Empirical Software Engineering (2020) 25:1596-1641
https://doi.org/10.1007/510664-019-09791-w

®

Deriving a usage-independent software quality metric | check for
updates

Tapajit Dey’ @ . Audris Mockus'

Published online: 19 February 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

Context The extent of post-release use of software affects the number of faults, thus biasing
quality metrics and adversely affecting associated decisions. The proprietary nature of usage
data limited deeper exploration of this subject in the past.

Objective To determine how software faults and software use are related and how, based on
that, an accurate quality measure can be designed.

Method Via Google Analytics we measure new users, usage intensity, usage frequency,
exceptions, and release date and duration for complex proprietary mobile applications for
Android and iOS. We utilize Bayesian Network and Random Forest models to explain the
interrelationships and to derive the usage independent release quality measure. To increase
external validity, we also investigate the interrelationship among various code complexity
measures, usage (downloads), and number of issues for 520 NPM packages. We derived
a usage-independent quality measure from these analyses, and applied it on 4430 popu-
lar NPM packages to construct timelines for comparing the perceived quality (number of
issues) and our derived measure of quality during the lifetime of these packages.

Results We found the number of new users to be the primary factor determining the number
of exceptions, and found no direct link between the intensity and frequency of software
usage and software faults. Crashes increased with the power of 1.02-1.04 of new user for
the Android app and power of 1.6 for the iOS app. Release quality expressed as crashes per
user was independent of other usage-related predictors, thus serving as a usage independent
measure of software quality. Usage also affected quality in NPM, where downloads were
strongly associated with numbers of issues, even after taking the other code complexity
measures into consideration. Unlike in mobile case where exceptions per user decrease over
time, for 45.8% of the NPM packages the number of issues per download increase.

Conclusions We expect our result and our proposed quality measure will help gauge release
quality of a software more accurately and inspire further research in this area.

This article belongs to the Topical Collection: Predictive Models and Data Analytics in Software
Engineering (PROMISE)

Communicated by: Shane McIntosh, Leandro L. Minku, Ayse Tosun, and Burak Turhan

P4 Tapajit Dey
tdey2 @vols.utk.edu

Extended author information available on the last page of the article.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-019-09791-w&domain=pdf
http://orcid.org/0000-0002-1379-8539
mailto: tdey2@vols.utk.edu

Empirical Software Engineering (2020) 25:1596-1641 1597

Keywords Software quality - Software usage - Software faults - Bayesian networks -
NPM packages

1 Introduction

Improving quality of software is one of the objectives of software engineering. “Software
Quality” has been defined in various ways, however, in this paper we take a narrow focus on
the manifestation of software defects as crashes observed from the perspective of the users.
Observing a software crash, generally speaking, is a manifestation of low quality of the
software to a user. Thus, it seems intuitive to measure the quality of software! by counting
the number of crashes, with more crashes being associated with lower quality. If, for exam-
ple, we compare two different softwares or two different releases of a software, we first
calculate the number of crashes for each and then compare these numbers. However, soft-
ware with more users tends to see more crashes (Dey and Mockus 2018b; Hackbarth et al.
2016a; Mockus and Weiss 2008a) as each user may exercise it differently. In an extreme
case, a software or a release with no users will have no crashes, regardless of its quality.
This interdependence of software usage volume and crashes experienced is typically not
considered in quality measurement in industry or in empirical studies (although few stud-
ies do note that Fenton et al. 2008). Ignoring this relationship, however, would misguide
quality improvement efforts (avoid quality improvements for releases/ software with low
usage) and/or misguided developer performance metrics (reward developers of low-usage
products). This analogy can also be extended for software defects (bugs), and by extension
for issues raised against a software, since software crashes are manifestations of underlying
defects and Jones (2011) and Hackbarth et al. (2016a) observed that the number of discov-
ered software defects increases with the number of users, although the relationship between
crashes and defects is not very well understood (Fenton and Neil 1999).

One possible reason for this oversight is the scarcity of reliable usage data. While the
number of defects and crashes reported by users are carefully tracked by most large scale
projects (e.g. Mozilla Firefox, Ubuntu etc.), tracking the variables related to usage, e.g. the
number of users, intensity of usage etc. is almost impossible without a reliable monitoring
system. Such a system is rarely used by open-source software and even many traditional
software-as-a-product systems do not or can not have such capability. Moreover, even when
such a dataset is available, it is almost always proprietary, so obtaining and sharing it,
even for the software development teams in these proprietary projects, is difficult since
the deployment is typically managed by a different team within the organization. Without
such data, however, it becomes exceedingly difficult to interpret the quality of a software
from the customer reported crashes/defects alone due to the interdependence of usage and
crashes/defects (Dey and Mockus 2018b; Hackbarth et al. 2016a; Mockus and Weiss 2008a).
The overarching goal of this study is to advocate the necessity of taking the usage aspect into
consideration while comparing the qualities of different releases/softwares and to illustrate
one possible way of doing so.

We were able to obtain the usage data for some mobile applications developed by
Avaya, viz. Avaya Communicator for Android (currently known as Avaya Equinox®) and
Avaya one-X®Mobile SIP for iOS. The usage data was obtained from Google Analytics.
For analyzing the usage data for these applications, we used three usage related variables:

!In fact, we mean to measure one aspect of the quality of software

@ Springer

1598 Empirical Software Engineering (2020) 25:1596-1641

number of users, usage intensity (average duration of software use per user), and usage
frequency (average number of times the app was used by a user), along with two vari-
ables describing attributes of the particular release: release date and effective duration of
the release, measured by how long the release continued to have new users, and looked
at how these variables affect the number of exceptions i.e. application crashes. Thus, the
first research question we are addressing in this paper is about modeling the relationships
between these different post-deployment variables, specifically, finding the relationships
among variables describing different aspects of software usage and software crashes (which
are manifestations of underlying defects).

Since the quality of a software/release measured by the number of defects/crashes is often
misleading due to its dependence on usage, as we mentioned before, our second research
question is about constructing a usage-independent measure of quality, which would give
us the ability to compare the quality of software releases more accurately.

The methodology we employed for addressing these research questions is as follows:
After the usual data cleaning and variable construction stages, we used a Bayesian Network
(BN) model to discover the interrelationship between the variables. The BN model was
generated by using structure search algorithms, and the search method was chosen based
on the result of a simulation study. We have presented the detailed result of the simulation
study and hope that other practitioners willing to use BN structure search methods in their
work would find it useful. Then, we ran a Random Forest (RF) regression model to identify
the important variables for modeling the number of exceptions. All analyses in this study
was done in R (2017). We found that the frequency and intensity of usage have little impact
on the number of exceptions, but the number of users does have a significant impact. Thus,
we establish the interdependence between the number of crashes and usage, specifically, the
number of users, and finally propose a quality metric that is independent of usage, which
would enable us to compare the qualities of different softwares and/or different releases of
a software more accurately.

In our previous work Dey and Mockus (2018b), we only analyzed the General Availabil-
ity releases for Avaya Communicator for Android. Since all of the data was from Google
Analytics, we had the same set of variables for all the Avaya softwares. We found simi-
lar results from that study as well, with the number of new users being the most important
factor affecting the number of exceptions. Furthermore, we proposed a quality metric of
average number of exceptions experienced by end users (so lower means better) and found
it to be independent of other usage metrics.

In this study, we have added the analysis of the development version of Avaya Com-
municator for Android and the General Availability releases of Avaya one-X®Mobile SIP
iOS Client. Although we collected data for several other apps, those were dropped due to
having too few releases/ exceptions/ users to give a reliable result. We employed some new
data correction steps for correcting the observed number of users and visits (Section 3.1.3).
We used the same three modeling techniques and the same quality measure and found the
result to be very similar for all cases considered. We also added a timeline showing how the
perceived quality of the releases vary with time for different releases.

To examine whether adding code complexity measures have any effect on our find-
ings, we also consider the relationship between downloads, a measure of usage, various
code quality measures, specifically the average per-function count of logical lines of code,
cyclomatic complexity, Halstead effort, parameter count, and the average per-module main-
tainability index, and number of issues, a measure similar to the number of crashes or bugs,
for 520 different Node Package Manager (NPM) packages. NPM is the package manager for
node.js, an open-source, cross-platform JavaScript run-time environment. NPM packages

@ Springer

Empirical Software Engineering (2020) 25:1596-1641 1599

are commonly used for web applications, including mobile applications, thus the software
may, at least in some ways, be comparable to the Avaya Communicator. Since we do not
have the number of crashes for these packages, we looked at the number of issues reported
for these packages instead. The code complexity measures for these packages were obtained
using the npm-miner dataset (Chatzidimitriou et al. 2018). We selected 520 out of the 2000
packages in the dataset based on the criteria that the release for which the complexity mea-
sures are reported should be more than a month older when the the measures are calculated,
since we looked at the total downloads and issues over the period of one month for these
packages. Our third research question is about investigating whether the usage (downloads)
has any significant impact on the number of issues even after taking the code complexity
measures into account.

Our fourth and final research question is about examining how the basic quality mea-
sure, the number of crashes for the mobile applications, and the number of issues for the
NPM packages vary with time and how it compares to our derived quality measure. We con-
structed timeline plots for answering this question, and looked at the different releases of
the mobile applications. For the NPM packages, we decided to broaden our scope, and look
at 4430 NPM packages that had more than 10,000 monthly downloads and a GitHub page
with issues enabled. We found that for only 36 out of 4430 packages (0.8%) the number
of daily downloads is not a significant predictor (p-value > 0.5) of the number of issues
on that day, and constructed timeline plots comparing the two trends (number of issues and
downloads) for these packages.

The primary contributions based on our results include an observed strong relationship
between the number of exceptions (crashes) and usage by analyzing two different mobile
softwares (three different versions) and a quality metric that gives a more actionable mea-
sure of quality that tries to separate factors that are beyond the control of the development
team. The analysis of the NPM packages showed that more usage is associated with the
increase in the number of issues beyond what can be explained by code complexity metrics.
The wider implications of these findings suggest the potentially serious problems in existing
quality metrics and predictions. Specifically, the organizational goals for a software project
quality should take into account usage, and software defect predictors could be improved
substantially if the population of users would be taken into account and could be predicted.
Moreover, the analysis of the NPM packages established the extendibility of the the concept,
thus opening the possibility of wider application of the approach. We have also presented
the detailed result of the simulation study we conducted to choose the best performing BN
structure search algorithms, which we believe will of of use to practitioners willing to use
BN structure search methods in their work. Finally, we have presented a timeline showing
how the perceived quality changes with time during the different releases for the mobile
applications and during the life of the NPM packages, and discussed the trends we found.

The rest of the paper is organized as follows: We discuss the research questions and the
motivation for the study in Section 2. In Section 3, we describe the data used in our study,
providing details of the data source, data collection process, and detailed data preprocessing
steps. In Section 4, we provide a overview of the methodology we used in the study, which
includes details of the simulation study we performed for choosing the best performing
BN structure search method that was used in subsequent analysis. In Section 5, we present
the answers to the research questions of our study, which includes the models describing
the interrelationship between exceptions and other post-deployment variables, the quality
measure we proposed and models showing its independence of other usage measures, and

@ Springer

1600 Empirical Software Engineering (2020) 25:1596-1641

the results of the analysis of the NPM packages. We discuss various aspects of our result in
Section 6. In Section 7, we discuss various works in related topics. Finally, we discuss the
limitations of our study in Section 8 and conclude the paper in Section 9.

2 Motivation

We hypothesize that the observed number of software failures, measured by the number of
defects, crashes, and/or issues reported against it, depend on a number of internal as well as
external factors. Mathematically, OSF = f (v;, v.), where OSF = observed software faults,
f () is some function, v; is a set of internal factors, and v, is a set of external factors. The
internal factors represent the set of factors that are artifacts of the software development pro-
cess, and includes product parameters like size of the software and code complexity, process
parameters like change entropy (distribution of changes with a component), human factors
like the number of authors involved, number of reviewers with expertise, and code review
parameters like number of reviews, number of reviewers etc. The impact of of these param-
eters are well known and have been used in multiple past studies (Mcintosh et al. 2016,
2014; Rigby and Bird 2013; Kononenko et al. 2015). However, the number of observed soft-
ware failures also depend on external factors that are not part of the software development
process. Hypothetically, such parameters include the number of users using the product, the
intensity of usage (for how long they use it), and frequency of usage (how frequently they
use it). The effect of these parameters is not very known or studied. However, when the mea-
sures related to software failure are collected, these are always the observed measures, not
the actual measures. It is impossible to know the actual number of bugs in a given software
for instance.

However, as we mentioned earlier, there are serious problems related to using the
observed measures of failures for comparing the qualities of different softwares and
releases, since the observed number of low defects/crashes could be a result of low usage,
and not better quality. Therefore, to be able to compare the actual quality of different soft-
wares/releases that is a function of only the internal factors, we need a measure that is
free from the influence of external factors like usage, i.e. for such a quality measure Q,
0 = g(v;), where g(.) is some function.

It is worth mentioning that, hypothetically, the internal and external factors should be
independent of each other, at least for the general availability releases of closed-source soft-
wares, since most of the users of such releases are not involved in the software development
process, thus the external usage factors should be unaffected by software design artifacts.
Therefore, none of the internal or external factors should act as a confounding variable,
since a confounder affects both the dependent and independent variables in a causal rela-
tionship. This means that not accounting for the external factors would not systematically
misclassify the perceived quality of all releases/softwares under consideration, but would
randomly misclassify some of them. Such random effects are much harder to detect, and
could be one of the reasons why this topic hasn’t gained as much attention, since such
misclassification errors could have wrongly been attributed to measurement errors or just
random effects. However, accounting for the effect of usage would have enabled the devel-
opers to correctly compare the qualities of these releases/softwares and explain many of
these apparent random misclassification errors.

@ Springer

Empirical Software Engineering (2020) 25:1596-1641 1601

The (hypothetical) independence of external and internal factors have implications on
the design of this study as well. Since we are using closed-source commercial mobile appli-
cations where the development team did not explicitly track which code changes were
introduced for which release, we could not precisely link source code complexity mea-
sures to crash reports from each release. However, if we can establish the interdependence
between the usage (external) factors and the observed number of crashes, the validity of
such relationship is less likely to be affected by the presence of unobserved internal factors.
We, indeed, observe that to be the case for a large collection of NPM packages. Further-
more, the main point of adjusting the measure of quality for the external factors that are
beyond the control of the development team, is to focus on the impact of internal factors
that are, hopefully, under control of the development team.

Our study of the interrelationship between code complexity measures, extent of usage,
and the number of issues show that (a) increased usage is associated with increase in the
number of issues beyond what can be explained by the code complexity measures, and (b)
the BN model shows that usage (downloads) is independent of the code complexity mea-
sures. As noted in the previous paragraph, this supports the results obtained in the studies
of the mobile applications, and suggests the importance of control for the extent of usage
before using the number of observed software faults as an internal measure of development
quality.

3 Data Description

For this study, we looked into two different types of software, which are vastly differ-
ent in nature. The primary focus of the study is on the commercial software developed by
Avaya for mobile applications, which are from the telecommunication domain. We chose
the Avaya mobile applications because we had access to the actual post-deployment mea-
sures for these. We hypothesized that the number of users is the most important measure
of usage, but, as we mentioned earlier, obtaining the actual number of users of a software
post-deployment is extremely difficult without a dedicated monitoring tool, and such data
is often proprietary. Therefore, having access to the actual usage measures gave us a golden
opportunity to study the relationship between software usage and software crashes. How-
ever, using this data also had some limitations, e.g. we could not choose the variables being
measured, the duration of the measurements, or the applications for which the data is being
collected. Being a commercial software, the source code is essentially closed-source, which
makes it difficult for us to conduct a through investigation with all variables of interest in
one model.

For external validation of the theory developed using this data, and examining if the
extent of usage has any effect on the number of observed software faults even after taking
the various code complexity measures into account, we looked into the NPM packages,
which are open-source JavaScript packages used in web-development. We used NPM for
our study because (1) it is one of the largest open-source communities, which makes it
a good candidate to be investigated, and (2) it collects the number of downloads for the
packages, which is a far better measure than other usage measures like the number of stars
or forks of GitHub projects.

In this section, we provide some details about the software being studied, discuss the
data source, describe the data, and give details about the data preprocessing steps.

@ Springer

1602 Empirical Software Engineering (2020) 25:1596-1641

3.1 Data on Mobile Applications developed by Avaya
3.1.1 Software Description

One of the software chosen for this study was Avaya Communicator for Android (cur-
rently known as Avaya Equinox®). It integrates the mobile devices of the users with their
office Avaya Aura®communications environment and delivers mobile voice and video
VoIP calling, cellular call integration, rich conferencing, instant messaging, presence, visual
voicemail, corporate directory access and enterprise call logs.?

Another software we studied was the Avaya one-X®Mobile SIP for iOS, which provides
mobile communications for the iPhone, iPod touch, and iPad through a wireless-enabled SIP
Avaya Aura®environment combining enterprise features with the convenience of a mobile
endpoint for users on the go. The Avaya one-X Mobile®SIP for iOS appears as an end point
in the Aura®environment.3

Avaya is developing large, complex, real-time software systems that are embedded and
standalone products. Development and testing are spread through 10 to 13 time zones in the
North America, USA, Europe and Asia. R&D department employed many virtual collab-
oration tools such as JIRA, Git, WIKIs and Crucible. Development teams use Scrum-like
development methodologies with a typical 4-week sprint. We consider a 15+ year old soft-
ware component, the so-called Spark engine. As a software platform, Spark provides a
consistent set of signaling platform functionalities to a variety of Avaya telephone product
applications, including those of third parties. Spark is a client platform that provides sig-
naling manager, session manager, media manager, audio manager, and video manager. The
codebase involves more than 200K files and, over all forks, over 4M commits. The Android
software chosen for this study is a fork of the Spark codebase. A more in-depth description
of the development process is provided in Duc et al. (2014).

3.1.2 Data Description: Source

The post-deployment data for the mobile applications were obtained from the Google Ana-
Iytics platform. Google Analytics is a web analytics service offered by Google that tracks
and reports website traffic. It is now one of the most widely used web analytics services
on the internet. In addition to traditional web applications it also allows tracking of mobile
applications. To do that, the producer of a mobile application needs to set up an account and
instrument their mobile application to send certain events to Google Analytics. Notably, it
works for the mobile applications investigated in this study.

We collected data for a number of mobile applications developed by Avaya from Google
Analytics, but some of the datasets turned out to be unusable for this study, for reasons
ranging from very low volume of collected data (e.g. Avaya Communicator for Android -
Experimental Releases) to zero recorded exceptions making an analysis impractical (e.g.
Avaya One-X®ScsCommander). The following datasets were found usable:

— Avaya Communicator for Android - General Availability and Development versions.

Zhttps://support.avaya.com/products/P1574/avaya-equinox- for-android
3https://support.avaya.com/products/P0949/avaya- onex-mobile-sip-for-ios

@ Springer

https://support.avaya.com/products/P1574/avaya-equinox-for-android
https://support.avaya.com/products/P0949/avaya-onex-mobile-sip-for-ios

Empirical Software Engineering (2020) 25:1596-1641 1603

— Avaya one-X®Mobile SIP for iOS - General Availability versions.

The data was collected between December 2013 and May 2016, although the exact time
varies across the applications. Although we are primarily focused on the General Availabil-
ity (GA) versions, since only these versions are available for end-users, we also decided
to look into the development version for Avaya Communicator for Android, since we have
detailed data available for these versions and we wanted to see if it shows a different
characteristics from the GA versions.

The original data obtained from Google Analytics had measures for the variables listed
in Table 1, aggregated at a per-day granularity, meaning that each entry in the original data
table contained the measures for the numerical variables (marked with a ¥ symbol in the
table) for each unique combination of date, application release version, operating system
version, mobile device brand, category, and model. We had the same set of variable for all
the applications listed above. As we mentioned earlier, we had no role in selecting which
variables to measure, and we received the data “as-is”.

It is important to note that Google Analytics releases only aggregate data even to devel-
opers of the application and limits the number of REST API calls, so one can not, for
example, retrieve usage data for every calendar second or get exact time of the events. The
daily counts split by release version of the application, OS version, and type of device,
provided sufficiently fine granularity for our analysis.

3.1.3 Data Preprocessing

This section contains the data cleaning, transformation, and variable construction steps
undertaken prior to the application of the different modeling methods. The major prepro-
cessing step is aggregating the measures to a per-release granularity. We had two main
reasons for aggregating the data:

1. The goals of our study are concerned with identifying the relationship between excep-
tions and other post-deployment variables for different releases, and defining a quality
measure to compare the qualities of different releases. Therefore, having the measures
aggregated at per-release granularity is essential.

2. 'We would have been able to take a time-series based approach and still work out our
goals if the releases were cleanly separated in time, i.e. if there were no overlap between
releases. Unfortunately, we observed from the data that users continue to use one release
long after the subsequent releases are available, and there is no clear pattern about how
long a release is used. Therefore, we had to aggregate the data to a per-release level to
be able to achieve the goals of this study.

Table 1 Measures available in
the Original Data Application release version No. of exceptions

Operating System version in the user’s device Date of record entry

No. of fatal exceptionsT No. of new visits{
No. of visitst Time on site}
Details on user’s mobile device: No. of new users{
brand, category(mobile or tablet)

and model

No. of total users¥ Sessions per usert

@ Springer

1604 Empirical Software Engineering (2020) 25:1596-1641

The preprocessing steps we took are discussed below:

Removal of variables before aggregation: Upon initial investigation into the data, we
found that no. of exceptions and no. of fatal exceptions were exactly the same, as
recorded by Google Analytics, so we removed the no. of fatal exceptions from the dataset.
Only fatal exceptions were recorded for this application, i.e., crashes that require a com-
plete restart of the mobile application and, potentially, may affect the operating system
itself. This is not surprising since the bulk of the functionality for the application was
written in C++ and called from Android Java applications via Native Interface. We did
not consider the variables related to mobile device details and Android operating system
versions because the application, as noted above, was primarily written in C++ and the
user interface aspects that vary greatest among devices and versions of OS were not likely
to have influence. To validate that assumption we investigated and found no correlation
of exceptions with either variable.

Data correction: This additional prepossessing step was not a part of our previous
study (Dey and Mockus 2018b). We found during careful inspection of the data that
some of the releases had non-zero number of users but zero new users in the dataset.
This obviously hints at some part of the data being missing. So, as a data correction step,
we modified the number of new users so that in the chronological order of the data, the
cumulative number of new users is never less than the number of users for a day.

Aggregating data to per-release granularity: We had some missing values in the data,
however, most of the missing data was about the mobile devices and since we didn’t use
them in our analysis, we got rid of that problem by simply dropping the variables. Since
our aim is to model the quality of the different releases, we aggregated the data to a per-
release granularity, from the the original data that was recorded in per-day granularity.
The raw data contained 177 different GA releases and 25 development releases for the
Avaya communicator for Android and 11 GA releases for the Avaya mobile SIP for
i0S. We dropped 4 GA releases for the Avaya communicator for Android from further
consideration because a significant portion of observations were missing. The result of
aggregation, however, was two new variables: start date (first day for which we have a
record for that release) of a release, and end date (last date for which we have a record
for that release) of a release, which in turn helped create another variable: duration of a
release. We did not to keep the end date in the final table, since duration and start date
can be used to compute the end date.

Verifying the correctness of Release date: The original data involves only the usage
aspects and the version information of the software. The project under consideration was
relatively new and it was one of the early attempts for the team to deploy mobile software
on Android and iOS. As such, not everything was well documented and also was rapidly
evolving over time and no record of the exact release dates for most of the releases was
available. We did manage to get release dates for some of releases from Google Play
Store/ Apple App Store, but not all the release dates were available. For the releases with
dates available on Google Play Store/ Apple App Store, the official release dates from
Avaya records, and the start dates obtained from the data were either very close or exactly
the same, so we do not have a reason to doubt the dates obtained from the data.

Removal of variables post aggregation: The numerical variables were aggregated to
give a sum for each variable. Upon further inspection, we found the number of users, new
users, visits, and new visits to be highly correlated. In the second iteration, we removed
the variable “sessions per user”, because aggregating it directly is meaningless, and we
were not sure how it was originally calculated by Google Analytics (was it a mean or

@ Springer

Empirical Software Engineering (2020) 25:1596-1641 1605

a median? were new users or total users counted?). We also removed the “total users”
and “total visits”, because while summing up the new users/visits for each day gives an
accurate measurement of the total number of new users/visits for a release, it is not guar-
anteed that summing up total users/visits does the same due to possible double counting
the number of users/visits.

Final list of variables: Keeping the goal of our study in mind, the variables we have after

the initial cleaning steps give us necessary information for a model of post-release defects
and software usage. In our list of variables, we have the total number of exceptions i.e.
post-release defects. As for measures related to software usage, we have the total num-
ber of new users; the “Time.On.Site” variable, normalized by the number of users of a
release, provides a measure for the temporal intensity of usage per user; and the number
of visits per user is a measure for the frequency of usage. We also have two variables
related to each individual release: the start date i.e. the release date gives a measure for
the calendar time of each release, and is useful in gaining insight about if the number
of post-release defects and software usage vary with time, and the duration of a release,
which could have an effect on the number of exceptions and the number of new users,
since these variables were not normalized with duration. Since we only have a limited
amount of data, we restricted ourselves to use only these six variables. Our final aggre-
gated data table had the measures listed in Table 2, with the corresponding variable names
we used in the model enclosed in brackets.

To reiterate what we mentioned earlier, we had no control over which variables to
measure during data collection, however, while the set of variables we obtained are not
exhaustive, we believe the three usage related variables: number of new users, usage
intensity, and usage frequency adequately capture and report how much usage a software
is getting.

Log-transformation of variables: The release date was converted from the Date format

to numeric format, which resulted in the values for the release date variable being repre-
sented by the difference in days from Unix time (counted from 1970-01-01). We found
that all of the variables under consideration had a long-tailed distribution, so we took log-
arithm of them. The distribution of the variables of GA releases of Avaya communicator
for Android is shown in Fig. 1. The distribution of the variables of other applications is
available in our GitHub repository: https://github.com/tapjdey/release_qual_model.

3.2 The NPM Packages

As mentioned before, we looked at 520 NPM packages for examining the interrelation-
ship between the code complexity measures, the extent of usage, and the number of issues.
The code complexity measures for these packages were obtained from the npm-miner

Table 2 Measures in the aggregated data table

Release variable - Start Date for the
release (Release.Date)

Post-Release defects - Total No. of
exceptions (Exceptions)

Usage variable -Total number of
new users (New.Users)

Release variable - Effec-
tive Duration of the release
(Release.Duration)

Usage variable - Average time on
site per user (Usage.Intensity)

Usage variable - No. of visits per
user (Usage.Frequency)

@ Springer

https://github.com/tapjdey/release_qual_model

1606 Empirical Software Engineering (2020) 25:1596-1641

Histogram, Density, and Normal Fit Histogram, Density, and Normal Fit

Densty
10
l_‘u_l
£
Density

T T T T 1

Exceptions New.Users

Histogram, Density, and Normal Fit Histogram, Density, and Normal Fit

Densty

Densty
00 02 04

T T T
9.68 9.69 9.70 97

Release.Date Release,Duration

Histogram, Density, and Normal Fit Histogram, Density, and Normal Fit

Density
Densty

0.00 0.10

Usage.Frequency Usage.Intensity

Fig. 1 Distribution of the variables after transformation: GA releases of Avaya communicator for Android

dataset (Chatzidimitriou et al. 2018), which contained information on 2000 packages (one
particular release for almost all packages). However, we decided to only look at the package
releases which were released more than a month before the data was collected, because we
used the number of downloads over a month as our measure of usage (since daily or even
weekly download numbers tend to be quite noisy), and we ended up with 520 releases of
520 different packages (one particular release per package).

However, for answering our fourth research question about exploring how our quality
measure varies with time for the different NPM packages, and how it compares to the num-
ber of issues, the direct measure of observed software faults, we decided to broaden our
scope to look at all NPM packages with more than 10,000 downloads per month (accord-
ing to Voss (2014), automated downloads are expected to be around 50 per day, or 1500
per month, and packages with over 10K downloads should, therefore, not be noticeably
impacted by downloads by automated sources.) and a GitHub page with issues. With this
criteria we ended up with 4430 packages, which contained the 520 packages we used for
analysis earlier.

3.2.1 The NPM Ecosystem

Node Package Manager or NPM is one of the most active and dynamic software ecosystems
at present. It hosted more than 800,000 packages at the time of data collection, and have
more than doubled in size in past couple of years (in January 2017, NPM reportedly hosted
around 350,000 packages David 2014). The popularity of NPM packages have, accordingly,
skyrocketed as well. According to Voss (2018), “JavaScript is getting more popular all the
time, and NPM is being adopted by an ever greater percentage of the JavaScript community.”
About 75% of all JavaScript developers used NPM, with about 10 million users, in January
2018, according to Voss (2018). Therefore, NPM is an excellent candidate for this study.
Moreover, since they track the number of downloads of all packages in the ecosystem,
which, in spite of essentially being a mix of downloads by users, bots, and mirror servers,

@ Springer

Empirical Software Engineering (2020) 25:1596-1641 1607

as explained in Voss (2014), is the closest measure of usage we could find for open-source
projects, and is a far better measure than, e.g. number of stars of a GitHub repository which
was used in studies like Borges et al. (2016) as a measure of popularity, which is little
different from usage as we measure it.

3.2.2 Measures Collected from npm-Miner Dataset

The npm-miner dataset (Chatzidimitriou et al. 2018) contained information on 2000 NPM
packages with data from the following tools and APIs: (1) eslint, (2) escomplex, (3) nsp, (4)
eslint-security-plugin, (5) jsinspect, (6) sonarjs, (7) npms.io, and (8) GitHub. As mentioned
before, we used 520 packages for our analysis in this study. We used the monthly download
numbers, collected from the analysis result of npms.io and the code complexity measures,
collected from the analysis result of escomplex.* In particular, we looked at the following
code complexity measures for each NPM package, since they represent the average per
function complexity measures for the packages:

— loc: The average per-function count of logical lines of code.

— cyclomatic: The average per-function cyclomatic complexity.

— effort: The average per-function Halstead effort.

— params: The average per-function parameter count.

— maintainability: The average per-module maintainability index.

3.2.3 NPM Data: Defining Collection Parameters

We found 4430 projects which had more than 10,000 monthly downloads since January
2018 and also had public GitHub repositories with nonzero number of issues. We collected
the number of downloads and the total number of issues for all these packages from 2015-
03-01 to 2018-08-31. However, we did not conduct a release by release comparison for these
packages, because the release durations vary by a lot for most packages. Since the recorded
number of downloads is a mix of downloads by human and non-human users, a release by
release comparison would not give a reliable picture of the effect of actual usage by human
users on the number of issues. However, the number of downloads by bots are relatively
stable and vary only with time (Voss 2014), so controlling for the date (time variable) would
eliminate the spurious effects of downloads by bots. So, we decided to focus on the entire
packages instead of releases of the packages, and measured the effect daily downloads have
on number of issues of that package on that day after controlling for the calendar date.

3.2.4 NPM Data: Data Collection for the 4430 Packages

We used the API provided by NPM for collecting daily downloads of the 4430 NPM pack-
ages. (The API documentation is available in: https://github.com/npm/registry/blob/master/
docs/download-counts.md).

To obtain the metadata information for every package in NPM, we wrote a “follower”
script, as described in https://github.com/npm/registry/blob/master/docs/follower.md. The
output contained the metadata information for all releases of all packages in NPM. From

“https://www.npmjs.com/package/escomplex#result-format

@ Springer

https://github.com/npm/registry/blob/master/docs/download-counts.md
https://github.com/npm/registry/blob/master/docs/download-counts.md
https://github.com/npm/registry/blob/master/docs/follower.md
https://www.npmjs.com/package/escomplex#result-format

1608 Empirical Software Engineering (2020) 25:1596-1641

this we extracted the URL of GitHub repositories of the packages. Some NPM packages do
not have a valid GitHub URL, so those were dropped from subsequent analysis, as per the
criteria we defined. Using the Rest API provided by GitHub we collected information on
the issues for all these NPM packages. We collected the total number of issues for all these
packages from 2015-03-01 to 2018-08-31.

Finally, we used the issue creation dates to construct a dataset of the total number of
issues per day. We used the total number of issues instead of the number of open issues
because we are interested in the number of issues encountered by the users of the packages.
Whether an issue is resolved or not depends on a number of factors, e.g. the number of
developers, the responsiveness of the developers, the number of packages managed by each
developer, the complexity of the problem; most of which are unrelated to usage, so we
decided using the total number of issues is a much more reasonable option. This same issue
data was used by our analysis of the 520 NPM packages, where we used the number of
issues created for those packages during one month prior to the date the npm-miner data
was collected.

3.2.5 NPM Data Preprocessing

For the analysis of the 520 NPM packages, we constructed a dataset containing the 5 quality
measures of the packages (variable names: loc, cyclomatic, effort, params, and maintain-
ability), the number of downloads (variable name: downloads1M) during the month before
the data collection date for npm-miner dataset (2018-01-22), and the number of issues cre-
ated for those packages during the same time. The variables were log transformed to correct

Histogram, Density, and Normal Fit Histogram, Density, and Normal Fit Histogram, Density, and Normal Fit

Densty
Densty

00 05 1

00 05 10 15 20 25 30 35 10

cycomatic effort e

Histogram, Density, and Normal Fit Histogram, Denslty, and Normal Fit Histogram, Density, and Normal Fit

020 030

Densty

010

0.00

T] r T
0 50 100 150 00 05 10 15 20 25 30 35 12 13 14 15 16 17 18

maintainabiity params downloads 1M

Histogram, Density, and Normal Fit

Fig.2 Distribution of the variables after transformation: the 520 NPM packages

@ Springer

Empirical Software Engineering (2020) 25:1596-1641 1609

the skewness of the data, except maintainability and effort, since these variables were not
skewed. The distribution for the transformed data is shown in Fig. 2. For the purpose of
applying BN models, the data was scaled as well.

The data for the 4430 NPM packages which was used to compare the trends had the
calendar date, the cumulative number of issues for the packages until that date, and the
number of downloads on that date. Since this data was used for demonstrating the trends,
we did not transform this dataset.

4 Methodological Overview

In this section we describe the methodology we followed in this paper. We employed two
different modeling techniques for finding out the relationship among the post-release vari-
ables: (1) Bayesian structure search method, and (2) Random Forest Regression method.
Since we primarily focus on finding which variables have the most impact on the number
of exceptions (or issues for the NPM packages), we used it as the response variable for the
Random Forest regression model.

We considered using the OLS estimator since it is one of the simplest modeling methods
that gives good models in a lot of situations and the result is easy to interpret. However, we
were unsure about the accuracy of the result due to the presence to moderate to high corre-
lation between some of the predictor variables (e.g. the Release Date and Release Duration
variables had a correlation of -0.88 for the iOS application data). Moreover, we found that
our variables do not satisfy all the criteria (laid out by the Gauss—Markov theorem) for
creating the best linear unbiased estimator (BLUE), so we ended up not using it in our
study. Instead, we decided to use Bayesian Network (BN) for modeling the interrelation-
ship among these variables, since the accuracy of this model is unaffected by the presence
of high correlation among the predictors. Variables with high correlation simply appear as
connected nodes in the final model. This eliminates the need of dropping some of the corre-
lated variables from the model, which introduces subjectivity during the modeling process.
Since the use of Bayesian Network models is not very common in this context, we discuss
BN models in greater detail later in this section. The other modeling approach we used is
Random Forest regression method. Random Forest is one of the best off-the-shelf models
that works well with almost all types of data and generally does not overfit, and it is easy to
get the relative importance of the predictor variables from a fitted model. These two factors
led us to use Random Forest regression as the other modeling technique to identify the most
impactful predictors explaining the number of exceptions. To find the best fitting Random
Forest model, we performed a grid search using the “tune” function of the “e1071” R pack-
age to find the best model parameters “ntree”: the number of tress to grow, and “mtry”: the
number of variables randomly sampled as candidates at each split. Since the sample size of
datasets are limited, we used 10 times 2 fold cross-validation as the tuning method.

4.1 Bayesian Network Models
Bayesian Network (Koller and Friedman 2009; Scutari and Strimmer 2010) is a type of
Probabilistic Graphical Model (PGM), which explicitly represents the conditional depen-

dency/independence as a directed acyclic graph where variables represent nodes and
dependencies represent links, and thus this representation can be used as a generative

@ Springer

1610 Empirical Software Engineering (2020) 25:1596-1641

model.’> Bayesian Networks models can be useful in the context of Software Engineering
research (Fenton and Neil 1999) due to having several advantages over regression mod-
els. To be precise, regression analysis is a very simple BN where there is one directed
link from each independent variable to dependent variable. BNs, therefore, can help with
multicollinearity, a common problem with software engineering data (Yu et al. 2002; Sub-
ramanyam and Krishnan 2003; Briand et al. 2000; Mockus 2007), that is present in our data
as well, by linking independent variables.

Another variety of PGM that we did not use in this paper (details in Section 8) is the
Markov random fields that represent the interrelationships between variables as undirected
graphs. They differ in the set of independencies they can encode and the factorization of the
distribution that they induce (Koller and Friedman 2009).

Bayesian Network Model Construction Despite the promises of BN, they tend to be quite
sensitive to data, and operational data, is often problematic (Mockus 2014; Zheng et al.
2015). Careful preprocessing, therefore, is needed to ensure a reliable and reproducible
result. Two primary ways to use BNs exist. With the first approach the graph represents
dependencies obtained from domain experts. The graph may include prior distributions
about the parameters of the overall model. The data is then used to calculate the posterior
distribution and to make inference. The second approach puts minimal a-priori assumptions
about the model and focuses on the search for the best graphical representation for a given
dataset (structure learning). This is an NP-hard problem (Chickering 1996), but a number of
different heuristic structure learning algorithms are available. Due to the lack of any strong
theory connecting the variables we are considering, we decided to use the structure search
method for BN model construction. Since our goal is to find a Bayesian network model
for the data, we didn’t examine the methods that do not result in a Directed Acyclic Graph
(DAG). We found that the bnlearn package in R implements a wide range of BN searching
methods for continuous, discrete, or a mixed set of variables and the corresponding fami-
lies of scoring functions and also has a good number of examples. These methods were also
shown to be able to recover the underlying network for a protein-signaling-chain (in Biol-
ogy) in Scutari (2013). We, therefore, use this package for our analysis. In addition to the
methods implemented in bnlearn package, we investigated some methods from a few other
packages which can be interfaced with the bnlearn package.

Due to the potential inconsistencies of the BN models, we performed our modeling in
two stages. First, we considered all available BN structure methods in the brlearn package
and ran a simulation based study to find the methods that are most accurate and then we
used those methods on our data to create the final model.

Methods Considered The different BN structure search methods we considered are listed
below:

— Greedy Hill-Climbing search algorithms(HC) (Nagarajan et al. 2013; Scutari 2013)
— Hybrid algorithms(Hybrid) (Nagarajan et al. 2013; Scutari 2013)

5 A generative model specifies a joint probability distribution over all observed variables, whereas a discrim-
inative model (like the ones obtained from regression or decision trees) provides a model only for the target
variable(s) conditional on the predictor variables. Thus, while a discriminative model allows only sampling
of the target variables conditional on the predictors, a generative model can be used, for example, to sim-
ulate (i.e. generate) values of any variable in the model, and consequently, to gain an understanding of the
underlying mechanics of a system, generative models are essential.

@ Springer

Empirical Software Engineering (2020) 25:1596-1641 1611

— Posterior maximization using deal package in R (Scutari 2013; Bottcher and Dethlefsen
2013).

— Simulated Annealing using catnet package in R (Balov and Salzman 2016; Scutari
2013).

— PC Algorithm using pcalg package in R (Alain and Buehlmann 2012; Kalisch et al.
2012; Scutari 2013).

— MAP (maximum a-posteriori estimation) Bayesian Model Averaging (MAP) (Nagara-
jan et al. 2013; Scutari 2013)

This is not an exhaustive list of all possible BN structure search methods, in fact, it is
impossible to make an exhaustive list for a heuristic search method like this, however, they
represent a class of popular heuristic structure search methods that are part of the “bnlearn”
package, which is a popular R package that is in continuous development since 2007.

All structure search algorithms try to maximize some form of a network score. Among
the various scores available, BIC score is the suitable one when the goal is to create an
explanatory model from non-informative prior models (Shmueli 2010; Sober 2002). BIC
score is used for discrete data while the Gaussian equivalent of BIC (bic-g) score is used for
continuous data.

The results, i.e. the structure and the parameters resulting from a structure search algo-
rithm, are often noisy, meaning that different settings induce slightly different networks.
To mitigate this effect we use non-parametric bootstrap model averaging method described
in Friedman et al. (1999), which provides confidence level for both the existence of edge
and its direction. This enables us to select a model based a confidence threshold. Authors
of Friedman et al. (1999) argue that threshold is domain specific and needs to be deter-
mined for each domain. For instance, a threshold of 0.95 indicates that only the edges that
appeared in more than 95% of the bootstrap optimized models were selected.

Many applications of BNs discretize the data prior to applying the structure learning
methods, and in some cases where the data distribution is too skewed to fit the normality
assumption, discretizing the data produces better models than using continuous data, so we
considered it as a possibility as well.

Using continuous data works best when the random variables (possibly after a trans-
formation) have Gaussian distribution. While using discrete data does not require such
assumptions, obtaining the optimal discretization for a dataset is in itself an NP-hard prob-
lem (Chlebus and Nguyen 1998). Choosing a sub-optimal discretization technique may
result in spurious or missed relationships, which can in turn result in incorrect dependencies
being reported in the resulting model. Given the pros and cons of both types of methods,
we use methods of both types for our simulation study. As we are interested in creating
a generative model, we had to use a discretization method that is unsupervised. The basic
problem with commonly used supervised methods (e.g. Chi-square, or MDLP discretiza-
tion algorithms) is that they optimize discretization to improve explanatory power for a
single response variable. This is not suitable for a BN structure search, because we do not
know which variables will be responses (have arrows pointing to them) and which will be
independent (have no incoming arrows) a-priori. While some research on multidimensional
discretization methods exists (Perez et al. 2006), we are not aware of any that have a robust
implementation.

Simulation Study We performed the simulation study by first creating a random BN (see
Fig. 3) with six nodes, since we also have six variables in our final list (Table 2). For

@ Springer

1612

Empirical Software Engineering (2020) 25:1596-1641

Release.Duration

Fig.3 Custom model used for Simulation Study

sage.Frequency

sage.Intensity

demonstration purposes we use the same variable names. We fitted this graph with our
data on GA releases of Avaya communicator for Android (log-transformed and scaled) to
generate values for the coefficients for each edge. This model was used in our simulation
study going forward. We created 1000 different simulated datasets from the BN structure in
Fig. 3, and applied the different structure search algorithms (both continuous and discrete
versions, where available) listed above. Our performance metric is finding how many times
the different algorithms can recover the underlying structure from the simulated data.
Other than testing the methods themselves, we also tested whether or not we
should discretize the data. We tried different discretization methods, viz. equal interval,
equal frequency, and k-means clustering based discretization methods from the arules

Table 3 Result of simulation
study

@ Springer

Method Exact Off-by-one
HC 0.574 0.264
MAP 0.596 0.214
Hybrid- si.hiton.pc 0.000 0.019
Hybrid- mmpc 0.000 0.016
Hybrid- gs 0.000 0.011
HC-D-F 0.000 0.010
Hybrid- iamb 0.000 0.010
Hybrid- mmpc -D-H 0.000 0.008
Hybrid- si.hiton.pc -D-H 0.000 0.008
HC-D-H 0.000 0.007
Hybrid- mmpc -D-F 0.000 0.007
Hybrid- si.hiton.pc -D-F 0.000 0.006
Hybrid- iamb -D-F 0.000 0.005
Hybrid- gs -D-F 0.000 0.004
Hybrid- gs -D-H 0.000 0.004
Hybrid- iamb -D-H 0.000 0.002

Empirical Software Engineering (2020) 25:1596-1641 1613

Table 4 Result of simulation

study: different thresholds Method Threshold Exact Off-by-one
MAP 0.85 0.68 0.25
MAP 0.80 0.67 0.25
MAP 0.90 0.67 0.26
MAP 0.95 0.66 0.27
MAP 1.00 0.66 0.27
MAP 0.75 0.66 0.21
HC 0.65 0.63 0.23
HC 0.70 0.63 0.23
HC 0.75 0.63 0.23
HC 0.80 0.63 0.23
HC 0.85 0.62 0.24
HC 0.55 0.62 0.23
HC 0.60 0.62 0.23
MAP 0.70 0.62 0.21
HC 0.90 0.60 0.26
MAP 0.65 0.58 0.17
HC 0.95 0.57 0.29
MAP 0.60 0.43 0.14
MAP 0.55 0.33 0.11
HC 1.00 0.19 0.47

package (Hahsler et al. 2011), and the Hartemink® discretization methods in the bnlearn
package.

Except for the Posterior maximization using deal package, which can’t be bootstrapped,
all other results were bootstrapped, so we tested different thresholds in our simulation study
as well. Finally, for the the Hybrid search algorithm, in which conditional independence
tests are performed to restrict the search space for a subsequent greedy search, there are
many restrict methods available, viz. gs” (Grow-Shrink), “iamb” (IAMB), “fast.iamb” (Fast-
IAMB), “interiamb” (Inter-IAMB), “mmpc” (Max-Min Parent Children), “si.hiton.pc”
(Semi- Interleaved HITON-PC), “chow.liu” (Chow-Liu), “aracne” (ARACNE) (Scutari
2010), and we tested all of these restrict options in our simulation study.

The result of the simulation study is shown in Table 3, which shows the fraction of
times exact structures and off-by-one structures’ were generated by each method in the
simulation. The result varies with the chosen threshold, so in Table 3, we show the over-
all performance of the different methods which generated an exact or off-by-one structure
at least once in the simulation. For the hybrid search methods, we list mention the restrict
option that was used, and the *-D’ suffix indicates a discretization method was used to dis-
cretize the data prior to applying a structure search method. ‘-D-H’ indicates Hartemink
discretization method and ‘-D-F’ indicates Equal-Frequency discretization method. It is
clear from the table that only HC and MAP methods can effectively reproduce the correct
underlying structure around half of the times and they create more off-by-one structures
than others, indicating the error rate is the lowest for these methods.

SHartemink’s pairwise mutual information method (Hartemink 2001).
7One extra / missing / reversed edge

@ Springer

1614 Empirical Software Engineering (2020) 25:1596-1641

In Table 4, we show the fraction of times exact and off-by-one models were generated
by HC and MAP methods, which performed the best among the methods considered, for
different thresholds. It can be seen that using a moderately high threshold between 0.75 and
0.9 gives good results for both HC and MAP, while higher thresholds for HC and lower
thresholds for MAP give worse results. Using the optimal threshold creates models that have
more than one wrong and/or missing edge only 7-14% of the times.

The result of the simulation study had the following findings:

— Using structure search algorithms on the continuous data resulted in much more
frequent recovery of the original BN structure compared to discretized data.

— Bootstrapping improves the stability of the results considerably.

— The bootstrapped Hill-Climbing search and MAP Bayesian Model Averaging algo-
rithms outperformed all others both in terms of accuracy and runtime, being able to
recover the underlying structure more than 63% of the times and making no more than
one error 86% of times with optimal thresholds.

We consider this study one of the contributions of the paper, and hope that it would be
useful for researchers using BN structure learning techniques.

5 Answering the Research Questions: Results and Analysis

5.1 RQ1: Modeling the relationship between Exceptions and other post-release
variables

As mentioned earlier, we conducted our analysis in two stages: first, we used Bayesian
Network (BN) modeling approach to identify the interrelationship between the variables
and then, we used a random forest (RF) model to verify the results.

Exceptions

Release Duration

Usage Intensity

Usage Frequency

Fig. 4 Final BN Model for GA releases of Avaya Communicator for Android (with c: coefficients after
fitting the transformed, but unscaled data, p: p-value for the link)

@ Springer

Empirical Software Engineering (2020) 25:1596-1641 1615

Release Duration Usage Frequency
c:2.49
Release Date

p: 0.01127 |[p: 1.75e-5

Usage Intensity

Exceptions

Fig.5 Final BN Model for Development releases of Avaya Communicator for Android (with c: coefficients
after fitting the transformed, but unscaled data, p: p-value for the link)

5.1.1 Bayesian Network Model

One key assumption for applying the continuous BN structure search algorithms is that
the variables have a distribution close to a Gaussian distribution. To satisfy this modeling
assumption, we scaled all the variables to unit scale. The variable “Exceptions” still had
a long tailed distribution, but the distributions of the other variables were much closer to
normal distribution.

According to the result of the simulation study, we decided to use bootstrapped hill-
climbing search and MAP Bayesian model averaging methods for constructing the Final
BN models for our datasets and considered the model that resulted from both the meth-
ods. The resultant BN model for the GA releases of Avaya Communicator for Android
is shown in Fig. 4, which shows “New.Users” and “Release.Date” are parent nodes of

l

Exceptions

Usage Frequency

Usage Intensity

Fig. 6 Final BN Model for GA releases of Avaya mobile SIP for i0S (with c: coefficients after fitting the
transformed, but unscaled data, p: p-value for the link)

@ Springer

1616 Empirical Software Engineering (2020) 25:1596-1641

“Exceptions”. Figure 5 shows the final BN Model for Development releases of Avaya Com-
municator for Android, in which only “New.Users” is the parent of “Exceptions”, and Fig. 6
shows the final BN Model for GA releases of Avaya mobile SIP for iOS, where once again
“New.Users” and “Release.Date” are parent nodes of “Exceptions”. In these figures p-values
< 2e — 16 are denoted as 0.

Every bootstrap run was performed over 500 bootstrap samples, and a hill-climbing
search with 100 random restarts was applied on each sample to find the best fitting network,
so in essence, each resultant network was obtained by averaging 50,000 candidate networks.
We used a Threshold of 0.85, as it seemed optimal from our simulation study.

The result form a bootstrap run shows the relative strength of the link and the relative
confidence for the direction of the link. In Table 5 we have shown the result from one
bootstrap run of the HC method for all possible edges for the GA release data of Avaya

Table 5 Example bootstrap result - GA releases of Avaya Communicator for Android

From To Strength Direction
Exceptions New.Users 1.00 0.34
Exceptions Release.Date 0.86 0.47
Exceptions Release.Duration 0.46 0.50
Exceptions Usage.Frequency 0.75 0.78
Exceptions Usage.Intensity 0.35 0.47
New.Users Exceptions 1.00 0.66
New.Users Release.Date 0.20 0.62
New.Users Release.Duration 1.00 0.71
New.Users Usage.Frequency 0.71 0.85
New.Users Usage.Intensity 0.34 0.64
Release.Date Exceptions 0.86 0.53
Release.Date New.Users 0.20 0.38
Release.Date Release.Duration 1.00 0.63
Release.Date Usage.Frequency 0.97 0.82
Release.Date Usage.Intensity 0.66 0.77
Release.Duration Exceptions 0.46 0.50
Release.Duration New.Users 1.00 0.29
Release.Duration Release.Date 1.00 0.37
Release.Duration Usage.Frequency 0.90 0.55
Release.Duration Usage.Intensity 1.00 0.53
Usage.Frequency Exceptions 0.75 0.22
Usage.Frequency New.Users 0.71 0.15
Usage.Frequency Release.Date 0.97 0.18
Usage.Frequency Release.Duration 0.90 0.45
Usage.Frequency Usage.Intensity 1.00 0.22
Usage.Intensity Exceptions 0.35 0.53
Usage.Intensity New.Users 0.34 0.36
Usage.Intensity Release.Date 0.66 0.23
Usage.Intensity Release.Duration 1.00 0.47
Usage.Intensity Usage.Frequency 1.00 0.78

@ Springer

Empirical Software Engineering (2020) 25:1596-1641 1617

Communicator for Android. If an edge has < 50% confidence in its direction, then the edge
appears in the opposite direction in our model. Although Bayesian Networks are sometimes
interpreted as causal relationships (Pearl 2011), there are disagreements on how that should
be done. We, therefore, are not interpreting these relationships as causal here. All observed
links, therefore, indicate the presence of observed correlation (and are empirical in nature)
and the direction is a property of the topological ordering of nodes in a DAG, and affects
the total probability distribution of the variables.

The BN models were fitted to the unscaled data, and the resulting coefficient of each link
is also shown in the figures. The p-value for each link was calculated from a linear model
with the source nodes as predictors and the destination node as the response variable, e.g.
the p-value for the link from “New.Users” to “Exceptions” was calculated by looking at the
result of: 1m(Exceptions ~ New.Users + Release.Date).

We fitted the model to the transformed, but unscaled data (for easier interpretation of
results).

By looking at the p-values for the links, we can say that all the links in the BN models are
statistically significant. Links having a negative coefficient indicate an inverse relationship
between the parent and the child node. The performance of explanatory models is evaluated
by the fraction of deviance explained by the model. Our model explains 80.3% and 45.9%
of the variation in “Exceptions” (adjusted R? value of the model) for development and GA
releases for Avaya Communicator for Android respectively and 42.0% for GA releases of
Avaya mobile SIP for iOS. This indicates our BN model is statistically significant, but the
predictors we used could only explain around half of the variance in Exceptions.

New.Users o

Release.Date o

Release.Duration o

Usage.Frequency o

Usage.Intensity o

T T T T T T
10 12 14 16 18 20
%IncMSE

Fig.7 Variable Importance Plot of RF model for “Exceptions” for GA release data of Avaya Communicator
for Android

@ Springer

1618 Empirical Software Engineering (2020) 25:1596-1641

5.1.2 Random Forest Model

As a verification step to identify the important variables affecting the number of excep-
tions, we used a Random Forest model to fit the data, with “Exceptions” as the response
variable. The variable importance plot for the GA release data of Avaya Communicator
for Android, as shown in Fig. 7, indicates that “Release.Date” and “New.Users” are the
two most important variables. For the development releases of Avaya Communicator for
Android, the variable importance plot is shown in Fig. 8. “New.Users” is again the most
important variable, followed by “Release.Duration”. For the GA releases of Avaya mobile
SIP for i0S, the variable importance plot again shows the number of new users is the most
important variable, as can be seen from Fig. 9.

The best selected model parameters derived from tuning show that the optimal models
were obtained for “ntree”=600 and “mtry”=3 for all datasets. The R> values for these
models, again obtained from 10 times 2 fold cross-validation, are 0.48, 0.56, and 0.31 for
the GA and development releases of the Android application and the GA releases of the
108 application respectively. The poor performance of the iOS application is likely due to
the very small sample size of the dataset. Although the overall performance of the models
wasn’t very good, since we had a limited number of predictors, and none of the internal
factors were part of the model, this result shows that even for the purpose of prediction, the
number of new users play an important role.

New.Users o

Release.Duration o

Usage.Frequency o

Release.Date o

Usage.Intensity o

I I I
0 5 10 15
%IncMSE

Fig. 8 Variable Importance Plot of RF model for “Exceptions” for development release data of Avaya
Communicator for Android

@ Springer

Empirical Software Engineering (2020) 25:1596-1641 1619

New.Users o

Release.Duration o

Release.Date o

Usage.Frequency o

Usage.Intensity °

T T T T T T
-2 0 2 4 6 8
%IncMSE

Fig.9 Variable Importance Plot of RF model for “Exceptions” for GA releases of Avaya mobile SIP for iOS

5.2 RQ2: Deriving a Usage-Independent Measure of Quality
5.2.1 Obtaining the Quality Measure

In order to arrive at the usage independent quality measure, we follow the framework of
establishing laws governing relationships among measures of software development pro-
posed in Mockus (2013). Law is an equivalent of invariance, i.e. a function of measures that
is constant under certain conditions. In this case we want it to be constant for releases that
have the same quality. First, the law requires a plausible mechanism and second, an empiri-
cal validation. Each new user may have a different type of phone, operating system, service
provider, geographic region, and usage pattern. It is reasonable to assume that some of these
configurations lead to software malfunction manifested as an exception. This provides us
with a plausible mechanism on how precisely more new users of one release might generate
more exceptions even if we have two releases of identical quality. We rely on our models (all
of which show the number of software exceptions to be dependent on the number of users
and on the software release date) to obtain empirical validation of this postulated mechanis-
tic relationship. Therefore, we arrive at the following software law that is applicable for the
investigated context: the average number of exceptions experienced by each user should,
therefore, be independent of usage and depend only on the qualities of a software release.

In this section we test the above evidence-based hypothesis and provide the result of an
analysis with the number of exceptions per user as a response variable (“Quality”) represent-
ing software quality. This is actually a measure for faultiness, so a lower value of “Quality”
indicates the actual quality of the software perceived by end users is better.

The value of the “Quality” variable (not log transformed) was seen to be varying between
0 and 10.85 (mean: 0.45, median: 0, standard deviation: 1.48) for the GA release data of
Avaya Communicator for Android, between 0 and 22.83 (mean: 1.12, median: O, standard

@ Springer

1620 Empirical Software Engineering (2020) 25:1596-1641

g ety

|

<’ U-;a—ge Frequenc_D <§e—lease DUI'Z;i_O_I;> Quality

Fig. 10 Bayesian Network Model for “Quality” - GA releases of Avaya Communicator for Android (with c:
coefficients after fitting the transformed, but unscaled data, p: p-value for the link)

deviation: 4.55) for development versions of the same, and for the GA releases of Avaya
mobile SIP for iOS it varied between 0 and 0.5 (mean: 0.0488, standard deviation: 0.15) .

5.2.2 Establishing the Independence of the Quality Measure and Other Usage Related
Variables

Similar to the previous analysis, we applied Bayesian Network search and Random For-
est modeling approaches on the dataset containing this quality measure and the remaining
variables, all of which were log-transformed.

The result, as expected, shows that the quality of a software, measured by average num-
ber of faults experienced by each user, has no dependence on other usage variables. The
BN model (Fig. 10), obtained with a threshold of 0.85 from a bootstrapped Hill-Climbing

Release.Date o

Usage.Frequency o

Usage.Intensity o

Release.Duration | ©

T T T T T T
6 8 10 12 14 16
%IncMSE

Fig. 11 Variable Importance plot from the Random Forest Model for Quality Variable - GA releases of Avaya
Communicator for Android

@ Springer

Empirical Software Engineering (2020) 25:1596-1641 1621

Usage Frequency

c:2.49

Release Duration Quality

c: -0.003
p: 0.00112 p: 1.75e-5

1
@ Usage Intensity

Fig.12 Bayesian Network Model for “Quality” - Development releases of Avaya Communicator for Android
(with c: coefficients after fitting the transformed, but unscaled data, p: p-value for the link)

structure search model, indicates the “Quality” variable depends only on the “Release.Date”
variable. Finally, the result of 10 times 2-fold cross-validation with the best RF model (Vari-
able Importance plot in Fig. 11) with the optimal values for “ntree”(300 in this case)) and
“mtry”(1 in this case) indicates that the “Release.Date” variable is much more important
compared to others, and the two usage related variables are of much lower importance.

For the development versions of Avaya Communicator for Android, all the predictor
variables turned out be insignificant for the BN (Fig. 12) models. Even the tuned RF model
gives a really bad fit in the 10 times 2-fold cross-validation as well, with a R* value of -
0.42 (the implication of a negative value of R? is as explained in Motulsky), indicating the
predictors are very poor. Still, the two usage related variables have the lowest importance in
the variable importance plot as seen in Fig. 13.

Finally, for the GA releases of Avaya mobile SIP for iOS, the BN model (Fig. 14) shows
that release date and release duration have effect on the “Quality” variable, but the two other
usage variables have no effect. We did not run RF model on this dataset owing to the very
small sample size.

The results from these analyses clearly indicate that the quality measure defined by the
number of exceptions per user is independent of software usage, and, therefore, suitable
for comparing the quality of software development process among different releases of a
software.

Fig. 13 Variable Importance plot
from the Random Forest Model
for Quality Variable -
Development releases of Avaya Release.Duration °
Communicator for Android

Release.Date o

Usage.Intensity o

Usage.Frequency |©

T T T T
1 2 3 4
%IncMSE

@ Springer

1622 Empirical Software Engineering (2020) 25:1596-1641

Usage Intensity

Usage Frequency

c: -0.086
: 1.95e-07

Quality

Fig. 14 Bayesian Network Model for “Quality” - GA releases of Avaya mobile SIP for iOS (with c:
coefficients after fitting the transformed, but unscaled data, p: p-value for the link)

5.2.3 Timeline of Quality for the Mobile Applications - RQ4

We wanted to see how the perceived quality of the releases of the different mobile appli-
cations described above change with time. As a general trend, we observe that most of the
exceptions occur right after the release date. then, as the number of users keep increasing
with time, the value of the quality variable drop and come to a stable value. In this paper
we show only the timeline for GA releases of Avaya mobile SIP for iOS (Fig. 15), since
the other two softwares had a lot of releases, making them difficult to identify from the
plot. The other two are are available in our GitHub repository: https://github.com/tapjdey/
release_qual_model.

Release.Version
6.2.10

— 6.2.11

— 6.2.12

— 6.2.14

— 6215

— 6.2.16

Quality

— 6.2.17
— 625

6.2.7
0.01 L il 6.2.8

6.29

2014 2015 2016
Date

Fig. 15 Timeline for Quality Variable - GA releases of Avaya mobile SIP for iOS

@ Springer

https://github.com/tapjdey/release_qual_model
https://github.com/tapjdey/release_qual_model

Empirical Software Engineering (2020) 25:1596-1641 1623

Relative Trends of Two metrics

é i 1 25
8 |
®
®
X - 20
7 4
®
® x
x X L]
- x % ®
° Fi15 g
S . &
3 6 © x =3
L) o
e i =
=3 ® ox @ 3
o o)
S x]
S 3
§ H il e z
] ®
e 5 & x 1.0 &
o ® <
® X 3
®]
®
x>< o xX
4 H e % ® @
X x - 05
® ®
X x
X
® x ® o X% o
X X X
3 X X X X
X
@ oo o x x %e e0e | 0o
T T T T T T T T T T
< < < < 0 0 0 0 © ©
s Y S S S S S S S S
8 & & & & & & & & &
P i = b = v = = pa R
5] 53 5 = S -4
S < > o S < S o 3 <
Date

Fig. 16 Relative trends of Exception (marked with circle) and the Quality variable (marked with cross) - GA
releases of Avaya Communicator for Android

In Figs. 16, 17, and 18, we show the relative trends of Exception and the Quality variable
for the GA and development releases of the Android application and the GA releases of the
i0S application respectively. We are not interested in the absolute values of the metrics, but
the values of the metrics for a release relative to the values for other releases. We only show
the releases with non-zero number of exceptions, since if the number of exceptions is zero,
the the value of the quality metric is also zero. The blue dotted lines represent the releases
dates of different releases, and the black marker and the red cross on the blue line represent
the exceptions and the quality variable for that release respectively.

We can see that for a number of releases, Exceptions and Quality follow a similar trend,
i.e. if the number of exceptions increase, the value of the Quality variable increases accord-
ingly. However, there are indeed a number of cases where the number of exceptions is
relatively small, but the value of Quality variable is larger than that for other releases, e.g.
for many of the GA releases for the Android application in 2016, or vice versa, e.g. the
release around September 2015 for the GA releases for the Android application. This indi-
cates that if we simply keep on using the number of exceptions as the quality measure, we
will misclassify (as being better or worse than other releases) a number of releases. This
result supports our hypothesis that not accounting for the usage parameter will not systemat-
ically misclassify all releases, since the internal factors affecting the release are independent
of the external factors, but would randomly misclassify some of them depending on how
much usage a release is getting.

@ Springer

1624 Empirical Software Engineering (2020) 25:1596-1641

Relative Trends of Two metrics

@ X
- 3.0
8 -
5 25
@
®)
o 2.0 5]
[+ @
& 6 2
8 ® =
k) ? o
Y 3
c ® . 3
8 15 £
o >
8 ® =
]]
w =1
4 l¢]
- 1.0
x
X
X
- 05
2 X
x
X x X x$ @
X
@ @ o0
T T T T T T T
< - < <« 0 0 0
S b S b S s S
& 8 & & & 8 &
< < S 3 P T <
3 2 3 14 s g 3

Date

Fig. 17 Relative trends of Exception (marked with circle) and the Quality variable (marked with cross) -
Development releases of Avaya Communicator for Android

Relative Trends of Two metrics

o X
o4
55
50 - 0.3
°
@ @ 5
g >
o> S
s :
E’ 45 02 E
2 5
[-% >
3 z
v E
3
@
40
I 0.1
351
- X @ % | oo
T T T T T T
< < < < ® °
5 5 5 5 5 5
{ { & &] &
g g 3 8 § 2
Date

Fig. 18 Relative trends of Exception (marked with circle) and the Quality variable (marked with cross) - GA
releases of Avaya mobile SIP for iOS

@ Springer

Empirical Software Engineering (2020) 25:1596-1641 1625

issues

Fig. 19 Bayesian Network Model for Issues for the 520 NPM packages (with c: coefficients after fitting the
transformed, but unscaled data, p: p-value for the link)

5.3 RQ3: Analysis of the NPM Data and Results

We used the same modeling techniques as used in analyzing the mobile applications to
examine the interrelationship between the various code complexity measures, extent of
usage, and the number of issues. The BN model (Fig. 19) highlighted that the number of
issues is dependent on the number of downloads as well as the number of logical lines of
code. The value of R? for the BN model was found to be 0.59.

The variable importance plot of the Random Forest model (Fig. 20) showed the number
of logical lines of code to be the most important predictor, followed by the number of
downloads over the month before data collection. The mean value of R?, from performing
a 10 times 2 fold cross-validation was 0.64 (sd: 0.04) for this model. We wanted to see
how the fit of the model changes if we drop the number of downloads from the list of
predictors. This resulted in a significant drop in the value of R2, which became 0.49 (sd:
0.02) under this condition. This result clearly indicates the importance of the number of
downloads in modeling the number of issues even after taking the code complexity metrics
into consideration.

Fig. 20 Variable Importance plot Variable Importance Plot
for the Random Forest Model for

Issues for the 520 NPM Packages

loc o
downloads1M o

cyclomatic o

[e]

effort

params o

o]

maintainability

15 20 25

%INncMSE

@ Springer

1626 Empirical Software Engineering (2020) 25:1596-1641

maintainability

Fig. 21 Bayesian Network Model for Quality for the 520 NPM packages (with c: coefficients after fitting
the transformed, but unscaled data, p: p-value for the link)

Quality

Additionally, we decided to implement a usage-adjusted quality measure similar to what
we had for the mobile applications and observe how it depends on the code complexity
measures. Our quality measure (“Quality”) was defined as the number of issues per down-
load, similar to how we defined it while analyzing the mobile applications. The BN model
(Fig. 21) was similar to what we found last time, however, we now observed a new link
from “effort” to “Quality”. The fit of the model was found to be somewhat worse, with a R?
value of 0.41. The Random Forest model gave a R? value of 0.53 (sd:0.03) from a 10 times
2 fold cross-validation, and the variable importance plot (Fig. 22) showed the lines of code
to be the most impactful predictor.

Fig.22 Variable Importance plot Variable Importance Plot
for the Random Forest Model for
Quality for the 520 NPM
Packages
loc o
cyclomatic o
effort o
params o
maintainability | ©

I I T T T I
22 24 26 28 30 32

%IncMSE

@ Springer

Empirical Software Engineering (2020) 25:1596-1641 1627

5.4 Timeline Plots for NPM Packages - RQ4

We also presented the timelines for a few well-known NPM packages, showing the com-
parative trends of the number of issues and our proposed quality measure, defined as the
number of issues per download. Since the number of downloads has a large variation, the
quality measure also has a high degree of variation. So, we decided to fit a model to the
quality variable, and add another line representing the fitted values of the model. We first
tried to use a OLS model, but given the apparent non-linearity of the data, later decided to
use a Generalized Additive Model (GAM). We did not fine tune this model, because it was
only used for demonstrating the trend of the quality measure in the timeline plots.

Since the detailed analysis was performed on single releases of 520 packages, we wanted
to verify if the number of downloads is an important predictor for the number of issues for
all 4430 packages individually during their lifetime for all releases. We found that out of the
4430 packages, only for 36 packages the p-value of the predictor variable was more than
0.05 before adjusting for the calendar date, and after adjusting for the calendar date, p-value
was less than 0.5 (i.e. the predictor was deemed significant) for all 4430 packages.

The R? values of the fitted models varied between 0 and 0.8637 (median: 0.4982, stan-
dard deviation: 0.0618) before adjusting for the calendar date , and between 0.019 and 0.999
(median: 0.9195, standard deviation: 0.0618) after adjusting for the calendar date. So, we
can say that the number of daily downloads is a significant and important predictor for the
number of issues encountered by the users for most of the packages and the effect is more
pronounced when the effect of automated downloads is controlled by calendar date.

Since we just established that the number of issues of an NPM package depends on the
number of daily downloads, a similar quality metric of the number of issues per download
should be applicable in this situation as well.

To check the quality of different packages, we looked at the minimum and median value
of the quality metric for the 4430 packages. We didn’t consider the absolute maximum
value, since some packages had zero downloads for a few days, driving the value of the
quality metric to infinity. So, we used the 90" quantile value as a proxy for the maximum
value. We looked at the packages for which the value of the quality metric was more than
1. The threshold was chosen because we were looking at the packages of really high val-
ues of the quality metric, and thus were of poor quality. We found that for 340 packages the
90'" quantile value of the quality metric was more than 1, i.e. they had more than 1 issue
reported against them per download. The number was 100 and 3 when we looked at the
median and minimum values respectively. The three packages for which the total number
of issues over the number of daily downloads was more than 1 were ‘@ngrx/store’, ‘@pro-
tobufjs/fetch’, and ‘@protobufjs/inquire’. Overall, we found that the packages for which
the value of the quality metric was more than 1 were mostly packages from a big project
that were relatively less downloaded, e.g. ‘babel-plugin-transform-es2015-bLOCk-scoped-
functions’ from babel project, ‘react-scripts’ from facebook-react project etc. There were a
few other packages that had very few downloads during most of its life-cycle since 2015, but
had an increase in popularity later on, and thus were selected in our list of packages. How-
ever, since they had very few downloads for a long time, the median or maximum value of
the quality metric was more than 1 (e.g. ‘bubleify’). For illustration, in Fig. 23 we are show-
ing the histogram of the median value of the quality metric for the 4430 NPM packages,
which gives some idea about the overall quality distribution of the packages in the NPM
ecosystem. We can see that around 75% of the packages in NPM have a median value of the
quality metric less than 0.01, which mean, overall, for around 75% of the NPM packages,

@ Springer

1628 Empirical Software Engineering (2020) 25:1596-1641

le-02 1e+00 le+02
| |

Median Values of Quality of NPM packages

le-04

le-06

0 1000 2000 3000 4000

Index

Fig. 23 Histogram of Median Values of Quality of NPM packages

less than 1 in 100 regular users ever (since we are looking at the total number of issues) file
an issue.

Further inspection showed that the value of the quality variable increases with time for
almost half of the packages (2030 out of 4430 packages, 45.8%), unlike what we observed
for the mobile applications, where for almost all of the releases of the three softwares, the
value of the quality variable decreased with time.

Here we also show the timelines comparing the trend of the quality variable we defined
(i.e. in this case, number of issues per download), along with a fitted line that was fitted
using the Generalized Additive Model (GAM), and the number of issues, for a few selected
well-known NPM packages for illustration. The selected NPM packages are quite popular
and have a large number of issues reported against them, so so plotted the number of issues
in log scale. We can see that for all the four cases, the number of issues keep increasing with
a decreasing slope, but the quality measure follows different trends for the four cases. We see
that the quality measure for “angular” (Fig. 24) and “eslint” (Fig. 25) have a trend similar to
what we saw for the mobile apps, with the value of the quality variable decreasing with time,
but “babel” (Fig. 26) is showing an increase in the value, followed by an initial decrease,
while for “ember-cli” (Fig. 27), the trend is almost constant over time. This result clearly
show the necessity of normalizing the number of issues, which is a measure of software
faults, by usage parameter like the number of downloads before using it as a measure for
software quality.

6 Discussion
Our analysis makes it evident that the number of users is one of the most important vari-

ables in explaining various post-release software failure metrics, as seen in all three of the
mobile applications as well as for the NPM packages. The analysis also indicates that, for

@ Springer

Empirical Software Engineering (2020) 25:1596-1641

1629

Relative Trends of Two metrics

9.6
|

Issues (Log scale)
9.5
]

|
"unl'}

W\

il
l i ””“"h

9.4

IWHN Hmnl\

”![‘,q:',{!{!{{gg‘ﬁﬂjym i

& |ssues
* Quality Variable
X GAM-fitted Quality

1

i

it I g

nlllli |imn”i|”m

anm..n.n..

May 2015 May 2016

Fig.24 Timeline for NPM package: angular

Date

May 2017 May 2018

Quality Variable

the mobile applications, more new users for a release would mean more exceptions would
be found for the software and, for the GA releases of both the apps analyzed, longer activ-
ity for the release (the duration of a release measures how long a release is actively used
by users, not the time between two releases, since the releases overlap). This suggests that

Relative Trends of Two metrics

Issues (Log scale)
8.5

8.0
|

s
N..f!""!llh it

I

|H\||I|\lmﬂmnunun'1 :

T ot {0
....vnl..n!lluu!!lmi !

- 1.0

- 0.8

@ |ssues
* Quality Variable
X GAM-fitted Quality

- 0.6

et

- 0.4

- 0.2

- 0.0

75

May 2015 May 2016

Fig.25 Timeline for NPM package: eslint

Date

May 2017

May 2018

Quality Variable

@ Springer

1630 Empirical Software Engineering (2020) 25:1596-1641

Relative Trends of Two metrics

o _| @ Issues
@ ¢ Quality Variable
X GAM-fitted Quality
- 1.5
23 g
= | l,'lll'.l H il g
2 0 il 8
" \] “H
6 WM\ ”“ i \ o |
{1 SIS <
Nl "’.‘”|uuh"'!|‘| 1:]wmi““h'"Iiunll\l"' n”[l”llJ"i“”W"“”H “ m ”“
o | ! st
T T T T T T T - 00
May 2015 May 2016 May 2017 May 2018
Date

Fig.26 Timeline for NPM package: babel

users may be reluctant to upgrade (or are encouraged to stay) on better -quality releases.
For the NPM packages as well, a higher number of downloads indicated a larger num-
ber of issues. Our findings are in agreement with findings of Mockus and Weiss (2008a),

Relative Trends of Two metrics

9.0
1

® |ssues
¢ Quality Variable -5
X GAM-fitted Quality

w -

8.8
T
IS

! " 'IN 2 ©
«\! \“ NW H\H\ UW‘ \H H il
= l!‘l ‘"‘ |\| ’||I”| u|||"m l ”‘ ﬂ -1
.| ThA "ww"mumu"unm"mn“umnnmuwuuw»"uum o nm"uwmi"mnmm"‘mll'

Fig. 27 Timeline for NPM package: ember-cli

@ Springer

Empirical Software Engineering (2020) 25:1596-1641 1631

Hackbarth et al. (2016a), and Mockus et al. (2005b) that consider post-release defects for a
completely different server software system.

The release date also affects no. of exceptions for the mobile applications, as can be
observed by looking at the coefficients. It provides some insight on how this software has
evolved. Even after adjusting for the effect the number of users have on the number of
exceptions, the number of exceptions are increasing with time for the Android app, whereas
is decreases for the iOS app. This may indicate that the software, the OS, as well as the
hardware could be becoming more complex with time, which is consistent with a rapid
growth of functionality and the size of associated code base. The Android app is seeing
more crashes due to the variations in the devices and the OS, whereas for 10S, since the
devices as well as the OS versions are tightly controlled, the users are seeing less issues,
although we have no explicit evidence to support our speculation.

An interesting observation from the model is the lack of any direct relationship between
exceptions and the intensity or frequency of usage. One possibility is that exceptions happen
for specific Android/ iOS version/ Phone combination and the way each user is exercising
application’s functionality. Users for whom the application crashes must wait for the next
release. This would lead to the observed phenomena where only the new users increase the
number of crashes, which was observed more clearly from the timeline of crashes as well.
The duration an application is used by individual users was found to have a much smaller
effect on reported defects than the number of new users in prior work Hackbarth et al.
(2016a), Mockus and Weiss (2008a), and Mockus et al. (2005a) as well. In particular, it was
observed that most of the issues happen soon after deploying the release and the chances of
reporting a defect for a new release drops very rapidly with time after installation.

We found that the exceptions are a result of more new
users and the extent of usage does not appear to have a
direct effect on the number of new users.

Our study of the interrelationship between the code complexity metrics, the number of
downloads, and the number of issues for the 520 NPM packages revealed that even after
accounting for the code complexity metrics, the number of issues had strong dependence on
the number of downloads. This result confirms the hypotheses we discussed in Section 2,
showing (1) The number of issues depend on both internal factors like code complexity, and
external factors like usage, and (2) From the BN model we observed that the internal code
complexity metrics had no influence on the number of downloads, which is an external factor.

We found that usage of NPM packages, measured by
downloads, was a significant predictor for issues even
after taking the code complexity metrics into considera-
tion.

We found that among the code complexity metrics, the average per-function count of
logical lines of code (loc) was the most important predictor for modeling the number of
issues, and the effect of the other factors was much less pronounced. From the BN model
we found the relationship between the loc and the number of issues to be negative, i.e. the
modules with more average per-function logical lines of code were seeing fewer issues.
However, given that this measure is the per-function lines of code, it could indicate that
simpler modules with fewer functions are less likely to have issues reported against them.

@ Springer

1632 Empirical Software Engineering (2020) 25:1596-1641

It is worth mentioning that the most likely reason our models for the mobile applica-
tions showed a relatively poor predictive performance is that we did not have any internal
measures like the code complexity metrics in those models, and given the number of issues
depend on internal as well as external factors (what we saw from the results of our NPM
analysis), not having the internal factors affected the predictive performance of those mod-
els. Getting code complexity metrics for the closed source mobile applications proved
difficult, due to the proprietary nature of the code, and the fact that the development teams
worked on multiple releases at the same time further complicated getting the code complex-
ity measures for particular releases. Therefore, we investigated the NPM packages, which
are open-source, to verify the impact of usage after taking the code complexity measures
into consideration. Since we had both the internal as well as the external factors in the
models for the 520 NPM packages, the predictive performance was much better.

From the timeline analysis of the 4430 NPM packages, we observed that the number of
downloads is a significant predictor for the number of issues for most of them, and when
controlled for the calendar date, which compensated for the variations in the downloads
by automated sources, it was a significant predictor for all the 4430 NPM packages. So, a
similar quality measure was used for this case as well. We found by looking into this metric
that, overall, for around 75% of the NPM packages, less than 1 in 100 regular users ever
(since we are looking at the total number of issues) file an issue. However, unlike the three
mobile apps, where the value of our quality metric decreases with time for all releases, for
the NPM packages the quality metric sometimes increases or remain relatively constant over
time (around 45.8% of the time).

Our data, scripts, and more detailed results are available in our GitHub repository: https://
github.com/tapjdey/release_qual_model.

Overall, none of the three models indicate that “Usage.Frequency” or “Usage.Intensity”
have any effect on the “Quality” variable. We, therefore, suggest that the exceptions per
user, or a metric similar to that, can be used as a software development quality metric to
objectively compare quality of different releases. While the measure is not very novel or
sophisticated (Post-release defect density calculated as a proportion of users who experience
an issue within a certain period after installing or upgrading to a new release has been
proposed by Mockus and Weiss (2008b) and Mockus et al. (2005b) as a measure of software
quality), it is an actionable and easy to use measure. A more sophisticated approach would
require modeling the software failure measures (like exceptions or issues) as a function of
software usage, and then use the residuals obtained after fitting the model to objectively
compare the qualities of the releases. Such approach may prove to be too complex for a
developmeent team to apply.

The wider practical implication of this finding is twofold:

1. Our findings prove that due to the interdependence of usage and the observed number
of software failures (like exceptions), any quality measure (like number of defects,
defect density, mean time between failures) that is dependent on any of these observed
number software failures would misclassify some releases being better or worse than
others unless the usage aspect is taken into account. The effect naturally would be more
pronounced for softwares/releases with a large variation in usage.

2. The results of our findings also suggest that these observed number of software fail-
ures do not depend on all aspects of usage, e.g. we found no dependence between usage
intensity or frequency and number of observed exceptions. It suggests that to make a
quality measure independent of the external factors like usage, we can not just nor-
malize it by any usage measure, e.g. normalizing the number of exceptions by usage

@ Springer

https://github.com/tapjdey/release_qual_model
https://github.com/tapjdey/release_qual_model

Empirical Software Engineering (2020) 25:1596-1641 1633

intensity or frequency would not make it independent of external factors. It is impor-
tant to normalize by the right measure to be able to actually make the quality measure
independent of usage.

7 Related Work

Although software quality has always been a common topic in software engineering (Boehm
et al. 1976; Kitchenham and Pfleeger 1996), most of the studies have focused on pre-release
data, primarily due to the developers’ concern about finding the appropriate balance between
the amount of testing required and the quality of software (e.g. Rubin and Rinard 2016;
Dalal and Mallows 1988). There have been a number of works on predicting and improv-
ing the software quality as well (e.g. Mockus et al. 2013; Zhang et al. 2015; Kamei et al.
2013; Mockus and Weiss 2000). Comparatively, studies about post-deployment quality and
dynamics have been less frequent (Li et al. 2011; Kenny 1993). However, a number of stud-
ies have looked at the aspects of software quality metrics, especially the quality perceived
by the customers, e.g., Mockus et al. (2005b), Mockus and Weiss (2008a), Hackbarth et al.
(2016a), Rotella and Chulani (2011), and Mockus (2014). Amreen et al. (2019) described
a general way to measure Software Quality and related metrics for Open Source Software
ecosystems. A notable non-academic work involves a study of mobile app monitoring com-
pany’s (Crittercism) data (Geron 2012). The author of the news article found it necessary to
normalize crash data by the number of launches. Finally, an empirical investigation between
release frequency and quality on Mozilla Firefox has been investigated in Khomh et al. (2012).

While Bayesian Networks have been used for software defect prediction for decades, the
use of BNs for explanatory modeling in empirical software engineering is still not common
despite the promise. A case for use of BNs was made by Fenton et al. (1999, 2002), while the
earliest publications utilizing BNs we could find (Herbsleb and Mockus 2003) constructed
search of the structure based on the statistical significance of partial correlations in the
context of modeling delays in globally distributed development. Stamelos et al. (2003) and
Pendharkar et al. (2005) considered the application of Bayesian networks to prediction of
effort, Fenton et al. (2007), Neil and Fenton (1996), and Okutan and Yildiz (2014) used
Bayesian networks to predict defects, and Pai and Dugan (2007) used BN approach for an
empirical analysis of faultiness of a software. On the other hand, Bayesian structure learning
is a big domain in itself with a wide range of algorithms, but its use in software engineering
context is not very common.

Hackbarth et al. (2016b) found the need to adjust defect counts in their proposed measure
of software quality as perceived by customers. We propose a somewhat different measure of
quality based on the number of exceptions per user. In general, software quality is a widely
researched topic (Kan 2002; Kitchenham and Pfleeger 1996; Schulmeyer and McManus
1992) etc., but in our knowledge, this is the first model-based attempt to obtain a usage
independent measure of software quality and the first attempt to model exceptions in mobile
applications.

The NPM ecosystem is one of the most active and dynamic JavaScript ecosystems
and Wittern et al. (2016) presents its dependency structure and package popularity. Zer-
ouali et al. (2018) studies the dependency, specifically the lag in updating dependencies
in various NPM packages while Abdalkareem et al. (2017) looked into the use of trivial
packages as part of package dependencies for different NPM packages. Dey and Mockus
(2018a) investigated the factors affecting NPM package popularity, and Dey et al. (2019)
investigated the participation patterns of issue and patch creators.

@ Springer

1634 Empirical Software Engineering (2020) 25:1596-1641

The advancements proposed in this paper over the published work are focused on two
primary areas: (1) study of the relationship between software faults (issues for NPM pack-
ages) and usage using post-release data in the context of two proprietary mobile applications
and 4430 popular NPM packages, and (2) proposing a usage independent exception-based
software quality metric based on our models.

7.1 Comparison with Published Results

In this subsection we compare our findings with already reported results that studied other
commercial applications. The goal of this subsection is not replicating the earlier studies,
but just comparing the findings of our study and those of some earlier studies. We add this
section to address the limitation of our dataset having a relatively small sample of data.

Unfortunately, there aren’t a lot of studies that looked into the interrelationship between
software usage and software faults (defects or crashes).

The number of users for most of the releases we studied are very small, with a median of 7
users per release, although a few releases have more than 16,000 users. On slide 22 of of his
presentation (Jones 2011), Caper Jones reported that the number of defects increase 2 to 3
times for a 10 fold increase in the number of users (from 1 to 10 and 10 to 100) for a software
of similar complexity (between 10,000 and 100,000 function points). However, they were
looking at the number of defects, and typically the number of exceptions is larger than the
number of defects, because one defect could cause crashes for multiple users (or multiple
crashes for a single user). The study published in Mockus and Weiss (2008a) was done for
a system with many more users (around 4,000 to 16,000),however, they reported that for a
two-fold increase in the number of users the number of Modification Requests (MR tickets)
increase around 1.25 times, which is more than what would have been predicted by our
model (1.02 — 1.04) for Android apps, but less than what we have (1.6) for the iOS app.

Although we were unable to do a direct comparison to another mobile application, due
to different studies looking at different measures, these findings add more context to our
result, and indicates the necessity of further studies that publish their datasets to understand
the usage-fault relationship in a wider range of applications.

8 Limitations

The accuracy of our result is very much dependent on the Google Analytics data. While
we do not have reasons to doubt the accuracy of the counts in Google Analytics data, we
would have liked to have better definitions of how it determines ‘“New User”, “Visit”, and,
especially, nontrivial to aggregate quantities such as “Visits per User.” Also, it is not clear
if Google Analytics distorts data in any way (e.g., by applying differential privacy trans-
formations) for low counts in order to protect the privacy of the users. We do not believe it
does, but we have not conducted an experiment to validate that.

Furthermore, the mobile applications under consideration were relatively new and it was
the first attempt for the team to deploy mobile software. As such, much was not well doc-
umented and was rapidly evolving over time. As mentioned earlier, we did not have the
official release dates for all releases, so we put the start date of the release as the date
on which the first usage was reported. However, we did verify the official dates with this
reported date for the releases for which we found the release date, and they were very close,
but not always exactly the same. This should not affect the overall result, given the total time
scale of more than two years. The release end dates, by their nature, have to be estimated

@ Springer

Empirical Software Engineering (2020) 25:1596-1641 1635

based on user activity, since there is no way to force end user to upgrade Android app. For
recent releases, therefore, the end date may be censored by our data collection date, hence
the duration for these releases might be underestimated.

Another limitation associated with using these commercial closed-source mobile appli-
cations is that we had no control over the release cycle or the variables being measured by
Google Analytics. This limited our options for doing the analysis, sometimes severely. We
had very few releases for the iOS application, and even the largest dataset of GA releases of
the Android application had only 173 releases. We had a limited number of observed vari-
ables as well. However, we were unable to obtain any more data on the applications, forcing
us to work with the limited data. However, we tried to increase the validity of our study by
looking into three sets of releases for two applications, and used three different modeling
approaches to study these datasets. The fact that we saw a strong relationship between the
number of users and exceptions in all cases has led us to have confidence in the validity of
our finding.

It may be possible to collect numerous additional variables that may have an impact on
exceptions, for example, the number of changes to the source code made for a release as was
done in Mockus and Weiss (2008a). Unfortunately, due to the nature of parallel development
for multiple releases and products noted in Section 3.1.1, it was virtually impossible to
separate the changes that would only affect a specific release on the Android/iOS platform.
To further complicate the matter, the mobile applications we studied were commercial in
nature, and the source code for these were not available.

Our study of the mobile applications focused on a single set of mobile applications from
a specific domain, implemented via a rather complex codebase and is certainly not repre-
sentative of most mobile applications that tend to be much simpler. Furthermore, mobile
applications may not represent other types of software further limiting external validity of
the results. However, some aspects that we see in the specific application, such as increasing
number of faults with the number of users, has been observed in rather different contexts of
large-scale server software. This suggests that the model derived in the study may generalize
to other domains as well.

In terms of modeling aspects, there are some limitations related to the different
approaches. The RF model was used for 10 times 2 fold cross-validation, and exhibited a
rather high value of standard deviation in the R? value, likely due to the small sample size.

While creating the BN model we did not cover all possible ways BNs can be applied to
gain insight into the system. For example, we did not investigate the possible existence of
any hidden node, or make an effort to formally establish the causal relationship between the
nodes. We also did not investigate how the properties of one release affect the subsequent
releases, nor did we investigate the presence of any feedback loops. Although we used the
best methods identified from the simulation study, we did not employ any measures to verify
the existence/non-existence of any link that appeared in the averaged bootstrapped model.

In the simulation study, although we covered an extensive set of options, we did not try
every possible combination of options for the BN structure search exercise.

We also did not use Markov Random Field analysis, which is another probabilistic graph-
ical modeling approach. The primary reason behind choosing the BN approach was that we
found an example where this method was used to successfully recover the underlying net-
work (Scutari 2013). Moreover, it is possible to interpret a BN model as a causal model, and
although we did not use that interpretation in this study, our goal is to eventually establish
a causal mechanism of how usage affects the number of exceptions/defects experienced by
users, so we wanted to used BN from the start.

@ Springer

1636 Empirical Software Engineering (2020) 25:1596-1641

Regarding external validity, we analyzed 520 most popular NPM packages, which is less
than 0.1% of the total packages in the NPM ecosystem. Even during the timeline study, we
only looked at 4430 packages. These packages, however, represent the tiny part of the NPM
ecosystem that is widely used, so they constitute a suitable subset for our study.

Although the study of the NPM packages had measures related to code complexity and
usage, we didn’t look into a lot of other possible variables that could affect the number of
issues, e.g. the number of dependents a package has. Although some of the issues could
come from users of a dependent package, we didn’t actively check the origins of the issues to
verify that. We also didn’t look at the releases of the packages, because of reasons mentioned
before. We didn’t differentiate between the types of the issues, because we just wanted to
see how many times a user decided to file an issue. Overall, this study was not a direct
extension of the previous work, rather, it was an extension of the concept and its application
in a different domain.

Another approach that could have been taken to make this study more similar to the study
of the mobile applications would require us to check whether or not an issue filed for a
package has a crash report. However, such an approach would come with different caveats,
e.g. a crash could result from the limitation of the package, but it could also result from some
bug or compatibility issue in the web browser, or even the OS. Due to these limitations, we
did not investigate this in this study, though, it is an interesting question we would like to
address in future.

9 Conclusion

From the practical perspective we have established that an external factor like the extent
of use has very strong relationship with the observed number of exceptions for three large
mobile applications from the telecommunication domain. The study of the 520 NPM pack-
ages revealed that the effect remains noticeable even after taking the code complexity
measures into account. Counting exceptions, or using any other quality measure depen-
dent on an observed number exceptions, or any other software failure metric (like number
of defects or issues), therefore, will not accurately measure the quality of software devel-
opment process but, instead, it would strongly depend on the extent of use. In order to
produce a measure that the development team can use to understand and improve quality of
their software development process, we proposed to normalize the observed exceptions by
usage, specifically by number of users or any related measure if it is not available. Notably,
a similar normalization was previously proposed in the context of post-release defects that
also exhibited strong positive correlation with the number of users. As a larger proportion
of applications are mobile and/or delivered as a service, the amount of usage can be rel-
atively easily collected. Consequently, not adjusting software development measures for
usage should not be considered as an excusable practice.

From theoretical perspective, we provided the explanation of the relationships among
post-deployment quantities using Bayesian Networks, which allow for exploration of rela-
tionships among all variables and empirical determination of the relationships exhibited in
a particular dataset. For all three mobile softwares analyzed, the number of users was found
to be the most significant predictor with both the models. It would be preferable to have
each release as a separate categorical predictor, but because for simplicity we chose to use
only one observation per release.

We also established that it is possible to predict exceptions using Random Forest mod-
eling techniques and that usage plays a key role for the accuracy of these predictions.

@ Springer

Empirical Software Engineering (2020) 25:1596-1641 1637

However, the performance of the predictive model was not consistently good, since we did
not have any internal factor as a predictor and, as noted above, prediction is a different task
than explanation and, even though it often yields more accurate results, the prediction results
may be harder to explain to developers or managers and, therefore, harder to act upon. We
believe the findings do have a message for the voluminous research in defect prediction.
While defects are not exceptions, usage was also found to affect post-release defects in a
similar manner (Jones 2011; Hackbarth et al. 2016a; Mockus et al. 2005b). It would, there-
fore, be advisable to incorporate forecasts of usage into defect prediction models to increase
their accuracy.

Our analysis of the NPM packages established that our approach is extendable to other
domains as well. The study revealed that even a less accurate measure of usage like down-
loads, which, for NPM packages, is a mix of downloads by human users and automated
sources, is an important predictor for the number of issues reported, which again is a weakly
similar measure to the number of crashes or bugs. So, our approach can be applied to any
situation similar to the ones we studied, even when only proxy measures for usage and
crashes/ bugs are available. The study also revealed the importance of taking software usage
into account even in the presence of code complexity measures.

We hope that this work will spur more research on software engineering aspects in
post-deployment stage because, like mobile applications, modern web applications are even
more reliant on usage monitoring not simply from the perspective of crash counting but
also because the usability or even revenue stream from the software applications critically
depends on how users behave.

From the practical perspective, we hope that any mobile or web software project can eas-
ily apply and refine the presented approach of using Google Analytics data to improve the
quality of their software. Any Android OS or Apple iOS mobile application can use Google
Analytics to monitor application usage and crashes, so the approach should be widely appli-
cable. Despite that, we are not aware of any prior empirical study that would leverages
Google Analytics or similar data for software quality modeling.

The result of our simulation study should also be useful for practitioners using Bayesian
Network structure search techniques for choosing the best performing methods.

Finally, much more work is needed to gather additional empirical evidence of how soft-
ware behaves post-deployment. It is important to note that Google Analytics data is available
only for application developers, so while each project has the ability to see their app’s per-
formance, they can not see data for software created by other organizations. This can be
addressed by a) projects sharing theirs post-deployment data (we have not seen examples
of that); or b) publishing findings based on such data in cases such as ours, where the data
itself would be impossible to release publicly since it involves numerous, often enterprise,
customers who may not agree.

Acknowledgements This work was supported by the National Science Foundation (U.S.) under Grant No.
1633437 and Grant No. 1901102.

References

Abdalkareem R, Nourry O, Wehaibi S, Mujahid S, Shihab E (2017) Why do developers use trivial packages?
An empirical case study on npm. In: Proceedings of the 2017 11th joint meeting on foundations of
software engineering. ACM, pp 385-395

@ Springer

1638 Empirical Software Engineering (2020) 25:1596-1641

Alain H, Buehlmann P (2012) Characterization and greedy learning of interventional Markov equiva-
lence classes of directed acyclic graphs. J Mach Learn Res 13:2409-2464. http://jmlr.org/papers/v13/
hauser12a.html

Amreen S, Bichescu B, Bradley R, Dey T, Ma Y, Mockus A, Mousavi S, Zaretzki R (2019) A methodology
for measuring FLOSS ecosystems. Springer, Singapore

Balov N, Salzman P (2016) catnet: categorical Bayesian network inference. https://CRAN.R-project.org/
package=catnet. R package version 1.15.0

Boehm BW, Brown JR, Lipow M (1976) Quantitative evaluation of software quality. In: Proceedings of the
2nd international conference on software engineering. IEEE Computer Society Press, pp 592-605

Borges H, Hora A, Valente MT (2016) Understanding the factors that impact the popularity of github repos-
itories. In: 2016 IEEE International conference on software maintenance and evolution (ICSME). IEEE,
pp 334-344

Bottcher SG, Dethlefsen C (2013) deal: learning Bayesian networks with mixed variables. https://CRAN.
R-project.org/package=deal. R package version 1.2-37

Briand LC, Wiist J, Daly JW, Porter DV (2000) Exploring the relationships between design measures and
software quality in object-oriented systems. J Syst Software 51(3):245-273

Chatzidimitriou KC, Papamichail MD, Diamantopoulos T, Tsapanos M, Symeonidis AL (2018) npm-miner:
an infrastructure for measuring the quality of the npm registry. In: Proceedings of the 15th international
conference on mining software repositories. ACM, pp 4245

Chickering DM (1996) Learning bayesian networks is np-complete. Learning from data: Artificial intelli-
gence and statistics V 112:121-130

Chlebus BS, Nguyen SH (1998) On finding optimal discretizations for two attributes. In: International
conference on rough sets and current trends in computing. Springer, pp 537-544

Dalal SR, Mallows CL (1988) When should one stop testing software? J Am Stat Assoc 83(403):872-879

David (2014) https://developers.slashdot.org/story/17/01/14/0222245/nodejss-npm-is-now-the-largest-pack
age-registry-in-the-world

Dey T, Mockus A (2018a) Are software dependency supply chain metrics useful in predicting change of
popularity of npm packages? In: Proceedings of the 14th international conference on predictive models
and data analytics in software engineering (pp. 66-69). ACM

Dey T, Mockus A (2018b) Modeling relationship between post-release faults and usage in mobile software.
In: Proceedings of the 14th international conference on predictive models and data analytics in software
engineering. ACM, pp 56-65

Dey T, Ma Y, Mockus A (2019) Patterns of effort contribution and demand and user classification based
on participation patterns in npm ecosystem. In: Proceedings of the fifteenth international conference on
predictive models and data analytics in software engineering (pp. 36-45). ACM

Duc AN, Mockus A, Hackbarth R, Palframan J (2014) Forking and coordination in multi-platform
development: a case study. In: ESEM, Torino, pp 59:1-59:10. http://dl.acm.org/authorize?N14215

Fenton N, Neil M (1999) A critique of software defect prediction models. IEEE Trans Softw Eng 25(5):675—
689

Fenton N, Krause P, Neil M (2002) Software measurement: uncertainty and causal modeling. IEEE Softw
19(4):116-122

Fenton N, Neil M, Marsh W, Hearty P, Marquez D, Krause P, Mishra R (2007) Predicting software defects
in varying development lifecycles using Bayesian nets. Inf Softw Technol 49(1):32-43

Fenton N, Neil M, Marquez D (2008) Using bayesian networks to predict software defects and reliabil-
ity. Proceedings of the Institution of Mechanical Engineers Part O: Journal of Risk and Reliability
222(4):701-712

Friedman N, Goldszmidt M, Wyner A (1999) Data analysis with Bayesian networks: a bootstrap approach.
In: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann
Publishers Inc, pp 196-205

Geron T (2012) Do ios apps crash more than android apps? A data dive. https://www.forbes.com/sites/
tomiogeron/2012/02/02/does-ios-crash-more-than-android-a-data-dive

Hackbarth R, Mockus A, Palframan J, Sethi R (2016a) Customer quality improvement of software systems.
Softw IEEE 33(4):40-45. papers/cqm2.pdf

Hackbarth R, Mockus A, Palframan J, Sethi R (2016b) Improving software quality as customers perceive it.
IEEE Softw 33(4):40-45

Hahsler M, Chelluboina S, Hornik K, Buchta C (2011) The arules r-package ecosystem: analyzing interest-
ing patterns from large transaction datasets.] Mach Learn Res 12:1977-1981. http://jmlr.csail.mit.edu/
papers/v12/hahsler] la.html

Hartemink AJ (2001) Principled computational methods for the validation and discovery of genetic regulatory
networks. Ph.D. thesis Massachusetts Institute of Technology

@ Springer

http://jmlr.org/papers/v13/hauser12a.html
http://jmlr.org/papers/v13/hauser12a.html
https://CRAN.R-project.org/package=catnet
https://CRAN.R-project.org/package=catnet
https://CRAN.R-project.org/package=deal
https://CRAN.R-project.org/package=deal
https://developers.slashdot.org/story/17/01/14/0222245/nodejss-npm-is-now-the-largest-package-registry-in-the-world
https://developers.slashdot.org/story/17/01/14/0222245/nodejss-npm-is-now-the-largest-package-registry-in-the-world
http://dl.acm.org/authorize?N14215
https://www.forbes.com/sites/tomiogeron/2012/02/02/does-ios-crash-more-than-android-a-data-dive
https://www.forbes.com/sites/tomiogeron/2012/02/02/does-ios-crash-more-than-android-a-data-dive
papers/cqm2.pdf
http://jmlr.csail.mit.edu/papers/v12/hahsler11a.html
http://jmlr.csail.mit.edu/papers/v12/hahsler11a.html

Empirical Software Engineering (2020) 25:1596-1641 1639

Herbsleb JD, Mockus A (2003) An empirical study of speed and communication in globally-distributed
software development. IEEE Trans Softw Eng 29(6):481-494. papers/delay.pdf

Jones C (2011) Software quality in 2011: a survey of the state of the art. http://sqgne.org/
presentations/2011-12/Jones-Sep-2011.pdf. President, Namcook Analytics LLC, www.Namcook.com
Email: Capers.Jones3@GMAILcom

Kalisch M, Méchler M, Colombo D, Maathuis MH, Biihlmann P (2012) Causal inference using graphical
models with the R package pcalg. J Stat Softw 47(11):1-26. http://www.jstatsoft.org/v47/i11/

Kamei Y, Shihab E, Adams B, Hassan AE, Mockus A, Sinha A, Ubayashi N (2013) A large-scale
empirical study of just-in-time quality assurance. IEEE Trans Softw Eng 39(6):757-773. http://doi.
ieeecomputersociety.org/10.1109/TSE.2012.70

Kan SH (2002) Metrics and models in software quality engineering. Addison-Wesley Longman Publishing
Co. Inc

Kenny GQ (1993) Estimating defects in commercial software during operational use. IEEE Trans Reliab
42(1):107-115

Khomh F, Dhaliwal T, Zou Y, Adams B (2012) Do faster releases improve software quality?: An empirical
case study of mozilla firefox. In: Proceedings of the 9th IEEE Working conference on mining software
repositories. IEEE Press, pp 179-188

Kitchenham B, Pfleeger SL (1996) Software quality: the elusive target [special issues section]. IEEE Softw
13(1):12-21

Koller D, Friedman N (2009) Probabilistic graphical models: principles and techniques. MIT press

Kononenko O, Baysal O, Guerrouj L, Cao Y, Godfrey MW (2015) Investigating code review quality: do
people and participation matter? In: 2015 IEEE International conference on software maintenance and
evolution (ICSME). IEEE, pp 111-120

Li PL, Kivett R, Zhan Z, Jeon Se, Nagappan N, Murphy B, Ko AJ (2011) Characterizing the differences
between pre-and post-release versions of software. In: Proceedings of the 33rd international conference
on software engineering. ACM, pp 716-725

Scutari M (2010) Learning Bayesian networks with the bnlearn r package. J Stat Softw 35(3):1-22. http://
www.jstatsoft.org/v35/i03/

Mclntosh S, Kamei Y, Adams B, Hassan AE (2014) The impact of code review coverage and code review
participation on software quality: a case study of the qt, vtk, and itk projects. In: Proceedings of the 11th
working conference on mining software repositories. ACM, pp 192-201

Mcintosh S, Kamei Y, Adams B, Hassan AE (2016) An empirical study of the impact of
modern code review practices on software quality. Empirical Softw Engg 21(5):2146-2189.
https://doi.org/10.1007/s10664-015-9381-9

Mockus A (2007) Software support tools and experimental work. In: Basili V et al (eds) Empirical soft-
ware engineering issues: critical assessments and future directions, vol LNCS 4336. Springer, pp 91-99.
papers/SSTaEW.pdf

Mockus A (2013) Law of minor release: more bugs implies better software quality. http://mockus.org/papers/
IWPSE13.pdf. International Workshop on Principles of Software Evolution, St Petersburg, Russia, Aug
18-19 2013. Keynote

Mockus A (2014) Engineering big data solutions. In: ICSE’ 14 FOSE, pp 85-99. http://dl.acm.org/authorize?
N14216

Mockus A, Weiss DM (2000) Predicting risk of software changes. Bell Labs Tech J 5(2):169-180. papers/
bltj13.pdf

Mockus A, Weiss D (2008a) Interval quality: relating customer-perceived quality to process quality. In: 2008
International conference on software engineering. ACM Press, Leipzig, pp 733-740. http://dl.acm.org/
authorize?063910

Mockus A, Weiss D (2008b) Interval quality: relating customer-perceived quality to process quality. In:
Proceedings of the 30th international conference on software engineering. ACM, pp 723-732

Mockus A, Zhang P, Li P (2005) Drivers for customer perceived software quality. In: ICSE 2005. ACM
Press, St Louis, pp 225-233. http://dl.acm.org/authorize?860140

Mockus A, Zhang P, Li PL (2005) Predictors of customer perceived software quality. In: 27th International
conference on software engineering, 2005. ICSE 2005. Proceedings. IEEE, pp 225-233

Mockus A, Hackbarth R, Palframan J (2013) Risky files: an approach to focus quality improvement effort. In:
9th Joint meeting of the European software engineering conference and the ACM SIGSOFT symposium
on the foundations of software engineering, pp 691-694. http://dl.acm.org/authorize?6845890

Motulsky H When is r squared negative? Cross validated. https://stats.stackexchange.com/q/12991 (version:
2014-05-06)

Nagarajan R, Scutari M, Lebre S (2013) Bayesian networks in r, vol 122. Springer, pp 125-127

Neil M, Fenton N (1996) Predicting software quality using Bayesian belief networks. In: Proceedings of the
21st annual software engineering workshop. NASA Goddard Space Flight Centre, pp 217-230

@ Springer

papers/delay.pdf
http://sqgne.org/presentations/2011-12/Jones-Sep-2011.pdf
http://sqgne.org/presentations/2011-12/Jones-Sep-2011.pdf
www.Namcook.com
http://www.jstatsoft.org/v47/i11/
http://doi.ieeecomputersociety.org/10.1109/TSE.2012.70
http://doi.ieeecomputersociety.org/10.1109/TSE.2012.70
http://www.jstatsoft.org/v35/i03/
http://www.jstatsoft.org/v35/i03/
https://doi.org/10.1007/s10664-015-9381-9
papers/SSTaEW.pdf
http://mockus.org/papers/IWPSE13.pdf
http://mockus.org/papers/IWPSE13.pdf
http://dl.acm.org/authorize?N14216
http://dl.acm.org/authorize?N14216
papers/bltj13.pdf
papers/bltj13.pdf
http://dl.acm.org/authorize?063910
http://dl.acm.org/authorize?063910
http://dl.acm.org/authorize?860140
http://dl.acm.org/authorize?6845890
https://stats.stackexchange.com/q/12991

1640 Empirical Software Engineering (2020) 25:1596-1641

Okutan A, Yildiz OT (2014) Software defect prediction using Bayesian networks. Empir Softw Eng
19(1):154-181

Pai GJ, Dugan JB (2007) Empirical analysis of software fault content and fault proneness using Bayesian
methods. IEEE Trans Softw Eng 33(10):675-686

Pearl J (2011) Bayesian networks. Department of Statistics UCLA

Pendharkar PC, Subramanian GH, Rodger JA (2005) A probabilistic model for predicting software
development effort. IEEE Trans Softw Eng 31(7):615-624

Perez A, Larranaga P, Inza I (2006) Supervised classification with conditional gaussian networks: increasing
the structure complexity from naive Bayes. Int J Approx Reason 43(1):1-25

R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. https://www.R-project.org/

Rigby PC, Bird C (2013) Convergent contemporary software peer review practices. In: Proceedings of the
2013 9th joint meeting on foundations of software engineering. ACM, pp 202-212

Rotella P, Chulani S (2011) Implementing quality metrics and goals at the corporate level. In: Proceedings
of the 8th working conference on mining software repositories. ACM, pp 113-122

Rubin J, Rinard M (2016) The challenges of staying together while moving fast: an exploratory study. In:
Proceedings of the 38th international conference on software engineering. ACM, pp 982-993

Schulmeyer GG, McManus JI (1992) Handbook of software quality assurance. Van Nostrand Reinhold Co

Scutari M (2013) Learning Bayesian networks in r, an example in systems biology. http://www.bnlearn.com/
about/slides/slides-useRconf13.pdf

Scutari M, Strimmer K (2010) Introduction to graphical modelling. arXiv:1005.1036

Shmueli G (2010) To explain or to predict? Stat Sci, 289-310

Sober E (2002) Instrumentalism, parsimony, and the akaike framework. Philos Sci 69(S3):S112-S123

Stamelos I, Angelis L, Dimou P, Sakellaris E (2003) On the use of Bayesian belief networks for the prediction
of software productivity. Inf Softw Technol 45(1):51-60

Subramanyam R, Krishnan MS (2003) Empirical analysis of ck metrics for object-oriented design complex-
ity: implications for software defects. IEEE Transactions on software engineering 29(4):297-310

Voss L (2014) Numeric precision matters: how npm download counts work. https://blog.npmjs.org/post/
92574016600/numeric- precision-matters-how-npm-download-counts

Voss L (2018) The state of javascript frameworks, 2017. https://www.npmjs.com/npm/
state-of-javascript-frameworks-2017-part- 1

Wittern E, Suter P, Rajagopalan S (2016) A look at the dynamics of the javascript package ecosystem. In:
2016 IEEE/ACM 13th Working conference on mining software repositories (MSR). IEEE, pp 351-361

Yu P, Systa T, Muller H (2002) Predicting fault-proneness using oo metrics. an industrial case study. In: Sixth
European conference on software maintenance and reengineering, 2002. Proceedings. IEEE, pp 99-107

Zerouali A, Constantinou E, Mens T, Robles G, Gonzalez-Barahona J (2018) An empirical analysis of
technical lag in npm package dependencies. In: International conference on software reuse. Springer,
pp 95-110

Zhang F, Mockus A, Keivanloo I, Zou Y (2015) Towards building a universal defect prediction model with
rank transformed predictors. Empir Softw Eng, 1-39

Zheng Q, Mockus A, Zhou M (2015) A method to identify and correct problematic software activity data:
exploiting capacity constraints and data redundancies. In: ESEC/FSE’15. ACM, Bergamo, pp 637-648.
http://dl.acm.org/authorize ?N 14200

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://www.R-project.org/
http://www.bnlearn.com/about/slides/slides-useRconf13.pdf
http://www.bnlearn.com/about/slides/slides-useRconf13.pdf
https://arxiv.org/abs/1005.1036
https://blog.npmjs.org/post/92574016600/numeric-precision-matters-how-npm-download-counts
https://blog.npmjs.org/post/92574016600/numeric-precision-matters-how-npm-download-counts
https://www.npmjs.com/npm/state-of-javascript-frameworks-2017-part-1
https://www.npmjs.com/npm/state-of-javascript-frameworks-2017-part-1
http://dl.acm.org/authorize?N14200

Empirical Software Engineering (2020) 25:1596-1641 1641

Tapajit Dey is a PhD candidate in Computer Science from the
University of Tennessee. His research interests include empirical soft-
ware engineering, mining software repositories, and data analytics,
focusing on understanding how user participation affects different
properties of software ecosystems.

Audris Mockus (Ph.D) is the Ericsson-Harlan D. Mills Chair Pro-
fessor of Digital Archeology and Evidence Engineering in the
Department of Electrical Engineering and Computer Science of the
University of Tennessee. He studies software developers’ culture and
behavior through the recovery, documentation, and analysis of digital
remains which reflect projections of collective and individual activity.

Affiliations

Tapaijit Dey' @ . Audris Mockus'

Audris Mockus
audris @utk.edu

Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN,
USA

@ Springer

http://orcid.org/0000-0002-1379-8539
mailto: audris@utk.edu

	Deriving a usage-independent software quality metric
	Abstract
	Introduction
	Motivation
	Data Description
	Data on Mobile Applications developed by Avaya
	Software Description
	Data Description: Source
	Data Preprocessing

	The NPM Packages
	The NPM Ecosystem
	Measures Collected from npm-Miner Dataset
	NPM Data: Defining Collection Parameters
	NPM Data: Data Collection for the 4430 Packages
	NPM Data Preprocessing

	Methodological Overview
	Bayesian Network Models
	Bayesian Network Model Construction
	Methods Considered
	Simulation Study

	Answering the Research Questions: Results and Analysis
	RQ1: Modeling the relationship between Exceptions and other post-release variables
	Bayesian Network Model
	Random Forest Model

	RQ2: Deriving a Usage-Independent Measure of Quality
	Obtaining the Quality Measure
	Establishing the Independence of the Quality Measure and Other Usage Related Variables
	Timeline of Quality for the Mobile Applications - RQ4

	RQ3: Analysis of the NPM Data and Results
	Timeline Plots for NPM Packages - RQ4

	Discussion
	Related Work
	Comparison with Published Results

	Limitations
	Conclusion
	References
	Affiliations

