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Abstract—Motivation: The question of what combination of attributes drives the adoption of a particular software technology is critical

to developers. It determines both those technologies that receive wide support from the community and those which may be

abandoned, thus rendering developers’ investments worthless. Aim and Context: We model software technology adoption by

developers and provide insights on specific technology attributes that are associated with better visibility among alternative

technologies. Thus, our findings have practical value for developers seeking to increase the adoption rate of their products. Approach:

We leverage social contagion theory and statistical modeling to identify, define, and test empirically measures that are likely to affect

software adoption. More specifically, we leverage a large collection of open source version control repositories (containing over 4 billion

unique versions) to construct a software dependency chain for a specific set of R language source-code files. We formulate logistic

regression models, where developers’ software library choices are modeled, to investigate the combination of technological attributes

that drive adoption among competing data frame (a core concept for a data science languages) implementations in the R language:

tidy and data.table. To describe each technology, we quantify key project attributes that might affect adoption (e.g., response

times to raised issues, overall deployments, number of open defects, knowledge base) and also characteristics of developers making

the selection (performance needs, scale, and their social network). Results: We find that a quick response to raised issues, a larger

number of overall deployments, and a larger number of high-score StackExchange questions are associated with higher adoption.

Decision makers tend to adopt the technology that is closer to them in the technical dependency network and in author collaborations

networks while meeting their performance needs. To gauge the generalizability of the proposed methodology, we investigate the

spread of two popular web JavaScript frameworks Angular and React, and discuss the results. Future work: We hope that our

methodology encompassing social contagion that captures both rational and irrational preferences and the elucidation of key measures

from large collections of version control data provides a general path toward increasing visibility, driving better informed decisions, and

producing more sustainable and widely adopted software.

Index Terms—choice models, social contagion, technology adoption, library migration, software supply chain

✦

1 INTRODUCTION

O PEN source has revolutionized software development
by creating and enabling both a culture and practice

of reuse, where developers can leverage a massive number
of software languages, frameworks, libraries, and tools (we
refer to these as software technologies) to implement their
ideas. Open source allows developers, by building on the
existing work of others, to focus on their own innova-
tion [1], [2], [3], [4], potentially reducing lead times and
effort. This approach, however, is not absent of risks. For
example, if a particular technology chosen by a developer
is later supplanted by another, incompatible technology, the
support for the supplanted technology is likely to dimin-
ish. Reductions in support for the supplanted technology
result in increased effort on the part of the developer to
either provide fixes upstream or to create workarounds in
their software. Furthermore, the value of the developer’s
creation to new downstream projects may diminish in fa-
vor of the now more popular alternative technology. As a
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consequence, both the importance of a developer’s prod-
uct and their reputation may suffer. To remedy these two
risks, developers must understand how attributes of their
software products may be perceived among potential and
actual downstream adopters (consumers of the technology),
especially in relation to alternative, competing technologies
these adopters may have. It is natural, therefore, to adopt
the position that open source software development should
be investigated from a supply chain perspective, which
also pertains to distributed decision and supply networks
among different stakeholders. We refer to the collection
of developers and groups (software projects) producing
updates (patches and new versions) of the source code as
a Software Supply Chain (SSC) [5], [6]. The upstream and
downstream links from project to project are represented by
the source code dependencies, sharing of the source code,
and by the contributions via patches, issues, and exchange
of information. While the product adoption in supply chains
has been well studied [7], [8], [9], [10], little is known or
understood about how developers choose what components
to use in their own software projects.

As a complex dynamical system, every player in the
open source ecosystem may have their specific set of pref-
erences or biases, which can affect the ultimate outcome
of wide (or narrow) adoption and/or entire abandonment
of formerly popular technologies. These decisions are not
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only based on technical merit but the availability and
accessibility of relevant information along with the tastes
of consumers(adopters). Furthermore, these SSC networks
may severely limit developer choices at the particular point
in time when they need to make decisions on which compo-
nents or technologies to use based on what components they
are aware of and how much time or inclination they have
to investigate the relative merits of the possible choices.
This suggest the potentially strong influence of default
choice well documented in behavioural economics. Hence,
in contrast to common conventions, we should not simply
model the preferences of individual developers but must
also take into account the complexity of the supply networks
and their specific position within them.

We want to address this major gap in knowledge em-
pirically by using a very large data source comprising
version control data of millions of software projects. Our
methodology involves using this data to construct software
supply chain networks, identifying software technology
choices, theorizing about factors that characterize the de-
veloper and the technologies they chose, and finally fitting
and interpreting the models for specific technology choices
and, thus, characterizing the implicit primary factors (social,
behavioural, and rational) they may use to make their
decision.

Despite the practical and theoretical importance of the
question how developers make technology choices, the ex-
tant literature does not offer theoretical guidance on this
subject. We, therefore, leverage social contagion theory,
which has been effective, among other things, in clarifying
key aspects of organizational adoption of technology [11],
[12]. Social contagion theory mimics models of the spread
of contagious diseases but apply them in the behavioral/-
social context instead of the physiological one. The first key
concept is exposure or how widespread the infectious agent
is in the population. In our case the agent is a specific
technology and the population is the entire collection of
FLOSS repositories. Exposure is critical in epidemiology
because without exposure a disease can not spread. This
brings us to
RQ1: Does the exposure to a technology, such as the number
of FLOSS repositories in existence, the rate at which new
repositories are adopting this technology, or the number of
high-score questions on StackExchange affect the decisions
of the developers to adopt that technology?

The second key concept is infectiousness: a highly viru-
lent agent is more likely to spread in a population. We deal
with technologies (groups of packages), so in our case we
would like to establish:
RQ2: Will extremely attractive technology (with few open
issues, short response times to issues or pull requests, heavy
activity and many authors), be more likely to be adopted?

The final concept is proximity: some infectious agents
may not survive the travel through air or physical barriers,
thus halting their spread. In our case, the distance from
a developer to a technology is not physical, but it may
be represented by the technological constraints (lack of
compatibility with other technologies the developer already
uses), need for certain performance characteristics, or a
social distance to collaborators who are working with other
developers already exposed to the technology or a related

one. Hence:
RQ3: Will proximity of a developer or a project to a technol-
ogy increase the rate of adoption? More specifically, RQ3a:
will the proximity of a developer to a related technology
used by a developer increase the chances of adoption;
RQ3b: will the proximity of a developer to collaborators
who already use the technology or a related one increase the
chances of adoption?; RQ3c: will the performance require-
ments of the project a developer is working on increase the
chances of adoption of a technology that has the desired
performance attribute?.

To answer RQs, we need to collect data on the actual
choices made by developers, operationalize key theory-
based measures, and reconstruct the past states (historical
states before adoption) of all public software projects that
may choose the technology under study. For example, for
a project that chooses Technology A in January 2014, we
need to establish how many other projects have used A
before that date (exposure), what average response time
to issues the project had at that time (infectiousness), and
what actions the developer making the choice to add the
dependence had prior to that point in time, including her
social network, technology network, etc.

To exemplify the proposed methodology, we investigate
the rapidly growing data-science software ecosystem cen-
tered around the R language. One of the key technology
choices in this area are the data structures used to store
data (in the data-science sense). R has two major competing
technologies implemented in packages1 data.table and
tidy. (a more detailed introduction of these two packages
is given in Sec. 4). To gauge the generalizability of the
proposed methodology, we applied2 our approach to inves-
tigate the spread of two modern popular web JavaScript
frameworks Angular and React.

Our research provides several theoretical and practical
innovations. From the theoretical standpoint, the novelty
of our contribution first lies in introducing social conta-
gion theory that provides first-principles based methods
to construct hypotheses and to determine measures that
should affect technology adoption. The second novelty is
the context in which we investigate technology choices, i.e.,
a complete SSC [13], [14], not restricted to a set of projects or
ecosystems. Third, we use regression models to understand
how macro trends at the scale of the entire SSC emerge from
actual decisions the individual developers make to select a
specific software technology. More specifically, as a result of
contextualizing social contagion theory through SSCs, our
approach provides novel measures, such as proximity in
a dependency network and authorship network, questions
and answers with high score in Q&A, performance needs,
and total deployments, that strongly affect the spread of
technology and that were not used in prior work on library
migration.

From the practical standpoint, our contribution consists
of proposing a method to explain and predict the spread of

1. We use ‘package’ in the rest of our paper as a synonym for
‘technology’, since most software technologies are implemented in
package format for use and ‘package’ is more appropriate to use in
analysis.

2. Source code and result are provided in https://github.com/ssc-
oscar/PackageAdoptionAnslysis
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technologies, to suggest which technologies are more likely
to spread in the future, and suggest steps that developers
could take to make the technologies they produce more
popular. Developers can, therefore, reduce risks by choosing
technology that is likely to be widely adopted. The support-
ers of open source software could use such information to
focus on and properly allocate limited resources on projects
that either need help or are likely to become a popular
infrastructure. In essence, our approach unveils previously
unknown critical aspects of technology spread and, through
that, makes developers, organizations, and communities
more effective.

In Sec. 2 we introduce the diffusion of innovation, social
contagion, and the application of choice models. In Sec. 3,
we describe the dataset and how we operationalize software
supply chain. Choice model theory and our candidate tech-
nology are introduced in Sec. 3.5 and Sec. 4.1 respectively.
In Sec. 4, operationalization of attributes of choice model
is illustrated. Sec. 5 describes and interprets the result of
applying the choice model. Related work is discussed in
Sec. 7 and major limitations are considered in Sec. 6. We
summarize our conclusions and contribution in Sec. 8.

2 CONCEPTUAL BACKGROUND

We draw on methodologies from a diverse set disciplines.
The phenomena we are investigating is often called adop-
tion [15] or diffusion of innovation [16]. Both theoretical
approaches model how products or ideas become popu-
lar or get abandoned. We would like to fit such models
and, in order to do so, find relevant set of predictors that
have theoretical justification. Fichman [17] considered how
internal factors such as resources and organization predict
innovations in commercial enterprises, and DiMaggio [18]
included the factor of environment as well. The adopters
of the technology may influence non-adopters over time.
Angst et al. [11], use the concept of social contagion [19],
which consists of observation, information transmission,
and learning to study spread of electronic health records.
These concepts are familiar to any open source developer.
More specifically, in addition to purely social contagion,
we also have technical dependencies that act as strong con-
straints on developer actions. The signaling theory applied
for social coding platforms [20], [21] provides some specific
guidance as to what may motivate developers to chose one
project over another. Many of the actions developers take on
GitHub are focused on building or maintaining their reputa-
tion, hence they pay a particular attention to measures such
as activity, numbers of participants, or “stars”3.

The basic premise of social contagion theory is that
developers may observe the actions and decisions of others,
communicate them, and learn to emulate them over time.
This premise implies that groups and individuals who are
in social and spatial proximity to prior adopters are more
susceptible to the influence of prior adopters of technology.
This susceptibility (synonymous with potency or infectious-
ness of influence) is likely to result in an increased likelihood

3. placing a star on a GitHub repository allows a developer to keep
track of projects they find interesting and to discover similar projects in
their news feed.

to adopt the same technology [11]. Notice, that the suscep-
tible to influence of prior adopters represents non-rational
behaviour. Rational behaviour would require developer to
choose the best technology irrespective of social influences.
It may also represent cognitive bias of the default choice.
The developer may not know about the alternatives if
their social or technical networks do not present them with
an encounter with alternatives. This would represent the
irrational bias toward default choice. These precursors of
spread, if measured and calibrated with the actual level of
technology spread, would provide the relative importance
of each factor in driving the adoption and provide the un-
derstanding to help developers choose technologies wisely
and provide hints on how to make their own technology
more widely adopted. Fortunately, the mathematical adop-
tion models have been developed and refined over time.
A variation of multinomial regression models also called
choice models [22] can be used to describe the behavior of
a decision maker given a set of alternatives. Choice models
have been used successfully in the fields of marketing [23],
[24], [25], [26] and economics [27], [28], [29] to understand
how consumers make choices. Adapting and applying these
regression models to technology adoption, we focus on a
developer, or more precisely, a software project as a decision
maker. The actual decision is operationalized as the first
among the alternative technologies that a project in a com-
mit modifying one of the files within a repository. As with
the social contagion theory, two types of predictors can be
included: properties of the choice (i.e., the technology) and
properties of a decision maker (i.e., the project or individual
developer).

Equiped with this theoretical and modeling framework,
we set out to address RQ1 and RQ2 by empirically charac-
terizing the spread of software technology through analysis
of a very large collection of version control data intro-
duced in [30] which is referred to as WOC-DATA in this
paper. WOC-DATA is used to construct the SSC [31], [32]
by determining dependencies among software projects and
developers, then by characterizing these projects according
to their technical characteristics and supply chains. The
social contagion and signaling theories allow us to select
meaningful measures for the decision makers and for their
choices.

3 CONSTRUCTING SOFTWARE SUPPLY CHAINS

Source code changes made in software projects are recorded
in a VCS (version control system) used by the software
project. Many of the projects are using git as their version
control system, sometimes with historic data imported from
SVN or other VCS used in the past. Code changes are typ-
ically organized into commits that make changes to one or
more source code files. Internally, the Git database has three
primary types of objects: commits, trees, and blobs [33].
Each object is represented by its sha1 value that can be used
to find its content. The content of a blob object is the content
of a specific version of a file. The content of a tree object is,
essentially, a folder in a file system represented by the list
of sha1s for the blobs and the trees (subfolders) contained
in it. A commit contains the sha1 for the corresponding tree,
a list of parent commit sha1s, an author string, a committer
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string, a commit timestamp, and the commit message. Fig. 1
illustrates relationships among objects described above.

Fig. 1: Git objects graph

We utilize all Git objects (1.1 billion commits and 4
billion of blobs and trees) from WOC-DATA to construct
the relevant supply chain, social, and adoption measures.
For our analysis we create mappings among these objects
and their attributes, e.g., filename to associated blobs.

3.1 Software supply chain

In traditional supply chains [34], [35], [36], [37], [38], the
networks include material, financial and information rela-
tionships. Similar concepts can be operationalized in the
software domain, with developers or projects representing
the nodes and information transfer or static dependencies
among projects representing links. Based on the character-
istics of the software domain, especially the open source
community, and the ability to measure various attributes
relevant to technology adoption, we consider two different
types of network relationships: dependency networks, and
authorship networks.

3.2 Measuring the dependency network

While many types of static dependencies exist, here we
focus on explicit specification of the dependency in the
source code. For example, ‘import’ statements in Java or
Python, ‘use’ statements in Perl, ‘include’ statements in C,
or, as is the case for our study, ‘library’ statements for the R
language.

We analyze the entire set of 4 billion blobs existing in the
database at the time of the analysis using following steps:

1) Use file to commit map to obtain a list of commits
(and files) for all R language files by looking for the
filename extension ‘.[rR]$’

2) Use filename to blob map to obtain the content for
all versions of the R-language files obtained in Step
1

3) Analyze the resulting set of blobs to find a statement
indicating an install or a use of a package:

• install\.packages\(.*"PACKAGE".*\)

• library\(.*[\"’]*?PACKAGE[\"’]*?.*\)

• require\(.*[\"’]*?PACKAGE[\"’]*?.*\)

4) Use blob to commit map to obtain all commits that
produced these blobs and then use the commit to
determine the date that the blob was created

5) Use commit to project map to gather all projects that
installed the relevant set of packages

Fig. 2: Project discovery

These steps are illustrated in a flowchart in Fig. 2. In
Fig. 2, the rectangular boxes represent inputs and outputs,
and ovals represent maps or dictionaries we utilized in this
study. f2b stands for filename-To-blob map, b2cnt stands
for blob-To-content map, b2cmt stands for blob-To-commit
map, and cmt2prj for commit-To-project map. The number
on the left side represents the unique number of correspond-
ing objects.

A similar approach can be applied to other languages
with suitable modification in the dependency extraction
procedures, since different package managers or different
languages might require alternative approaches to identify
dependencies or the instances of use.

In addition to dependencies, we also need to obtain mea-
sures that describe various aspects of social relationships
among developers because the theories of adoption, such
as social contagion theory we employ, need measures of
information flows among individuals as an important factor
driving the rate of adoption.

3.3 Measuring the authorship network

The authorship network can be viewed as the process of de-
velopers working with other developers either by implicitly
learning skills from other’s contribution (source code) or by
explicitly communicating through emails or discussion plat-
forms. Here we focus on the former mode of communication
since the bulk of direct communication may be private. We
consider two types of links among developers. A weak link
exists between a pair of developers if they commit in at least
one project that is common between them and a strong link
exists if they change at least one file in common.

3.4 StackExchange

StackExchange is a popular question answer website related
to programming. When people search for information there
they may notice answers that suggest the use of either
tidy or data.table (discussion about choosing these
packages is in Sec. 4.1) and, consequently, might be inclined
to incorporate one of these packages into their own code.
The latest (2017-12-08) StackExchange data dump including
57GB of posts was imported into MongoDB, out of which
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6k questions (excluding answers) were found to be related
to either data.table or tidy by searching for these two
terms in the title or the content of the post. We operational-
ize two measures: one counts the total number of posts
while another measure counts only questions that have a
score above 20 to gauge the amount of high-score content
that is likely to be referred to from search engines.

3.5 The Choice Model

The choice set (set of alternatives) needs to exhibit three
characteristics to be able to fit a discrete choice model.
First, the alternatives need to be mutually exclusive from
the perspective of decision maker, i.e., choosing one alter-
native means not choosing any other alternative. Second,
the choice set must be exhaustive meaning all alternatives
need to be included. Third, the number of alternatives must
be finite. The last two conditions can be easily met in our
case: Our choice set consists of two packages - data.table
and tidy; Decision makers are restricted into the group of
projects in our collection where either of those two packages
is installed. To ensure the choices are mutually exclusive we
model the choice of the first technology selected.

In this paper we applied the mixed logit model
to study developers’ choice over analogous R packages
(data.table v.s. tidy). While many variations of choice
models exist, the mixed logit model has the fewest assump-
tions on the distribution of the choice. Here we are not
trying to solve the classical choice model which, for exam-
ple, assumes a complete knowledge about the alternatives
and produces implicit utility function. Instead, we simply
look for factors that strongly affect the decisions developers
make, whether these factors may be rational or related to
cognitive or social biases.

3.6 Issues

It is reasonable to believe that the number of issues and
how an issue is solved during the development of a software
package may affect a developer’s choice. This factor belongs
to a set of rational choices. To measure it we collect the issues
reported during the development of data.table and tidy

packages. Since both packages are hosted on GitHub, we use
GitHub API to scrape all issues4 reported for both packages.
We collected 2.6k issues for the data.table and 1.6k issues
for the tidy.

4 CASE STUDY

4.1 Selecting candidates for study of adoption

We chose software technologies from the data science
ecosystem of projects using the R language because several
of the co-authors are knowledgeable and have decades of
development experience in R, and we, therefore, do not
need to seek external experts to provide interpretations of
the findings. As with most language-based ecosystems, the
core language provides only basic functionality with most
of the external packages being maintained in CRAN and

4. Notice that GitHub API treats pull requests as issues
(https://developer.github.com/v3/issues/), and we dropped the pull
requests from all collected issues.

Bioconductor distributions. Each package can be thought as
presenting a technology choice. Since the technologies of
storing and managing data are crucial in data science, we
selected two widely used such technologies: data.table
and tidy.

Apart from the dataframe package that is a part of core
R language, data.table and tidy* are the two other most
popular packages for data manipulation5. More specifically,
tidy* represents a list of packages that share an underlying
design philosophy, grammar, and data structures that are
built for data science in R. Hadley Wickham, the Chief
Scientist at RStudio and the main developer of tidy*, de-
veloped a family of packages called tidyverse to facilitate
the usage of tidy* packages by assembling them into one
meta package. We extract a set of packages from tidy* that
share similar functionalities with data.table and refer to
all of them here as the tidy package. This includes tidyr,
tibble and readr packages.

data.table was written by Matt Dowle in 2008 and
is known for its speed and the ability to handle large data
sets. It’s an extension of base R’s data.frame with syntax and
feature enhancements for ease of use, convenience and pro-
gramming speed. It’s built to be a comprehensive, efficient,
self-contained package, to be fast in data manipulation,
and it has a succinct DSL (domain-specific language). Con-
versely, tidy focuses on the beauty of function composition
and data layer abstraction which enable users to pull data
from different databases using the same syntax.

In addition to the case study in R domain, we selected
another case study focusing on the Javascript ecosystem.
JavaScript6 is the most popular programming language and
has been commonly used in developing web applications,
where one or more web frameworks were involved. Among
all successful web frameworks, Angular and React are
two of the most successful and widely supported by big
technology companies (Google7, Facebook8). Together, the
massive amounts of adoption data, similar functionali-
ties and corporate support from leading companies, make
Angular and React a suitable comparison group for the
investigation of technology adoption. The selection of the
second case study was based on concerns about the gen-
eralizability of the findings from the R domain to other
ecosystems. We, therefore, attempted to find a case that is
radically different in a number of dimensions. We contrast
the domain, scale, and governance principles in the second
case study. Specifically, the mundane data management
tasks supported by data.table/tidy and the need to cre-
ate an engaging user interface in Angular/React contrast
not only the domain of application, but also the types of
functionality that is being implemented. Regarding scale,
the R ecosystem is used by a relatively small number (a
few thousand) of data analysts, while the Angular/React
ecosystems are used by tens of thousands of web devel-
opers. Both tidy and data.table follow the community
development model. Angular and React, in contrast, are
primarily funded by corporate sponsors.

5. Based on WOC-DATA in https://bitbucket.org/swsc/overview/
src/master/deps/README.md

6. https://stackify.com/popular-programming-languages-2018/
7. https://en.wikipedia.org/wiki/Angular˙(web˙framework)
8. https://en.wikipedia.org/wiki/React˙(web˙framework)
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4.2 Data collection

We leveraged both WOC-DATA and WOC [30] infrastruc-
ture for data collection and filtering. According to [30],
WOC-DATA approximates the entirety of public version
control and includes major forges such as GitHub, Bit-
Bucket, GitLab, Bioconductor, SourceForge, the now defunct
Googlecode, and many others and contained over 46M
projects at the time of analysis. WOC-DATA production
involves discovering [39] and cloning the projects, extract-
ing Git objects from each repository, and then storing these
objects in a scalable key-value database.

WOC is an open source data mining infrastructure 9 [30],
which provides not only APIs for extraction of development
data on various levels for open source projects, but also of-
fers intermediate collections and results which are extremely
useful for studying domain knowledge. In particular, as
illustrated in Fig. 2 and Sec. 3.2, we used the collection of all
R file names and maps of file-to-blob, blob-to-content, blob-
to-commit and commit-to-project to discover our targeted
projects. Meanwhile, for each project, we found the first
commit in which data.table or tidy was imported by
sorting the commit time. By querying the content for this
first commit, we learned the author of the commit, the
commit message, etc. We set this first commit time as the
end point of our analysis for each project, as it is at this
time that the developer’s choice between data.table or
tidy becomes clear. For every targeted project, we evaluate
explanatory behavior, activities, and relationships as com-
puted before this end point, so that the analysis considers
all factors as they were at the time the choice was made.

We further refined the list of projects because a large
fraction involved forks of other projects. One of the most
typical ways to make contributions to the development of a
project on GitHub is by creating a fork of the project, making
changes to this clone, and then sending a pull request to the
original project. As a result, a popular project may have hun-
dreds of forks that share a large portion of the source code
and commit history. These forks are not equivalent to the
original projects from which these forks were created and,
therefore, were removed from consideration. To detect and
delete these forks, we classify projects based on common
commits, i.e., a pair of projects are linked if they have at least
one commit in common. Based on these links, a transitive
closure produces disjoint clusters. Each cluster represents a
single observation in our study. The date when the first blob
containing the focal technology was created is used as the
technology adoption date for this cluster.

The extraction of the supply chain data for these two
packages started from 1.4M R files in the entire WOC-
DATA collection, with 70K blobs (versions of these files) that
contained information pointing to the installation of either
package. As a result, fewer than 20K commits were found
that produced these 70K blobs. Then by using the commit-
to-project map in WOC, we identified around 24K projects
(7K for tidy and 17K for data.table) that installed either
data.table or tidy between June, 2009 and January,
2018. After removing forks, we were left with a total of
8,303 projects (2,660 for tidy and 5,643 for data.table).
Furthermore, we removed 4,961 data.table adoptions

9. https://github.com/ssc-oscar/Analytics

occurring prior to June 16, 2014, the date when tidy was
first introduced. Thus, while data.table predates the
introduction of tidy, our analysis focuses on the period
of time when both choices are available.

We applied a series of similar procedures (as described
above for data.table and tidy) on Angular and React,
and found the list of projects, which at some point in the
past have adopted either Angular or React. The only
difference in the Angular and React case is that Javascript
projects (deployed via NPM) usually record dependency
information in a specific file named ‘package.json’, and we
went through all of the versions of the ‘package.json’ file in
WOC to identify projects that adopted either Angular or
React. In summary, we identified 292494 projects (100894
for Angular, 191600 for React) that adopted either Angu-
lar or React.

4.3 Operationalizing Attributes for Regression Models

In this section, we define and justify the variables that
quantify the key attributes pertaining to the set of software
choices available to developers, as well as the characteristics
of the developers making the choices. To this end, we
propose 11 variables that seek to capture the key factors that
may have influenced developers’ choice of data.table or
tidy, Angular or React. To streamline the presentation
of the operationalizations of the variables in both studies,
we only describe the operationalization for the R domain
and note differences, if any. All of these attributes apply to
the Javascript domain as well. These variables are listed in
Table 1 and described in more detail below.

# commits and authors (Cmts & Aths) are the number
of commits and authors, respectively, and aim to capture the
size of a project, as project size which may affect package
adoption. Larger projects, for example, may prefer less
controversial, more conservative package choices. This is a
quality of the choice, so it would most closely fit under the
“infectiousness” category according to the social contagion
theory. We chose not to use lines of code (LOC) as a measure
of size, since it has a less stable distribution than the number
of commits, while, at the same time, being highly correlated
with it. Operationally, for a particular adopter, we collected
all commits prior to the end point (i.e., the first adoption
of one of the two targeted packages) by applying the
project-to-commit map followed by a time point filtering.
We extracted the authors of these commits and counted the
number of unique authors.

# projects of deployments (CumNum) is the overall
number of project deployments of tidy or data.table.
A larger CumNum should increase the chance that a de-
veloper would be aware of, and get exposed to, a partic-
ular package and may influence the developer’s package
adoption decision. This measure falls within the “exposure”
category of contagion, because it quantifies the chances that
a developer may become a user of the technology. This is
characterized as a factor that is not rational, as the project
is hypothesized to be biased towards technology that they
are more likely to encounter, not necessarily technology
that would be optimal for that project. To assess CumNum
for a given package, we counted the number of projects
that adopted data.table and tidy, respectively, before a
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TABLE 1: Independent variables

Independent variables Annotation Category Property type Data source

CumNum the total number of projects that deployed the package exposure choice related WOC
RplGp the time gap until the first reply to an issue infectiousness choice related GitHub API
Unrslvd the number of open issues over the number of all issues infectiousness choice related GitHub API
StckExch the number of questions with score above 20 related to either package exposure choice related StackExchange dump
C boolean, indicating whether a project contains C file proximity decision maker WOC
Cmts the number of commits infectiousness decision maker WOC
Aths the number of authors/developers infectiousness decision maker WOC
Prx2TD the proximity to tidy through dependency network proximity decision maker WOC
Prx2DT the proximity to data.table through dependency network proximity decision maker WOC
AthPrx2TD the proximity to tidy through authorship network proximity decision maker WOC
AthPrx2DT the proximity to data.table through authorship network proximity decision maker WOC

decision was made by the developers of the package under
evaluation.

# open issues over all issues (Unrslvd) can be an
indicator of package quality. A higher fraction of unresolved
issues may indicate that the package has a significant num-
ber of problems, which, like a bad review, may undermine
people’s confidence in it. This is a quality of the choice,
so we hypothesize that it relates to the “infectiousness”
aspect of the social contagion paradigm. To measure this
quantity, we leveraged GitHub API to collect all issues for
data.table and tidy packages and filtered issues raised
before the decision end point for each adopting project. We
count the number of unresolved issues (issues that are still
open) and normalize it over all issues raised before end
point, because in general a project tends to have more issues
and unresolved ones as its age grows, and we believe the
averaged rate of unresolved issues is more reflective of a
package’s maintenance and quality.

Association of c code with a project (C) is used as a
proxy for the requirement for high performance. Typically,
computations that are too slow for the interpreted R lan-
guage are implemented in C to improve performance. This
is a requirement of the decision maker that would most
closely fit under the “infectiousness” category because it
likely indicates a strong preference for higher performance
embodied by the data.table choice. This is a good ex-
ample of a factor that may represent a rational choice for
some decision makers. To measure this aspect, we applied
commit-to-file map on every commit prior to end point for
each project and filtered files with suffix ‘.[cC]’.

# related questions on StackExchange with high score
(StckExch) is a proxy for the popularity of each package. It
counts the number of highly ranked (score > 20) questions
related to each package. Developers often search for answers
to issues they face and may stumble upon one of these
packages presented as a solution to a problem they are
facing, thus increasing the chances that they may adopt that
technology. From a social contagion perspective this would
increase “exposure”. We avoid counting the total number of
questions because most of the questions tend to be of low
score10 and the search engines may avoid including links
to them, thus they do not increase “exposure.” According
to personal experience of all authors, search engines tend
to avoid including links to questions with low score if
questions of higher ranks are available. This factor may be
interpreted from a rational perspective (leveraging experi-
ence of others when lacking other information), but more

10. In total, only 131/1666 data.table related questions and 162/1785
tidy related questions have score larger than 20

appropriately, it is a great example of social bias since the
developer did not engage in due diligence, instead relying
on social cues to make a technical choice. StckExch was
obtained by selecting all relevant posts in the StackExchange
dump (2017-12-08), which have data.table and tidy in
the post’s title and body (including code snippet if any).
Manual inspection found that posts without R-language
tag ‘<r>’ tag in the ‘Tags’ field were not relevant and we
excluded them. Furthermore, we only selected posts with
score above 20. Again, we counted posts created prior to the
end point for each adopter project.

Project proximity to data.table and tidy in de-
pendency network (Prx2DT/Prx2TD) measure dependency
networks and can be understood from the perspective of
software supply chain networks. Based on the character-
istics of the software domain, especially the open source
software community, dependency networks can be viewed
as technologies (library/package) spreading from upstream
(original package) to downstream (packages where the orig-
inal package was installed) and, in turn, to further down-
stream packages.

We consider all downstream packages of data.table
and tidy, e.g. those in the data.table and tidy clusters
respectively. We hypothesize that if a project installed a
package within the data.table cluster, then the project is
more likely to install data.table than tidy. The rationale
of such a hypothesis is that if developers installed a package
because of 1)preferences for some of its functionalities or
features inherited from an upstream package or 2) the way
such a package works, which is sometimes influenced by or
derived from an upstream package, then it is more likely
that these developers will gravitate toward the upstream
package over other alternatives.

Based on the dependencies of R CRAN packages, the
clusters of data.table and tidy are easily constructed.
More specifically, we used the METCRAN11 API and
scraped meta data for more than 11K R CRAN packages
for which dependency information is available. Table 2
summarizes basic information on the networks that were
constructed and more detailed information on the method-
ology follows.

Each downstream package in the data.table/tidy

dependency network needs to be weighted before calculat-
ing proximity of an adopting package to both data.table

and tidy. We suggest that the algorithm used to determine
the weights be based on several key principles:

• for each downstream package, only the relative

11. https://www.r-pkg.org/about
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TABLE 2: Network characteristics

Characteristics data.table tidy

# downstream packages 813 2203
# downstream layers 5 5
# of packages in common 636
overlap ratio 0.78 0.28

weight to the root package (data.table/tidy)
matters

• for each downstream package, the sum of its weights
to both root packages is a constant

• the closer to a root package, the higher the weight
that a downstream package gets relative to that root
package

We assume that each package has a weight of 1 in total. Let’s
denote the packages set in the data.table downstream
network as Sd, that in tidy as St, the weight of package
a to data.table as Wad and that to tidy as Wat, the
depth of package a in the data.table network as Dad and
that in the tidy network as Dat, then based on principles
mentioned above, the weights of package a are determined
as follows:

• Wad = 1,Wat = 0 if a ∈ Sd & a /∈ St

• Wad = 0,Wat = 1 if a ∈ St & a /∈ Sd

• otherwise, Wad = Dat/(Dad + Dat), Wat =
Dad/(Dad +Dat)

The next step is to extract the list of packages installed in
each observation/project, after which we can aggregate the
weights of these packages to compute the proximity of each
project.

As we have mentioned in Sec. 3, various maps among Git
objects have been created. By utilizing maps of project-To-
commit, commit-To-blob, and blob-To-content in sequence
and selecting the install statements in blob content via
regular expressions similar to those mentioned in Sec. 3.2,
we get the list of packages installed in each project. From
this set, we obtain projects that are either in data.table

or in tidy clusters.
For a project p, denote the list of packages obtained in

last step as Lp and denote a package in that list as a. Then
the proximity of a project p to data.table, denoted as Ppd,
and to tidy as Ppt, can be computed:

{

Ppd = ΣLp

a Wad

Ppt = ΣLp

a Wat

(1)

To summarize the process described above, we first
measured the weight of each downstream package in ei-
ther data.table or tidy by leveraging the R package
dependency networks and the formulas above. Secondly, by
following a similar flow in Fig. 2, we extracted all R pack-
ages that were adopted in the commits prior to end point
where one of the focal packages was first adopted. Finally,
we calculated the proximity to data.table and tidy by
summing up the weights of all downstream packages for
each project. Notice that a project’s downstream packages
that were not in data.table or tidy downstream set were
dropped.

Project proximity to data.table and tidy in au-
thorship network (AthPrx2DT/AthPrx2TD) represents the
proximity of a developer to a focal project as measured
through their author network. It can be explained from
the perspective of social contagion. Social contagion refers
to the propensity for a certain behavior to be copied
by others. Consider the fact that developers in GitHub
are linked through common projects they are devoted to,
where information and ideas are shared and transmitted
from one to others, an underlying social network emerges.
Organizational actions are deeply influenced by those of
other referent entities within a given social system, ac-
cording to DiMaggio [18]: non-adopters are influenced by
adopters over time, and they influence the behavior of other
non-adopters after their own adoption [11] if thinking of
our case as package adoption. In short, the adoption of
data.table/tidy is a temporal process of social conta-
gion.

We attempt to look for developers that are exposed to
contagious packages — data.table/tidy. These devel-
opers include not only the authors of each package who
are directly exposed inherently, but also developers who
cooperate with directly-exposed authors in other projects.
Authors of other projects that are directly exposed to au-
thors of data.table/tidy, are identified by applying a
project-To-author map to both data.table/tidy pack-
ages separately and indirectly-exposed authors are obtained
by combining the map of author-To-project and the map
of project-To-author serially and then applying it on each
directly-exposed author.

We classify authors exposed to data.table into the
data.table author cluster and those exposed to tidy into
the tidy author cluster. Projects/observations may have
authors who are in either of these two clusters and these
authors may influence the choice of data frame technology,
i.e., (data.table vs. tidy). In order to estimate the im-
pact of every author in each cluster, we use the following
weights,

• Wbd = 1,Wbt = 0 if b ∈ Cd & b /∈ Ct

• Wbd = 0,Wbt = 1 if b ∈ Ct & b /∈ Cd

• otherwise, Wbd = Dbt/(Dbd + Dbt), Wbt =
Dbd/(Dbd +Dbt)

where b represents an author in a project; Cd/Ct stands
for author cluster of data.table/tidy; Dbd/Dbt refers to
the distances from author b to data.table/tidy, i.e., au-
thor b’s depths in the author cluster of data.table/tidy,
1 for directly-exposed author and 2 for indirectly-
exposed author; Wbd/Wbt is the proximity of author b to
data.table/tidy, indicating author b’s impact on choos-
ing data.table/tidy. Note that these measures are sim-
ilar to the ones used in calculating Prx2DT/Prx2TD and are
based on similar principles.

After estimating each exposed author’s influence, the
overall exposed authors’ influence in project p can be mea-
sured as follows:



















PApd =
Σ

Ap

b Wbd

Np

PApt =
Σ

Ap

b Wbt

Np

(2)
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where Ap is the set of authors of project p who are in
either of data.table/tidy author cluster; Wbd/Wbt is
the proximity of author b to data.table/tidy calculated
in previous step; Np is the number of authors in project
p; PApd/PApt, i.e., AthPrx2DT/AthPrx2TD, is the overall
influence of exposed authors on a project p. Notice that
AthPrx2DT/AthPrx2TD is calculated through aggregating
the influence of each exposed author and being normalized
over the total number of authors in that project. The ratio-
nale for normalization is that a project tends to have more
exposed authors if it contains more authors, resulting in a
higher value for AthPrx2DT/AthPrx2TD. By normalization
we remove this bias induced by the difference in the number
of authors for different projects. This factor falls clearly
within a realm of a social bias. It may also be partially
explained as cognitive bias if the developer is not aware
of alternative choices.

To summarize the computation of proximity through
authorship network, we started by measuring the
weight of each author who was either a co-author of
data.table/tidy or had cooperated with at least one
of the authors of data.table/tidy, which was detailed
above. Then we summed up the weight of every author of a
project and normalized it over the total number of authors
in this project. Again, here we applied end point filter on
every step in calculation.

Time gap between the raise of an issue and the first
reply (RplGp) measures how fast developers or maintainers
of a package respond once an issue has been raised. The
timeliness of this response reflects the efficiency of package
maintenance and can be attributed to the ‘infectiousness’
category of social contagion theory and could clearly be of
interest for those deciding on which package to adopt.

The calculation of reply gap is worth discussing. We
are interested in understanding how long it takes for an
issue to get its first reply after being reported. For each
individual in the study, we focus on the time period just
before the key commit that includes the choice of focal
package (data.table/tidy). However, several additional
obstacles that needed to be addressed in order to measure
the reply gap :

1) It is rare that an issue was raised simultane-
ously with the key commit (inside which either
thedata.table/tidy package is installed).

2) The timeliness of replying to an issue may vary
drastically during the development of a package,
hence taking the closest issue’s reply-time as a rep-
resentative is not reasonable

3) For some issues, it took a significant amount of
time to get a reply and in some cases no reply was
ever made to an issue, thus, averaging reply-time
to previous issues is problematic due to long right-
censored cases.

This is a case where statistical models for survival(time-
to-event) are appropriate. In this scenario, an issue can
be viewed like a patient under study with the first reply
analogous to conclusion of the medical issue or death of
the patient. We aim to model the time until reply to the re-
ported issue, i.e., the survival time of the issue, with shorter
lifetimes indicating a more interactive development team.

Irrespective of package, for each issue, we record the time
that it was submitted (timestamp recorded when the issue is
raised) and use survival analysis to model the distribution
of the issue lifetimes for each package (data.table/tidy)
using the R package ‘survival’ [40]. Predictions for the reply
time for each project (observation) can be made based on
data collected before the key commit. The RplGp for a project
is simply the median issue lifetime for an issue generated
before a key commit. This factor appears to be clearly related
to rational choice factors as the delays in response may cause
real problems.

In practice, we extracted all issues of
data.table/tidy from GitHub and measured difference
between the time an issue is first raised and the first
response time. As described above, we trained a survival
model to estimate the distribution of the delay until first
response delay. The model was trained using all issues that
had been raised before the current package key commit.
Those issues that had not been responded to yet were right
censored in the model fitting. The reply gap represents the
median value of response times.

In summary, we note that for each project that eventually
adopts one of the two focal packages (data.table/tidy),
all of the variables described in this section are calculated
dynamically using only data that occurs before the key
commit. In addition, for each observation, every predictor
with choice property (Table 1) needs to be calculated for
both packages, e.g., Unrslvd needs to be calculated for both
data.table and tidy. These will end up being denoted
as Unrslvd.datatable and Unrslvd.tidy.

5 RESULTS

5.1 Result of data.table VS. tidy

Table 3 summarizes basic statistics for independent vari-
ables analyzed in the model. We use the R package
’mlogit’12 [41] to fit the model using the 11 predictor vari-
ables defined above with the response being an indicator of
the package chosen.

Very high correlations among predictors (above 0.9) oc-
curred between Prx2DT and Prx2TD. High correlations may
lead to unstable and difficult to interpret models and need
to be addressed. Since we do not have any a priori theory-
derived reasoning for removing one or the other variable,
we removed Prx2DT. The modeling results remain stable
if this approach is reversed. Table 4 presents the resulting
model fit.

Below we summarize findings for each predictor vari-
able separately.

# related questions on StackExchange with high score
(StckExch): the coefficient is 0.2, indicates that the number
of high score questions on StackExchange is associated with
the likelihood that a project would adopt the respective
technology. The association is positive, holding other factors
equal. For illustration, if the number of high score questions
increases by 6 questions (1 std. dev.) from a median value of
130 for data.table, the estimated probability of choosing
data.table increases from 0.58 to 0.87, while holding all
other predictors at their median values.

12. https://cran.r-project.org/web/packages/mlogit/vignettes/
mlogit.pdf
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TABLE 3: Summary Statistics for Independent variables
(data.table VS. tidy)

Variable median mean std.dev

Cmts 3 46.83 645.68
Aths 1 2.13 8.23
C (boolean) 0 9.79e-03 9.85e-02
Prx2DT 0 0.15 0.95
Prx2TD 0 0.62 2.79
AthPrx2DT 0 6.99e-2 0.17
AthPrx2TD 0 0.11 0.24
CumNum.datatable 2.72e+03 2.66e+03 1.87e+03
CumNum.tidy 305 8.44e+02 9.12e+02
RplGp.datatable 2.09 2.16 0.33
RplGp.tidy 3.03 2.95 0.53
Unrslvd.datatable 0.29 0.28 3.23e-02
Unrslvd.tidy 0.20 0.16 7.7e-02
StckExch.datatable 130 125.76 6.53
StchExch.tidy 158 152.57 10.14

TABLE 4: The Fitted Coefficients. (data.table VS. tidy)
McFadden [22] R2 = 0.14 n = 7k

Variable Estimate Std. Error p-val

tidy:(intercept) -6.07 0.28 2.20e-16
CumNum 1.56e-04 1.44e-05 2.20e-16
Unrslvd 2.45 0.78 1.59e-03
RplGp -0.38 4.88e-02 5.11e-15
StckExch 0.27 1.26e-02 2.20e-16
tidy:Cmts -3.95e-04 2.22e-04 7.54e-02
tidy:Aths -3.02e-04 7.12e-03 0.97
tidy:C -0.67 0.28 1.82e-02
tidy:Prx2TD 0.17 2.87e-02 6.79e-10
tidy:AthPrx2TD 1.27 0.14 2.20e-16
tidy:AthPrx2DT -7.06e-02 0.19 0.72

This result aligns well with the social contagion theory
that posits that increased adoption is a consequence of
increased exposure. Surprisingly, including an additional
predictor that counts the total number of questions (of high
and low score), shows no statistical significance. It appears
to be counter-intuitive as more exposure should increase
adoption. However, when developers want to solve an issue
related to the functionality of the R data.frame, they often
may not search on StackExchange, but use a general search
engine and follow links to StackExchange. The total number
of posts, therefore, may be not visible to developers, only the
set of posts that the search engine deems to be of sufficiently
high score. The number of posts (questions), may, therefore,
not be a good proxy of exposure. As such, the total number
of posts of low-score questions, in fact, appear to discourage
developers from using a package.
☛

✡

✟

✠

Finding 1: We found that exposure measured via the total
number of questions on StackExchange had no impact on
adoption, while the number of high score questions has a
strong and positive correlation with increased adoption.

# open issues over all issues (Unrslvd): the coefficient
is 2.5, indicating that the higher the ratio of unresolved
issues a package has, the more likely it would be adopted.
While it appears to be counter-intuitive from the perspective
that unresolved issues may indicate a lack of attention
from maintainers. However, the causal relationship may go
the other way: the increased interest from users when a

package becomes popular among developers, may lead to
more contributions in the form of issues, and may exceed
packages developers’ processing capacity, which results in a
larger ratio of open(unresolved) issues. In short, the ratio of
unresolved issues over all issues might indicate high rates of
adoption especially in the early stages of the projects when
the total number of issues is low.✞

✝

☎

✆

Finding 2: We found that infectiousness of a package as
measured via the fraction of unresolved issues, is associated
with a higher adoption rate for that package.

Project proximity to tidy in authorship network (Ath-
Prx2TD): the coefficient is 1.3, indicating that the closer
a project is to authors of the package tidy vis-a-vis the
author network, the more likely they are to choose tidy

over data.table. If the proximity to tidy in the author
network increases by one standard deviation of 0.24 from
a median value of 0 (e.g., a project that has four authors
and one of them cooperates with tidy’s developers, but
not with any of data.table’s developers), the estimated
probability of choosing tidy increases seven percent from
0.42 to 0.49. This finding supports the basic premise of
the social contagion hypothesis that developers’ choices are
affected by the environment they are in.
☛

✡

✟

✠

Finding 3: Proximity as measured by the fraction of
authors who are either developers of the package to be
adopted or who work with at least one developer of that
package, increase the chances of adoption.

This may be a consequence of authors who have direct
expeience or are familiar through word-of-mouth. However,
Project proximity to data.table in authorship network
(AthPrx2DT) is not statistically significant. One reason may
be that data.table is a more widely deployed package
and the deployments may play a larger role than the social
connections. Also, each community of users and develop-
ers may be different. For example, the tidy community
may have more social interactions than the data.table

community. Furthermore, the exposure in the tidy com-
munity may come from a much larger set of packages
in the tidyverse, while data.table does not have an
equivalent brand that involves a wider variety of tools
beyond data handling.

Association of c code with a project (C): the coefficient
is -0.6, indicating that a project containing at least one C
file is less likely to choose tidy. The estimated chances of
choosing data.table increase by 15 percent from 0.58 to
0.73. The finding is consistent with our hypothesis that if
an R project has a need for performance, as evidenced by
the use of functionality being developed natively in the
C language, then it is more likely to choose the higher
performance of data.table.
✞

✝

☎

✆

Finding 4: Proximity, as measured by the project’s need
for performance, is associated with adoption of packages
that emphasize high performance

Time gap between the raise of an issue and the first
reply (RplGp): the coefficient is around -0.4, indicating that
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the more quickly a package’s issue gets a response, the more
likely that this package will be chosen. If the number of
days until first response to an issue increases by 0.21 days
(1 std. dev.) from a median value of 1.4 for data.table,
the estimated chances of a project choosing data.table

decrease by two percent from 0.58 to 0.56 assuming all
other variables remain at their median values. The time until
first response is not as readily visible to developers as most
other measures that we used, so developers may not be able
to observe it when making a choice. However, it appears
to be a reasonable proxy for project’s reactions to external
requests that could be easily gleaned by reading through
some of issues on the issue tracker. A well maintained
package is more likely to respond to new issues quickly and
thoroughly, leaving a good impression and, thus, increasing
the likelihood of being adopted. This has implications for
designing project dashboards intended to make key project
attributes more visible.
✞

✝

☎

✆

Finding 5: Infectiousness of a package as measured by
speed of response to issues is associated with a higher
adoption rate for that package.

Project proximity to tidy in dependency network
(Prx2TD): the coefficient is 0.2, indicating that the closer
(through a dependency network) a project is to the package
tidy, the more likely its authors are to choose tidy over
data.table. If proximity to tidy in dependency network
increases by one standard deviation of 2.8 from a median
value of 0 (e.g., a project installs/uses three packages that
are in first layer downstream from tidy), the chances of
choosing tidy go up by 12 percent from 0.42 to 0.54. It
supports our hypothesis that the supply chain influences
projects’ choices. A project tends to install a specific package
if it has already installed other packages that also depend
on it, i.e., if a project uses downstream dependencies of a
package, it is more likely to use the package itself rather than
other alternatives. Being familiar with downstream pack-
ages may reduce the overhead or learning curve required
for an upstream package, leading to an advantage over other
choices.
✞

✝

☎

✆

Finding 6: Proximity to a package as measured via tech-
nical dependency networks is associated with a higher
adoption rate.

# projects of deployments (CumNum): the coefficient
is 1.4e-4, indicating that a larger number of deployments
of a package in the past will make it more likely to be
adopted. If the number of deployments increases by one
standard deviation, 1870 projects, from a median value of
2660 projects for data.table, the estimated chances of
choosing data.table go up by seven percent from 0.58
to 0.65 for a project holding all other values at the median.
A larger number of overall deployments, on one hand,
increases the chance for a package to be known by adopters.
On the other hand, from the perspective of adopters, more
deployments usually insinuate a stable and mature product
(though it is not clear if the number of deployments is
visible to a developer), and enhances adopters’ confidence
in this package. Either of these reasons justifies adoption

of the widely deployed package as predicted by the social
contagion theory.
✞

✝

☎

✆

Finding 7: Exposure to a package that is widely deployed
is associated with a higher adoption rate.

We also find that the number of authors in the adopting
project does not affect the choice of technologies. Social
contagion theory does not suggest that this predictor should
have an effect, but it could be that project activity (which
has a substantial correlation with the number of authors),
may already account for the differences in propensity to
chose tidy over data.table making the variation in the
number of authors statistically insignificant.
✞

✝

☎

✆

Finding 8: We did not find statistically significant associ-
ation between infectiousness as measured via the number
of commits and adoption propensity.

We achieved a McFadden13 R2 of 0.14, which is a good
fit according to McFadden [22]. (Notice that the R package
‘mlogit’ use McFadden R2 instead of R2 to estimate fitness
of the model because logit models do not generate the sums-
of-squares needed for standard R2 calculation.)

Regression models are explanatory, but we can also use
them to do prediction. The 10-fold cross-validation done
by randomly splitting projects into 10 parts and fitting the
model with predictors listed in Table 4 on nine parts and
predicting on the remaining part yielded a reasonable AUC
of 73%. Average accuracy was 70% with balanced Type I and
II errors (obtained by choosing predicted probability cutoff
of 0.49).

Finally, it is worth noting that out of six predictors that
were statistically significant, only CumNum, RplGp, and C
were clearly grouped into predictors that would support
rational choice. The remaining three predictors primarily
reflect a mixture of social and cognitive biases associated
with social preference or default choice when alternatives
are not known. If we include the effort needed to obtain the
necessary information into the utility function, these social
and cognitive biases can, of course, be explained rationally
as well.

Based on the findings mentioned above, we derived a list
of recommendations for package developers and users: To
increase the popularity of a package, package developers
should maintain quick response to users’ questions and
concerns such as raised issues on development platform;
package development team should involve active develop-
ers, especially authors of existing packages, to have a broad
author network; package developers should choose popular
packages among alternatives (when there is a need) to use.
To choose a popular (right) package among alternatives,
users should choose the package with more high score
questions on Q&A website such as StackExchange; users
should choose the package with better maintenance such
as response speed to raised issues and questions on de-
velopment platform; users should choose the package that
is more widely used. Counter-intuitively, packages with a

13. https://stats.stackexchange.com/questions/82105/mcfaddens-
pseudo-r2-interpretation
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large number of outstanding issues should also be preferred
as they might command a more active or larger contributor
community.

5.2 Result of Angular VS. React

The basic statistics are shown in Table 5. We fitted the same
model on this dataset and show the result in Table 6. (Notice
that we use abbreviation ‘AG’ for Angular and ‘RT’ for
React)

TABLE 5: Summary Statistics for Independent variables
(Angular VS. React)

Variable median mean std.dev

Cmts 1 13.23 315.07
Aths 1 1.21 3.12
C (boolean) 0 8.81e-04 2.96e-02
Prx2AG 0 7.54e-05 1.22e-02
Prx2RT 0 2.19e-04 1.65e-02
AthPrx2angular 0 0.14 0.25
AthPrx2react 0 0.14 0.25
CumNum.angular 1.0e+05 7.66e+04 3.35e+04
CumNum.react 5.05e+04 6.85e+04 6.27e+04
RplGp.angular 0.47 0.49 0.12
RplGp.react 0.44 0.44 4.83e-02
Unrslvd.angular 5.77e-02 7.42e-02 3.37e-02
Unrslvd.react 7.83e-02 9.19e-02 5.04e-02
StckExch.angular 3272 3.03e+03 4.65e+02
StchExch.react 1213 1.05e+03 2.91e+02

TABLE 6: The Fitted Coefficients. (Angular VS. React)
McFadden [22] R2 = 0.45 n = 292k

Variable Estimate Std. Error p-val

react:(intercept) -12.68 0.10 2.20e-16
CumNum 2.02 1.08e-02 2.20e-16
Unrslvd -27.28 0.39 2.20e-16
RplGp -0.50 5.92e-02 2.20e-16
StckExch -7.27e-03 4.95e-05 2.20e-16
react:Cmts 2.05e-04 2.73e-05 6.48e-14
react:Aths -3.94e-02 3.24e-03 2.20e-16
react:C -0.24 0.19 0.21
react:Prx2RT -1.67 0.32 3.04e-07
react:AthPrx2RT 1.37 3.03e-02 2.20e-16
react:AthPrx2AG 0.18 2.83e-02 7.32e-11

Below our findings are briefly summarized.
CumNum (total number of projects using the package),

RplGp (time it takes to respond to user issues) are both sig-
nificant and have coefficients pointing in the same direction
as the tidy and data.table study.

Unrslvd (# open issues over all issue) is significant but
the coefficient is negative, which indicates that unlike in the
case of tidy and data.table, developers prefer to adopt a
technology with the lower fraction of unresolved issues. The
reason such difference is exhibited may be due to the fact
that both packages have strong commercial backing, so the
developers may take this as a signal that a company is not
as supportive of the product. In R ecosystem, data.table
is a completely volunteer-supported operation, hence de-
velopers may be more forgiving to the limitations of the
maintainers.

StckExch (the number of related questions on StackEx-
changewith high score) is significant but, unlike in R ecosys-
tem, has a negative coefficient. Developers in Javascript

domain may believe that a technology with more posts
on StackExchange may be harder to use or more complex.
Developers in different domains may have different opin-
ions regarding the ‘exposure’ on StackExchange and further
research on these differences would be needed to better
understand this.

From Table 6, we can also find that a project with
larger numbers of commits and fewer contributors are more
likely to adopt React than Angular. One explanation
could be that productive developers may prefer React over
Angular; thus, a more productive project (commits count
over contributor count) will be more likely to adopt React.
These differences may also reflect the different nature of
projects adopting each framework that we have not been
able to capture using existing variables.

Among the four ‘proximity’ measures, only the proxim-
ity to React through author network is statistically signifi-
cant. Given the complexity of the dependencies in JavaScript
domain, the large size and the independent nature of the
packages, the dependency network may not be as important
when making a choice.

5.3 Generalizability between the Javascript and R do-

mains

The two case studies were intended to test the generaliz-
ability of social contagion models in two distinct contexts
that varied in terms of domain functionality, user base,
scale, and primary governance styles. By comparing Table 6
with Table 4, we can conclude that despite these radical
differences in context there are substantial similarities.

CumNum (total number of projects using the package),
and RplGp (time it takes to respond to user issues) have
the same and expected impact on adoption: more exposure
from wider past adoptions and higher infectiousness from
better response rates were associated with increased rates of
adoption in both case studies.

However, Unrslvd (the ratio of unresolved to all issues at
the time of adoption) had an expected negative effect in the
data.table/tidy study, but had a counter-intuitive pos-
itive effect in the Angular/React study. Similarly, Stck-
Exch (the number of related questions on StackExchange
with high score) switched from having a positive impact to
having a negative impact on the chances of adoption.

Our conjecture is that the operationalization of project
quality (infectiousness) as expressed by the fraction of
unresolved issues and the exposure to StackExchange
high-score questions may have limitations. Specifically,
Angular/React have experienced a spectacular growth
over the considered period. We presume that this growth
was fueled by a heavy commercial involvement, which, in
turn, motivated the adoption and created an inflow of issues
that could not be resolved on a timely basis.

Similarly, the rapid adoption was not matched by the
corresponding increase in the number of high-score ques-
tions on StackExchange, resulting in the negative coefficient.

Furthermore, it may be the case that the developers in
the Angular/React (Javascript) domain may believe that
a technology with more posts on StackExchange may be
harder to use or more complex, unlike the developers in the
data science domain where users expect a fair amount of
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esoteric and quirky functionality; thus, good questions on
StackExchange are helpful and necessary even when faced
with relatively common tasks. This suggests that further
investigations are needed on how developers in different
domains may react to ‘exposure’ on StackExchange.

These differences suggest that the social contagion mod-
els may need to be adjusted for cases where the adoption is
primarily driven by the commercial involvement that may
manifest itself in directly funding developers, providing
better training, or even by dangling good job opportunities.
Specifically, large companies, may create direct signals driv-
ing adoption that do not propagate via social and technical
networks and may lead to counter-intuitive values of the
model coefficients.

The remaining variables represent the characteristics of
the adopter, and cannot be directly compared between the
studies. Interpreting them, however, is instructive for poten-
tial applications related to understanding the adopter base.

Specifically, while larger projects (measured by the num-
ber of commits Cmts) prefer data.table, presumably
due to its stability and ability to handle larger data sets,
in the User Interface domain, larger projects tend to use
React, presumably because it is, according to opinions of
knowledgeable developers we have consulted, designed to
support large projects and applications. We had a separate
predictor C indicating the need for performance in the R
ecosystem, and, as expected, it had no effect in the Javascript
domain where C language is not used to improve perfor-
mance via native methods as is common for R domain.

From the perspective of the technical network
Prx2TD/RT, the proximity to tidy increases the chances
of adoption, presumably due to the rich functionality of
the tidyverse framework that can be exploited for tasks
other than simply doing data management. data.table,
in contrast, does not have as wide an ecosystem of its own,
thus proximity in the technical network does not appear
to bring any distinct advantages. The case of React vs.
Angular is unusual as the proximity of projects to each
of these frameworks is highly correlated, ρ = 0.9. That
is, if the proximity in the technical network is high for
one of these frameworks it is also high for another. This
may reflect the possibility that each of these frameworks
are fairly comprehensive for the intended functionality and,
therefore, the proximity is based on other JavaScript tech-
nologies that may, in fact, be more closely aligned with the
Angular ecosystem. It is, therefore, important to note that
the proximity in the technical network may not always fully
reflect the actual interdependencies between the technolo-
gies and future work is needed to explore how general this
relationship may be. Another possible scenario is that this
negative relationship is simply an artifact indicating that
React’s adoption may have been more strongly influenced
by direct marketing signals (such as job opportunities) and
the technical networks did not co-evolve at the same rate as
the adoption.

From the perspective of social networks AthPrx2TD/RT,
the proximity to tidy increases the chances of adoption,
presumably due to the charismatic leadership of the founder
and lead developer who also contributes to many other data
science projects. The founder of data.table, in contrast,
does not have as commanding a presence and social fol-

lowing in the community. The proximity to React within a
social network increases the chances of adoption while the
proximity to Angular decreases the adoption of Angular.
There is some anecdotal evidence that React gets more
positive testimonials from its users, see, e.g, “Is React killing
Angular?” from Quora14. In such a case, knowing someone
who actually uses Angular and can testify to the poten-
tial complexities and effort needed to use it fluently, may
discourage adopters from trying it. If the React users are
much more positive in their testimonial, this would explain
the power of the social contagion model to discriminate
between such differences.

Further considerations on the generalizability and other
limitations of our approach are discussed in the next section.

6 LIMITATIONS

Empirical studies must be interpreted carefully due to a
number of inherent limitations. Here we highlight some of
the potential issues and how we tried to address them.

6.1 Limitations to Internal Validity

To obtain an unbiased, representative characterization of
technology spread, we examined a very large collection of
projects. While large, our sample however is not complete,
as many projects do not publish their code and our data
collection process may have missed even some of the public
projects. The sample we have limits the findings of this
study to projects that share their version control data on
one of the many forges, such as GitHub, BitBucket, GitLab,
Bioconductor, SourceForge, etc. However, our project repos-
itory may not be representative of the entire universe of
projects, especially projects that do not publish their version
control data.

We have selected only projects with extension [rR], but
some older projects may use extension [sS], indicating the
historic name for R language, or some other source code
without any (known) extension. Regular expressions that
we used to identify instances of package usage or installa-
tion can capture most of the install statement in the .r/R file,
however, in some cases the install statement may be missed
due to a dynamic specification in the installation such as in
the case below,

1 ipak <- function(pkg){

2 new.pkg <- pkg[!(pkg %in% installed.

packages()[, "Package"])]

3 if (length(new.pkg)) install.packages(new.

pkg, dependencies = TRUE)

4 sapply(pkg, require, character.only = TRUE

)

5 }

6 # usage

7 packages <- c("ggplot2", "plyr", "reshape2", "

RColorBrewer", "scales", "grid")

8 ipak(packages)

Also, multiple packages may be wrapped into a variable
before calling the install function:

14. https://www.quora.com/Is-React-killing-Angular
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1 load.lib<-c("EIAdata", "gdata", ...,"stringr",

"XLConnect",

2 "xlsReadWrite","zipcode")

3 install.packages(lib,dependences=TRUE)

Moreover, regular expressions may occasionally falsely
capture an install statement, e.g., install statements that are
commented out may, in rare cases, be captured by regular
expressions. Files that are contained in a project but not used
may also contain installment statements that are captured
by regular expressions. To alleviate this potential issue,
we used the R language requirement to have a comment
character ’#’ on each line and ensured that the matched
install is never preceded by the comment character.

Another threat to validity is that the import of a package
may not always indicate that the package was actually
used. In some cases, a project may only contain package
import statements without any calls to package API. For
example, a developer may have dropped all actual API calls
in the code without removing the corresponding package
import statement. Alternatively, a developer may only add
an import statement as a place holder for future usage. One
approach to mitigate such potential inaccuracies is to iden-
tify if any package APIs were called in the project. However,
this approach may not cover all possible cases. One such
scenario can be that multiple packages may contain one
or several common APIs (e.g., the predict API in R exists
in multiple packages) and it is generally not possible to
automatically identify with precision which package an API
belongs to.

We used keyword filtering on both tag field and on the
text of the post itself to find the relevant posts from Stack-
Exchange dump. We emphasize that a manual inspection
was needed as a followup step to ensure the relevance of
the posts. While we did a manual inspection of our data,
the approach we used may require a lot of manual effort
to check the relevance if extremely popular technologies are
investigated.

These potential limitations may affect the dependency
networks we construct and result in an imprecise count
of the number of projects using our two focal packages.
Moreover, developer identities may not be consistent across
our data sources, which may affect the author network [42].
We have tried to address these and other issues encountered
when dealing with operational data from software reposito-
ries and big data in accordance with guidelines provided in
the literature [43], [44], [45].

It is important to note that the particular operational-
izations of the concepts from social contagion theory repre-
sent only one possible approach. Measures are not entirely
orthogonal, i.e., each measure may capture the aspects of
other dimensions beyond the one it is intended to mea-
sure. The correlations among predictors may lead to un-
stable models that are hard to interpret. We address this
limitation by carefully considering various interpretations
of the measures, conducting exploratory analyses of the
obtained measures, selecting a subset that does not pose
threats to model stability, and investigating compliance
with model assumptions including inspection of outliers,
non-homogeneous variance, and performing general model
diagnostics. We also model the first choice, but it is also

reasonable to model the full set of choices made. In the latter
case, we would need to include the third option, i.e., projects
choosing both packages: tidy and data.table. We fitted
a variety of alternatives models to ensure that the reported
results are not affected by these variations in the approach.
We only present here the results for two alternatives due to
space considerations, but we have applied our choice model
to several other R packages as well.

6.2 Limitations to External Validity

We demonstrate how to use social contagion modeling
with version control data to evaluate developer behaviour
when choosing software packages. The particular results we
obtained for R and the two focal packages may not, there-
fore, generalize beyond this specific context. We evaluated
the generalizability of the results in the JavaScript domain
in section 6 and found some variations to the finding in
R ecosystem in JavaScript ecosystem. The framework we
provided, however, allows future researches to investigate
the nuances of developer behaviour in much greater detail
and apply it to other contexts.

7 RELATED WORK

The closest related work involves studies of use and mi-
gration of software libraries. A number of metrics and
approaches were proposed to mine and explore usage and
migration trends. A software library encapsulates certain
functionality that is then used by applications (or other
libraries). The application may benefit from extra function-
ality or performance in the new libraries that may be created
later, but switching to a new library (library migration)
involves some recoding of the application [46], [47], [48],
[49], [50]. Most prior work, therefore, focused on costs and
benefits of library migration [51], [52], [53], [54], [55], [56],
[57], [58]. Similarly to that work we ask why developers
chose a new library. In contrast to prior work, we construct
new predictors of adoption (e.g., technical and author de-
pendency networks, breadth of deployment, exposure of
techniques on StackExchange, quality of support measured
through issue number and response times) that are based
on sound theoretical foundations and we use choice models
to understand how macro trends at the scale of the entire
SSC emerge from actual decisions the individual developers
make to select a specific software technology.

Approaches to detect library usage include issue report
analysis [51]. As in prior work we detect usage by searching
for library statements in source files of projects [52]. De la
Mora et al. [53] introduce an interface to help developers
choose among the libraries by displaying their popularity,
release frequency, and recency. While building on this re-
search, we add novel network, deployment, and quality
measures that would inform developer choice. More im-
portantly, we radically improve the ability of developers’
to make informed decisions by providing a statistical model
that explains which of these measures matter and how they
affect the choice.

Prior studies that examined technology choices have
used a variety of approaches ranging from surveying de-
veloper preferences [59] and reasons [60] behind, to mining
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version control and issue tracking repositories [51], [52],
[53]. Similarly, we mine version control data, but at a larger
scale of all projects with public version control data that in-
clude R language files. This allows us to construct complete
software supply chains that depict end-to-end technical and
social dependencies.

8 CONCLUSIONS

Integrating software supply chain concepts and models to
operationalize key variables from social contagion theory to
investigate software technology adoption appears to have
provided a number of potentially useful insights in the
present case study of two data manipulation technologies
within R language. More specifically, the methodology was
able to identify factors that were influential in decision-
makers’ choices between software technologies and demon-
strate the need to account, not only for the properties of
the choice, but also of the chooser and of the importance
of the supply chain dependencies and information flows.
It also validates the measures deemed to be the drivers of
technology adoption by the social contagion theory.

This study introduces the concept of two types of soft-
ware supply chains (based on technical dependencies and
on the relationships among developers induced by projects
they have worked on) and demonstrates how software
supply chains for the entire open source ecosystem can be
reconstructed as they have existed at any point in the past
from public version control systems. Additionally, by taking
a social contagion perspective and employing the logistic
regression models, we explicate a parsimonious model that
is capable of modeling software technology choices. The
findings of this study have wide reaching implications for
the software engineering community as well as those who
study traditional supply chains. For example, the ability
to model and understand which aspects of a network of
software supply chain or physical supply chain partners and
affiliates influence uptake and spread of a given artifact (e.g.,
technology or product) might help contributors adjust their
contributions in a way to maximize their reach, while also
extending the viability and propagation of a core technology
or product. This notion is consistent with our findings that
a number of characteristics of a developer and properties of
technology are found to be important in the choice between
major alternatives. More specifically, technologies with large
number of overall adopters, higher responsiveness to new
issues, and more high-score stack exchange questions are
more likely to be chosen. Furthermore, from the perspective
of a project’s decision-makers, their technical features and
proximity to a technology in both the technical dependency
network and author collaboration network increase the
probability of adoption. On a more speculative side, we
find that half of the significant predictors do not appear to
be related to a traditional rational choice, but are likely a
reflection of social and cognitive biases or, in plain language,
shortcuts people take. Developers, at least in the context of
technical decisions regarding which technology to use, do
not appear to be immune from these biases.

Source code and data for this study is publicly available
15 to facilitate reproducibility and wider adoption of the
proposed methodology.
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