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Abstract

Human scene categorization is characterized by its remarkable speed. While many visual
and conceptual features have been linked to this ability, significant correlations exist
between feature spaces, impeding our ability to determine their relative contributions to
scene categorization. Here, we employed a whitening transformation to decorrelate a
variety of visual and conceptual features and assess the time course of their unique
contributions to scene categorization. Participants (both sexes) viewed 2,250 full-color
scene images drawn from 30 different scene categories while having their brain activity
measured through 256-channel EEG. We examined the variance explained at each
electrode and time point of visual event-related potential (VERP) data from nine different
whitened encoding models. These ranged from low-level features obtained from filter
outputs to high-level conceptual features requiring human annotation. The amount of
category information in the vERPs was assessed through multivariate decoding methods.
Behavioral similarity measures were obtained in separate crowdsourced experiments. We
found that all nine models together contributed 78% of the variance of human scene
similarity assessments and was within the noise ceiling of the vERP data. Low-level models
explained earlier vERP variability (88 ms post-image onset), while high-level models
explained later variance (169 ms). Critically, only high-level models shared vERP variability
with behavior. Taken together, these results suggest that scene categorization is primarily

a high-level process, but reliant on previously extracted low-level features.
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Significance Statement:

In a single fixation, we glean enough information to describe a general scene category.
Many types of features are associated with scene categories, ranging from low-level
properties such as colors and contours, to high-level properties such as objects and
attributes. Because these properties are correlated, it is difficult to understand each
property’s unique contributions to scene categorization. This work uses a whitening
transformation to remove the correlations between features and examines the extent to
which each feature contributes to visual event-related potentials (VERPs) over time. We
found that low-level visual features contributed first but were not correlated with
categorization behavior. High-level features followed 80 ms later, providing key insights
into how the brain makes sense of a complex visual world.
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1: Introduction

Human scene processing is characterized by its high speed: not only do observers
require little viewing time to reliably understand scene content (Greene & Oliva, 2009;
Potter et al.,, 2014), but scene-specific neural responses have also been observed less than
200 ms after scene presentation (Bastin et al., 2013; Ramkumar et al., 2016; Thorpe et al.,
1996). However, we know comparatively little about the processing stages that transform
the retinal image into a semantically rich categorical representation. Ongoing research has
demonstrated that scene categories can be distinguished on the basis of many types of
features, ranging from low-level visual properties such as histogram statistics of colors,
edges, orientations, or Fourier metrics (Hansen & Loschky, 2013; Oliva & Schyns, 2000;
Torralba & Oliva, 2003; Walther & Shen, 2014), to mid-level representations including
texture (Renninger & Malik, 2004); "bag of words" representations describing the list of
objects within scenes (Greene, 2013); or geometric properties of spatial layout (Greene &
Oliva, 2009; Oliva & Torralba, 2001); to high-level properties such as conceptual attributes
(Patterson et al,, 2014) and affordances (Bonner & Epstein, 2018; Greene et al.,, 2016).
However, we do not know the relative contributing strengths of each of these features to
categorization, nor the time course of their contributions.

A powerful way to examine feature contributions is to consider each as a
representational feature space (Edelman, 1998; Gardenfors, 2004; Kriegeskorte et al.,
2008). In this framework, each scene is considered a point in a high-dimensional space
whose dimensions correspond to individual feature levels within the space. For example, in
the feature space of objects, an office can be described by the presence of objects within it,
such as "desk", "monitor”, and "keyboard". In the feature space of texture, the same scene
would be described as a set of features describing the grain of wood on the desk, or the
pattern of the carpet. Critically, such conceptual spaces can be used to make predictions
about the types of errors that an observer or model will make about an image. For example,
the object feature space would predict that images that share objects with offices would be
frequently confused with offices (for example, a desk and monitor might be found in a
college dorm room).

Despite the power of this approach, challenges remain in assessing the relative
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contributions of low- and high-level features (Groen et al., 2017; Malcolm et al.,, 2016),
primarily because these features are not independent. Consider removing a stove from an
image of a kitchen. This alteration not only changes the list of objects in the scene, but also
changes the scene's spatial layout as objects define the shape of a scene's layout
(Biederman, 1981). Furthermore, this change also alters the distribution of low-level visual
features such as colors and orientations that belonged to the stove, and also changes the
affordances of the space: it is much more difficult to cook without the stove. Altogether,
these intrinsic correlations mean that we cannot easily interpret the use of any particular
feature except in isolation from the others.

Here, we have addressed this problem by decorrelating a large number of predictive
models that ranged from low-level visual properties to high-level semantic descriptors
prior to analysis. Additionally, we leveraged an optimized category selection procedure
that enabled maximal differentiation between the competing models across 30 different
scene categories. Using high-density electroencephalography (EEG), we examined the
relative power of each encoding model to explain the visual event-related potentials
(VERPs) that are linked to scene categorization, as indexed via multivariate decoding and
behavioral similarity assessments. Altogether, our results show a striking dissociation
between feature processing and their use in behavior: while low-level features explain

more overall vERP variability, only high-level features are related to behavioral responses.

2: Methods
2.1: Apparatus

All stimuli were presented on a 23.6" VIEWPixx/EEG scanning LED-backlight LCD
monitor with 1 ms black-to-white pixel response time. Maximum luminance output of the
display was 100 cd/m?, with a frame rate of 120 Hz and a resolution of 1920 x 1080 pixels.
Single pixels subtended 0.0373 degrees of visual angle as viewed from 32 cm. Head

position was maintained with a chin rest (Applied Science Laboratories).

2.2: Participants
We conducted the experiment twice, with a total of 29 observers volunteering

across the two studies. Fourteen participants (6 female, 13 right handed) participated in
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the primary experiment. One participant's EEG data contained fewer than half valid trials
following artifact rejections and was therefore not included in subsequent analysis. Fifteen
observers (9 female, 12 right handed) participated in an internal replication study (also
presented here). The age of all participants ranged from 18 to 22 years (mean age = 19
years). All participants had normal or corrected to normal vision as determined by
standard ETCRS acuity charts. The experimental protocol was approved by the Colgate
University Institutional Review Board, and all participants provided written informed

consent before participating, and were compensated for their time.

2.3: Stimuli
The stimulus set consisted of 2250 color photographs taken from 30 different scene

categories (75 exemplars per category), within the SUN database (Xiao et al,, 2014).
Category selection was conducted as to ensure maximally different representational
dissimilarity matrices (RDMs) across three different feature types: visual features, defined
as activations from the penultimate layer of a pre-trained deep convolutional neural
network (Sermanet et al., 2013); object features, defined as a bag-of-words model over
hand-labeled objects (Fei-Fei & Perona, 2005; Lazebnik et al., 2006); and functional
features, defined as hand-labeled scene affordances, taken from the American Time Use
Survey (Greene et al., 2016). The optimization procedure was inspired by the odds
algorithm of (Bruss, 2000). Specifically, we created 10,000 pseudorandom sets of 30
categories balanced across superordinate scene category (10 indoor, 10 urban outdoor, 10
natural landscape). RDMs for each of the three models were constructed, and the inter-
model correlations were recorded. After this initial set of observations, we continued to
create pseudo-random category sets until we observed a set with lower inter-model
correlations than anything previously observed. The number of categories was determined
by balancing the desire to represent the full diversity of visual environments, with the need
to keep the experiment of manageable length.

We selected 75 images per each of the 30 scene categories. When possible, these
were taken from the SUN database. In other cases, we sampled additional exemplars from
the internet (copyright-free images). Care was taken to omit images with salient faces in

them. All images had a resolution of 512 x 512 pixels (subtending 20.8 degrees of visual
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angle) and were processed to possess the same root-mean-square (RMS) contrast
(luminance and color) as well as mean luminance. All images were fit with a circular linear
edge-blurred window to obscure the square frame of the images, thereby distributing

contrast changes around the circular edge of the image (Hansen & Essock, 2004).

2.4: Human Scene Category Distance Measurement

In order to model category distances from human behavior, we conducted a series
of six experiments on Amazon’s Mechanical Turk marketplace. This was necessary because
the long image presentation time in the EEG experiment (750 ms) led to ceiling-level
categorization performance. Each behavioral experiment assessed observers’ judgments of
scene similarity by presenting three items and asking the observer to choose the odd-one-
out. Although this task specifically queries similarity, it has recently been shown to reveal
hierarchical category representations of objects (Zheng et al., 2019). Thus, we use it here as
a measure of scene categorization behavior.

The first experiment queried 608 participants about scene similarity without
constraining the definition of similarity. The other five experiments asked participants to
determine scene similarity with respect to one of five features: global orientation (N=202),
texture (N=176), objects (N=104), functions/affordances (N=99), and lexical (N=820).

For all experiments, participants were selected from a pool of United States-based
workers who had previously completed at least 1000 hits with an approval rating of at
least 95%. Each participant was able to complete as many hits as they wished, and each hit
consisted of 20 trials. Each participant completed between 1 and 227 hits (median: 2 hits).
We collected a total of 5000 hits for the unconstrained similarity experiment, and 1000 in
each of the other five experiments. Thus, a minimum of 24 participants rated each category
triad in the unconstrained experiment, and 5 participants per triad in the remaining
experiments.

With the exception of the lexical similarity experiment, all experiments were
identical though each had a different definition of similarity. Each trial consisted of three
images from three unique categories. These images were presented side by side in a single
row. The participant was instructed to click on the image that was the least similar to the

other two, given the particular similarity instructions for that experiment (Zheng et al.,
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2019). For the lexical experiment, images were replaced with the name of the scene
category on a blank gray background. Each hit was completed in a median work time
ranging from 104 seconds in the texture experiment to 159 seconds in the orientation
experiment, and participants were compensated $0.10 per hit for their time.

From these responses, for each experiment, we created a 30-category by 30-
category distance matrix as follows. Beginning with a 30 x 30 matrix of zeros, for each trial
of each hit, we added one to the matrix entry representing the row of the selected category
and each column of the two alternatives. This represents the participant’s judgment that
the selected image was dissimilar to the other two. We then subtracted one from the matrix
entry representing the non-selected alternatives. This represents the participant’s
judgment that the two non-selected images were deemed to be more similar to one
another. The final distance matrix was normalized to be between 0 and 1, and the off-

diagonal entries were saved to become a regressor in subsequent analyses.

2.5: EEG Experimental Procedure

Participants performed a three-alternative forced choice (3AFC) categorization task
on each of the 2250 images across two ~50-minute recording sessions. All images within
each category were randomly split into two sets, and the image set was counterbalanced
across participants. Within both sets, image order was randomized.

Each trial commenced with a 500 ms fixation followed by a variable duration (500-
750 ms) blank mean luminance screen to allow any fixation-driven activity to dissipate.
Next, a scene image was presented for 750 ms followed by a variable 100-250 ms blank
mean luminance screen, followed by a response screen consisting of the image's category
name and the names of two randomly selected distractor category names presented
laterally in random order. Observers indicated category choice by clicking on the

appropriate category name with a mouse.

2.6: EEG Recording and Processing
High-density 256-channel EEGs were recorded in a Faraday chamber using
Electrical Geodesics Incorporated’s (EGI; Phillips Neuro) Geodesic EEG acquisition system

(GES 400) with Geodesic Hydrocel sensor nets (electrolytic sponges). The online reference
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was at the vertex (Cz), and the impedances were maintained below 50 kQ (EGI amplifiers
are high-impedance). All EEG signals were amplified and sampled at 1000 Hz. The digitized
EEG waveforms were first highpass filtered at a 0.1 Hz cut-off frequency to remove the DC
offset, and then lowpass filtered at a 45 Hz cutoff frequency to eliminate 60 Hz line noise.

All continuous EEGs were divided into 850 ms epochs (100 ms before stimulus
onset and 750 ms of stimulus-driven response). Trials that contained eye movements or
eye blinks during data epochs were excluded from analysis. Additionally, all epochs were
subjected to algorithmic artifact rejection whereby voltages exceeding +/- 100 pV or
transients greater than +/- 100 uV were omitted from further analysis. These trial rejection
routines resulted in no more than 10% of trials being rejected from any one participant.
Each epoch was then re-referenced offline to the net average, and baseline-corrected to the
last 100 ms of the blank interval that preceded the image interval. Grand average vERPs
were assembled by averaging all re-referenced and baseline-corrected epochs across scene
category and participants.

For both encoding and decoding analyses, we improved the signal-to-noise ratio of
the single trial data by building ‘supertrials’ by averaging 20% of trials within a given
category, drawn randomly without replacement (e.g. Cichy et al., 2016; Isik et al., 2014).
This process was repeated separately for each participant. This approach is desirable as we
are primarily interested in category-level neuroelectric signals that are time-locked to the
stimulus.

Topographic plots were generated for all experimental conditions using EEGLAB
(Delorme & Makeig, 2004) version 13.5.4b in MATLAB (version 2016a, The Mathworks,
Natick, MA). Source localization was conducted via EGI's GeoSource 3.0 source-imaging
package and corresponding Geodesic Photogrammetry System (GPS). Individual head
models were obtained from each participant using the photogrammetry system and solved
using GeoSource 3.0 software. The dense array of Geodesic sensor locations obtained from
each participant enables high-resolution finite difference method (FDM) conformal MRI
atlas head models (Li et al., 2016), and demonstrably high source localization accuracy
(Kuo et al,, 2014; Song et al., 2015). Here, the inverse problem was solved using the inverse

mapping constraint LORETA with a regularization a=-3.
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2.7: Decoding Procedure

Prior to analysis, all data were downsampled to 500 Hz to speed computation. For
each participant, scene category decoding was conducted on an electrode-by-electrode
basis in 41 ms windows centered at each time point (i.e. +/- 20 ms around and including
the given time point). Given that the window could not extend beyond the 750 ms image
period, the analysis was truncated at 730 ms. Scene category decoding was conducted
using a linear one-versus-all multi-class support vector machine (SVM), implemented in
Matlab's Statistics and Machine Learning Toolbox (Version 10.0). Accuracy of the SVM
decoder was measured using 5-fold cross-validation, and empirical 95% confidence
intervals for decoding accuracy were calculated across participants along the main

diagonal of the 30 x 30 decoder confusion matrix.

2.8: Encoding Models

We employed a total of 9 different encoding models, representing a range of visual and
conceptual features. Models were chosen for inclusion in this study because they have been
shown to explain significant variance in brain or behavioral data, rather than for biological
plausibility per se. The models fall into four broad classes: three models represent outputs
of multi-scale Gabor wavelet pyramids, or their derivatives (Wavelet, Gist, and Texture);
two models representing activation outputs from a deep convolutional neural network
(dCNN) that used the eight-layer “AlexNet” architecture (Krizhevsky et al., 2012) and was
pre-trained to perform scene classification on the Places database (Zhou et al.,, 2017). For
these models, we chose one lower-level convolutional layer (Conv2), as well as one higher-
level fully-connected layer (FC6). In order to represent higher-level visual information that
we cannot yet obtain directly from images, three models were included whose features
were obtained by human ratings (Objects, Attributes, and Functions). Last, we considered
the semantic similarity across scene categories, operationalized as the lexical distance
between category names. For each model except lexical distance, representational
dissimilarity matrices (RDMs) were created by computing the distance between each pair
of categories in the given feature space using the 1 - correlation distance metric

(Spearman's p).
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2.8.1: Filter Models

2.8.1.1: Wavelets

In order to encode the low-level structural details of each scene, we used the
outputs of a multi-scale bank of log-Gabor filters (Field, 1987) that decompose an image by
spatial frequency, orientation, and spatial location. Such encoders are well-established
models of early visual cortex (e.g. Carandini et al., 2005), as well as front-ends to machine
vision systems (Simoncelli & Freeman, 1995). Each image was converted from RGB to
L*a*b color and passed through a bank of log-Gabor filters at seven spatial frequencies
(0.125,0.25, 0.5, 1, 2, 4, and 8 cycles per degree) and four orientations (0, 45, 90, and 135
degrees). The filters had a spatial frequency bandwidth of approximately 1.5 octaves,
assessed at full width at half height. Thus, each of the three L*a*b channels was
represented by 28 filter outputs, for a total of 84 features per image. We averaged features

across images within a category to create a 30-category by 84-feature matrix.

2.8.1.2: Gist

Each image was described with the spatial envelope (or Gist) descriptor of (Oliva &
Torralba, 2001). These features represent a summary statistic representation of the
dominant orientation contrast at three different spatial frequencies localized ina 8 x 8
window grid across the image. The number of orientations varies with spatial frequency,
with 8 orientations at the highest frequency, 6 in the mid-range, and 4 at the lowest, for a
total of 1152 features (64 windows x (8+6+4) orientations per scale). These features have
been shown to explain significant variance in fMRI and MEG responses throughout visual
cortex (Ramkumar et al., 2016; Watson et al., 2014, 2017). Given their similarity to the log-
Gabor filters described above, following (Oliva & Torralba, 2001), we used linear
discriminant analysis (LDA) to learn weights on the filter outputs that were optimized for
classifying the 30 scene categories of this database. We averaged across images in each

category to create a 30-category by 1152-feature matrix.

2.8.1.3: Texture
Texture features for each image were encoded using the generative texture model of

(Portilla & Simoncelli, 2000). This algorithm analyzes a total of 6495 statistics from an

10
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image, including marginal pixel statistics, wavelet coefficient correlations, wavelet
magnitude correlations, and cross-scale phase statistics. Scenes can be distinguished by
their texture properties (Renninger & Malik, 2004), and texture properties have been
reported to drive activity in both early visual areas such as V2 (Freeman & Simoncelli,
2011), as well as the parahippocampal place area (PPA, (Cant & Goodale, 2011; Lowe et al,,
2017)). As before, we averaged across images in a category to create a 30-category by

6495-feature matrix.

2.8.2: Deep CNN features

We extracted the activations from two of the eight layers in a deep convolutional neural
network (Conv2 and FC6 from a CNN trained on the Places database (Zhou et al., 2017),
using the AlexNet architecture (Krizhevsky et al., 2012), and implemented in Caffe (Jia et
al,, 2014). This CNN was chosen because it is optimized for classification of 205 scene
categories and because this eight-layer architecture is most frequently used when
comparing CNNs to brain activity (Bonner & Epstein, 2018; Cadieu et al., 2014; Cichy et al,,
2016, 2017; Greene & Hansen, 2018; Gii¢lii & Gerven, 2015; Khaligh-Razavi & Kriegeskorte,
2014; Kubilius et al., 2016). We chose Conv2 and FC6 as the layers of interest because they
have been argued to represent typical low- and high-level feature information respectively
and have previously demonstrated fundamentally different encoding behavior with EEG
data (Greene & Hansen, 2018). In the Conv2 layer, 256 5 x 5 pixel filters are applied to the
input with a stride of one pixel, and padding of two pixels, for a total of 27x27x256 =
186,624 features. The sixth and seventh layers of AlexNet are fully-connected, meaning that
they have no retinotopic information, and were designed to have 4096 features each. For
both layers, we averaged across images within each category, creating a 30-category by

186,624-feature matrix for Conv2 and a 30-category by 4096-feature matrix for FC6.

2.8.3: Models of Conceptual Features

2.8.3.1: Objects
We employed a bag-of-words object representation used in (Greene et al., 2016). Each
object or region in each scene was hand-labeled using the LabelMe tool (Russell et al.,

2008). Objects are features that can be diagnostic of scene category (Greene, 2013), and

11
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have been reported to drive activity across occipitotemporal cortex (Harel et al., 2012;
MacEvoy & Epstein, 2011). Across the image set, there were 3563 unique object labels. We
created a 30-category by 3563-object matrix that stores the proportion of scenes in each

category i containing each object .

2.8.3.2: Scene Attributes
We took the measured attribute vectors of (Patterson et al., 2014). The attributes were
obtained by asking human observers to list features that made pairs of images different
from one another in a massive online norming experiment. The resulting attributes consist
of a heterogeneous set of 112 descriptors including aspects of region, material, and spatial
layout. In a second round of normative ratings, Patterson and colleagues asked human
observers on Amazon's Mechanical Turk (AMT) to rate each scene in the SUN database
according to 112 different attributes. Thus, each scene’s attribute rating is the proportion
of mTurk observers selecting that attribute as appropriate for that scene. As before, we
averaged attribute descriptions across category, resulting in a 30-category by 112-feature

matrix.

2.8.3.3: Functions/Affordances
Scene functions were operationalized as a description of the set of actions that a person
could perform in each environment. As with the attributes, these vectors were also created
by workers on AMT who annotated which of 227 actions in the American Time Use Survey
could be done in each of the scenes. Scene functions have been shown to explain the
majority of variance in scene categorization behavior (Greene et al., 2016; Groen et al.,
2018). The final feature matrix consisted of a 30-category by 227-feature matrix in which
each cell stored the proportion of images in a given category i were linked to a specific

action j.

2.8.4: Model of Semantics
Lexical Distance
Last, we included a model of semantic distance between category names, as semantic

distance has been demonstrated to affect early processing and reaction times to objects

12
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and scenes (Neely, 1977). The semantic distance between categories was operationalized
as the shortest path between category names in WordNet (Miller, 1995), as implemented
by the Wordnet::Similarity tool (Pedersen etal., 2004).

2.9: Time-Resolved Encoding Procedure

In order to compare vERP trial data to each of the models in a common framework, we
employed representational dissimilarity analysis (RSA, (Kriegeskorte et al., 2008)). With
this approach, we examined category similarity with respect to each of the nine feature
spaces to scene category similarity with respect to time-resolved vERP activity at each

electrode.

2.9.1: Model Representational Dissimilarity Matrices (RDMs)
For each of the nine models, we created a 30 x 30-category correlation matrix from the
feature matrices described above. Representational dissimilarity matrices (RDMs) were
defined as 1 - Spearman’s p. Importantly, RDMs are symmetric with an undefined diagonal.
Therefore, only the lower triangle of each RDM was included in the analysis, representing
435 pairs of category distances. As shown in Figure 1, substantial correlations exist
between each of the nine models. Therefore, we used a whitening transformation (Bell &
Sejnowski, 1997) in order to decorrelate the feature spaces. Specifically, for each feature
vector x, we sought to obtain a new feature vector z that is uncorrelated to the other
feature vectors. The linear transformation that can achieve this is:

z=Wx
In order to decorrelate each feature, the whitening matrix W must satisfy

wTw =yt
Under these conditions, the covariance matrix ¥ of z is equal to the identity matrix.

However, there are multiple whitening matrices that would achieve this transformation.
Following (Kessy et al., 2017), we opted for the zero-phase component algorithm (ZCA) as
it was found to provide sphered components that were maximally similar to the original
data. In the ZCA algorithm, the whitening matrix is forced to be symmetrical (i.e. WT = W),

and W = X~1/2.In order to visualize the scene category similarity structure for each of the
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nine whitened feature spaces, Figure 2 shows two-dimensional multidimensional scaling

(MDS) solutions for each feature space.

<<Figure 1 about here>>

<<Figure 2 about here>>

2.9.2: Neural RDMs

For each participant, we averaged vERPs across trials within the same category, and then
normalized the resulting averages. For each electrode, we extracted vERP signals within a
41 ms window centered on each time point, beginning 100 ms before scene presentation,
and extending to the entire 750 ms of stimulus presentation, truncating the window as
necessary if the entire 41 ms was not available in an epoch. Thus, each window consisted of
a 41 time-point by 30 category matrix. From this matrix, we created a 30 x 30 RDM using
the same 1 - Spearman metric described above. As before, the lower triangle of this matrix

(435 points) was used as the dependent variable in the regression analyses.

2.9.3: Computing Noise Ceiling

In order to quantitatively assess model fits, we computed the noise ceiling of our
data, following the methods of (Nili et al., 2014). Briefly, the upper bound of the noise
ceiling is an overfit value representing the explained variability of the group mean to
predicting an individual observer whose data are included in the group mean. The lower
bound represents the explained variability of the group mean when the predicted observer
is left out of the group mean. This procedure was performed independently at each time

point.

2.10: Electrode Selection

As the primary goal of this study is to examine the genesis of scene category
representations, for the encoding analyses, we selected only the electrodes containing
significant category information from decoding. Specifically, we used the decoding

accuracies for each electrode to select electrodes for encoding analyses that had accuracy
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values above the 95% confidence interval of the pre-stimulus baseline for at least 10
continuous milliseconds. This amounted to an average of 248 electrodes per participant
(range: 232-256). We averaged across these electrodes for all subsequent encoding

analyses.

2.11: Statistical Analysis

For all encoding analyses, we used a jackknife approach to obtain stable maximum
R2 and latency of maximum RZ2 values for each participant. This was done by iteratively
leaving out one of the participants in turn, and then computing the statistic of interest. The
maximum R2 values for each participant were therefore defined as the maximum R2 from
the mean of the remaining 12 /13 participants, and the latency of the maximum was defined
as the time point when this maximum was observed. All F and t values were corrected
using the methods suggested by (Luck, 2005): namely, that ¢ values were divided by N-1,
and F values were divided by (N-1)2. Group-level significance was assessed via sign test.
Post-hoc t-tests were corrected for multiple comparisons across time points and models

using the Benjamini-Hochberg procedure.

3: Results:

We begin by establishing the role of our nine whitened features in human scene
categorization (Section 3.1) and show the consistency of our vERP results with the existing
literature (Section 3.2). We then establish the availability of scene category information in
VERP data using time-resolved decoding (Section 3.3). Finally, we assess the extent to
which the nine whitened features map to vERP data over time and across task (Section 3.4
and beyond) in order to gain insight into the representational transformations that enable

rapid scene categorization.

3.1: Feature use in Scene Categorization Behavior
3.1.1: Predicting Unconstrained Similarity Judgment from Feature Spaces
We began by establishing the extent to which observers utilize each of the nine
whitened feature models in the unconstrained similarity task. As the long stimulus

presentation time (750 ms) in the EEG experiment led to ceiling-level categorization
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performance, we used the scene similarity results from mTurk (see Section 2.4) as a proxy
for categorization behavior. Although each of the nine feature models in this study have
been strongly associated with scene categorization behavior, this first step ensures that
this holds when the features have been whitened. Further, as most studies only examine a
few features in isolation, this analysis shows the extent to which each feature contributes
to scene category representations.

Collectively, the nine whitened feature RDMs predicted 78% of the variance
(adjusted R?) in the behavioral RDM obtained from the Mechanical Turk participants in the
unconstrained experiment (F(9,425) = 163.8, p<0.0001). The beta coefficients, partial R?,

and p values for each of the RDMs are shown in Table 1.

<<Table 1 about here>>

Most whitened feature RDMs had significant predictive power for the unconstrained
behavioral RDM. The two exceptions were the Gist features and the early dCNN layer
(Conv2). However, as the Gist features were most transformed by the whitening procedure
(see Figure 1), we are not strongly interpreting this result. Lower-level features, including
the filter-based models and the early dCNN model were less predictive of unconstrained
similarity judgments than the higher-level models. Replicating previous observations, the
function-based model was more predictive of scene similarity assessments than the object-
based model (Greene et al., 2016; Groen et al., 2018). However, the two most predictive
models were the upper-layer features of the dCNN (FC6) and the attributes model of
(Patterson et al.,, 2014).

The attribute model is itself a combination of four different feature types:
affordances, materials, surfaces, and spatial properties. Therefore, it is not terribly
surprising that it did so well when compared to individual feature spaces. In order to break
down its predictive power, we created four separate RDMs corresponding to the four
different types of attributes outlined by (Patterson et al.,, 2014): functions/affordances (36
features), materials/objects (36 features), surface properties (12 features), and spatial
layout properties (14 features). We used these four as regressors for the human response

RDM as before. Collectively, the four aspects of the attributes predicted 68% of the variance
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(adjusted R?) in the human RDM (F(4,430) = 231.3, p<<0.0001). Table 2 shows beta

coefficients, partial R2 and p values for each of the four.

<<Table 2 about here>>

Overall, affordances were the most predictive attribute type, followed by the “spatial
envelope” properties which consisted of spatial layout properties such as openness, mean
depth, and level of clutter. By contrast, material properties such as vegetation, asphalt, or
metal, as well as surface properties such as dry, aged, or dirty, contributed comparatively
little to the behavioral RDM. Altogether, these results validate the use of these nine models
for explaining variability in scene similarity and categorization behavior, consistent with

previous results.

3.1.2: Predicting Feature-Based Similarity Judgments from Feature Spaces

Next, we examined how changing the observer’s similarity task alters feature use in
the five feature-based similarity experiments. These similarity experiments yielded RDMs
that were highly correlated with one another (mean r=0.82, range: 0.67-0.94). In order to
focus on the independent predictions made by these experiments, we combined the RDMs
for each of the five experiments into a single data matrix (435 x 5) and performed the same
whitening transform on this matrix, using the same procedure that we employed for the
feature matrix (see Section 2.9.1). The resulting whitened RDMs were all highly correlated
with the original results (mean r=0.73, range: 0.66-0.85), while becoming uncorrelated
with one another.

As with the unconstrained similarity task, each of the five task-driven experiments
were well-predicted by the nine whitened features: R% values ranged from 0.61 for the
lexical task to 0.75 for both functions/affordances and object tasks. Table 3 shows partial
R2 for each feature for each of the five task-driven experiments. In general, we observed
that in each experiment, the pattern of feature use was highly correlated with the
unconstrained similarity task (range: r=0.95 for orientation and lexical to r=0.99 for
objects and functions). That said, there were also substantial task-driven differences, with

higher partial R2 values observed for features that were task-relevant (wavelets for the
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orientation task, functions for the function/affordance task, and lexical features in the
lexical task). One exception seems to be texture and object that appear to be switched in

importance.

<<Table 3 about here>>

In order to understand feature use across the five experiments, we isolated the five
most relevant features from the nine feature spaces: wavelets, which should be most
similar to the orientation task, texture statistics for the texture task, object features for the
object task, functions for the functions/affordances task, and lexical for the lexical task.
Figure 3 shows the regression coefficients for each of the five features (different plots)
across the five experiments (different bars). With the exception of the object features, each
feature had the highest regression weight for the predicted experiment. This result
establishes that feature use differed across experimental task, and that specifically, a
feature was used more when observers were asked to assess scene similarity with respect
to that feature.

<<Figure 3 about here>>

3.2: VERP Data Summary
In this section, we examined the general spatiotemporal structure of the vERPs. Grand
average VERPs and topographic plots are shown in Figure 4a. The topographic plots show
the typical voltage difference scalp topography for observers engaged in viewing complex
visual scenes (e.g. Groen et al.,, 2012; Hansen et al,, 2011, 2012). Figure 4b shows the
source localization results at select time points. The spatiotemporal evolution of the VERP
sources is consistent with previous MEG studies in scene perception (e.g. Ramkumar et al,,
2016), and show a gradual progression over time from primary visual cortices through
bilateral occipito-temporal cortices, with apparent anterior temporal and ventral frontal
cortices late. Therefore, the similarity between the spatiotemporal features of the current
data with previously reported results contextualizes the subsequent modeling and

decoding results within the broader M/EEG literature.
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<<Figure 4 about here>>

3.3: Time-Resolved Decoding

Our main goal is to examine the representational transformations that take place in
the visual system en route to categorization. In order to measure the amount of scene
category information available in vERPs over time, we employed a time-resolved decoding
procedure on VERPs. Figure 5 shows decoding performance across all electrodes over
time. Significant category decoding was observed in nearly all electrodes, with an average
of 248 of the 256 electrodes showing significant category information. Category
information was highest between 100 and 200 ms after stimulus onset, with the maximum
decodable information found on average 198 ms after stimulus onset (range: 142-214 ms).
This corroborates previous accounts of generalized categorization taking place at or

around 200 ms post-stimulus onset.

<<Figure 5 about here>>

Decoding analyses were performed on each electrode individually, allowing us to
examine the pattern of decodable information across the scalp. Specifically, we examined
the differences in decoding across electrodes by computing: 1) the maximum decoding
accuracy at each electrode; and 2) the temporal latency of this maximum value. In addition,
we ordered electrode position from anterior to posterior. We observed a sizable negative
correlation (r =-0.42,95% CI: -0.52 to -0.31, t(12) = 2.71, p < 0.05, see Figure 5) between
the maximum decoding performance and the latency of maximum decoding for an
electrode. This was also observed in the replication experiment (r=-0.42, p<0.0001). This
may suggest that electrodes that carry the most category information also have this
information available earlier, or that later neural responses are less time-locked to
stimulus presentation, driving down the amount of decodable category information.
Further, we found that the overall decoding performance was correlated with electrode
location from anterior to posterior (r = 0.21, 95% CI: 0.08 to 0.32, t(12) = 4.0, p<0.001, see

Figure 5), indicating that decodable category information was concentrated in posterior
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electrodes. An even more pronounced effect was observed in the replication experiment

(r=0,45, p<0.0001).

3.4: Time-Resolved Encoding

3.4.1: All Features

While the decoding analyses establish the amount of specific scene category
information available in the VERPs, the goal of the encoding analyses is to establish the
extent to which a variety of visual and conceptual features collectively explain variability in
the vERPs. Taken together, the nine whitened models predicted significant vERP variability
in electrodes with significant category information (see Figure 6). The maximal explained
variability occurred 98 ms after stimulus onset, on average, and was within the noise
ceiling for nearly the entire epoch. Interestingly, the explained variance of the features was
below the noise ceiling between 176 and 217 ms post-image onset, the same time window
of maximum category decoding. This may suggest that while these nine features are
explaining the perceptual processes leading up to categorization, they may not be capturing
the categorization process itself. For the replication experiment, we observed a similar
maximum RZ (0.11 versus 0.10 in main dataset), with a peak encoding latency that was

slightly earlier (74 ms versus 98 ms).

<<Figure 6 about here>>

Unlike the case of decoding, we did not observe any relationship between the
maximum explained variability in a given electrode and the latency of maximum explained
variability (r = -0.04, 95% CI: -0.16-0.08, t(12) < 1), see Figure 6. However, as we observed
in decoding, there was a reasonably strong spatial relationship between electrode position
(anterior to posterior) and maximum R? (r = 0.36, 95% CI: 0.25-0.47, t(12) = 3.08, p < 0.01,
see Figure 6), indicating that these nine models could best explain activity over the
posterior electrodes. Similar results were found in the replication experiment (r = 0.36,

t(14) = 2.07, p < 0.05). Together, these results show that feature encoding is earlier than
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category decoding, and also primarily driven by posterior electrodes. Our next analyses

will examine which specific features predict variability in ERP signals.

3.4.2: Low-level versus high-level features

Among the nine features are those that can be computed directly from image filters
(low-level features) as well as those that require human annotation (high-level features). In
order to understand the relative contributions of low- and high-level features, we created
two new whitened models using a subset of the nine original models. The ‘low-level’ model
included all of the filter-based models (Wavelet, Gist, and Texture), and the ‘high-level’
model contained all of the human-in-the-loop models (Objects, Functions, and Attributes).
We whitened each model separately and performed the regression analyses on each.
Overall, we found that low-level features explained significantly more variability than did
the high-level features (0.07 versus 0.03, t(12) = 5.81, p<0.0001, d = 2.24, see Figure 7).
We observed a similar result in the replication experiment (0.05 versus 0.03, t(14) = 2.17,p
< 0.05,d = 0.86). When examining the latency of maximum explained variability, low-level
models peaked 88 ms after stimulus onset while high-level features peaked 169 ms after
stimulus onset (t(12) = 3.18, p<0.005, d = 1.31). Similarly, low-level models peaked 74 ms
after stimulus onset in the replication experiment, while high-level models peaked at 159
ms (t(14) = 4.62, p = 0.0002, d = 2.39). Thus, low-level features explain more and earlier
vERP variability, compared with the high-level features. While this may suggest that high-
level features are processed later, it may instead reflect the fact later processes are less
time-locked to stimulus onset, and that the increased temporal variability results in a
smaller overall effect, or that the neural sources for these features are less accessible at the

scalp.

<<Figure 7 about here>>

3.4.3: Individual features
The previous analysis showed that low-level features, on average, explained more

and earlier variability in vERP responses. Here, we took a closer look by examining the
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variability explained by each of the nine whitened models individually, see Figure 8. Table
4 shows the maximum R? and the latency of maximum R? for each of the nine feature
models. We submitted both of these three measurements to a one-way repeated measures
ANOVA with Model (nine features) as the factor. We found that maximum R? differed
significantly across Model (F(8,96) = 7.65, p<7.1e-8, % = 0.99). Overall, the Gist features
explained the most variability in ERPs (R2= 0.026), and explained significantly more
variability than all other features except for Wavelet (t(12) = 1.72, p = 0.06), and Conv2
(t(12) < 1). In a similar manner, Conv2 explained more variability than Wavelet (t(12) =
2.22,p<0.05,d = 0.64), Texture (t(12) = 2.43,p < 0.05,d = 0.98), FC6 (t(12) =2.34,p <
0.05,d = 0.90), and all of the high-level visual features. Texture had higher explained
variance than each of the high-level visual features. We did not observe any significant
differences in explained variability among the high-level features. We observed the same
main effect of Model on maximum RZ in the replication experiment (F(8,112) =5.77,p <
3.7e-6,n*= 0.98), and we furthermore observed a high correlation between maximum R2
values between the two experiments (r = 0.81, t(7) = 3.7, p < 0.008). Although we observed
a numerical tendency for lower-level models to have earlier maximum explained
variability, this pattern was not statistically reliable (F(8,96) < 1). This was also observed
in the replication experiment (F(8,112) < 1).

<<Table 4 about here>>

<<Figure 8 about here>>

3.5: Linking Encoding and Behavior

3.5.1: Linking vERPs to scene similarity assessment

While the previous encoding analyses examine the extent to which various features
explain vVERP responses, they do not provide insight into which parts of the responses are
behaviorally relevant. To bridge this gap, we first used the behavioral RDM from the
unconstrained scene similarity experiment to predict the vERP RDMs. Figure 9 shows the
variability explained over time. We observed an early correspondence of behavioral

similarity and neural similarity: the peak R2 occurred 219 ms post-stimulus. The mean
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maximum explained variability was 0.0093 (18.6% of noise ceiling lower bound, versus
0.008 in the replication experiment), with an earlier secondary peak occurring around 175
ms post-stimulus onset. In the replication experiment, only the earlier peak was evident at

178 ms post-image onset.

<<Figure 9 about here>>

In order to determine how each of the task-driven similarity assessments are
reflected in the vERPs compared with the unconstrained similarity task examined above,
we used each of the five whitened behavioral RDMs from the task-driven similarity
experiments as regressors for the vVERPs. As shown in Figure 10, although using a greater
variety of behavioral predictors led to greater explained variability (max of 0.0093 for
unconstrained similarity experiment, versus a max of 0.027 for the five task-driven
experiments, t(12) = 9.38, p < 3.6e-07, d = 0.91), the time course of the two analyses is
strikingly similar, with peaks of explained variability at around 175 ms and 225 ms post-
stimulus onset. Similar results were found in the replication experiment (maximum RZ:
0.027, peak latency: 178 ms). As shown in the right-hand panel of Figure 10, the earlier
peak was driven primarily by posterior electrodes, while the later peak was driven more by

anterior electrodes, as was observed in the unconstrained similarity experiment.

<<Figure 10 about here>>

While the previous analysis indicated that all five task-driven similarity experiments
explained VERPs in a similar manner as the unconstrained similarity experiment, here we
examined each of the five feature-driven similarity experiments individually. As shown in
Figure 11, each experiment produced a unique profile of explained VERP variability. We
performed a one-way ANOVA on the maximum explained variability for each of the five
experiments and found that there were significant differences across behavioral
experiments in the main EEG experiment (F(4,48) = 3.97, p = 0.0007,12=0.97), as well as
the replication experiment (F(4,56) = 2.63, p < 0.05, 1% = 0.96). Follow-up t-tests revealed

that the lexical experiment explained significantly more variability than the orientation
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(t(12) =2.47,p = 0.015,d = 0.98), texture (t(12) = 2.02, p = 0.033, d = 0.82), object (t(12) =
2.28,p=0.021,d = 0.78), and function (t(12) = 2.69, p = 0.0098, d = 0.98) experiments. By
contrast, a one-way ANOVA examining differences in peak latency did not reveal any
significant differences between the behavioral experiments in either the main EEG

experiment (F(4,48) < 1), nor the replication experiment (F(4,56) < 1).

<<Figure 11 about here>>

3.5.2: Shared R? between scene similarity assessments and features on vERPs

Having established which portions of the vERP response that are linked to scene
categorization behavior, we can now examine how VERP variability is shared by each of the
nine feature models and the behavioral RDMs for both constrained and unconstrained
experiments. This allows us to examine when and how individual features explain
category-relevant portions of the vERP data. Beginning with the unconstrained similarity
experiment, Figure 12 shows time-resolved plots of shared R2 for all feature models and
unconstrained similarity judgment over the time epoch. Table 5 shows maximum shared
R2 and latency of maximum shared R? values for each of the nine whitened features. We
observed a significant difference between features in the maximum shared variability with
unconstrained similarity judgments (F(8,96) = 17.91, p = 4.3e-16,1%2= 0.99 in the main
experiment and F(8,112) = 15.44, p = 4.11e-15, 12 = 0.99 in the replication experiment).
The maximum shared variability ranged from 0.00008 for the Conv2 model to 0.0049 for
the FC6 model and was higher for high-level models than low-level models (0.0018 versus
0.002,t(12) =4.82,p =0.002, d = 1.72 in the main experiment; 0.002 versus 0.0002, t(14) =
5.93, p = 1.84e-05, d = 1.65 in the replication experiment). The latency of maximum shared
variance ranged from 168 ms post-stimulus for the Conv2 model to 235 ms post-stimulus
for Objects. These differences were not statistically reliable when considering all nine
models (F(8,96) < 1 in the main experiment and F(8,112) < 1 in the replication
experiment), nor when comparing the three low-level features (Wavelet, Gist, and Texture)
to the three high-level models (Functions, Objects, and Attributes), (176 versus 200 ms,

t(12) < 1 in the main experiment; 155 versus 201 ms, t(14) < 1 in the replication
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experiment). However, when comparing the latency of maximum shared variability to the
latency of maximum non-shared variability, vERP variability that was shared with behavior
was later on average than non-shared variability (193 ms post-image onset versus 144 ms,
t(12) =12.7, p = 2.4e-08, d = 4.98 for the main dataset, 158 ms versus 138 ms, t(14) = 7.4, p
= 3.28e-6,d = 2.07 for the replication experiment). Therefore, although low-level models
explain more and earlier variability in vERPs overall, they explain less behaviorally-
relevant vERP information when compared with the high-level features, and the time
course of behaviorally-relevant shared variability is slower overall than feature processing

that is not associated with behavior.

<<Table 5 about here>>

<<Figure 12 about here>>

Finally, we followed the same procedure for each of the five task-specific
experiments. The aggregate results are shown in Figure 13. We found that there was no
significant difference in maximum shared variability across the five experiments (F(4,48) =
2.18, p = 0.09, but found a marginal effect in the replication experiment (F(4,56) = 2.81, p =
0.03,1?% =0.84). However, we observed a significant effect of Feature (F(8,96) = 21.67,p =
1.78e-18, 112 = 0.99 in the main experiment, and F(8,112) = 13.3,p = 2.1e-13,12 =0.99 in
the replication experiment). Following up on this result, we found that high-level features
shared significantly more behaviorally-relevant variance with vERPs than low-level
features (0.0007 versus 0.0003, t(12) = 5.08, p =0.00014, d = 1.67 in the main experiment
and 0.0008 versus 0.0003, t(14) = 7.49, p = 1.46e-6, d = 2.04 in the replication study).
Finally, we observed a significant interaction between Feature and Experiment: F(32, 384)
=7.92,p=1.52e-26,m2 = 0.98 in the main experiment and F(32,488) = 11.11, p = 1.8e-39,
12 =0.99 in the replication experiment). Interestingly, this was driven by the fact that the
orientation experiment had higher shared variability with low-level features compared

with high-level (t(12) = 3.21, p = 0.003, d = 1.37 in the main experiment and t(14) = 2.67, p
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=0.009, d = 0.83 in the replication study), while the opposite pattern was found for the four
other experiments. Therefore, although high-level features seem to be more behaviorally-
relevant overall, this can change when the task demands that observers attend to low-level
scene properties. We observed no significant effects of Experiment (F(4,48) < 1 and F(4,56)
< 1) or Feature (F(8,96) <1 and F(8,112) < 1) on the latency of maximum shared variance,
nor a significant interaction between these two factors (F(32,384) < 1 and F(32,448) < 1).

<<Figure 13 about here>>

Thus, compared with the unconstrained similarity experiment, we can see that
changing the behavioral task changes the amount of shared vERP variability with features
that are associated with the task. Specifically, although the wavelet features share little
behaviorally-relevant vERP variability in most experiments, this was not the case for the
orientation task where these low-level features were task-relevant. Similarly, the lexical
features shared more behaviorally-relevant vERP variability in the lexical experiment

compared with the others.

4: Discussion

Visual categorization is rapid and seemingly effortless. However, the initial visual
input must be transformed into alternative representations that allow categories to be
easily distinguished from one another (DiCarlo & Cox, 2007). Here, we sought to
understand the visual processing stages required to transform the retinal image into a
semantically rich categorical representation. We first verified the utility of a variety of
popular visual and conceptual feature models for scene categorization (Section 3.1). Using
time-resolved decoding, we assessed the amount of category-related information available
in VERPs (Section 3.3). We then applied a whitening transformation to the feature models
and assessed their utility for explaining vERPs (Section 3.4). Critically, we then assessed
the shared variability between features and behavior for explaining vERPs (Section 3.5). By
combining encoding, decoding, and behavioral assessments, we can link neural activity to
feature spaces (encoding), as well to the time course of category information (decoding),

and to the internal representations that guide scene categorization behavior.
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Our decoding results revealed that decodable scene category information peaked
between 150 and 200 ms after image onset and persisted across the trial epoch. These
values are consistent with previous M/EEG studies of object- and scene categorization
(Bankson et al.,, 2018; Carlson et al.,, 2013; Cichy et al.,, 2014; Clarke et al., 2013; Ramkumar
etal, 2016). While earlier decoding has been reported for image exemplars (~100 ms,
(Carlson et al.,, 2013; Cichy et al., 2014)), it has remained unclear whether this performance
reflects image identity per se, or the lower-level visual features that are associated with
that exemplar.

In contrast to previous work, we have tested an extensive set of features ranging
from low-level filter outputs to high-level conceptual features that require extensive
human annotation. Each of the nine features used here has been implicated in scene
categorization. Nearly all have been shown to be computationally sufficient for
categorization, and many have striking correlations with brain activity and behavior.
However, because these models are often studied in isolation, and because they are
correlated with one another, it has been difficult to assess the independent contributions of
each. Here, we employed a whitening transformation to the input feature RDMs in order to
decorrelate the feature spaces. Although there is increasing understanding of the need to
partition explained variability for correlated inputs (Bankson et al., 2018; Greene et al.,
2016; Groen et al., 2018; Lescroart et al., 2015), it is difficult to do this for a large number of
input models. We side-stepped these issues by whitening the features before fitting models.
There are many whitening transforms, and we chose the ZCA algorithm because it has been
shown to provide outputs that are best correlated with the original inputs (Kessy et al,,
2017). While this generally held true for the nine models used here, it should be noted that
the gist features (Oliva & Torralba, 2001) were an exception (see Figure 1). Therefore, we
have refrained from strongly interpreting results for that model, particularly the
observation that this feature was not significantly predictive of the behavioral RDM (see
Table 1) given previous reports that gist features can strongly influence categorization
behavior (Greene & Oliva, 2009), vERPs (Hansen et al., 2018), MEG patterns (Ramkumar et
al,, 2016), and fMRI activation patterns (Watson et al.,, 2014).

The current results demonstrate that low-level visual features explained the earliest

variability in vVERPs (~90 ms post-image onset). High-level visual features had the highest
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explained variability 80 ms later (~170 ms), similar to the time course of predicting vERPs
with the unconstrained behavioral data (~175 ms), or the aggregate of all five scene
similarity tasks (Figure 10 and Figure 11). Further, the average peak decoding accuracy
was observed ~200 ms, and peak shared variability for each feature with behavior also
ranged between ~170-230 ms post-image onset. Together, this suggests a progression to
categorization that proceeds from low-level to high-level features.

The observed time course of semantic processing may seem faster than previously
characterized ERPs such as the N400 (Kutas & Federmeier, 2000). Indeed, violations of
scene-object context have been observed in the 250-350 ms post-image window (Mudrik et
al,, 2014), as well as in the classical N400 window (Ganis & Kutas, 2003; Vo & Wolfe, 2013).
However, recent decoding results have shown that these two windows contain similar
image information (Draschkow et al.,, 2018) and may be reflecting similar neural processes.
It is worth noting that the time course of these ERPs reflects an upper bound to the time
course of semantic processing, and that the current encoding and decoding techniques may
reveal the processes themselves while the ERPs reflect the outcomes. However, many
leading theories of the N400 characterize it as a full contextual evaluation of the stimulus
(Kutas & Federmeier, 2000), and this may require a full categorical representation before
this evaluation can take place. Consistent with this idea is our observation that
behaviorally-relevant vERP variance was shared after the decoding peak, particularly for
high-level features (see Figures 6, 7, 8, and 12), suggesting that they contributed both to
category representations and post-categorization processing.

When considering all nine models together, the explained variability for vERPs was
largely within the noise ceiling of the data, indicating that these models’ predictive power
has been maximized, given the noise in the data. We observed two distinct R? peaks, one
around 100 ms after image onset, and the other around 75 ms later (see Figure 6). While
low-level features contributed to both peaks (see Figure 7), most of the contribution from
the high-level models was during this later period (see Table 4). These results are
consistent with other reports of low-level feature encoding (Groen et al.,, 2012; Hansen et
al,, 2011, 2012). Critically, it is only this later peak that is correlated with scene

categorization behavior (see Figure 12). Therefore, although low-level features are critical
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for subsequent categorization, they do not themselves enable categorization, counter to
views of scene categorization being largely associated with low-level features
(Kaping et al,, 2007; Scholte et al., 2009; Torralba & Oliva, 2003).

Our results are congruent with previous ERP studies that have shown that evoked
responses earlier than ~150 ms post-stimulus onset are not correlated with behavioral
measurements (Johnson & Olshausen, 2003; Philiastides & Sajda, 2006; VanRullen &
Thorpe, 2001). However, our results extend those previous findings by allowing us to make
inferences about the visual and conceptual features that are associated with those
behaviorally-relevant neural signals. Specifically, our results indicate that high-level
features share more with scene similarity responses than do low-level features.
Specifically, the higher-level features from the dCNN (FC6) and the attribute model shared
the most variability with vERPs and unconstrained similarity assessment. Deep CNN
models are optimized for categorization, and the representations in their upper layers
reflect this fact. The attribute model, as discussed in Section 3.1 is a heterogeneous model
reflecting human annotations of affordances, surfaces, materials and spatial properties.
Thus, the whitened attribute model likely reflects aspects of texture, objects, and
affordances that are not captured in those individual models.

While much of the scene understanding literature focuses on scene categorization as
an “end point” of the visual recognition process, it is important to recognize that perception
is an ongoing process without a strict end (Groen et al., 2017; Malcolm et al., 2016).
However, categories are highly linked to other behavioral tasks, including object detection
(Davenport & Potter, 2004), visual search (Torralba et al., 2006), and navigation (Bonner &
Epstein, 2018). Therefore, we have utilized two types of behavioral tasks: an unconstrained
scene similarity assessment task that has previously been shown to reveal hierarchical
category representations (Zheng et al., 2019), and a set of five tasks that ask observers to
assess scene similarity with respect to one of five features that were designed to have
observers attend to low- (orientation), mid- (texture), and high-level features (objects,
functions, and lexical). We have shown that changing the task changes the shared
variability between VERPs and features (see Figure 13). Specifically, although some
features share little variability with the scene categorization, they seem to be used when

the task demands it. This is striking because the participants in the behavioral experiments
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were independent of those in the EEG experiment. We are currently extending this
paradigm to change the observers’ task during EEG recording (Hansen & Greene, 2019).
By using a combination of encoding and decoding approaches on high-density EEG
data, we have shown that the visual processes leading up to scene categorization follow a
progression from low- to high-level feature processing from occipital through ventral and
medial temporal cortices in the first 200 ms after scene onset. While low-level features
explain more VERP variability overall, they tend not to share variability with behavioral
tasks, except for when those features are task-relevant. Altogether, these results call into
question models of scene categorization that are based solely on low-level features, and

further highlight the flexible nature of the categorization process.
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Figure Captions

Figure 1: (a) Correlations between the nine original features; (b) Covariance before ZCA
whitening transformation; (c) Correlations after ZCA whitening transformation; (d)
Correlations between original and whitened features. Gist features are the significant
outlier.

Figure 2: Representation of each of the nine whitened feature spaces. To aid visualization,
one representative image from each of the 30 categories is used to plot the category’s
location in a 2D multidimensional scaling (MDS) solution.

Figure 3: Feature use across the five similarity experiments. Each plot is a different feature,
and the regression weight for that feature is shown across each of the five experiments. The
blue bar indicates the experiment with the highest predicted weight. Error bars represent
95% confidence intervals.

Figure 4: (a) Grand averaged vERPs (left), and topographic plots (right) for key time points.
(b) Source-localization solutions from times ranging from 80 to 700 ms post-stimulus.

Figure 5: Left: Decoding performance relative to the false-positive rate observed during the
baseline windows. Top line indicates decoding performance that is significantly over the
false positive rate. Shaded area indicates 95% confidence interval. Right: Latency of
maximum decoding performance and maximum decoding accuracy relative to the false-
positive rate. Each point is an electrode, averaged across participants. Color represents cap
location of electrode from posterior to anterior. Gray line represents the regression line.

Figure 6: Left: Explained variability (adjusted RZ) over time. Blue shaded area indicates the
95% confidence interval, thick black bar indicates statistical significance, and gray shaded
area represents the noise ceiling of the data. Right: Maximum explained variability
(adjusted R?) versus latency of maximum RZ2. Each point is an electrode, and color indicates
electrode position from anterior to posterior. Data are averaged across participants.

Figure 7: Explained variability in vERP signals for low-level (wavelet, gist, and texture,
shown in blue) and high-level (function, object, attribute, shown in orange). Shaded regions
represent 95% confidence intervals. Solid lines indicate statistically significant explained
variability over baseline (sign permutation test).

Figure 8: R2 values for each of the nine whitened feature models for explaining vERPs,
averaged over all electrodes with significant category information.

Figure 9: Left: Explained variability (adjusted R%) over time for behavioral RDMs for all
electrodes with significant category information. Shaded area indicates 95% confidence
interval. Right: Maximum explained variability and latency of maximum explained
variability for each of the 256 electrodes. Point color indicates electrode position in the net.
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Figure 10: Left: Explained variability (adjusted R%) over time for behavioral RDMs for all
electrodes with significant category information. Each of the five task-driven experiments
was a predictor here. Shaded area indicates 95% confidence interval. Right: Maximum
explained variability and latency of maximum explained variability for each of the 256
electrodes. Point color indicates electrode position in the net.

Figure 11: Left panels show explained variability (R?) over time of each of the five task-
driven similarity experiments for vERPs. Shaded gray regions reflect 95% confidence
intervals. Right panels show the relationship between electrode position, maximum RZ, and
latency of maximum R? for the same experiments.

Figure 12: Shared explained variance between each of the nine feature models and the
RDM for unconstrained scene similarity judgments over time.

Figure 13: Shared variability of each feature (columns) with vERPs across each of the five
task-driven experiments (rows).
Table Captions

Table 1: Regression coefficients, partial R%, and p values for each of nine feature RDMs in
predicting dissimilarity matrix from human observers’ rankings.

Table 2: Regression coefficients, partial R2, and p values for each of the four attribute types
that constituted the full attributes model.

Table 3: Partial R2 for each feature (row) in each task-driven experiment (column).
Table 4: Maximum RZ and latency of maximum RZ for each of the nine encoding models.
Table 5: Statistics of shared variability between features, unconstrained behavior, and the

nine feature models. Displayed are maximum RZ and latency of maximum R? for each of the
nine encoding models.
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Table 1

Feature Beta Partial Rz p
Wavelets 0.014 0.016 0.009
Gist 0.005 0.002 0.34
Texture 0.011 0.009 0.047
Conv2 0.003 0.0008 0.55
FCé 0.121 0.543 <2e-16
Functions 0.080 0.339 <2e-16
Objects 0.034 0.084 9.7e-10
Attributes 0.141 0.615 < 2e-16
Lexical 0.024 0.044 1.09e-05
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Table 2

Model Beta Partial Rz p
Affordances 0.43 0.35 <2e-16
Materials 0.17 0.07 1.22e-08
Surfaces 0.054 0.02 0.00559
Spatial Envelope 0.17 0.12 4.28e-14




s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
=)

Table 3

Feature Orientation | Texture Object Functions Lexical
Wavelet 0.057 0.013 0.013 0.017 0.007
Gist 0.012 le-05 0.002 0.0002 0.004
Texture 0.0008 0.0009 0.019 0.003 2e-5
Conv2 0.017 0.026 0.006 0.028 0.019
FCé6 0.526 0.498 0.542 0.526 0.415
Functions 0.121 0.147 0.251 0.262 0.203
Objects 0.058 0.108 0.009 0.090 0.040
Attributes | 0.466 0.597 0.566 0.569 0.298
Lexical 0.017 0.003 0.040 0.024 0.107
Total R2 0.70 0.74 0.75 0.75 0.61
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Table 4

Model Maximum R2 Latency of max R?
Wavelet 0.015 69

Gist 0.026 85

Texture 0.014 100

Conv2 0.023 104

FCé 0.015 205

Function 0.009 135

Object 0.009 238

Attributes 0.008 183

Lexical 0.007 146
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Table 5

Model Maximum R2 Latency of max (ms)
Wavelet 0.00024 178
Gist 0.00017 176
Texture 0.00024 175
Conv2 0.00008 168
FCé 0.00494 226
Functions 0.00167 184
Objects 0.00070 235
Attributes 0.00317 179
Lexical 0.00041 216




