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Abstract

Motivation: One of the core problems in the analysis of biological networks is the link prediction problem. In particu-
lar, existing interactions networks are noisy and incomplete snapshots of the true network, with many true links
missing because those interactions have not yet been experimentally observed. Methods to predict missing links
have been more extensively studied for social than for biological networks; it was recently argued that there is some
special structure in protein–protein interaction (PPI) network data that might mean that alternate methods may out-
perform the best methods for social networks. Based on a generalization of the diffusion state distance, we design a
new embedding-based link prediction method called global and local integrated diffusion embedding (GLIDE).
GLIDE is designed to effectively capture global network structure, combined with alternative network type-specific
customized measures that capture local network structure. We test GLIDE on a collection of three recently curated
human biological networks derived from the 2016 DREAM disease module identification challenge as well as a clas-
sical version of the yeast PPI network in rigorous cross validation experiments.

Results: We indeed find that different local network structure is dominant in different types of biological networks.
We find that the simple local network measures are dominant in the highly connected network core between hub
genes, but that GLIDE’s global embedding measure adds value in the rest of the network. For example, we make
GLIDE-based link predictions from genes known to be involved in Crohn’s disease, to genes that are not known to
have an association, and make some new predictions, finding support in other network data and the literature.

Availability and implementation: GLIDE can be downloaded at https://bitbucket.org/kap_devkota/glide.

Contact: cowen@cs.tufts.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

All current protein–protein interaction (PPI) or other protein–pro-
tein association networks derived from heterogeneous types of bio-
logical data are in fact noisy and incomplete snapshots of the true
network, where it is assumed that false positives (edges placed in the
network that in fact, should not exist) are not as large a problem as
false negatives, i.e. the true networks contain many true links that
are missing because those interactions have not yet been experimen-
tally observed; see estimations in Menche et al. (2015) and
Venkatesan et al. (2009) for PPI networks derived from physical
interaction data. Thus, link prediction is a core problem of interest
in these networks. Methods to predict missing links have been more
studied in the social network analysis community (see Al Hasan and
Zaki, 2011; Li et al., 2018b; Wang et al., 2015, for surveys) than for
biological networks, but there is indeed some past work that pro-
posed and tested new link prediction methods on PPI networks

(Cannistraci et al., 2013; Hulovatyy et al., 2014; Kuchaiev et al.,
2009; Lei and Ruan, 2013), including a recent paper of Kovács et al.
(2019).

In social networks, a lot of the network structure is dominated
by ‘triadic closure’: the principle that friends of my friends are more
likely to be friends of each other (completing the triangle).
However, recently Kovács et al. (2019) argued successfully that for
some types of biological networks, a different structure was more
likely to be at play. Namely, that if two nodes had a large number of
common neighbors, rather than predicting the nodes be neighbors,
we should instead predict that the rest of the neighbors of each also
interacted with the original node. This models two proteins interact-
ing with the same set of receptors (Fig. 1). Note that, this alternative
local measure can also predict links between nodes of shortest-path
distance three in the graph, whereas triadic closure solely predicts
connections between nodes that are shortest-path distance two
apart.
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We were interested in looking at a heterogeneous collection of
biological networks, to determine when each of these principles is
dominant. In particular, we consider the first three of the networks
that were used in the 2016 DREAM disease module challenge
(Choobdar et al., 2019), and see if a common neighbors statistic
(that rewards triadic closure) or the L3 statistic is a better predictor
of missing links. However, both these measures are good predictors
only when two nodes have common neighbors. Thus, we propose a
novel link prediction method called global and local integrated dif-
fusion embedding (GLIDE). GLIDE predicts either based on com-
mon neighbors or L3 when there are many common neighbors, and
otherwise uses a new embedding-based distance method based on a
generalization of the diffusion state distance (DSD) (Cao et al.,
2013, 2014). We show that GLIDE outperforms both the state-of-
the-art node2vec (Grover and Leskovec, 2016), and at least matches
and often outperforms the baseline L3 and common neighbors sta-
tistics for link prediction in rigorous cross-validation experiments.

We look in depth at what interesting links GLIDE predicts in the
sparsest of the networks, we consider, DREAM3. We discover and
predict some new genes involved in the disease pathology of Crohn’s
disease, as an example use of the method.

1.1 The link prediction problem
The link prediction problem is studied in two settings. In one setting,
the missing links are assumed to be unobserved interactions in a net-
work. The simplest model assumes that each link has an equal and
independent probability of being missing from the observed net-
work, though in practice, the set of observed observations may be
biased by how well studied its endpoints are, or the ease of detecting
interactions may not be node independent even in the case that
experiments test for possible missing links at random. Still, the per-
formance of link-prediction algorithms can be benchmarked in this
setting by taking a PPI network, randomly removing 5, 10% or
some other fraction of the known links, using the remaining

network as the training data, and seeing how well the algorithm pre-
dicts the missing removed links.

The second setting involves looking at an older snapshot of the
network, and trying to predict the set of new links that have been
added over time to reach the present-day instance of the network.
For example we can take the BioGRID Saccharomyces cerevisiae
database in 2014 (Cao et al., 2014), and attempt to predict new
links that are included in the BioGRID database of 2019. This set-
ting better models the problem of predicting the edges that will
show up in future versions of existing databases, both as the new
edges will be biased by how well studied the proteins are, and be-
cause new experiments often test a smaller set of target proteins
against a large panel of potential interacting partners, meaning that
the pattern of newly added interactions will be different than a com-
pletely random sample of the missing edges.

This second scenario can be modeled as follows. Suppose we
have a graph G ¼ ðV;EÞ in which each edge e ¼ ðu; vÞ 2 E repre-
sents an interaction between u and v that took place at a particular
time t0. If we record those interactions in a different time t1 > t0,
obtaining some new set of interactions and add them to create a new
graph G0 ¼ ðV;E0Þ, where E � E0, then the link prediction problem
would be described in the following way: design an algorithm that
uses the original graph G as the training set to predict the new inter-
actions in G0.

In what follows, we test our methods in the first setting on three
human protein–protein association networks that were released as
part of the 2016 DREAM disease module challenge (Choobdar et al.,
2019) (termed DREAM1, DREAM2 and DREAM3 in the challenge).
DREAM2, derived from InWeb version 3 (Li et al., 2017), is a classic-
al PPI network, which aggregates physical PPI links from primary
databases and the literature. DREAM1 is derived from STRING ver-
sion 10.0 (Szklarczyk et al., 2015). STRING contains not only pro-
tein–protein physical interactions, but also co-expression links, and
other types of experimentally derived interactions. Note that, associa-
tions derived from text-mining were removed from STRING when
DREAM1 was constructed. DREAM3 is the OmniPath signaling net-
work, which integrates literature-curated human signaling pathways
from 27 different sources (Türei et al., 2016). For our purposes, we
treat it in this work as an undirected network. [We note that the
DREAM challenge also included networks 4–6 described and avail-
able from (Li et al., 2018a) which were constructed from very differ-
ent types of association data, and which we did not use.] For each
network, we construct five different instances of reduced networks
with deleted links: we protect a random spanning tree so that the net-
work remains connected, and then remove 10% of the links in
DREAM1-3. All our reported performance statistics are based on the
mean and standard deviation of prediction performance over the five
different experiments (removing a different random 10% of the
edges) for each of the networks.

In the second setting, we take two snapshots of the S. cerevisiae
PPI network on BioGRID, with confidences assigned as in the paper
of Cao et al. (2014). The older version of BioGRID used in Cao
et al. (2014) and downloadable from http://dsd.cs.tufts.edu/capdsd/
is used as the first snapshot, and the task is to try to predict the new
links from the most recent version of the yeast BioGRID network.

The graph properties, number of vertices, edges, average degree,
diameter and clustering coefficient of the largest connected compo-
nent of DREAM1-3 and BioGRID networks are shown in Table 1.

For each network, in both settings we look at two different types
of rankings for evaluation. The first ranking globally ranks all pos-
sible nonedges as missing links, and we can compute precision–recall
and receiver operating characteristic (ROC) statistics. The second is
a ‘node-based’ ranking, where we fix a particular node v, and re-
quire a ranking of all possible nonedges that have v as an endpoint
(i.e. predict links from node v). We measure the performance in a
node-based ranking setting by randomly selecting 1000 nodes that
have at least 1 missing link in the test network, and computing the
average precision–recall and ROC statistics over all these nodes.
The first setting will have the initial portion of the link rankings
dominated by highly connected hub genes when the network has a
densely connected core. The second setting can focus also on less

Fig. 1. Solid lines represent actual network edges. In triadic closure, we would pre-

dict the dotted yellow edge (p, q) with high confidence, because p and q have many

common neighbors. In L3, we would first predict the dotted purple edges ðp; x4Þ and

ðq; x1Þ
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dense network regions by singling out connections to particular
nodes, many of which are not hubs.

2 Previous work

All the methods for link prediction in this article, both our new
method and previous methods, can be described by a pairwise score
that is assigned to every pair of vertices that does not have an
observed edge between them, and then the possible links are rank
ordered by score. Good methods put the true missing links towards
the top of the list. A parameter can set a cutoff on the ranked list,
and predict links for every potential edge above the cutoff and no
link for every potential edge below, resolving the ranked list into a
binary classification of predict link/no link. Then ROC and preci-
sion–recall curves can be computed to compare the qualities of com-
peting ranking methods. Specifically, the area under the ROC and
precision–recall curves—denoted AUROC and AUPRC, respective-
ly—of different methods can be compared. We note that because of
the extreme class imbalance (almost every pair of nodes represents a
nonedge; any classifier which always says ‘no link’ has a terrific
AUROC), precision–recall and AUPRC are more informative meas-
ures than ROC and AUROC; we still report ROC and AUROC in
Supplementary Material, because as a comparative measure for
competing methods, the curves are informative. However, the ex-
treme class imbalance means that in absolute terms, AUROC values
will seem very high and AUPRC values will seem very low for this
problem.

Liben-Nowell and Kleinberg (2007) tested a large number of
basic ranking measures on a subset of the co-authorship network for
papers submitted to the Physics section of the arXiv preprint server.
The authors trained on the network of co-authorship links from
papers written between 1994 and 1996, and then tried to predict
new co-author pairs on papers written between 1997 and 1999. The
measures they tested included weighted and unweighted versions of
common neighbors, Jaccard coefficient and a neighborhood-based
score (Adamic and Adar, 2003). When we compared the AUROC of
these measures on DREAM1–3, the common neighbors (weighted)
metric did the best (see Supplementary Table S2). Thus, we included
the common neighbors (weighted) measure in our experiments
below.

There is a recent evidence that the best embedding methods per-
form better than these baseline measures tested by Liben-Nowell
and Kleinberg (2007), at least in the social network domain. These
methods embed the graph into a Euclidean space, and the potential
link between a pair of nodes is ranked based on the inverse of their
distance in the Euclidean space. One popular and highly successful
embedding method is node2vec (Grover and Leskovec, 2016). Most
embedding methods studied to date were not designed for biological
networks; an excellent recent survey of embedding methods applied
to biological network problems appears in Nelson et al. (2019).

Kovács et al. (2019) argued that many of the measures studied
by Liben-Nowell and Kleinberg (2007) should not perform as well
on PPI networks as they do on social networks, because triadic clos-
ure (the tendency of paths of length two to indicate missing trian-
gles) did not hold as often in the PPI network. Instead, they designed
a new measure they called L3, more similar to common neighbors
than the other Liben-Nowell and Kleinberg (2007) measures, to

capture that proteins with many overlapping interacting partners
should be predicted to interact with other members of the partner
set, to a greater extent than they should be predicted to interact with
each other. However, they tested their new measure only against the
basic measures of Liben-Nowell and Kleinberg (2007); they did not
test against any of the embedding measures.

In this article, we introduce a novel embedding measure based
on a normalized diffusion state embedding. Our ranking method
function fuses this embedding measure with either a simple measure
that counts the number of weighted common neighbors, or alterna-
tively, the new L3 measure (Kovács et al., 2019). A tunable param-
eter trades off the weight given to either the simple local measure or
our more global embedding measure. Basically, there is a ‘core’ of
nodes with many common neighbors that score highly by these sim-
ple measures, and they are very likely to have links, so we should
rank them highly. Outside this core, our global embedding method’s
ranking should be given more weight, and potential edges should
put more emphasis on the embedding component. We test two ver-
sions of our GLIDE method: one that uses common neighbors
(weighted), and one that uses the new L3 measure (Kovács et al.,
2019) as the local embedding measure that is combined with our
global embedding method to rank potential links between nodes in
the core. We show that by most measures for most networks,
GLIDE outperforms the baseline measures of Liben-Nowell and
Kleinberg (2007), L3 by itself, our DSE embedding measure by itself
and also node2vec.

3 Materials and methods

Let G be an undirected graph.

3.1 Local measure: common neighbors (weighted)
Given nodes p;q 2 G, the common neighbors (weighted) score is
CWðp; qÞ ¼

P
r2N p\N q

ðwp;r þwq;rÞ; where for any node x 2 G; N x

is the neighbor set of x, and wx;y is the weight of the edge (x, y). So,
the common neighbor (weighted) metric for nodes p and q is the
sum total of edge weights of all neighbors shared by both p and q.
By definition, for CW(p, q) to be nonzero, there must be at least one
node that has links to both p and q. Note that for every pair of nodes
that has a minimum distance of more than two in the graph, the
common neighbor (weighted) score will be zero. Potential links are
ranked by score, with ties broken randomly (when common neigh-
bors is run by itself; in GLIDE, we have set the weights so that the
DSE measure breaks the ties).

3.2 Local measure: L3
Given two nodes p; q 2 G, the degree normalized L3 metric pro-

posed by Kovács et al. (2019) is computed as L3ðp; qÞ ¼P
u;v

ap;u �au;v �av;qffiffiffiffiffiffiffi
kukv

p ; where u and v represent all distinct pair of nodes in

G. Here, am;n ¼ 1 if there is a link between nodes m;n 2 G, and km
represents the degree of the node m. The equation shows that for
there to be a nonzero score between two nodes p and q, there must
be at least a pair of nodes u and v connecting p and q. Thus for every
pair of nodes that has distance more than three in the graph, the L3
score will be zero. Again, potential links are ranked by score, with

Table 1. Graph properties of the largest connected components of the human DREAM 1–3 networks and the yeast BioGRID network

Graph # Nodes # Edges Average degree Diameter Clustering coefficient

DREAM1 17 388 2 232 398 11.63 7 0.34

DREAM2 12 325 397 254 11.63 9 0.34

DREAM3 5009 18 270 11.45 12 0.20

BioGRID (2014) 4996 76 010 11.45 5 0.31

BioGRID (2017) 4996 107 769 11.45 5 0.38

Note: Note that in addition, we restricted the connected components of BioGRID (2014) and BioGRID (2017) networks to have the same set of vertices. We

also removed edges in BioGRID (2014) that were not present in BioGRID (2017).
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ties broken randomly (when L3 is run by itself; in GLIDE, the DSE
measure breaks the ties).

3.3 Global measure: node2vec
Both local measures falter for sparse regions of the network, thus we
turn to global measures. The node2vec algorithm of Grover and
Leskovec (2016) learns a low-dimensional embedding for nodes in a
graph by optimizing a neighborhood-preserving objective. The algo-
rithm accommodates various definitions of network neighborhoods
by simulating biased random walks, utilizing hyperparameters
(p and q) that must be trained for each network.

The result of node2vec is first a low-dimensional embedding for
each node of the graph. The authors present several alternative ways
of computing an edge embedding from the node embedding vectors;
we use the Hadamard transform, since the results in Grover and
Leskovec (2016) found the Hadamard transform to perform best for
link prediction. After the edge embedding vector is obtained for
positive links and equal sampling is done for negative links, a classi-
fier is trained to score which regions of the edge embedding repre-
sent edges versus nonedges.

3.4 Global measure: DSEc

Our new diffusion state embedding, DSEc, with a parameter c, is an
alternative global embedding measure related to the DSD, and a dir-
ect competitor to node2vec. It recognizes the spectral properties of
the graph and computes the distance between two nodes using this
embedding as our metric for the link prediction tasks. It is con-
structed using ideas based on diffusion distances (Coifman et al.,
2005; Coifman and Lafon, 2006), which we review next.

3.4.1 Diffusion distances

Consider an adjacency matrix A 2 R
N�N constructed from a

weighted undirected graph G ¼ ðV;EÞ, with N ¼ jVj being equal to
the number of nodes in the graph G. The degree matrix D of A is a
diagonal matrix whose diagonal element Dii ¼

PN
j¼1 Aij. We can

create a Markov transition matrix P from A by applying the inverse
of the degree matrix to A: P ¼ D�1A: As P is a Markov transition
matrix, it has a stationary state vector p, where pP ¼ p. Note that,
this stationary state vector is actually a left eigenvector of P, with
eigenvalue 1.

Let P be a Markov transition matrix computed from a graph G
with a unique stationary distribution p. Then, the diffusion distance

between nodes xi and xj at time t is Dtðxi;xjÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1 ðPt

ik � Pt
jkÞ

2 1
pðkÞ

q
; where the Pt

ik denotes the element at the i

row and kth column of the matrix Pt. The term pðkÞ represents the
kth element of the vector p.

It is known (Coifman and Lafon, 2006) that this distance

Dtðx; yÞ may be equivalently written as Dtðxi;xjÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
r¼1 k

2t
r ðwrðiÞ � wrðjÞÞ2

q
; where fðkr;wrÞgNr¼1 are the right

eigenvalue-eigenvector pairs, and 1 ¼ k1 � k2 � . . . � kn � �1.
Like before, wrðiÞ is the ith element of the right eigenvector corre-
sponding to the rth eigenvalue kr, sorted by magnitude. The metric
Dt makes pairwise comparisons between nodes according to the
geometry of the underlying graph G at the specific time step t, mak-
ing it appropriate for graphs where the interesting structure localizes
at a particular scale (Maggioni and Murphy, 2019). In particular, by
truncating the expression for Dt to include only the eigenpairs with
eigenvalues among largest in absolute value, a low-rank representa-
tion of G at time scale t is produced.

3.4.2 Normalized diffusion state embedding

For link prediction, we want to generalize the diffusion distance at
time step t, to simultaneously look at every time step of the Markov
transition matrix. First, consider the embedding I þ

P1
t¼1 c

tPt.
Here, we introduced a new parameter c, which we can tune to
change the properties of the embedding matrix. Note this expression

will not converge when c¼1. In fact, as the time step increases, P
becomes a rank 1 matrix, with each row equal to the steady-state
vector p, because it has a eigenvalue 1, which will not diminish with
time. To ensure convergence when c¼1, we can instead consider
the embedding

I þ
X1
t¼1

ctðP�WÞt; (1)

where W is an outer product of left and right eigenvalues of P corre-
sponding to eigenvalue 1. The subtraction of W removes the compo-
nent within P having the eigenvalue of 1, thereby resulting in the

convergence of Equation 1. Note that W ¼ eeTD
eTDe

; with e being the

column vector of size N � 1 consisting of all 1 s.
We call the embedding represented in Equation 1 as the c-diffu-

sion state embedding (DSEc). So, the new distance metric computed
from DSEc, which we call the diffusion state embedding distance
(DSEDc), is

DSEDcðxi; xjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
w¼1

ðDSEc
iw � DSEc

jwÞ
2 1

pðwÞ

vuut : (2)

The expression in Equation 2 can also be written as

DSEDcðxi; xjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
r¼1

1

ð1 � ckrÞ2
ðwrðiÞ � wrðjÞÞ2

vuut ; (3)

where fðkr;wrÞgNr¼1 are the right eigenvalue–eigenvector pairs of P,
and 1 ¼ k1 � k2 � . . . � kn � �1. The proof of Equation 3 is pro-
vided in Supplementary Material. By summing across all time scales,
DSEDc provably captures multiscale structure in the underlying
graph G, which makes it suitable for a range of complex graphs. In
particular, nodes which belong to similar communities across many
scales of granularity will be considered close by DSEDc.

We remark that if c < 1, it is not necessary to subtract W, as the
largest eigenvalue of cP is less than 1, making the computation of
the embedding matrix easier.

3.5 GLIDE
Our new ranking method, GLIDE, combines the DSEDc distance
described above with one of two local rankings: common neighbors
(weighted), or L3. Which one is chosen is based on the underlying
structure of the network. In either setting, GLIDE is designed to give
more weight to the local ranking measure in the densely connected
core of the network, and rely more on DSEDc outside that core. We
denote the graph-specific local score between two nodes xi and xj in
the graph as scðxi; xjÞ. Then the metric that combines the DSEDc

and graph specific score, can be written as

GLIDEc
scðxi;xjÞ ¼ exp

0:1

1 þ 1000DSEDcðxi; xjÞ

� �
scðxi; xjÞ

þ0:001DSEDcðxi; xjÞ�1;

(4)

where the constants in the expression have been set to force the sc
measure to dominate when it is high, and only go to DSEDc in the
later part of the precision–recall curve. We note that these are the rec-
ommended settings for dense networks, such as the ones in our experi-
ments. For sparse networks, we generalize GLIDE with additional
parameters to tune, as described fully in Supplementary Material.

For our experiments, we observe the performance of GLIDE either
combined with common neighbors (weighted) [denoted GLIDE (CW)]
or combined with L3 [denoted GLIDE (L3)] and compare it against
the node2vec, common neighbors (weighted) and L3 measures.

4 Experimental design

We test our link predictions on several networks and in two different
settings. In the first setting, we remove 10% of the edges from the

GLIDE: predicting missing interactions i467

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/36/Supplem
ent_1/i464/5870477 by guest on 30 July 2020



network, nearly at random, but we ensure that the network stays
connected as follows:

• Let M represent the number of edges of the network.
• Randomly order all edges in the network.
• Add the edge numbered one to the spanning tree and mark its

endpoints.
• Until it’s a spanning tree, add the lowest numbered edge that has

exactly one marked endpoint.
• Protect the edges of the resulting tree; remove 0:10M of the edges

from the remaining graph.

We consider three different benchmark networks from the recent
DREAM disease module identification challenge (Choobdar et al.,
2019). We thought it would be interesting to test our methods
against a variety of different types of protein–protein association
data, to see if that affected results. These human PPI and protein–
protein association networks have very different number of nodes
and edges; graph statistics are summarized in Table 1.

DREAM1, the largest network, is derived from the STRING
database (Szklarczyk et al., 2015), and includes many different types
of protein–protein association edges. In particular, the DREAM1
network included all the different types of possible STRING edge
types (including those inferred from other species and functional
associations), except that interactions derived from text mining were
removed.

DREAM2 is a classical PPI network, aggregating physical PPIs
from primary databases and the literature, from the InWeb database
(Li et al., 2017).

DREAM3 is a signaling network, derived from OmniPath, which
integrates literature-curated human signaling pathways from 27 dif-
ferent sources (Türei et al., 2016). Note that in the DREAM chal-
lenge, DREAM3 was presented as a directed network, but for this
work, we considered an undirected version where all directed edges
were made automatically bidirectional.

Note that, all the DREAM challenge networks also have edge
weights, indicating the confidence in the interaction, which we take
unmodified from the DREAM challenge networks.

We created an initial set of networks (with a random span-
ning tree protected and 10% of the edges removed) to tune the c
parameter of GLIDE, for training. We then throw away those
networks, and all our experiments are done on entirely new ran-
dom networks (with a different random spanning tree protected
and a different 10% of the edges removed). Our experiments are
replicated five times on each network, where we remove 10% of
the edges as described above and then rank the remaining pairs
of network nodes without edges in order of how likely we pre-
dict that edge is one of the missing links we removed. The ROC
and precision–recall curves we display are for a single experi-
ment, however, we report mean and standard deviation for the
AUROC and AUPRC measures over the five random edge re-
moval experiments.

We remark that the threshold of 10% is somewhat arbitrary. As
the threshold of edges removed is increased, the problem becomes
both harder (less training data) and easier (less class imbalance;
more true positives to find). For example, we repeat the results for
DREAM3 with 40% of the edges removed, and results are presented
in Supplementary Material; in this case, relative performance of
methods is similar, but absolute performance is slightly improved
according to our metrics because the increase in true positives domi-
nates. Note that, once approximately 70% of the edges in DREAM3
are removed, this leaves only the spanning tree.

In the second scenario, we wanted to compare two real snap-
shots of the BioGRID yeast database, separated in time. For this
scenario, we compare an older snapshot from Cao et al. (2014) with
the current snapshot available on BioGRID. In both cases, edge
weights (confidences) are computed from the raw BioGRID data
using the method of Cao et al. (2014), which separates experiments
that witness interactions into high-throughput and low-throughput
experiments, and also counts the number of independent

publications that contain experiments of each type that vouch for
the interaction.

4.1 Performance metrics
The output of our method and its competitors is a ranked list of all
potential network edges. Setting a cutoff turns the list into a binary
classifier, where potential edges scoring above the cutoff are pre-
dicted to be missing links (and otherwise predicted to be nonedges).
We compare the classifiers according to how they predict the true
edges that have been removed (under the unrealistic but practically
useful assumption that all edges that do not appear in the DREAM
networks are true nonedges; while false, this is still a reasonable as-
sumption when computing comparative measures for benchmarking
performance of competing methods). To measure performance, we
compute both ROC and precision–recall curves, where we note that
precision–recall and AUPRC is more informative, because of the ex-
treme class imbalance. As we will see below, the top of the ranking
will be dominated by pairs of nodes in a dense ‘core’. Thus simple
measures like common neighbors (weighted) and L3 do very well at
the very beginning of the ROC and precision–recall curves (and our
method also does well, as it is designed to weight the simple meas-
ures highly for that core). We also zoom in on the end of the curves
in the figures (see Supplementary Figs S1–S5), because that is where
the novel DSEDc distance measure portion of GLIDE can be really
seen to be helpful.

In addition to the global ranking described above that ranks
every pair of unconnected nodes as a potential missing link, an even
more interesting way to measure performance is on a per-gene basis:
i.e. to ask each algorithm to rank missing links to a given gene g,
over a random sample of 1000 genes g. In this scenario, the advan-
tages of the DSEDc component of GLIDE are even clearer, since we
spend less time ranking potential links inside the dense core, where
all measures do well.

4.2 Parameter Tuning
GLIDE has a parameter, c which trades off the local measure with
the global DSEDc embedding. For the three DREAM networks, we
tried the following values of c: 0.1, 0.25, 0.5, 0.75 and 1. For the
BioGRID network, because the network is sparser we tried c values
of 0.1, 0.5, 1, 1.75 and 2. We present the results of the best c value
below: in DREAM1 and DREAM2, results were quite robust to dif-
ferent settings of c; for DREAM3, there was a moderate difference,
and the results with different c appear in Supplementary Table S1.

5 Results

5.1 Cross-validation results
Our first interesting result is that the different networks behave quite
differently, in terms of which local prediction measure is best at pre-
dicting missing links. In DREAM2, common neighbors and the ver-
sion of GLIDE that incorporates common neighbors (weighted)
both outperform L3. In DREAM3, it is reversed, with GLIDE and
the version of GLIDE that incorporates L3 performing much better
than common neighbor (weighted)-based methods. In DREAM1,
which is a more heterogeneous fusion of different types of protein–
protein association edges from STRING, L3 also outperforms com-
mon neighbors (weighted), but the performance gap is not as large
as for DREAM3.

We find that the appropriate version of GLIDE always performs
better than node2vec, and performs better by most metrics than the
best local prediction measure by itself on all three DREAM net-
works, but the margin of additional gain coming from GLIDE is in
general stronger in the node-based than in the global ranking setting,
and strongest in the substantially sparser DREAM3 network. In con-
trast, while GLIDE does outperform node2vec on the BioGRID net-
work experiment, it does not outperform the local link prediction
methods. BioGRID is the densest and lowest diameter network, so it
is difficult to improve on the local methods. It is interesting, how-
ever, that just like the for the PPI networks tested by Kovács et al.
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(2019), we find L3 outperforms common neighbors (weighted) on
BioGRID. This means, L3 outperforms common neighbors
(weighted) on three of the four networks we test; the exception is
DREAM2.

The following tables report the AUROC and AUPRC scores of
different link prediction methods under the global and node-based
settings described before. Full precision–recall and ROC curves
under both global and node-based settings for all the networks ap-
pear in Supplementary Figures S1–S5.

Results for DREAM1 shows minor improvement over other
methods in the majority of evaluation metrics [except in Global
AUROC, where the L3 score beats both GLIDE (L3) and GLIDE
(CW)]. The expected improvement is minor because of the dense na-
ture of the DREAM1 graph, as it has a diameter of only seven.
Here, local measures are very effective in scoring missing links as it
is highly likely that the missing links are only separated by the dis-
tance of two or three (Table 2).

Results for DREAM2 appear in Table 3. It shows that the
GLIDE(CW) outperforms every other link prediction method by all
metrics except for the global AUPRC metric, where it is closely be-
hind the common neighbers weighted) method. The improvement
from GLIDE is greater than for DREAM1, perhaps because it is
sparser and of higher diameter as compared to DREAM1.

Results for DREAM3 show that the GLIDE (L3) outperforms
other methods in three metrics, and closely follows the L3 metric on
global AUPRC score. It is interesting to note that the performance of
the common neighbors (weighted) score is significantly improved by
combining it with DSEDc in GLIDE (CW). As DREAM3 is com-
paratively sparser than both DREAM1 and DREAM2 (with

clustering coefficient equal to 0.20, compared to DREAM1 and
DREAM2, whose clustering coefficients are both 0.34), nodes are
farther apart than the previous graphs, the diameter of the graph
being 12. So, adding a global DSEDc component significantly
improves performance in this sparser graph (Table 4).

On BioGRID, GLIDE closely matches but does not improve on
the local measures. As the overall diameter of the graph is five,
which is the smallest among all the networks, an overwhelming ma-
jority of the missing edges in the network fall within the range where
L3 can meaningfully score any potential link. It is interesting that L3
and GLIDE (L3) outperform the corresponding versions of common
neighbors (weighted) for this network (Table 5).

The corresponding precision–recall and ROC curves of the dif-
ferent link prediction methods under both global and node-based
settings for all four networks appear in Supplementary Figures S1–
S5, where we also zoomed in on the tail of the precision–recall
curves for all the networks, in the global setting.

Varying the value of c did not result in significant changes in
evaluation metrics for DREAM1, DREAM2 and BioGRID. But, the
changes were significant for DREAM3. The variation of c with glo-
bal and node-based AUROC and AUPRC for DREAM3 is given in
Supplementary Table S1.

5.2 Predicting new links in the DREAM3 network
We now start with the smallest and sparsest network (DREAM3) in
its entirety, and ask for the top predictions of missing links from
GLIDE and competing methods. We look at this in a global setting,
and then in a node-based setting, where in the latter case, we focus

Table 2. AUPRC and AUROC scores for different link prediction

methods under global and node-based setting for DREAM1

AUPRC AUROC

Performance for global link ranking

Common-weighted 0.0737 6 0.0004 0.9519 6 0.0002

GLIDE (CW) 0.0737 6 0.0004 0.9519 6 0.0002

GLIDE (L3) 0.1747 6 0.0006 0.9450 6 0.0002

L3 0.1736 6 0.0006 0.9583 6 0.0002

node2vec 0.0573 6 0.0020 0.9298 6 0.0012

Performance for node-based link ranking

Common-weighted 0.0329 6 0.0010 0.9146 6 0.0040

GLIDE (CW) 0.0329 6 0.0010 0.9150 60.0044

GLIDE (L3) 0.0377 6 0.0010 0.9002 6 0.0025

L3 0.0366 6 0.0010 0.9011 6 0.0028

node2vec 0.0276 6 0.0013 0.8955 6 0.0064

Notes: Best performing method in bold.

Table 3. AUPRC and AUROC scores for different link prediction

methods under both global and node-based settings for DREAM2

AUPRC AUROC

Performance for global link ranking

Common-weighted 0.1076 6 0.0007 0.9569 6 0.0007

GLIDE (CW) 0.1074 6 0.0007 0.9602 6 0.0006

GLIDE (L3) 0.0923 6 0.0002 0.9540 6 0.0005

L3 0.0921 6 0.0003 0.9584 6 0.0005

node2vec 0.0206 6 0.0011 0.9035 6 0.0027

Performance for node-based link ranking

Common-weighted 0.0307 6 0.0027 0.8697 6 0.0122

GLIDE (CW) 0.0312 6 0.0026 0.8867 6 0.0092

GLIDE (L3) 0.0214 6 0.0017 0.8855 6 0.0078

L3 0.0211 6 0.0016 0.8857 6 0.0085

node2vec 0.0159 6 0.0012 0.8640 6 0.0113

Notes: Best performing method in bold.

Table 4. AUPRC and AUROC scores for different link prediction

methods under both global and node-based setting for DREAM3

AUPRC AUROC

Performance for global link ranking

Common-weighted 0.0039 6 0.0003 0.8078 6 0.0074

GLIDE (CW) 0.0041 6 0.0003 0.8503 6 0.0060

GLIDE (L3) 0.0087 6 0.0005 0.8974 6 0.0042

L3 0.0089 6 0.0005 0.8896 6 0.0040

node2vec 0.0035 6 0.0002 0.8191 6 0.0050

Performance for node-based link ranking

Common-weighted 0.0046 6 0.0003 0.7480 6 0.0079

GLIDE (CW) 0.0055 6 0.0003 0.7983 6 0.0070

GLIDE (L3) 0.0097 6 0.0006 0.8646 6 0.0078

L3 0.0096 6 0.0006 0.8608 6 0.0070

node2vec 0.0061 6 0.0005 0.8310 6 0.072

Notes: Best performing method in bold.

Table 5. AUPRC and AUROC scores for different link prediction

methods under global and node-based settings for BioGRID

AUPRC AUROC

Performance for global link ranking

Common-weighted 0.0168 0.7656

GLIDE (CW) 0.0169 0.7757

GLIDE (L3) 0.0173 0.8027

L3 0.0173 0.8087

node2vec 0.0064 0.6301

Performance for node-based link ranking

Common-weighted 0.0111 0.7719

GLIDE (CW) 0.0115 0.7963

GLIDE (L3) 0.0127 0.8147

L3 0.0127 0.8159

node2vec 0.0054 0.6629

Notes: Best performing method in bold.
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on genes implicated in Crohn’s disease from two separate recent
studies (Franke et al., 2010; Marigorta et al., 2017). While the bio-
logical criteria for including an edge are not identical in DREAM1,
DREAM2 and DREAM3, there is still a great deal of redundancy
and overlap. Thus, we can view the presence of a predicted link for
DREAM3 in either DREAM1 or DREAM2 (or both) as supporting
evidence that the link prediction was correct.

Table 6 gives the percentage of the top 25 ranked missing links
for DREAM3 that appear as links in each of DREAM1 and
DREAM2. We note that since all these links are of shortest-path dis-
tance two in the graph, GLIDE will either produce an identical list
to common neighbors (weighted) or to L3 (depending on which
local score it is combined with). Note that common neighbors
(weighted) have more supported links, but this might be partially
due to ascertainment bias in the network: links with multiple com-
mon neighbors were more likely to be tested and therefore experi-
mentally verified. The full list of links of genes for each, by name,
appears in Supplementary Tables S5–S7. Looking more closely at
the lists, as expected the highest scoring links in a global setting are
often between centrally located hub genes, where this phenomenon
is most pronounced for the common neighbors metric.

We also focus specifically on a smaller set of genes implicated in
Crohn’s disease, from two separate sets of studies: a set of 93 genes
derived from GWAS studies collected in Franke et al. (2010), and a
recent list of 44 eQTL genes that are predicted by Marigorta et al.
(2017) to be involved in the pathology of Crohn’s disease. Note that
43 of the 93 genes in the first study, and 12 of the 44 genes in the se-
cond study appear as nodes in DREAM3. All the tables showing the
ranking results in Supplementary Material give, for each measure,
the percentage of these links that appear in each of DREAM1 and
DREAM2. Further examination of the lists showed many plausible
associations relevant to Crohn’s disease, but we were interested in
also moving away from hub genes. Thus, the lists in Table 7 present
the top-25 scoring predicted links that GLIDE predicts from the
Crohn’s disease genes to genes of degree 25 or less in DREAM3.
Because of the structure of GLIDE, many of these also score highly
under the L3 or CW neighbor metric alone. Hence, Table 8 presents
the top 25 scoring predicted links restricted to pairs of nodes with
no common neighbors in DREAM3. We compare the overlap on all
these lists with edges from DREAM1 and DREAM2 with the likeli-
hood that we would see this much overlap by chance. While many
of these genes are unstudied, particularly in Table 8, we find com-
pelling support for association to Crohn’s disease in the literature
for others. Indeed, we find that both GLIDE variants find a statistic-
ally significant number of links that are known to appear in
DREAM1 and DREAM2. Details of the statistical test appear in
Supplementary Section S8, with P-values in particular appearing in
Supplementary Table S17.

For these sets of max-degree-restricted (i.e. nonhub) Crohn’s
disease-relevant predicted missing links, the most overlap with
links that exist in DREAM1 and DREAM2 comes from GLIDE
(L3) on the 2017 study, where 16 out of 25 of the top links (P-
value of 8.297e-44), and 15 out of the (P-value of 2.363e-38) of
the top links without common neighbors are supported by existing

Table 6. Percentage of top 25 links predicted from DREAM3, using

different link prediction methods, present in DREAM1, DREAM2 or

both

Link

prediction

metrics

In

DREAM1

(%)

In

DREAM2

(%)

In

both

(%)

Common neighbors (weighted) 84 76 76

L3 72 60 56

node2vec 56 44 40

DSE 84 60 60

Note: Details of gene names and overlap between methods appear in

Supplementary Tables S5–S7 and Supplementary Fig. S7.

Table 7. Top 25 predicted links by the two variants of GLIDE in the

DREAM3 network between Crohn’s disease genes from the study

of Franke et al. (2010) and the study of Marigorta et al. (2017)

restricted to consider only links between Crohn’s disease genes

and genes of degree at most 25 in DREAM3

(a) 2010-Glide (CW)

LRRK2 TP53RK

*JAK2 IL2RB

STAT3 PLA2G4A

SMAD3 EIF4EBP1

STAT3 GAB2

REL CAMK4

STAT3 KRT8

STAT3 EIF4EBP1

STAT3 ELK1

STAT3 GJA1

STAT3 GAB1

STAT3 GRB10

STAT3 CTTN

NOD2 PYCARD

STAT3 PLCG2

UBE2D1 CAMK4

CCL2 CAMK4

*STAT3 GTF2I

STAT3 IRS2

STAT3 HSF1

*STAT3 CAV1

STAT3 Q4LE43

STAT3 HNRNPK

STAT3 Q9UFY1

CREM STMN1

(b) 2010-Glide (L3)

*JAK2 IL2RB

SMAD3 MEF2A

*SMAD3 SMURF2

*SMAD3 TGIF1

*SMAD3 MEF2C

*STAT3 SOCS1

*SMAD3 BMPR1B

*SMAD3 UBE2I

SMAD3 SKP2

*JAK2 DOK1

*STAT3 GHR

*SMAD3 SNIP1

*JAK2 CBLB

*STAT3 IL2RG

SMAD3 MAPK11

*JAK2 INPP5D

*STAT3 CSF2RB

*JAK2 GNB2L1

*STAT3 IFNAR2

*TYK2 IL2RB

SMAD3 NLK

*JAK2 GAB1

JAK2 AXL

SMAD3 PIAS1

*JAK2 GRAP

(c) 2017-Glide (CW)

P4HA2 TP53RK

PTK2B Q4LE43

*PRKAB1 ACACA

PTK2B Q9UFY1

PTK2B GAB2

PTK2B GAB1

*PTK2B CBLB

(continued)
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edges in either DREAM1 or both DREAM1 and DREAM2. This is
impressive validation for GLIDE (L3) on a very difficult gene set.
For the 2017 study, 23 of 25 of GLIDE(CW)’s top 25 links connect
with PTK2B, as well as all of GLIDE (CW)’s top 25 links for genes
at distance 3 or more connect with PTK2B, as well, suggesting a
more central role of this known disease-relevant gene. For many
genes that appear as top-ranked new direct links on both the
GLIDE (CW) and GLIDE (L3) lists to the Crohn’s associated genes
in Franke et al. (2010), including those unsupported by the other
DREAM network edges, we find support in the literature that they
are relevant to Crohn’s or ulcerative colitis disease pathology. This
is perhaps less surprising for the genes in Table 7, many of which

Table 8. Top 25 predicted links by the two variants of GLIDE in the

DREAM3 network between Crohn’s disease genes from the study

of Franke et al. (2010) and the study of Marigorta et al. (2017)

restricted to consider only links between Crohn’s disease genes

and genes of degree at most 25 in DREAM3, restricted to gene

pairs also with no common neighbors in DREAM3

(a) 2010-Glide (CW)

STAT3 TP53RK

STAT3 V9HWE1

STAT3 ACACA

JAK2 EIF4EBP1

SMAD3 V9HWE1

JAK2 TP53RK

JAK2 V9HWE1

STAT3 MAPK13

*JAK2 ACACA

JAK2 LMNA

SMAD3 Q4LE43

SMAD3 Q9UFY1

JAK2 MARCKS

NOD2 CAMK4

STAT3 RPS6

SMAD3 NCK1

*PTPN2 CAMK4

STAT3 MAPK12

SMAD3 REL

PTPN2 TP53RK

*JAK2 MAPK13

PTPN2 HSF1

*NOD2 VIM

NOD2 PIM1

JAK2 KRT18

(b) 2010-Glide (L3)

CCL7 MMP9

*JAK2 PTPRA

CCL7 ACKR2

CCL2 MMP9

TYK2 RASA1

STAT3 MAPK12

JAK2 GRIN2A

JAK2 IRF5

CCL7 ACKR4

STAT3 APC

*CCL2 CXCR2

CCL7 VCAN

SMAD3 ULK1

*IL19 IL22RA1

STAT3 WNT3A

JAK2 TRPV4

SMAD3 REL

*STAT3 YES1

SMAD3 CDC20

IL10 IFNLR1

*SMAD3 APAF1

STAT3 ILK

SMAD3 CDC14B

SMAD3 CFTR

SMAD3 KEAP1

(c) 2017-Glide (CW)

PTK2B STMN1

PTK2B VIM

PTK2B TOP2A

PTK2B CAMK4

PTK2B TP53RK

PTK2B HSF1

(continued)

Table 7. Continued

PTK2B PLCG2

PTK2B PTPRA

*PTK2B CAV1

PTK2B LCP2

PTK2B PTPN2

PTK2B Q59GM6

*PTK2B VAV2

PTK2B TNK2

PTK2B ACP1

*PTK2B ITGB3

DAP RICTOR

*PTK2B STAT5B

*PTK2B PTK6

*PTK2B MET

*PTK2B IL2RB

DAP EIF4EBP1

*PTK2B CTNND1

*PTK2B INPPL1

(d) 2017-Glide (L3)

*WNT4 FZD1

*WNT4 FZD8

*PTK2B CBLB

*PTK2B IL2RB

*GNA12 S1PR3

*PTK2B DOK1

PTK2B LAT

*WNT4 FZD7

PTK2B NCK1

*PTK2B STAT5B

*WNT4 RYK

*PTK2B HCK

PTK2B LCP2

*GNA12 TBXA2R

*GNA12 AGTR1

PTK2B GRAP

*GNA12 EDNRA

*WNT4 FZD5

*PTK2B VAV2

PTK2B GAB2

PTK2B CD247

*WNT4 FZD4

PTK2B PLCG2

PTK2B PTPN2

GNA12 LRP5

Note: Genes identified already in the article as Crohn’s disease genes in

bold. Links supported by the link existing in at least one of the DREAM1 and

DREAM2 networks denoted by *. The fraction of supported links and associ-

ated P-values are: ðaÞ : 3
25 P < 5:021e�3Þ
�

; ðbÞ : 19
25 P < 8:061e�99Þ
�

;

ðcÞ : 11
25 P < 2:656e�20Þ
�

; ðdÞ : 16
25 P < 8:298e�44Þ
�

. Details are in the

Supplementary Material.
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are well studied in Crohn’s disease or IBD more generally, with al-
ready many known interactions to genes in the 2010 set; by consid-
ering links only to genes at distance 3 or more in DREAM3,
Table 8 produces a set of less well-studied genes but we still get
some strong literature support for these genes. MARCKS is a direct
target of MIR429, an ulcerative colitis-associated miRNA, that has
been suggested as a candidate for anticolitis therapy in human UC
(Mo et al., 2016). Four of the top links in Table 7(a) plus two of
the top links in Table 8(a) point to CAMK4, which is known to be
highly expressed within the intestinal epithelium of humans with
ulcerative colitis and wild-type (WT) mice with experimental-

induced colitis (Cunningham et al., 2019). Looking at the more re-
mote Table 8 set, MMP9, a marker of intestinal inflammation, was
recently investigated as a novel biomarker for prediction of clinical
relapse in quiescent Crohn’s disease (Yablecovitch et al., 2019).
Colonic expression of CXCR2 was increased in pediatric Crohn’s
disease patients carrying the STAT3 ‘A’ risk allele (Willson et al.,
2012). Mutations in the ULK1 gene were found to affect the risk of
Crohn’s disease in several studies (Henckaerts et al., 2011; Morgan
et al., 2012).

6 Discussion

The three DREAM networks that we used to test GLIDE and com-
peting methods are very different types of biological association net-
works, and have different densities, diameters and clustering
coefficients (Table 1). We showed above that they have very differ-
ent local structures; in some cases, the common neighbors
(weighted) measure is a better local prediction measure than L3; in
other cases, L3 better captures the local structure of the data. The
less dense the network, the more that global embedding methods
add value. We find GLIDE has most performance gains in higher-
diameter networks, and in less-dense region of the networks.

We have introduced GLIDE, a new link-prediction method that
combines strong local indicators of missing links with a global
diffusion-based embedding. GLIDE’s link predictions can form an
end in themselves, prioritizing new pairs to test for interaction in the
lab, or suggesting new genes that may be involved in a disease of
interest. In future work, we will also test if GLIDE can help success-
fully de-noise (Wang et al., 2018) networks for other biological in-
ference problems: using GLIDE to fill in putative missing edges, may
improve our disease–gene prioritization, functional label prediction
or disease module identification methods.

Code release and availability

The source file for GLIDE can be downloaded at https://bitbucket.
org/kap_devkota/glide.
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Kovács,I.A. et al. (2019) Network-based prediction of protein interactions.

Nat. Commun., 10, 1240.

Kuchaiev,O. et al. (2009) Geometric de-noising of protein–protein interaction

networks. PLoS Comput. Biol., 5, e1000454.

Lei,C. and Ruan,J. (2013) A novel link prediction algorithm for reconstructing

protein–protein interaction networks by topological similarity.

Bioinformatics, 29, 355–364.

Li,T. et al. (2017) A scored human protein–protein interaction network to

catalyze genomic interpretation. Nat. Methods, 14, 61–64.

Li,T. et al. (2018a) GeNets: a unified web platform for network-based genom-

ic analyses. Nat. Methods, 15, 543–546.

Li,Z.L. et al. (2018b) A survey of link recommendation for social networks:

methods, theoretical foundations, and future research directions. ACM

Trans. Manag. Inf. Syst., 9, 1–26.

Liben-Nowell,D. and Kleinberg,J. (2007) The link-prediction problem for so-

cial networks. Am. Soc. Inform. Sci. Technol., 58, 1019–1031.

Maggioni,M. and Murphy,J. (2019) Learning by unsupervised nonlinear diffu-

sion. J. Mach. Learn. Res., 20, 1–56.

Marigorta,U.M. et al. (2017) Transcriptional risk scores link GWAS to

eQTLs and predict complications in Crohn’s disease. Nat. Genet., 49,

1517–1521.

Menche,J. et al. (2015) Uncovering disease–disease relationships through the

incomplete interactome. Science, 347, 1257601.

Mo,J.-S. et al. (2016) MicroRNA 429 regulates mucin gene expression and se-

cretion in murine model of colitis. J. Crohn’s Colitis, 10, 837–849.

Morgan,A.R. et al. (2012) Association analysis of ULK1 with Crohn’s disease

in a New Zealand population. Gastroenterol. Res. Pract., 2012, 1–4.

Nelson,W. et al. (2019) To embed or not: network embedding as a paradigm

in computational biology. Front. Genet., 10, 381.

Szklarczyk,D. et al. (2015) STRINGv10: protein–protein interaction

networks, integrated over the tree of life. Nucleic Acids Res., 43,

D447–D452.
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