −CH3-terminated SAMs, there is a steady increase in
the amount of CuS deposited with an increase in the bath pH because there is an increase in the
concentration of chalcogenide ion. However, for −OH- and −COOH-terminated SAMs, we observe that the maximum amount of
CuS is deposited at pH 10. We attribute this behavior to a competition between the repulsion of the chalcogenide ions by the
negatively charged SAM terminal groups and an increase in the chalcogenide ion concentration with an increase in the bath pH.
Using the interaction of the chalcogenide ions with the different SAM terminal functional groups, we demonstrate that CuS can be
selectively deposited on the −CH3-terminated areas of patterned −OH/−CH3- and −COOH/−CH3-terminated SAMs.

■ INTRODUCTION

Copper sulfide is an attractive semiconductor due to its earth
abundance1 and nontoxic qualities,2,3 making it an attractive
and low-cost option for many technological applications
including in biochemistry,4−6 photocatalysis,7 solar cells,2,3,8,9

and nanoelectronics.10,11 CuS nanostructures and thin films
have been fabricated by various techniques including atomic
layer deposition12 and chemical vapor deposition,13−15 hydro-
thermal,9,16−19 solvothermal,19 microwave-assisted synthesis,20

thermolysis,18 spray pyrolysis,21 sonoelectrochemical meth-
ods,18 and chemical bath deposition (CBD).16,22−37 CBD is an
appealing method for the deposition of chalcogenide and oxide
thin films. It is inexpensive, done under ambient conditions,
can be performed at low temperatures (≤50 °C) which are
compatible with organic thin films such as polymers, and does
not require a conductive substrate.36

Little is known about the role of the substrate chemistry in
the deposition efficiency and selectivity of CuS deposition.
Chen et al.37 and Lu et al.16 have demonstrated that Under
acidic conditions (pH ∼ 2.5), CuS is preferentially deposited
on −NH2-terminated self-assembled monolayers (SAMs)
using almost identical bath compositions and temperature
(70 °C). However, these authors come to very different
conclusions about the underlying mechanism. Chen and co-
workers37 proposed that the preferential deposition occurs
because there is an electrostatic interaction between the
negatively charged CuS colloidal particles and the partially
protonated −NH2 terminal groups. In contrast, Lu and co-
workers16 indicated that the selective deposition occurs via an
ion-by-ion mechanism in which the CuS layer nucleates at the
Cu2+−amine surface complexes.

Under basic conditions, even less is known about the CuS
deposition selectivity. Previous studies have shown that the
formation of surface complexes38−41 and the hydrophobic/
hydrophilic properties of the self-assembled monolayers
(SAMs)42 can be exploited to perform selective growth of
ZnO,40 ZnS,38 CdSe,39 and PbS.41,42 In general, under these
conditions, the interaction of the surface with the metal cation
has been critical in determining the selective growth of these
films. For example, the formed M2+-carboxylate surface
complexes, where M = Zn, Cd, and Pb, have been
demonstrated to act as the nucleation sites for site-selective
deposition of ZnO,40 ZnS,38 CdSe,39 and PbS.41 Finally, we
note that it has also been reported that the substrate chemistry
affects the properties of the deposited copper sulfide film on
both organic and inorganic substrates under both acidic and
basic conditions,16,34,36,43,44 but again the mechanisms under-
lying these effects are not well understood.
Here, we investigate the CBD of CuS on −CH3-, −OH-, and

−COOH-terminated SAMs at room temperature under basic
conditions using thioacetamide as a sulfur source using X-ray
photoelectron spectroscopy (XPS), time-of-flight secondary
ion mass spectrometry (TOF SIMS), and microscopy. We
demonstrate that the deposition selectivity is strongly depend-
ent on the interaction of the SAM terminal group with the
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sulfur-containing ions in the deposition bath. For the −CH3-
terminated SAMs, the amount of CuS deposited increases with
an increase in the bath pH and thus the concentration of
sulfur-containing ions in solution, and there is no specific
interaction of the methyl terminal group with these anions.
However, for −OH- and −COOH-terminated SAMs, the
chalcogenide ions are repelled by the negatively charged SAM
surface, which can lead to a decrease in the amount of CuS
deposited as the bath pH increases. Second, we show that CuS
can be selectively deposited on the −CH3-terminated areas of
the patterned −OH/−CH3- and −COOH/−CH3-terminated
SAMs. In this case, selectivity is imparted by the interaction of
the chalcogenide ions with the −OH- and −COOH-
terminated SAMs.

■ EXPERIMENTAL SECTION
Materials. All of the reagents were used without further

purification. Thioacetamide (99%) was obtained from Alfa Aesar,
Inc. Sodium hydroxide (≥98%, pellets) was acquired from Fisher
Chemicals (Thermo Fisher Scientific Inc., Waltham, MA). 16-
Hydroxy-1-hexadecanethiol (99%) was purchased from Frontier
Scientific Inc. (Logan, UT). 16-Mercaptohexadecanoic acid (90%),

1-hexadecanethiol (99%), ethylenediaminetetraacetic acid (98%)
(EDTA), and copper(II) sulfate pentahydrate (98%) were purchased
from Sigma-Aldrich Inc. (St. Louis, MO). Ethanol (200 proof,
undenatured) was obtained from Spectrum Chemical MFG Corp
(New Brunswick, NJ).

The gold substrates were prepared by the physical vapor deposition
of ∼200 Å Cr, followed by ∼1000 Å Au on silicon wafers (⟨111⟩
orientation; Addison Engineering Inc. (San Jose, CA)) using a CHA-
50 e-beam evaporator (CHA Industries, Freemont CA).

Preparation of Self-Assembled Monolayers on Gold
Substrates. The preparation of alkanethiolate SAMs has been
described previously.45−47 Briefly, a well-ordered SAM was prepared
by immersing a gold substrate into a 1 mM ethanolic solution of the
functionalized alkanethiol (with either a −CH3, −CH2OH, or
−COOH terminal group) for 24 h at room temperature. After
removing from the alkanethiol solution, the samples were rinsed with
ethanol and dried with nitrogen gas. To ensure that the SAMs were
free of significant chemical contamination, the samples from each
batch were analyzed by single-wavelength ellipsometry (Gaertner
Scientific Corp., Skokie, IL), time-of-flight secondary ion mass
spectrometry, and X-ray photoelectron spectroscopy.

Patterned −COOH/−CH3- and −OH/−CH3-terminated SAM
substrates were prepared using photopatterning using the method of
Zhou and Walker.48 Hydroxyl or carboxylic acid terminated SAMs

Figure 1. Variation of Cu 2p and S 2p X-ray photoelectron spectra of the CuS films deposited on −CH3-, −OH-, and −COOH-terminated SAMs
at bath pH for 24 h. Deposition time: 24 h. Also shown for reference are the photoelectron spectra of the bare SAMs.
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were exposed to UV light (500 W Hg arc lamp; Thermal Oriel-
Spectra Physics Inc., Stratford CT) for 2 h through a mask. After
photo-oxidation, the SAM substrate was then placed in a 1 mM
ethanolic solution of hexadecanethiol for 24 h. In the photo-oxidized
areas, the −CH3-terminated SAM was adsorbed, leading to the
formation of patterned −COOH/−CH3- and −OH/−CH3-termi-
nated SAM samples.
Chemical Bath Deposition of Copper Sulfide. The deposition

bath was composed of 0.006 M copper sulfate pentahydrate, 0.016 M
EDTA, 0.012 M sodium hydroxide, and 0.012 M thiourea. To
investigate the effect of the pH on the deposition, the bath pH was
varied from pH 6 to 12. The pH of the deposition bath was adjusted
using sodium hydroxide and sulfuric acid prior to the addition of the
sulfur source, 0.012 M thioacetamide. The SAM substrate was
immediately immersed into the bath for 24 h at room temperature.
After deposition, all samples were sonicated in water for 2 min, rinsed
with deionized water, dried using nitrogen gas, and stored in a
nitrogen glovebox prior to further characterization.
We note that at pH 12, the bath color changed from blue to green

almost immediately during deposition and became cloudy. At pH 11,
the bath color also changed from blue to green over the first hour of
deposition. Further, for deposition baths initially at pH 12 and 11, the
solution pH decreased until it reached a pH value of 10 after 5 h.
After 5 h, the bath pH remained constant at ∼10. Between pH 6 and
10, the solution remained blue, and the pH did not change
throughout the deposition. Photographs of the baths and pH
measurements are given in the Supporting Information.
X-ray Photoelectron Spectroscopy. Ex situ XPS measurements

were acquired using a PHI VersaProbe II (Physical Electronics Inc.,
Chanhassen, MN) with an Al Kα source (Eb = 1486.7 eV). During
data collection, the chamber pressure was maintained at <5 × 10−10

mbar. High-resolution photoelectron spectra were collected with a
pass energy of 23.5 eV, an energy step of 0.2 eV, and an analysis angle
of 45°. All spectra were obtained using a charge compensation with
both electron and ion beams incident on the surface. The binding
energies were calibrated to the Au 4f7/2 binding energy (84.0 eV).
The data were analyzed using CasaXPS 2.3.17 (RBD Instruments,

Inc., Bend OR). The Cu 2p3/2 peak height was obtained in the
following way. The Cu 2p spectra were fit with a Shirley background.
The peak height was obtained from the difference between the
number of counts at the Cu 2p3/2 photoelectron peak maximum and
the Shirley background intensity.
All XPS measurements were performed within 24 h of CuS CBD,

and at least three samples were prepared (on different days) with
three areas analyzed for each deposition condition. The spectra shown
are representative of the data obtained.
Time-of-Flight Secondary Ion Mass Spectrometry. The TOF

SIMS data were collected with an ION TOF IV (ION TOF Inc.,
Chestnut Hill, NY) equipped with a Bi liquid metal ion gun. The
instrument comprised of three chambers: a loadlock, a preparation
chamber, and an analysis chamber. During data collection, the
pressure of the analysis chamber was kept at <5 × 10−9 mbar. The Bi+

primary ions had a kinetic energy of 25 keV and were contained in a
∼100 nm probe beam. All of the spectra were acquired using an
analysis area of 100 × 100 μm2 and within the static regime using a
total ion dose of less than 1010 ions cm−2.
For each experimental condition, at least three samples were

prepared (on different days), and three areas on each sample were
examined. The spectra shown are characteristic of these data.
Optical and Secondary Electron Microscopy. Scanning

electron microscopy (SEM) and optical microscopy were employed
to image the deposits. SEM measurements were acquired on a Supra-
40 scanning electron microscope (Zeiss), while optical microscopy
was performed using a Keyence VHX-2000 digital microscope. The
images shown are representative of the data obtained.

■ RESULTS AND DISCUSSION

Figure 1 displays the Cu 2p and S 2p X-ray photoelectron
spectra of the deposited CuS films after 24 h using deposition

baths with varying pH values. For every deposition bath pH
and functionalized SAM, the Cu 2p3/2 and Cu 2p1/2 binding
energies are 931.9 ± 0.3 eV and 951.6 ± 0.2 eV, indicating that
CuS has been deposited (see Supporting Information Table
S1).49−51 The modified Auger parameter, which is the sum of
the Cu 2p3/2 binding energy and Cu LMM kinetic energy, is
1850.2 ± 0.3 eV, also consistent with the formation of CuS
(see Supporting Information Table S1).49,51 Although the S 2p
photoelectron peak cannot be resolved into 2p3/2 and 2p1/2
peaks, the S 2p binding energy, ∼162.5 eV, is also consistent
with the deposition of CuS.49,50 Further, full width at half-
maximum (FWHM) of the S 2p peak is ∼2.6 eV, which is
much larger than that of ∼1.5 eV of the Cu 2p photoelectron
peaks.50 This suggests that the S 2p photoelectron peak is
composed of two doublets of the S2− and S2

2− ligands present
in CuS.50 Finally, consistent with the deposition of CuS, the
calculated ratio of the S/Cu concentration is equal to the
expected stoichiometry of 1.0 within the experimental error
(see Supporting Information Table S1).
The C 1s photoelectron spectra indicate that there is no

interaction between the SAM and deposited CuS. No new
photoelectron peaks are observed in the spectra. However,
upon CuS CBD, the intensities of the C 1s and O 1s
photoelectron peaks increase, and their binding energies
increase and then decrease. This is likely due to charge
transfer between the CuS and gold substrate, which is
mediated by the dipole of the functionalized SAM (see
Supporting Information Figures S5 and S6). Similar effects
have been observed by Jiang et al.52 for the Au clusters
deposited on rutile.
The XPS data also show that the amount of CuS deposited

is dependent on both the bath pH and the identity of the SAM
functional group (Figure 1). Figure 2 displays the variation of

the Cu 2p3/2 photoelectron peak height with bath pH after
deposition on −CH3-, −OH-, and −COOH-terminated SAMs
for 24 h at room temperature. The Cu 2p3/2 peak height can be
used here as a quantitative measure of the amount of CuS
deposited because it is related to the peak area and there are no
overlapping peaks or interferences in the photoelectron
spectra, which would lead to inaccuracies in the quantitative
estimation. Further, the XPS data are consistent with the CuS
film thicknesses measured using AFM (after sonication). At
pH 12, the adherent CuS film is ∼50 nm thick, at pH 11 ∼35
nm, and at pH 10 ∼8 nm. In general, the Cu 2p3/2 peak height
increases with an increase in bath pH, indicating that more
CuS has been deposited. However for −OH- and −COOH-

Figure 2. Variation of the Cu 2p3/2 photoelectron peak height with
bath pH after CBD of CuS on −COOH-, −OH-, and −CH3-
terminated SAMs for 24 h at room temperature.
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terminated SAMs, the amount of CuS decreases, as evidenced
by the Cu 2p3/2 peak height, for bath pH ≥ 11. In contrast, on
−CH3-terminated SAMs, the amount of CuS increases with
increasing bath pH. We note that at pH 11 and 12, the error
bars significantly increase, suggesting that the deposited layer
has become rough or is nonuniform.
We also observed differences in the growth of the CuS layer

with deposition time. Figure 3 displays the variation of the Cu

2p3/2 peak height with deposition time at pH 11. For −CH3-
terminated SAMs, the amount of CuS deposited initially
increases slowly and then quickly increases after the deposition
time of 10 h. It is interesting to note that the faster growth
occurs after the deposition bath pH has reached its equilibrium
value pH of ∼10 (see the Supporting Information). The
amount of CuS deposited appears to reach a plateau after 15 h.
Between 15 and 24 h, we note that there is a wider variation in
the Cu 2p3/2 height, suggesting that the deposit is either rough
or nonuniform. In contrast, for −OH- and −COOH-
terminated SAMs, a much smaller amount of CuS is deposited,
as measured by the Cu 2p3/2 peak height. Initially, the Cu 2p3/2
peak height increases slowly until it reaches a plateau after 5 h
of deposition and then starts to increase after ∼20 h deposition
time.
The TOF SIMS measurements are in agreement with the

XPS data. For all experimental conditions and functionalized
SAMs studied, CuxSyHz

± ions are observed in the positive and
negative ion mass spectra, indicating that CuS has been
deposited. Further, the data show that the SAM molecular
cluster ion intensities, Au2M

− and AuM2
− (where M =

−S(CH2)15CH3, −S(CH2)15CH2OH, or −S(CH2)15COOH),
also decrease with decrease in bath pH, indicating that the
functionalized SAMs are increasingly covered by the deposited
CuS layer (Figure 4). This observation suggests that more CuS
is deposited as the bath pH increases. For all SAMs studied for
depositions at pH > 11, no molecular cluster ions are observed,
indicating that the CuS layer has fully covered the substrate.
Additionally, for −COOH-terminated SAMs at bath pH ≥ 9,
we observe that ions are of the form CuCOO(CH2)x(CH)y

+,
indicating that Cu2+ ions interact with the −COOH terminal
group (Figure 5) and are characteristic of the formation of
copper-carboxylate complexes.53,54

Reaction Pathways. The reaction pathways involved in
the CBD of CuS on functionalized SAMs using thioacetamide
must account for the following observations:

(a) At pH 6, very little copper sulfide is deposited.

(b) The largest amount of copper sulfide is deposited on
−CH3-terminated SAMs.

(c) At pH 11, the largest amount of CuS is deposited on
−OH- and −COOH-terminated SAMs.

(d) There is a steady increase in the amount of CuS
deposited on −CH3-terminated SAMs as the bath pH
increases.

(e) The nucleation time for CuS deposition on −CH3-
terminated SAMs is slightly faster than that for CuS
deposition on −OH- and −COOH-terminated SAMs.

In CBD reactions, the concentration of the metal ion and
the chalcogenide ion are controlled.36 Under basic reaction
conditions, CuS can be deposited using the following
(unbalanced) reaction pathway (chemical reaction)36,55

+ → [ ]+ − −Cu EDTA Cu(EDTA)2 4 2 (1)

+ → + +− − −CH CSNH 2OH CH COO NH HS3 2 3 3 (2)

Figure 3. Variation of the Cu 2p3/2 peak height with deposition time
after CBD of CuS on −COOH-, −OH-, and −CH3-terminated SAMs
at pH 11 and room temperature.

Figure 4. High-resolution negative-ion spectra of Au2M
− after the

deposition of copper sulfide on −CH3-, −OH-, and −COOH-
terminated SAMs, where M = −S(CH2)15CH3, −S(CH2)15CH2OH,
and −S(CH2)15COOH, respectively, for 24 h at room temperature.
The deposition bath pH was varied from pH 6 to 12. Also shown for
reference are the mass spectra of the bare SAMs.
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+ → +− − −HS OH S H O2
2 (3)

+ →+ −Cu S CuS2 2 (4)

The concentration of “free” copper ions is controlled by a
complexing agent, ethylenediaminetetraacetic acid (EDTA)
(reaction 1). Thioacetamide reacts with hydroxide ions present
in a solution to form bisulfide ions, HS− (reaction 2).
Subsequently, the bisulfide ions decompose to S2− ions
(reaction 3), which then react with Cu2+ ions to form CuS
(reaction 4). However, in weakly acidic solutions (i.e., pH 6),
the deposition reaction may proceed through the decom-
position of a Cu2+−thioacetamide complex rather than the
formation of an intermediate bisulfide and sulfide ion.36 This
reaction is much slower than the hydrolysis of thioacetamide
under basic conditions (reactions 2 and 3), and so less copper
sulfide is deposited at pH 6 than at higher pH. Reactions 2 and
3 also clearly show that as the bath pH increases, i.e., the
concentration of OH− ions in the bath increases, the
deposition rate is likely to increase. This is because, by Le
Chatelier’s principle, the increased [OH−] concentration will
drive reactions 2 and 3 to the product side leading to an
increase in the S2− concentration and deposition of more CuS
(reaction 4).
The deposition on functionalized SAMs can proceed via an

ion-by-ion growth in which deposition occurs via successive
cation−anion absorption on the growing deposit and/or by a
cluster-by-cluster growth in which there is the formation of
colloidal particles in solution, followed by aggregation and
their deposition on the substrate.36 Thus, the placement and
deposition of films synthesized using ion-by-ion growth are
strongly dependent on the substrate chemistry.38−41 Further,
deposits formed by cluster-by-cluster growth do not strongly
adhere to the substrate. To investigate the effect of the
functionalized SAMs on CuS CBD, we therefore thoroughly
rinsed and sonicated the samples before analysis so that only
CuS films deposited using ion-by-ion growth were investigated.
Our experiments clearly indicate that the reaction pathways

involved in CuS CBD are more complicated than the above
discussion suggests. It is likely that at pH 12, there are other
copper complexes present in the deposition bath because the
solution changes from blue to green, and so the deposition
pathways are altered. The data also clearly show that the
chemical nature of the SAM terminal group is also important
in the deposition process. Methyl-terminated SAMs are

hydrophobic, while hydroxyl and carboxylic acid terminated
SAMs are hydrophilic. However, this cannot account for the
deposition differences observed. If the hydrophobicity/hydro-
philicity of the substrates controlled the CBD process, we
would expect that the least amount of CuS would be deposited
on the −CH3-terminated SAMs at every bath pH studied.
However, at pH ≥ 9, more copper sulfide is deposited on the
hydrophobic −CH3-terminated SAM than that on the
−COOH- and −OH-terminated SAMs (Figures 1 and 2).
This indicates that it is the interaction of the precursor ions
with the SAM terminal groups that leads to the differences in
the observed deposition.
We propose that the deposition can be explained via a

kinetically controlled reaction. For −CH3-terminated SAMs,
the terminal C−H bonds are nonpolar. Consequently, there is
no specific interaction between either the Cu2+ or S2− ions in
solution and the −CH3 terminal group. Nucleation of the
copper sulfide layer likely occurs due to trapping (most likely
at defects) of either Cu2+ or S2− ions or by the precipitation of
small clusters (cluster-by-cluster growth).38−41,55 As the pH of
the deposition bath increases, there is a steady increase in the
amount of copper sulfide deposited because the concentration
of S2− in solution increases. In contrast, hydroxyl-terminated
SAMs have a polar terminal C−OH bond, which has a dipole
oriented such that the −OH group has a small negative charge
(δ−). As the deposition bath pH increases above 10, the
negatively charged −OH group repels some of the S2− ions and
other anions in solution, leading to less CuS deposited than
that on −CH3-terminated SAMs and a decrease in the overall
amount of CuS deposited (Figure 3).
For −COOH-terminated SAMs, the data suggest that there

are two competing effects. For −COOH-terminated SAMs, the
surface pK1/2 is ∼8.0, which is the pH of the solution at which
the surface is 50% ionized.56 Thus, as the bath pH increases,
the −COOH terminal group deprotonates to form carboxylate
ions, COO−, and at pH 12, the surface is almost fully
deprotonated. This leads to the formation of copper-
carboxylate complexes, which serve as the nucleation sites for
subsequent deposition (Figure 5).38−41,53,54 However, at pH
12, the amount of copper sulfide decreases significantly (Figure
3). The equilibrium constant, K, for the complexation of Cu2+

and carboxylic acids (<100)57 is very low. In the deposition
bath, there is a large concentration of EDTA and Cu2+ has a
very high binding constant to EDTA (5 × 1018);58 therefore, it
is likely that few copper complexes will be formed. This
suggests that as the pH increases and becomes more negatively
charged, there is a competition between the nucleation of the
CuS layer at the Cu-carboxylate surface complexes and the
repulsion between the negatively charged COO− function-
alized surface and sulfur ions present in the solution. Thus, at
pH 11, more CuS is deposited on the −COOH-terminated
SAMs than on the −OH-terminated SAMs due to the
formation of copper-carboxylate complexes. However, at pH
12, the repulsion between the negatively charged sulfur ions in
the solution and the negatively charged surface dominate the
CBD process, leading to a decrease in the amount of CuS
deposited.

Selective Deposition of CuS. These results indicate that
under appropriate conditions, CBD can be employed to
selectively deposit CuS without the formation of metal-surface
complexes. Rather, the different deposition and nucleation
rates for −CH3-, −OH-, and −COOH-terminated SAMs can
be employed to selectively deposit CuS on −CH3-terminated

Figure 5. High-resolution positive-ion spectra centered at m/z 163
after the deposition of CuS on −COOH-terminated SAMs for 24 h at
room temperature. The deposition bath pH was varied from pH 6 to
12. Also shown for reference are the mass spectra of the bare SAMs.
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SAMs. Here, the selectivity is imparted by the different
interactions of the produced bisulfide and sulfur ions with the
−CH3-, −OH-, and −COOH-terminated SAMs. In Figure 6,

the SEM images indicate that CuS has been deposited only on
the −CH3-terminated SAM region (“square” areas) after CBD
of CuS on −CH3/−OH- or −CH3/−COOH-terminated
patterned SAMs. In the “bar” areas, which are composed of
either −OH- or −COOH-terminated SAMs no crystallites or
deposits are observed.

■ CONCLUSIONS
CBD of copper sulfide using thioacetamide is strongly
dependent on the interaction of the precursors, in particular
the sulfur-containing ions, with the chemical identity of the
SAM functional groups. For −CH3-terminated SAMs, there is
no specific interaction with the deposition bath reagents. As
the bath pH increases, there is a steady increase in the amount
of CuS deposited due to an increase in the concentration of
sulfur-containing ions in the bath. For −OH-terminated SAMs,
there is an initial increase in the CuS deposited with an
increase in bath pH, which can also be attributed to the
increase in the sulfur-containing ion concentration. However,
above pH 10, the amount of CuS decreases and is less than
that on −CH3-terminated SAMs because the chalcogenide ions
in a solution are repelled by a slightly negatively charged, polar
−OH terminal group.
For −COOH-terminated SAMs, there are two competing

effects: the formation of copper-carboxylate surface complexes,
which can serve as the nucleation sites for film growth, and the
repulsion of S2− ions by the negatively charged −COO−-
terminated surface. Thus, at pH 10 and 11, more copper
sulfide is deposited on −COOH-terminated SAMs due to the
formation of surface copper-carboxylate complexes, which
serve as nucleation sites for CuS deposition. At pH 12, similar
amounts of CuS are deposited on −OH- and −COOH-
terminated SAMs due to the repulsion of the negatively
charged sulfur-containing ions by the negatively charged SAM
surface.
These experiments indicate that there is a second method to

successfully perform selective CBD of inorganic chalcogenides
on organic surfaces. Rather than exploiting the formation of
metal-surface complexes, the interaction of chalcogenide ion
with different functional groups can be employed to

manipulate the selectivity of the deposition. Further, the
interaction of the chalcogenide ion with the surface functional
group can lead to selective deposition even if metal-surface
complexes are present.
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