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 38 
Abstract 39 
 40 
Human scene categorization is characterized by its remarkable speed. While many visual 41 

and conceptual features have been linked to this ability, significant correlations exist 42 

between feature spaces, impeding our ability to determine their relative contributions to 43 

scene categorization. Here, we employed a whitening transformation to decorrelate a 44 

variety of visual and conceptual features and assess the time course of their unique 45 

contributions to scene categorization. Participants (both sexes) viewed 2,250 full-color 46 

scene images drawn from 30 different scene categories while having their brain activity 47 

measured through 256-channel EEG. We examined the variance explained at each 48 

electrode and time point of visual event-related potential (vERP) data from nine different 49 

whitened encoding models. These ranged from low-level features obtained from filter 50 

outputs to high-level conceptual features requiring human annotation. The amount of 51 

category information in the vERPs was assessed through multivariate decoding methods. 52 

Behavioral similarity measures were obtained in separate crowdsourced experiments. We 53 

found that all nine models together contributed 78% of the variance of human scene 54 

similarity assessments and was within the noise ceiling of the vERP data. Low-level models 55 

explained earlier vERP variability (88 ms post-image onset), while high-level models 56 

explained later variance (169 ms). Critically, only high-level models shared vERP variability 57 

with behavior. Taken together, these results suggest that scene categorization is primarily 58 

a high-level process, but reliant on previously extracted low-level features.  59 

  60 
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Significance Statement: 61 
 62 
In a single fixation, we glean enough information to describe a general scene category. 63 
Many types of features are associated with scene categories, ranging from low-level 64 
properties such as colors and contours, to high-level properties such as objects and 65 
attributes. Because these properties are correlated, it is difficult to understand each 66 
property’s unique contributions to scene categorization. This work uses a whitening 67 
transformation to remove the correlations between features and examines the extent to 68 
which each feature contributes to visual event-related potentials (vERPs) over time. We 69 
found that low-level visual features contributed first but were not correlated with 70 
categorization behavior. High-level features followed 80 ms later, providing key insights 71 
into how the brain makes sense of a complex visual world. 72 
  73 
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1: Introduction 74 
 75 
 Human scene processing is characterized by its high speed: not only do observers 76 

require little viewing time to reliably understand scene content (Greene & Oliva, 2009; 77 

Potter et al., 2014), but scene-specific neural responses have also been observed less than 78 

200 ms after scene presentation (Bastin et al., 2013; Ramkumar et al., 2016; Thorpe et al., 79 

1996). However, we know comparatively little about the processing stages that transform 80 

the retinal image into a semantically rich categorical representation. Ongoing research has 81 

demonstrated that scene categories can be distinguished on the basis of many types of 82 

features, ranging from low-level visual properties such as histogram statistics of colors, 83 

edges, orientations, or Fourier metrics (Hansen & Loschky, 2013; Oliva & Schyns, 2000; 84 

Torralba & Oliva, 2003; Walther & Shen, 2014), to mid-level representations including 85 

texture (Renninger & Malik, 2004); "bag of words" representations describing the list of 86 

objects within scenes (Greene, 2013); or geometric properties of spatial layout (Greene & 87 

Oliva, 2009; Oliva & Torralba, 2001); to high-level properties such as conceptual attributes 88 

(Patterson et al., 2014) and affordances (Bonner & Epstein, 2018; Greene et al., 2016). 89 

However, we do not know the relative contributing strengths of each of these features to 90 

categorization, nor the time course of their contributions. 91 

 A powerful way to examine feature contributions is to consider each as a 92 

representational feature space (Edelman, 1998; Gärdenfors, 2004; Kriegeskorte et al., 93 

2008). In this framework, each scene is considered a point in a high-dimensional space 94 

whose dimensions correspond to individual feature levels within the space. For example, in 95 

the feature space of objects, an office can be described by the presence of objects within it, 96 

such as "desk", "monitor", and "keyboard". In the feature space of texture, the same scene 97 

would be described as a set of features describing the grain of wood on the desk, or the 98 

pattern of the carpet. Critically, such conceptual spaces can be used to make predictions 99 

about the types of errors that an observer or model will make about an image. For example, 100 

the object feature space would predict that images that share objects with offices would be 101 

frequently confused with offices (for example, a desk and monitor might be found in a 102 

college dorm room).  103 

 Despite the power of this approach, challenges remain in assessing the relative 104 
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contributions of low- and high-level features (Groen et al., 2017; Malcolm et al., 2016), 105 

primarily because these features are not independent. Consider removing a stove from an 106 

image of a kitchen. This alteration not only changes the list of objects in the scene, but also 107 

changes the scene's spatial layout as objects define the shape of a scene's layout 108 

(Biederman, 1981). Furthermore, this change also alters the distribution of low-level visual 109 

features such as colors and orientations that belonged to the stove, and also changes the 110 

affordances of the space: it is much more difficult to cook without the stove. Altogether, 111 

these intrinsic correlations mean that we cannot easily interpret the use of any particular 112 

feature except in isolation from the others.  113 

 Here, we have addressed this problem by decorrelating a large number of predictive 114 

models that ranged from low-level visual properties to high-level semantic descriptors 115 

prior to analysis. Additionally, we leveraged an optimized category selection procedure 116 

that enabled maximal differentiation between the competing models across 30 different 117 

scene categories. Using high-density electroencephalography (EEG), we examined the 118 

relative power of each encoding model to explain the visual event-related potentials 119 

(vERPs) that are linked to scene categorization, as indexed via multivariate decoding and 120 

behavioral similarity assessments. Altogether, our results show a striking dissociation 121 

between feature processing and their use in behavior: while low-level features explain 122 

more overall vERP variability, only high-level features are related to behavioral responses. 123 

 124 

2: Methods 125 

2.1: Apparatus 126 

All stimuli were presented on a 23.6" VIEWPixx/EEG scanning LED-backlight LCD 127 

monitor with 1 ms black-to-white pixel response time. Maximum luminance output of the 128 

display was 100 cd/m2, with a frame rate of 120 Hz and a resolution of 1920 x 1080 pixels. 129 

Single pixels subtended 0.0373 degrees of visual angle as viewed from 32 cm. Head 130 

position was maintained with a chin rest (Applied Science Laboratories). 131 

 132 

    2.2: Participants 133 

We conducted the experiment twice, with a total of 29 observers volunteering 134 

across the two studies. Fourteen participants (6 female, 13 right handed) participated in 135 
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the primary experiment. One participant's EEG data contained fewer than half valid trials 136 

following artifact rejections and was therefore not included in subsequent analysis. Fifteen 137 

observers (9 female, 12 right handed) participated in an internal replication study (also 138 

presented here). The age of all participants ranged from 18 to 22 years (mean age = 19 139 

years). All participants had normal or corrected to normal vision as determined by 140 

standard ETCRS acuity charts. The experimental protocol was approved by the Colgate 141 

University Institutional Review Board, and all participants provided written informed 142 

consent before participating, and were compensated for their time. 143 

 144 

2.3: Stimuli 145 

    The stimulus set consisted of 2250 color photographs taken from 30 different scene 146 

categories (75 exemplars per category), within the SUN database (Xiao et al., 2014). 147 

Category selection was conducted as to ensure maximally different representational 148 

dissimilarity matrices (RDMs) across three different feature types: visual features, defined 149 

as activations from the penultimate layer of a pre-trained deep convolutional neural 150 

network (Sermanet et al., 2013); object features, defined as a bag-of-words model over 151 

hand-labeled objects (Fei-Fei & Perona, 2005; Lazebnik et al., 2006); and functional 152 

features, defined as hand-labeled scene affordances, taken from the American Time Use 153 

Survey (Greene et al., 2016). The optimization procedure was inspired by the odds 154 

algorithm of (Bruss, 2000). Specifically, we created 10,000 pseudorandom sets of 30 155 

categories balanced across superordinate scene category (10 indoor, 10 urban outdoor, 10 156 

natural landscape). RDMs for each of the three models were constructed, and the inter-157 

model correlations were recorded. After this initial set of observations, we continued to 158 

create pseudo-random category sets until we observed a set with lower inter-model 159 

correlations than anything previously observed. The number of categories was determined 160 

by balancing the desire to represent the full diversity of visual environments, with the need 161 

to keep the experiment of manageable length. 162 

 We selected 75 images per each of the 30 scene categories. When possible, these 163 

were taken from the SUN database. In other cases, we sampled additional exemplars from 164 

the internet (copyright-free images). Care was taken to omit images with salient faces in 165 

them. All images had a resolution of 512 x 512 pixels (subtending 20.8 degrees of visual 166 
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angle) and were processed to possess the same root-mean-square (RMS) contrast 167 

(luminance and color) as well as mean luminance. All images were fit with a circular linear 168 

edge-blurred window to obscure the square frame of the images, thereby distributing 169 

contrast changes around the circular edge of the image (Hansen & Essock, 2004).  170 

 171 

2.4: Human Scene Category Distance Measurement 172 

 In order to model category distances from human behavior, we conducted a series 173 

of six experiments on Amazon’s Mechanical Turk marketplace. This was necessary because 174 

the long image presentation time in the EEG experiment (750 ms) led to ceiling-level 175 

categorization performance. Each behavioral experiment assessed observers’ judgments of 176 

scene similarity by presenting three items and asking the observer to choose the odd-one-177 

out. Although this task specifically queries similarity, it has recently been shown to reveal 178 

hierarchical category representations of objects (Zheng et al., 2019). Thus, we use it here as 179 

a measure of scene categorization behavior. 180 

The first experiment queried 608 participants about scene similarity without 181 

constraining the definition of similarity. The other five experiments asked participants to 182 

determine scene similarity with respect to one of five features: global orientation (N=202), 183 

texture (N=176), objects (N=104), functions/affordances (N=99), and lexical (N=820). 184 

For all experiments, participants were selected from a pool of United States-based 185 

workers who had previously completed at least 1000 hits with an approval rating of at 186 

least 95%. Each participant was able to complete as many hits as they wished, and each hit 187 

consisted of 20 trials. Each participant completed between 1 and 227 hits (median: 2 hits).  188 

We collected a total of 5000 hits for the unconstrained similarity experiment, and 1000 in 189 

each of the other five experiments.  Thus, a minimum of 24 participants rated each category 190 

triad in the unconstrained experiment, and 5 participants per triad in the remaining 191 

experiments. 192 

With the exception of the lexical similarity experiment, all experiments were 193 

identical though each had a different definition of similarity. Each trial consisted of three 194 

images from three unique categories. These images were presented side by side in a single 195 

row. The participant was instructed to click on the image that was the least similar to the 196 

other two, given the particular similarity instructions for that experiment (Zheng et al., 197 
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2019). For the lexical experiment, images were replaced with the name of the scene 198 

category on a blank gray background. Each hit was completed in a median work time 199 

ranging from 104 seconds in the texture experiment to 159 seconds in the orientation 200 

experiment, and participants were compensated $0.10 per hit for their time. 201 

 From these responses, for each experiment, we created a 30-category by 30-202 

category distance matrix as follows. Beginning with a 30 x 30 matrix of zeros, for each trial 203 

of each hit, we added one to the matrix entry representing the row of the selected category 204 

and each column of the two alternatives. This represents the participant’s judgment that 205 

the selected image was dissimilar to the other two. We then subtracted one from the matrix 206 

entry representing the non-selected alternatives. This represents the participant’s 207 

judgment that the two non-selected images were deemed to be more similar to one 208 

another. The final distance matrix was normalized to be between 0 and 1, and the off-209 

diagonal entries were saved to become a regressor in subsequent analyses. 210 

 211 

2.5: EEG Experimental Procedure 212 

Participants performed a three-alternative forced choice (3AFC) categorization task 213 

on each of the 2250 images across two ~50-minute recording sessions. All images within 214 

each category were randomly split into two sets, and the image set was counterbalanced 215 

across participants. Within both sets, image order was randomized. 216 

Each trial commenced with a 500 ms fixation followed by a variable duration (500-217 

750 ms) blank mean luminance screen to allow any fixation-driven activity to dissipate. 218 

Next, a scene image was presented for 750 ms followed by a variable 100-250 ms blank 219 

mean luminance screen, followed by a response screen consisting of the image's category 220 

name and the names of two randomly selected distractor category names presented 221 

laterally in random order. Observers indicated category choice by clicking on the 222 

appropriate category name with a mouse. 223 

 224 

2.6: EEG Recording and Processing 225 

High-density 256-channel EEGs were recorded in a Faraday chamber using 226 

Electrical Geodesics Incorporated’s (EGI; Phillips Neuro) Geodesic EEG acquisition system 227 

(GES 400) with Geodesic Hydrocel sensor nets (electrolytic sponges). The online reference 228 
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was at the vertex (Cz), and the impedances were maintained below 50 kΩ (EGI amplifiers 229 

are high-impedance). All EEG signals were amplified and sampled at 1000 Hz. The digitized 230 

EEG waveforms were first highpass filtered at a 0.1 Hz cut-off frequency to remove the DC 231 

offset, and then lowpass filtered at a 45 Hz cutoff frequency to eliminate 60 Hz line noise. 232 

All continuous EEGs were divided into 850 ms epochs (100 ms before stimulus 233 

onset and 750 ms of stimulus-driven response). Trials that contained eye movements or 234 

eye blinks during data epochs were excluded from analysis. Additionally, all epochs were 235 

subjected to algorithmic artifact rejection whereby voltages exceeding +/- 100 μV or 236 

transients greater than +/- 100 μV were omitted from further analysis. These trial rejection 237 

routines resulted in no more than 10% of trials being rejected from any one participant. 238 

Each epoch was then re-referenced offline to the net average, and baseline-corrected to the 239 

last 100 ms of the blank interval that preceded the image interval. Grand average vERPs 240 

were assembled by averaging all re-referenced and baseline-corrected epochs across scene 241 

category and participants.   242 

For both encoding and decoding analyses, we improved the signal-to-noise ratio of 243 

the single trial data by building ‘supertrials’ by averaging 20% of trials within a given 244 

category, drawn randomly without replacement (e.g. Cichy et al., 2016; Isik et al., 2014).  245 

This process was repeated separately for each participant. This approach is desirable as we 246 

are primarily interested in category-level neuroelectric signals that are time-locked to the 247 

stimulus. 248 

Topographic plots were generated for all experimental conditions using EEGLAB 249 

(Delorme & Makeig, 2004) version 13.5.4b in MATLAB (version 2016a, The Mathworks, 250 

Natick, MA). Source localization was conducted via EGI's GeoSource 3.0 source-imaging 251 

package and corresponding Geodesic Photogrammetry System (GPS). Individual head 252 

models were obtained from each participant using the photogrammetry system and solved 253 

using GeoSource 3.0 software. The dense array of Geodesic sensor locations obtained from 254 

each participant enables high-resolution finite difference method (FDM) conformal MRI 255 

atlas head models (Li et al., 2016), and demonstrably high source localization accuracy 256 

(Kuo et al., 2014; Song et al., 2015). Here, the inverse problem was solved using the inverse 257 

mapping constraint LORETA with a regularization α=-3. 258 

 259 
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2.7: Decoding Procedure 260 

Prior to analysis, all data were downsampled to 500 Hz to speed computation. For 261 

each participant, scene category decoding was conducted on an electrode-by-electrode 262 

basis in 41 ms windows centered at each time point (i.e. +/- 20 ms around and including 263 

the given time point). Given that the window could not extend beyond the 750 ms image 264 

period, the analysis was truncated at 730 ms. Scene category decoding was conducted 265 

using a linear one-versus-all multi-class support vector machine (SVM), implemented in 266 

Matlab's Statistics and Machine Learning Toolbox (Version 10.0). Accuracy of the SVM 267 

decoder was measured using 5-fold cross-validation, and empirical 95% confidence 268 

intervals for decoding accuracy were calculated across participants along the main 269 

diagonal of the 30 x 30 decoder confusion matrix.  270 

 271 

2.8: Encoding Models 272 

    We employed a total of 9 different encoding models, representing a range of visual and 273 

conceptual features. Models were chosen for inclusion in this study because they have been 274 

shown to explain significant variance in brain or behavioral data, rather than for biological 275 

plausibility per se. The models fall into four broad classes: three models represent outputs 276 

of multi-scale Gabor wavelet pyramids, or their derivatives (Wavelet, Gist, and Texture); 277 

two models representing activation outputs from a deep convolutional neural network 278 

(dCNN) that used the eight-layer “AlexNet” architecture (Krizhevsky et al., 2012) and was 279 

pre-trained to perform scene classification on the Places database (Zhou et al., 2017). For 280 

these models, we chose one lower-level convolutional layer (Conv2), as well as one higher-281 

level fully-connected layer (FC6).  In order to represent higher-level visual information that 282 

we cannot yet obtain directly from images, three models were included whose features 283 

were obtained by human ratings (Objects, Attributes, and Functions).  Last, we considered 284 

the semantic similarity across scene categories, operationalized as the lexical distance 285 

between category names. For each model except lexical distance, representational 286 

dissimilarity matrices (RDMs) were created by computing the distance between each pair 287 

of categories in the given feature space using the 1 - correlation distance metric 288 

(Spearman's ρ).  289 

 290 
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2.8.1: Filter Models 291 

 2.8.1.1: Wavelets 292 

 In order to encode the low-level structural details of each scene, we used the 293 

outputs of a multi-scale bank of log-Gabor filters (Field, 1987) that decompose an image by 294 

spatial frequency, orientation, and spatial location. Such encoders are well-established 295 

models of early visual cortex (e.g. Carandini et al., 2005), as well as front-ends to machine 296 

vision systems (Simoncelli & Freeman, 1995). Each image was converted from RGB to 297 

L*a*b color and passed through a bank of log-Gabor filters at seven spatial frequencies 298 

(0.125, 0.25, 0.5, 1, 2, 4, and 8 cycles per degree) and four orientations (0, 45, 90, and 135 299 

degrees). The filters had a spatial frequency bandwidth of approximately 1.5 octaves, 300 

assessed at full width at half height. Thus, each of the three L*a*b channels was 301 

represented by 28 filter outputs, for a total of 84 features per image. We averaged features 302 

across images within a category to create a 30-category by 84-feature matrix. 303 

 304 

2.8.1.2: Gist 305 

    Each image was described with the spatial envelope (or Gist) descriptor of (Oliva & 306 

Torralba, 2001). These features represent a summary statistic representation of the 307 

dominant orientation contrast at three different spatial frequencies localized in a 8 x 8 308 

window grid across the image. The number of orientations varies with spatial frequency, 309 

with 8 orientations at the highest frequency, 6 in the mid-range, and 4 at the lowest, for a 310 

total of 1152 features (64 windows x (8+6+4) orientations per scale). These features have 311 

been shown to explain significant variance in fMRI and MEG responses throughout visual 312 

cortex (Ramkumar et al., 2016; Watson et al., 2014, 2017). Given their similarity to the log-313 

Gabor filters described above, following (Oliva & Torralba, 2001), we used linear 314 

discriminant analysis (LDA) to learn weights on the filter outputs that were optimized for 315 

classifying the 30 scene categories of this database. We averaged across images in each 316 

category to create a 30-category by 1152-feature matrix. 317 

 318 

2.8.1.3: Texture 319 

    Texture features for each image were encoded using the generative texture model of 320 

(Portilla & Simoncelli, 2000). This algorithm analyzes a total of 6495 statistics from an 321 
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image, including marginal pixel statistics, wavelet coefficient correlations, wavelet 322 

magnitude correlations, and cross-scale phase statistics. Scenes can be distinguished by 323 

their texture properties (Renninger & Malik, 2004), and texture properties have been 324 

reported to drive activity in both early visual areas such as V2 (Freeman & Simoncelli, 325 

2011), as well as the parahippocampal place area (PPA, (Cant & Goodale, 2011; Lowe et al., 326 

2017)). As before, we averaged across images in a category to create a 30-category by 327 

6495-feature matrix. 328 

 329 

2.8.2: Deep CNN features 330 

    We extracted the activations from two of the eight layers in a deep convolutional neural 331 

network (Conv2 and FC6 from a CNN trained on the Places database (Zhou et al., 2017), 332 

using the AlexNet architecture (Krizhevsky et al., 2012), and implemented in Caffe (Jia et 333 

al., 2014). This CNN was chosen because it is optimized for classification of 205 scene 334 

categories and because this eight-layer architecture is most frequently used when 335 

comparing CNNs to brain activity (Bonner & Epstein, 2018; Cadieu et al., 2014; Cichy et al., 336 

2016, 2017; Greene & Hansen, 2018; Güçlü & Gerven, 2015; Khaligh-Razavi & Kriegeskorte, 337 

2014; Kubilius et al., 2016). We chose Conv2 and FC6 as the layers of interest because they 338 

have been argued to represent typical low- and high-level feature information respectively 339 

and have previously demonstrated fundamentally different encoding behavior with EEG 340 

data (Greene & Hansen, 2018). In the Conv2 layer, 256 5 x 5 pixel filters are applied to the 341 

input with a stride of one pixel, and padding of two pixels, for a total of 27x27x256 = 342 

186,624 features. The sixth and seventh layers of AlexNet are fully-connected, meaning that 343 

they have no retinotopic information, and were designed to have 4096 features each. For 344 

both layers, we averaged across images within each category, creating a 30-category by 345 

186,624-feature matrix for Conv2 and a 30-category by 4096-feature matrix for FC6. 346 

 347 

2.8.3: Models of Conceptual Features 348 

        2.8.3.1: Objects 349 

We employed a bag-of-words object representation used in (Greene et al., 2016). Each 350 

object or region in each scene was hand-labeled using the LabelMe tool (Russell et al., 351 

2008). Objects are features that can be diagnostic of scene category (Greene, 2013), and 352 
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have been reported to drive activity across occipitotemporal cortex (Harel et al., 2012; 353 

MacEvoy & Epstein, 2011). Across the image set, there were 3563 unique object labels. We 354 

created a 30-category by 3563-object matrix that stores the proportion of scenes in each 355 

category i containing each object j.  356 

 357 

2.8.3.2: Scene Attributes 358 

We took the measured attribute vectors of (Patterson et al., 2014). The attributes were 359 

obtained by asking human observers to list features that made pairs of images different 360 

from one another in a massive online norming experiment. The resulting attributes consist 361 

of a heterogeneous set of 112 descriptors including aspects of region, material, and spatial 362 

layout. In a second round of normative ratings, Patterson and colleagues asked human 363 

observers on Amazon's Mechanical Turk (AMT) to rate each scene in the SUN database 364 

according to 112 different attributes. Thus, each scene’s attribute rating is the proportion 365 

of mTurk observers selecting that attribute as appropriate for that scene. As before, we 366 

averaged attribute descriptions across category, resulting in a 30-category by 112-feature 367 

matrix. 368 

 369 

2.8.3.3: Functions/Affordances 370 

Scene functions were operationalized as a description of the set of actions that a person 371 

could perform in each environment. As with the attributes, these vectors were also created 372 

by workers on AMT who annotated which of 227 actions in the American Time Use Survey 373 

could be done in each of the scenes. Scene functions have been shown to explain the 374 

majority of variance in scene categorization behavior (Greene et al., 2016; Groen et al., 375 

2018). The final feature matrix consisted of a 30-category by 227-feature matrix in which 376 

each cell stored the proportion of images in a given category i were linked to a specific 377 

action j.  378 

 379 

2.8.4: Model of Semantics 380 

        Lexical Distance 381 

    Last, we included a model of semantic distance between category names, as semantic 382 

distance has been demonstrated to affect early processing and reaction times to objects 383 
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and scenes (Neely, 1977). The semantic distance between categories was operationalized 384 

as the shortest path between category names in WordNet (Miller, 1995), as implemented 385 

by the Wordnet::Similarity tool (Pedersen et al., 2004).  386 

 387 

2.9: Time-Resolved Encoding Procedure 388 

    In order to compare vERP trial data to each of the models in a common framework, we 389 

employed representational dissimilarity analysis (RSA, (Kriegeskorte et al., 2008)). With 390 

this approach, we examined category similarity with respect to each of the nine feature 391 

spaces to scene category similarity with respect to time-resolved vERP activity at each 392 

electrode.  393 

 394 

2.9.1: Model Representational Dissimilarity Matrices (RDMs) 395 

For each of the nine models, we created a 30 x 30-category correlation matrix from the 396 

feature matrices described above. Representational dissimilarity matrices (RDMs) were 397 

defined as 1 - Spearman’s ρ. Importantly, RDMs are symmetric with an undefined diagonal. 398 

Therefore, only the lower triangle of each RDM was included in the analysis, representing 399 

435 pairs of category distances. As shown in Figure 1, substantial correlations exist 400 

between each of the nine models. Therefore, we used a whitening transformation (Bell & 401 

Sejnowski, 1997) in order to decorrelate the feature spaces. Specifically, for each feature 402 

vector x, we sought to obtain a new feature vector z that is uncorrelated to the other 403 

feature vectors. The linear transformation that can achieve this is: 404 

ݖ =  ݔܹ
In order to decorrelate each feature, the whitening matrix W must satisfy 405 

்ܹܹ =  ଵିߑ
Under these conditions, the covariance matrix ߑ of z is equal to the identity matrix. 406 

However, there are multiple whitening matrices that would achieve this transformation. 407 

Following (Kessy et al., 2017), we opted for the zero-phase component algorithm (ZCA) as 408 

it was found to provide sphered components that were maximally similar to the original 409 

data. In the ZCA algorithm, the whitening matrix is forced to be symmetrical (i.e. ்ܹ = ܹ), 410 

and ܹ =  ଵ/ଶ. In order to visualize the scene category similarity structure for each of the 411ିߑ 
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nine whitened feature spaces, Figure 2 shows two-dimensional multidimensional scaling 412 

(MDS) solutions for each feature space. 413 

 414 

<<Figure 1 about here>> 415 
 416 

<<Figure 2 about here>> 417 
 418 
 419 

2.9.2: Neural RDMs 420 

    For each participant, we averaged vERPs across trials within the same category, and then 421 

normalized the resulting averages. For each electrode, we extracted vERP signals within a 422 

41 ms window centered on each time point, beginning 100 ms before scene presentation, 423 

and extending to the entire 750 ms of stimulus presentation, truncating the window as 424 

necessary if the entire 41 ms was not available in an epoch. Thus, each window consisted of 425 

a 41 time-point by 30 category matrix. From this matrix, we created a 30 x 30 RDM using 426 

the same 1 - Spearman metric described above. As before, the lower triangle of this matrix 427 

(435 points) was used as the dependent variable in the regression analyses.  428 

 429 

2.9.3: Computing Noise Ceiling 430 

 In order to quantitatively assess model fits, we computed the noise ceiling of our 431 

data, following the methods of (Nili et al., 2014). Briefly, the upper bound of the noise 432 

ceiling is an overfit value representing the explained variability of the group mean to 433 

predicting an individual observer whose data are included in the group mean. The lower 434 

bound represents the explained variability of the group mean when the predicted observer 435 

is left out of the group mean. This procedure was performed independently at each time 436 

point. 437 

 438 

2.10: Electrode Selection 439 

As the primary goal of this study is to examine the genesis of scene category 440 

representations, for the encoding analyses, we selected only the electrodes containing 441 

significant category information from decoding. Specifically, we used the decoding 442 

accuracies for each electrode to select electrodes for encoding analyses that had accuracy 443 
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values above the 95% confidence interval of the pre-stimulus baseline for at least 10 444 

continuous milliseconds.  This amounted to an average of 248 electrodes per participant 445 

(range: 232-256). We averaged across these electrodes for all subsequent encoding 446 

analyses. 447 

 448 

2.11: Statistical Analysis 449 

 For all encoding analyses, we used a jackknife approach to obtain stable maximum 450 

R2 and latency of maximum R2 values for each participant. This was done by iteratively 451 

leaving out one of the participants in turn, and then computing the statistic of interest. The 452 

maximum R2 values for each participant were therefore defined as the maximum R2 from 453 

the mean of the remaining 12/13 participants, and the latency of the maximum was defined 454 

as the time point when this maximum was observed. All F and t values were corrected 455 

using the methods suggested by (Luck, 2005): namely, that t values were divided by N-1, 456 

and F values were divided by (N-1)2. Group-level significance was assessed via sign test. 457 

Post-hoc t-tests were corrected for multiple comparisons across time points and models 458 

using the Benjamini-Hochberg procedure. 459 

 460 

3: Results: 461 

 We begin by establishing the role of our nine whitened features in human scene 462 

categorization (Section 3.1) and show the consistency of our vERP results with the existing 463 

literature (Section 3.2). We then establish the availability of scene category information in 464 

vERP data using time-resolved decoding (Section 3.3). Finally, we assess the extent to 465 

which the nine whitened features map to vERP data over time and across task (Section 3.4 466 

and beyond) in order to gain insight into the representational transformations that enable 467 

rapid scene categorization. 468 

 469 

 3.1: Feature use in Scene Categorization Behavior 470 

3.1.1: Predicting Unconstrained Similarity Judgment from Feature Spaces 471 

We began by establishing the extent to which observers utilize each of the nine 472 

whitened feature models in the unconstrained similarity task. As the long stimulus 473 

presentation time (750 ms) in the EEG experiment led to ceiling-level categorization 474 
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performance, we used the scene similarity results from mTurk (see Section 2.4) as a proxy 475 

for categorization behavior. Although each of the nine feature models in this study have 476 

been strongly associated with scene categorization behavior, this first step ensures that 477 

this holds when the features have been whitened. Further, as most studies only examine a 478 

few features in isolation, this analysis shows the extent to which each feature contributes 479 

to scene category representations.  480 

Collectively, the nine whitened feature RDMs predicted 78% of the variance 481 

(adjusted R2) in the behavioral RDM obtained from the Mechanical Turk participants in the 482 

unconstrained experiment (F(9,425) = 163.8, p<0.0001). The beta coefficients, partial R2, 483 

and p values for each of the RDMs are shown in Table 1.  484 

 485 

<<Table 1 about here>> 486 

 487 

Most whitened feature RDMs had significant predictive power for the unconstrained 488 

behavioral RDM. The two exceptions were the Gist features and the early dCNN layer 489 

(Conv2). However, as the Gist features were most transformed by the whitening procedure 490 

(see Figure 1), we are not strongly interpreting this result. Lower-level features, including 491 

the filter-based models and the early dCNN model were less predictive of unconstrained 492 

similarity judgments than the higher-level models. Replicating previous observations, the 493 

function-based model was more predictive of scene similarity assessments than the object-494 

based model (Greene et al., 2016; Groen et al., 2018). However, the two most predictive 495 

models were the upper-layer features of the dCNN (FC6) and the attributes model of 496 

(Patterson et al., 2014).  497 

The attribute model is itself a combination of four different feature types: 498 

affordances, materials, surfaces, and spatial properties. Therefore, it is not terribly 499 

surprising that it did so well when compared to individual feature spaces. In order to break 500 

down its predictive power, we created four separate RDMs corresponding to the four 501 

different types of attributes outlined by (Patterson et al., 2014): functions/affordances (36 502 

features), materials/objects (36 features), surface properties (12 features), and spatial 503 

layout properties (14 features). We used these four as regressors for the human response 504 

RDM as before. Collectively, the four aspects of the attributes predicted 68% of the variance 505 
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(adjusted R2) in the human RDM (F(4,430) = 231.3, p<<0.0001). Table 2 shows beta 506 

coefficients, partial R2 and p values for each of the four. 507 

 508 

<<Table 2 about here>> 509 

 510 

Overall, affordances were the most predictive attribute type, followed by the “spatial 511 

envelope” properties which consisted of spatial layout properties such as openness, mean 512 

depth, and level of clutter. By contrast, material properties such as vegetation, asphalt, or 513 

metal, as well as surface properties such as dry, aged, or dirty, contributed comparatively 514 

little to the behavioral RDM. Altogether, these results validate the use of these nine models 515 

for explaining variability in scene similarity and categorization behavior, consistent with 516 

previous results.  517 

 518 

  3.1.2: Predicting Feature-Based Similarity Judgments from Feature Spaces 519 

Next, we examined how changing the observer’s similarity task alters feature use in 520 

the five feature-based similarity experiments. These similarity experiments yielded RDMs 521 

that were highly correlated with one another (mean r=0.82, range: 0.67-0.94). In order to 522 

focus on the independent predictions made by these experiments, we combined the RDMs 523 

for each of the five experiments into a single data matrix (435 x 5) and performed the same 524 

whitening transform on this matrix, using the same procedure that we employed for the 525 

feature matrix (see Section 2.9.1). The resulting whitened RDMs were all highly correlated 526 

with the original results (mean r=0.73, range: 0.66-0.85), while becoming uncorrelated 527 

with one another.  528 

As with the unconstrained similarity task, each of the five task-driven experiments 529 

were well-predicted by the nine whitened features: R2 values ranged from 0.61 for the 530 

lexical task to 0.75 for both functions/affordances and object tasks. Table 3 shows partial 531 

R2 for each feature for each of the five task-driven experiments. In general, we observed 532 

that in each experiment, the pattern of feature use was highly correlated with the 533 

unconstrained similarity task (range: r=0.95 for orientation and lexical to r=0.99 for 534 

objects and functions). That said, there were also substantial task-driven differences, with 535 

higher partial R2 values observed for features that were task-relevant (wavelets for the 536 



 

18 

orientation task, functions for the function/affordance task, and lexical features in the 537 

lexical task). One exception seems to be texture and object that appear to be switched in 538 

importance. 539 

 540 

<<Table 3 about here>> 541 

 542 
In order to understand feature use across the five experiments, we isolated the five 543 

most relevant features from the nine feature spaces: wavelets, which should be most 544 

similar to the orientation task, texture statistics for the texture task, object features for the 545 

object task, functions for the functions/affordances task, and lexical for the lexical task. 546 

Figure 3 shows the regression coefficients for each of the five features (different plots) 547 

across the five experiments (different bars). With the exception of the object features, each 548 

feature had the highest regression weight for the predicted experiment.  This result 549 

establishes that feature use differed across experimental task, and that specifically, a 550 

feature was used more when observers were asked to assess scene similarity with respect 551 

to that feature. 552 

<<Figure 3 about here>> 553 

 554 

3.2: vERP Data Summary     555 

In this section, we examined the general spatiotemporal structure of the vERPs. Grand 556 

average vERPs and topographic plots are shown in Figure 4a.  The topographic plots show 557 

the typical voltage difference scalp topography for observers engaged in viewing complex 558 

visual scenes (e.g. Groen et al., 2012; Hansen et al., 2011, 2012). Figure 4b shows the 559 

source localization results at select time points.  The spatiotemporal evolution of the vERP 560 

sources is consistent with previous MEG studies in scene perception (e.g. Ramkumar et al., 561 

2016), and show a gradual progression over time from primary visual cortices through 562 

bilateral occipito-temporal cortices, with apparent anterior temporal and ventral frontal 563 

cortices late. Therefore, the similarity between the spatiotemporal features of the current 564 

data with previously reported results contextualizes the subsequent modeling and 565 

decoding results within the broader M/EEG literature.  566 

 567 
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<<Figure 4 about here>> 568 

 569 

3.3: Time-Resolved Decoding 570 

Our main goal is to examine the representational transformations that take place in 571 

the visual system en route to categorization. In order to measure the amount of scene 572 

category information available in vERPs over time, we employed a time-resolved decoding 573 

procedure on vERPs. Figure 5 shows decoding performance across all electrodes over 574 

time. Significant category decoding was observed in nearly all electrodes, with an average 575 

of 248 of the 256 electrodes showing significant category information. Category 576 

information was highest between 100 and 200 ms after stimulus onset, with the maximum 577 

decodable information found on average 198 ms after stimulus onset (range: 142-214 ms). 578 

This corroborates previous accounts of generalized categorization taking place at or 579 

around 200 ms post-stimulus onset.  580 

 581 

<<Figure 5 about here>> 582 

 583 

Decoding analyses were performed on each electrode individually, allowing us to 584 

examine the pattern of decodable information across the scalp. Specifically, we examined 585 

the differences in decoding across electrodes by computing: 1) the maximum decoding 586 

accuracy at each electrode; and 2) the temporal latency of this maximum value. In addition, 587 

we ordered electrode position from anterior to posterior. We observed a sizable negative 588 

correlation (r = -0.42, 95% CI: -0.52 to -0.31, t(12) = 2.71, p < 0.05, see Figure 5) between 589 

the maximum decoding performance and the latency of maximum decoding for an 590 

electrode. This was also observed in the replication experiment (r=-0.42, p<0.0001). This 591 

may suggest that electrodes that carry the most category information also have this 592 

information available earlier, or that later neural responses are less time-locked to 593 

stimulus presentation, driving down the amount of decodable category information. 594 

Further, we found that the overall decoding performance was correlated with electrode 595 

location from anterior to posterior (r = 0.21, 95% CI: 0.08 to 0.32, t(12) = 4.0, p<0.001, see 596 

Figure 5), indicating that decodable category information was concentrated in posterior 597 
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electrodes. An even more pronounced effect was observed in the replication experiment 598 

(r=0,45, p<0.0001). 599 

 600 

3.4: Time-Resolved Encoding 601 

 3.4.1: All Features 602 

 While the decoding analyses establish the amount of specific scene category 603 

information available in the vERPs, the goal of the encoding analyses is to establish the 604 

extent to which a variety of visual and conceptual features collectively explain variability in 605 

the vERPs. Taken together, the nine whitened models predicted significant vERP variability 606 

in electrodes with significant category information (see Figure 6).  The maximal explained 607 

variability occurred 98 ms after stimulus onset, on average, and was within the noise 608 

ceiling for nearly the entire epoch. Interestingly, the explained variance of the features was 609 

below the noise ceiling between 176 and 217 ms post-image onset, the same time window 610 

of maximum category decoding. This may suggest that while these nine features are 611 

explaining the perceptual processes leading up to categorization, they may not be capturing 612 

the categorization process itself. For the replication experiment, we observed a similar 613 

maximum R2 (0.11 versus 0.10 in main dataset), with a peak encoding latency that was 614 

slightly earlier (74 ms versus 98 ms). 615 

 616 

<<Figure 6 about here>> 617 

 618 
 619 
 620 

Unlike the case of decoding, we did not observe any relationship between the 621 

maximum explained variability in a given electrode and the latency of maximum explained 622 

variability (r = -0.04, 95% CI: -0.16-0.08, t(12) < 1), see Figure 6. However, as we observed 623 

in decoding, there was a reasonably strong spatial relationship between electrode position 624 

(anterior to posterior) and maximum R2 (r = 0.36, 95% CI: 0.25-0.47, t(12) = 3.08, p < 0.01, 625 

see Figure 6), indicating that these nine models could best explain activity over the 626 

posterior electrodes. Similar results were found in the replication experiment (r = 0.36, 627 

t(14) = 2.07, p < 0.05). Together, these results show that feature encoding is earlier than 628 
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category decoding, and also primarily driven by posterior electrodes. Our next analyses 629 

will examine which specific features predict variability in ERP signals. 630 

 631 
 632 

 3.4.2: Low-level versus high-level features 633 

Among the nine features are those that can be computed directly from image filters 634 

(low-level features) as well as those that require human annotation (high-level features). In 635 

order to understand the relative contributions of low- and high-level features, we created 636 

two new whitened models using a subset of the nine original models. The ‘low-level’ model 637 

included all of the filter-based models (Wavelet, Gist, and Texture), and the ‘high-level’ 638 

model contained all of the human-in-the-loop models (Objects, Functions, and Attributes). 639 

We whitened each model separately and performed the regression analyses on each. 640 

Overall, we found that low-level features explained significantly more variability than did 641 

the high-level features (0.07 versus 0.03, t(12) = 5.81, p<0.0001, d = 2.24, see Figure 7). 642 

We observed a similar result in the replication experiment (0.05 versus 0.03, t(14) = 2.17, p 643 

< 0.05, d = 0.86). When examining the latency of maximum explained variability, low-level 644 

models peaked 88 ms after stimulus onset while high-level features peaked 169 ms after 645 

stimulus onset (t(12) = 3.18, p<0.005, d = 1.31). Similarly, low-level models peaked 74 ms 646 

after stimulus onset in the replication experiment, while high-level models peaked at 159 647 

ms (t(14) = 4.62, p = 0.0002, d = 2.39). Thus, low-level features explain more and earlier 648 

vERP variability, compared with the high-level features. While this may suggest that high-649 

level features are processed later, it may instead reflect the fact later processes are less 650 

time-locked to stimulus onset, and that the increased temporal variability results in a 651 

smaller overall effect, or that the neural sources for these features are less accessible at the 652 

scalp. 653 

 654 
<<Figure 7 about here>> 655 

 656 
 657 

3.4.3: Individual features 658 

 The previous analysis showed that low-level features, on average, explained more 659 

and earlier variability in vERP responses. Here, we took a closer look by examining the 660 
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variability explained by each of the nine whitened models individually, see Figure 8. Table 661 

4 shows the maximum R2 and the latency of maximum R2 for each of the nine feature 662 

models. We submitted both of these three measurements to a one-way repeated measures 663 

ANOVA with Model (nine features) as the factor. We found that maximum R2 differed 664 

significantly across Model (F(8,96) = 7.65, p<7.1e-8, ߟଶ = 0.99). Overall, the Gist features 665 

explained the most variability in ERPs (R2 = 0.026), and explained significantly more 666 

variability than all other features except for Wavelet (t(12) = 1.72, p = 0.06), and Conv2 667 

(t(12) < 1). In a similar manner, Conv2 explained more variability than Wavelet (t(12) = 668 

2.22, p < 0.05, d = 0.64), Texture (t(12) = 2.43, p < 0.05, d = 0.98), FC6 (t(12) = 2.34, p < 669 

0.05, d = 0.90), and all of the high-level visual features. Texture had higher explained 670 

variance than each of the high-level visual features. We did not observe any significant 671 

differences in explained variability among the high-level features. We observed the same 672 

main effect of Model on maximum R2 in the replication experiment (F(8,112) = 5.77, p < 673 

3.7e-6, ߟଶ= 0.98), and we furthermore observed a high correlation between maximum R2 674 

values between the two experiments (r = 0.81, t(7) = 3.7, p < 0.008). Although we observed 675 

a numerical tendency for lower-level models to have earlier maximum explained 676 

variability, this pattern was not statistically reliable (F(8,96) < 1). This was also observed 677 

in the replication experiment (F(8,112) < 1). 678 

 679 

<<Table 4 about here>> 680 

 681 

<<Figure 8 about here>> 682 

 683 

3.5: Linking Encoding and Behavior 684 

 3.5.1: Linking vERPs to scene similarity assessment 685 

 While the previous encoding analyses examine the extent to which various features 686 

explain vERP responses, they do not provide insight into which parts of the responses are 687 

behaviorally relevant. To bridge this gap, we first used the behavioral RDM from the 688 

unconstrained scene similarity experiment to predict the vERP RDMs. Figure 9 shows the 689 

variability explained over time. We observed an early correspondence of behavioral 690 

similarity and neural similarity: the peak R2 occurred 219 ms post-stimulus.  The mean 691 
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maximum explained variability was 0.0093 (18.6% of noise ceiling lower bound, versus 692 

0.008 in the replication experiment), with an earlier secondary peak occurring around 175 693 

ms post-stimulus onset. In the replication experiment, only the earlier peak was evident at 694 

178 ms post-image onset. 695 

 696 
<<Figure 9 about here>> 697 

 698 
 699 
 In order to determine how each of the task-driven similarity assessments are 700 

reflected in the vERPs compared with the unconstrained similarity task examined above, 701 

we used each of the five whitened behavioral RDMs from the task-driven similarity 702 

experiments as regressors for the vERPs. As shown in Figure 10, although using a greater 703 

variety of behavioral predictors led to greater explained variability (max of 0.0093 for 704 

unconstrained similarity experiment, versus a max of 0.027 for the five task-driven 705 

experiments, t(12) = 9.38, p < 3.6e-07, d = 0.91), the time course of the two analyses is 706 

strikingly similar, with peaks of explained variability at around 175 ms and 225 ms post-707 

stimulus onset. Similar results were found in the replication experiment (maximum R2: 708 

0.027, peak latency: 178 ms). As shown in the right-hand panel of Figure 10, the earlier 709 

peak was driven primarily by posterior electrodes, while the later peak was driven more by 710 

anterior electrodes, as was observed in the unconstrained similarity experiment. 711 

 712 

<<Figure 10 about here>> 713 

 714 
 715 

While the previous analysis indicated that all five task-driven similarity experiments 716 

explained vERPs in a similar manner as the unconstrained similarity experiment, here we 717 

examined each of the five feature-driven similarity experiments individually. As shown in 718 

Figure 11, each experiment produced a unique profile of explained vERP variability. We 719 

performed a one-way ANOVA on the maximum explained variability for each of the five 720 

experiments and found that there were significant differences across behavioral 721 

experiments in the main EEG experiment (F(4,48) = 3.97, p = 0.0007, η2 = 0.97), as well as 722 

the replication experiment (F(4,56) = 2.63, p < 0.05, η2 = 0.96). Follow-up t-tests revealed 723 

that the lexical experiment explained significantly more variability than the orientation 724 
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(t(12) = 2.47, p = 0.015, d = 0.98), texture (t(12) = 2.02, p = 0.033, d = 0.82), object (t(12) = 725 

2.28, p = 0.021, d = 0.78), and function (t(12) = 2.69, p = 0.0098, d = 0.98) experiments. By 726 

contrast, a one-way ANOVA examining differences in peak latency did not reveal any 727 

significant differences between the behavioral experiments in either the main EEG 728 

experiment (F(4,48) < 1), nor the replication experiment (F(4,56) < 1). 729 

 730 

<<Figure 11 about here>> 731 

 732 
 733 

 3.5.2: Shared R2 between scene similarity assessments and features on vERPs 734 

 Having established which portions of the vERP response that are linked to scene 735 

categorization behavior, we can now examine how vERP variability is shared by each of the 736 

nine feature models and the behavioral RDMs for both constrained and unconstrained 737 

experiments. This allows us to examine when and how individual features explain 738 

category-relevant portions of the vERP data. Beginning with the unconstrained similarity 739 

experiment, Figure 12 shows time-resolved plots of shared R2 for all feature models and 740 

unconstrained similarity judgment over the time epoch. Table 5 shows maximum shared 741 

R2 and latency of maximum shared R2 values for each of the nine whitened features. We 742 

observed a significant difference between features in the maximum shared variability with 743 

unconstrained similarity judgments (F(8,96) = 17.91, p = 4.3e-16, η2 = 0.99 in the main 744 

experiment and F(8,112) = 15.44, p = 4.11e-15, η2 = 0.99 in the replication experiment). 745 

The maximum shared variability ranged from 0.00008 for the Conv2 model to 0.0049 for 746 

the FC6 model and was higher for high-level models than low-level models (0.0018 versus 747 

0.002, t(12) = 4.82, p = 0.002, d = 1.72 in the main experiment; 0.002 versus 0.0002, t(14) = 748 

5.93, p = 1.84e-05, d = 1.65 in the replication experiment). The latency of maximum shared 749 

variance ranged from 168 ms post-stimulus for the Conv2 model to 235 ms post-stimulus 750 

for Objects. These differences were not statistically reliable when considering all nine 751 

models (F(8,96) < 1 in the main experiment and F(8,112) < 1 in the replication 752 

experiment), nor when comparing the three low-level features (Wavelet, Gist, and Texture) 753 

to the three high-level models (Functions, Objects, and Attributes), (176 versus 200 ms, 754 

t(12) < 1 in the main experiment; 155 versus 201 ms, t(14) < 1 in the replication 755 
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experiment). However, when comparing the latency of maximum shared variability to the 756 

latency of maximum non-shared variability, vERP variability that was shared with behavior 757 

was later on average than non-shared variability (193 ms post-image onset versus 144 ms, 758 

t(12) = 12.7, p = 2.4e-08, d = 4.98 for the main dataset, 158 ms versus 138 ms, t(14) = 7.4, p 759 

= 3.28e-6, d = 2.07 for the replication experiment). Therefore, although low-level models 760 

explain more and earlier variability in vERPs overall, they explain less behaviorally-761 

relevant vERP information when compared with the high-level features, and the time 762 

course of behaviorally-relevant shared variability is slower overall than feature processing 763 

that is not associated with behavior. 764 

 765 

<<Table 5 about here>> 766 

 767 

<<Figure 12 about here>> 768 

 769 
  770 

 771 

 Finally, we followed the same procedure for each of the five task-specific 772 

experiments. The aggregate results are shown in Figure 13. We found that there was no 773 

significant difference in maximum shared variability across the five experiments (F(4,48) = 774 

2.18, p = 0.09, but found a marginal effect in the replication experiment (F(4,56) = 2.81, p = 775 

0.03, η2  = 0.84). However, we observed a significant effect of Feature (F(8,96) = 21.67, p = 776 

1.78e-18, η2  = 0.99 in the main experiment, and F(8,112) = 13.3, p = 2.1e-13, η2  = 0.99 in 777 

the replication experiment). Following up on this result, we found that high-level features 778 

shared significantly more behaviorally-relevant variance with vERPs than low-level 779 

features (0.0007 versus 0.0003, t(12) = 5.08, p = 0.00014, d = 1.67 in the main experiment 780 

and 0.0008 versus 0.0003, t(14) = 7.49, p = 1.46e-6, d = 2.04 in the replication study). 781 

Finally, we observed a significant interaction between Feature and Experiment: F(32, 384) 782 

= 7.92, p = 1.52e-26, η2  = 0.98 in the main experiment and F(32, 488) = 11.11, p = 1.8e-39, 783 

η2  = 0.99 in the replication experiment). Interestingly, this was driven by the fact that the 784 

orientation experiment had higher shared variability with low-level features compared 785 

with high-level (t(12) = 3.21, p = 0.003, d = 1.37 in the main experiment and t(14) = 2.67, p 786 
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= 0.009, d = 0.83 in the replication study), while the opposite pattern was found for the four 787 

other experiments. Therefore, although high-level features seem to be more behaviorally-788 

relevant overall, this can change when the task demands that observers attend to low-level 789 

scene properties. We observed no significant effects of Experiment (F(4,48) < 1 and F(4,56) 790 

< 1) or Feature (F(8,96) < 1 and F(8,112) < 1) on the latency of maximum shared variance, 791 

nor a significant interaction between these two factors (F(32,384) < 1 and F(32,448) < 1). 792 

 793 

<<Figure 13 about here>> 794 

 795 

 Thus, compared with the unconstrained similarity experiment, we can see that 796 

changing the behavioral task changes the amount of shared vERP variability with features 797 

that are associated with the task. Specifically, although the wavelet features share little 798 

behaviorally-relevant vERP variability in most experiments, this was not the case for the 799 

orientation task where these low-level features were task-relevant. Similarly, the lexical 800 

features shared more behaviorally-relevant vERP variability in the lexical experiment 801 

compared with the others.  802 

 803 

4: Discussion 804 

 Visual categorization is rapid and seemingly effortless. However, the initial visual 805 

input must be transformed into alternative representations that allow categories to be 806 

easily distinguished from one another (DiCarlo & Cox, 2007). Here, we sought to 807 

understand the visual processing stages required to transform the retinal image into a 808 

semantically rich categorical representation. We first verified the utility of a variety of 809 

popular visual and conceptual feature models for scene categorization (Section 3.1). Using 810 

time-resolved decoding, we assessed the amount of category-related information available 811 

in vERPs (Section 3.3). We then applied a whitening transformation to the feature models 812 

and assessed their utility for explaining vERPs (Section 3.4). Critically, we then assessed 813 

the shared variability between features and behavior for explaining vERPs (Section 3.5). By 814 

combining encoding, decoding, and behavioral assessments, we can link neural activity to 815 

feature spaces (encoding), as well to the time course of category information (decoding), 816 

and to the internal representations that guide scene categorization behavior. 817 
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Our decoding results revealed that decodable scene category information peaked 818 

between 150 and 200 ms after image onset and persisted across the trial epoch. These 819 

values are consistent with previous M/EEG studies of object- and scene categorization 820 

(Bankson et al., 2018; Carlson et al., 2013; Cichy et al., 2014; Clarke et al., 2013; Ramkumar 821 

et al., 2016). While earlier decoding has been reported for image exemplars (~100 ms, 822 

(Carlson et al., 2013; Cichy et al., 2014)), it has remained unclear whether this performance 823 

reflects image identity per se, or the lower-level visual features that are associated with 824 

that exemplar.  825 

 In contrast to previous work, we have tested an extensive set of features ranging 826 

from low-level filter outputs to high-level conceptual features that require extensive 827 

human annotation. Each of the nine features used here has been implicated in scene 828 

categorization. Nearly all have been shown to be computationally sufficient for 829 

categorization, and many have striking correlations with brain activity and behavior. 830 

However, because these models are often studied in isolation, and because they are 831 

correlated with one another, it has been difficult to assess the independent contributions of 832 

each. Here, we employed a whitening transformation to the input feature RDMs in order to 833 

decorrelate the feature spaces. Although there is increasing understanding of the need to 834 

partition explained variability for correlated inputs (Bankson et al., 2018; Greene et al., 835 

2016; Groen et al., 2018; Lescroart et al., 2015), it is difficult to do this for a large number of 836 

input models. We side-stepped these issues by whitening the features before fitting models. 837 

There are many whitening transforms, and we chose the ZCA algorithm because it has been 838 

shown to provide outputs that are best correlated with the original inputs (Kessy et al., 839 

2017). While this generally held true for the nine models used here, it should be noted that 840 

the gist features (Oliva & Torralba, 2001) were an exception (see Figure 1). Therefore, we 841 

have refrained from strongly interpreting results for that model, particularly the 842 

observation that this feature was not significantly predictive of the behavioral RDM (see 843 

Table 1) given previous reports that gist features can strongly influence categorization 844 

behavior (Greene & Oliva, 2009), vERPs (Hansen et al., 2018), MEG patterns (Ramkumar et 845 

al., 2016), and fMRI activation patterns (Watson et al., 2014). 846 

 The current results demonstrate that low-level visual features explained the earliest 847 

variability in vERPs (~90 ms post-image onset). High-level visual features had the highest 848 
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explained variability 80 ms later (~170 ms), similar to the time course of predicting vERPs 849 

with the unconstrained behavioral data (~175 ms), or the aggregate of all five scene 850 

similarity tasks (Figure 10 and Figure 11). Further, the average peak decoding accuracy 851 

was observed ~200 ms, and peak shared variability for each feature with behavior also 852 

ranged between ~170-230 ms post-image onset. Together, this suggests a progression to 853 

categorization that proceeds from low-level to high-level features.  854 

 The observed time course of semantic processing may seem faster than previously 855 

characterized ERPs such as the N400 (Kutas & Federmeier, 2000). Indeed, violations of 856 

scene-object context have been observed in the 250-350 ms post-image window (Mudrik et 857 

al., 2014), as well as in the classical N400 window (Ganis & Kutas, 2003; Võ & Wolfe, 2013). 858 

However, recent decoding results have shown that these two windows contain similar 859 

image information (Draschkow et al., 2018) and may be reflecting similar neural processes. 860 

It is worth noting that the time course of these ERPs reflects an upper bound to the time 861 

course of semantic processing, and that the current encoding and decoding techniques may 862 

reveal the processes themselves while the ERPs reflect the outcomes. However, many 863 

leading theories of the N400 characterize it as a full contextual evaluation of the stimulus 864 

(Kutas & Federmeier, 2000), and this may require a full categorical representation before 865 

this evaluation can take place. Consistent with this idea is our observation that 866 

behaviorally-relevant vERP variance was shared after the decoding peak, particularly for 867 

high-level features (see Figures 6, 7, 8, and 12), suggesting that they contributed both to 868 

category representations and post-categorization processing. 869 

 When considering all nine models together, the explained variability for vERPs was 870 

largely within the noise ceiling of the data, indicating that these models’ predictive power 871 

has been maximized, given the noise in the data. We observed two distinct R2 peaks, one 872 

around 100 ms after image onset, and the other around 75 ms later (see Figure 6). While 873 

low-level features contributed to both peaks (see Figure 7), most of the contribution from 874 

the high-level models was during this later period (see Table 4). These results are 875 

consistent with other reports of low-level feature encoding (Groen et al., 2012; Hansen et 876 

al., 2011, 2012). Critically, it is only this later peak that is correlated with scene 877 

categorization behavior (see Figure 12). Therefore, although low-level features are critical 878 
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for subsequent categorization, they do not themselves enable categorization, counter to 879 

views of scene categorization being largely associated with low-level features  880 

(Kaping et al., 2007; Scholte et al., 2009; Torralba & Oliva, 2003). 881 

 Our results are congruent with previous ERP studies that have shown that evoked 882 

responses earlier than ~150 ms post-stimulus onset are not correlated with behavioral 883 

measurements (Johnson & Olshausen, 2003; Philiastides & Sajda, 2006; VanRullen & 884 

Thorpe, 2001). However, our results extend those previous findings by allowing us to make 885 

inferences about the visual and conceptual features that are associated with those 886 

behaviorally-relevant neural signals. Specifically, our results indicate that high-level 887 

features share more with scene similarity responses than do low-level features. 888 

Specifically, the higher-level features from the dCNN (FC6) and the attribute model shared 889 

the most variability with vERPs and unconstrained similarity assessment. Deep CNN 890 

models are optimized for categorization, and the representations in their upper layers 891 

reflect this fact. The attribute model, as discussed in Section 3.1 is a heterogeneous model 892 

reflecting human annotations of affordances, surfaces, materials and spatial properties. 893 

Thus, the whitened attribute model likely reflects aspects of texture, objects, and 894 

affordances that are not captured in those individual models.  895 

 While much of the scene understanding literature focuses on scene categorization as 896 

an “end point” of the visual recognition process, it is important to recognize that perception 897 

is an ongoing process without a strict end (Groen et al., 2017; Malcolm et al., 2016). 898 

However, categories are highly linked to other behavioral tasks, including object detection 899 

(Davenport & Potter, 2004), visual search (Torralba et al., 2006), and navigation (Bonner & 900 

Epstein, 2018). Therefore, we have utilized two types of behavioral tasks: an unconstrained 901 

scene similarity assessment task that has previously been shown to reveal hierarchical 902 

category representations (Zheng et al., 2019), and a set of five tasks that ask observers to 903 

assess scene similarity with respect to one of five features that were designed to have 904 

observers attend to low- (orientation), mid- (texture), and high-level features (objects, 905 

functions, and lexical). We have shown that changing the task changes the shared 906 

variability between vERPs and features (see Figure 13). Specifically, although some 907 

features share little variability with the scene categorization, they seem to be used when 908 

the task demands it. This is striking because the participants in the behavioral experiments 909 
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were independent of those in the EEG experiment. We are currently extending this 910 

paradigm to change the observers’ task during EEG recording (Hansen & Greene, 2019). 911 

By using a combination of encoding and decoding approaches on high-density EEG 912 

data, we have shown that the visual processes leading up to scene categorization follow a 913 

progression from low- to high-level feature processing from occipital through ventral and 914 

medial temporal cortices in the first 200 ms after scene onset. While low-level features 915 

explain more vERP variability overall, they tend not to share variability with behavioral 916 

tasks, except for when those features are task-relevant. Altogether, these results call into 917 

question models of scene categorization that are based solely on low-level features, and 918 

further highlight the flexible nature of the categorization process. 919 

 920 

 921 

  922 
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Figure Captions 1 
 2 
Figure 1: (a) Correlations between the nine original features; (b) Covariance before ZCA 3 
whitening transformation; (c) Correlations after ZCA whitening transformation; (d) 4 
Correlations between original and whitened features. Gist features are the significant 5 
outlier. 6 
 7 
Figure 2: Representation of each of the nine whitened feature spaces. To aid visualization, 8 
one representative image from each of the 30 categories is used to plot the category’s 9 
location in a 2D multidimensional scaling (MDS) solution. 10 
 11 
Figure 3: Feature use across the five similarity experiments. Each plot is a different feature, 12 
and the regression weight for that feature is shown across each of the five experiments. The 13 
blue bar indicates the experiment with the highest predicted weight.  Error bars represent 14 
95% confidence intervals. 15 
 16 
Figure 4: (a) Grand averaged vERPs (left), and topographic plots (right) for key time points. 17 
(b) Source-localization solutions from times ranging from 80 to 700 ms post-stimulus. 18 
 19 
Figure 5: Left: Decoding performance relative to the false-positive rate observed during the 20 
baseline windows. Top line indicates decoding performance that is significantly over the 21 
false positive rate. Shaded area indicates 95% confidence interval. Right: Latency of 22 
maximum decoding performance and maximum decoding accuracy relative to the false-23 
positive rate. Each point is an electrode, averaged across participants. Color represents cap 24 
location of electrode from posterior to anterior. Gray line represents the regression line. 25 
 26 
Figure 6: Left: Explained variability (adjusted R2) over time. Blue shaded area indicates the 27 
95% confidence interval, thick black bar indicates statistical significance, and gray shaded 28 
area represents the noise ceiling of the data. Right: Maximum explained variability 29 
(adjusted R2) versus latency of maximum R2. Each point is an electrode, and color indicates 30 
electrode position from anterior to posterior. Data are averaged across participants. 31 
 32 
Figure 7: Explained variability in vERP signals for low-level (wavelet, gist, and texture, 33 
shown in blue) and high-level (function, object, attribute, shown in orange). Shaded regions 34 
represent 95% confidence intervals. Solid lines indicate statistically significant explained 35 
variability over baseline (sign permutation test). 36 
 37 
Figure 8: R2 values for each of the nine whitened feature models for explaining vERPs, 38 
averaged over all electrodes with significant category information. 39 
 40 
Figure 9: Left: Explained variability (adjusted R2) over time for behavioral RDMs for all 41 
electrodes with significant category information. Shaded area indicates 95% confidence 42 
interval. Right: Maximum explained variability and latency of maximum explained 43 
variability for each of the 256 electrodes. Point color indicates electrode position in the net. 44 



 

 2 

 45 
Figure 10: Left: Explained variability (adjusted R2) over time for behavioral RDMs for all 46 
electrodes with significant category information. Each of the five task-driven experiments 47 
was a predictor here. Shaded area indicates 95% confidence interval. Right: Maximum 48 
explained variability and latency of maximum explained variability for each of the 256 49 
electrodes. Point color indicates electrode position in the net. 50 
 51 
Figure 11: Left panels show explained variability (R2) over time of each of the five task-52 
driven similarity experiments for vERPs. Shaded gray regions reflect 95% confidence 53 
intervals. Right panels show the relationship between electrode position, maximum R2, and 54 
latency of maximum R2 for the same experiments. 55 
 56 
Figure 12: Shared explained variance between each of the nine feature models and the 57 
RDM for unconstrained scene similarity judgments over time.  58 
 59 
Figure 13: Shared variability of each feature (columns) with vERPs across each of the five 60 
task-driven experiments (rows). 61 
 62 
 63 
Table Captions 64 
 65 
Table 1: Regression coefficients, partial R2, and p values for each of nine feature RDMs in 66 
predicting dissimilarity matrix from human observers’ rankings.  67 
 68 
Table 2: Regression coefficients, partial R2, and p values for each of the four attribute types 69 
that constituted the full attributes model. 70 
 71 
Table 3: Partial R2 for each feature (row) in each task-driven experiment (column). 72 
 73 
Table 4: Maximum R2 and latency of maximum R2 for each of the nine encoding models. 74 
 75 
Table 5: Statistics of shared variability between features, unconstrained behavior, and the 76 
nine feature models. Displayed are maximum R2 and latency of maximum R2 for each of the 77 
nine encoding models. 78 
 79 
 80 
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Table 1 
 
Feature Beta Partial R2 p 

Wavelets 0.014 0.016 0.009 

Gist 0.005 0.002 0.34 

Texture 0.011 0.009 0.047 

Conv2 0.003 0.0008 0.55 

FC6 0.121 0.543 < 2e-16 

Functions 0.080 0.339 < 2e-16 

Objects 0.034 0.084 9.7e-10 

Attributes 0.141 0.615 < 2e-16 

Lexical 0.024 0.044 1.09e-05 
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Table 2 
 
Model Beta Partial R2 p Affordances 0.43 0.35 < 2e-16 Materials 0.17 0.07 1.22e-08 Surfaces 0.054 0.02 0.00559 Spatial Envelope 0.17 0.12 4.28e-14 
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Table 3 
 

Feature Orientation Texture Object Functions Lexical 

Wavelet 0.057 0.013 0.013 0.017 0.007 
Gist 0.012 1e-05 0.002 0.0002 0.004 
Texture 0.0008 0.0009 0.019 0.003 2e-5 
Conv2 0.017 0.026 0.006 0.028 0.019 
FC6 0.526 0.498 0.542 0.526 0.415 
Functions 0.121 0.147 0.251 0.262 0.203 
Objects 0.058 0.108 0.009 0.090 0.040 
Attributes 0.466 0.597 0.566 0.569 0.298 
Lexical 0.017 0.003 0.040 0.024 0.107 
Total R2 0.70 0.74 0.75 0.75 0.61 
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Table 4 
 

MModel  MMaximum R22  LLatency of max R22  

Wavelet 0.015 69 

Gist 0.026 85 

Texture 0.014 100 

Conv2 0.023 104 

FC6 0.015 205 

Function 0.009 135 

Object 0.009 238 

Attributes 0.008 183 

Lexical 0.007 146 
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Table 5 
 

Model Maximum R2 Latency of max (ms) 

Wavelet 0.00024 178 

Gist 0.00017 176 

Texture 0.00024 175 

Conv2 0.00008 168 

FC6 0.00494 226 

Functions 0.00167 184 

Objects 0.00070 235 

Attributes 0.00317 179 

Lexical 0.00041 216 

 


