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ABSTRACT

When discussing safety and security for embedded systems, we
typically divide the world into software checks (which are either
static or dynamic) or hardware checks (which are dynamic). As
others have pointed out, hardware checks offer more than just
efficiency. They are intrinsic to the device’s functionality and thus
are live from power-up; they require little to no dependency on
other software functioning correctly, and due to the fact they are
wired directly into the operation of the system, are difficult or
impossible to bypass. We explore an experimental new embedded
system that uses special-purpose hardware for static analysis that
prevents all program binaries with memory errors, invalid control
flow, and several other undesirable properties from ever being
loaded onto the device. Static analysis often requires whole-binary-
level, rather than instruction-level, examination. We show that
a carefully constructed hardware state machine, using available
scratch-pad memory, is capable of efficiently checking functional
binaries in a streaming and verifiably non-bypassable way directly
in hardware as they are loaded into the embedded program store.
The resulting system is surprisingly small (taking no more than
.0079 mm?), efficient (capable of checking binaries at an average
throughput of around 60 cycles per instruction), and yet guarantees
execution free from many of the fragile behaviors that result in
security and safety concerns. We believe this is the first time any
static analysis has been implemented at the hardware level and
opens the door to more complex hardware-checked properties.
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1 INTRODUCTION

The demand for more connectivity and richer interactions in every-
day objects means that everything from light bulbs to thermostats
now contains general-purpose microprocessors for carrying out
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fairly straightforward and low-performance tasks. Left unanalyzed,
these systems and their associated software stacks can be expected
to hold a seemingly endless collection of opportunities for attack.
Static analysis provides powerful tools to those wishing to under-
stand or limit the set of behaviors some software might exhibit. By
facilitating sound reasoning over the set of all possible executions,
this type of analysis can identify important classes of behavior
and prevent them from ever happening. If embedded system devel-
opers simply never released software that failed, such that those
well-analyzed applications were the only things to ever execute on
platforms under our control, many of the bugs and vulnerabilities
that plague our life would be eliminated. Unfortunately, realizing
this in practice has proven incredibly hard due to pressure to mar-
ket, pressure to reduce cost, and the delayed and stochastic cost
associated with vulnerabilities and bugs.

While larger software companies might be more trusted to rigor-
ously verify their software releases, the embedded systems market
has a long and heavy tail of providers with a much wider distribu-
tion of expertise and resources at their disposal. When we bring an
embedded device into our home or business, how can we have con-
fidence that the software running there (which depends on chains
of control well outside our ability to observe) is “above the bar”
for us? Seemingly innocuous issues, for example passing a string
instead of an integer, can open the door for an attacker to gain
root privileges and serve as a base for other attacks (exactly this
happened already in a class of WiFi routers [12]). Similar attacks
targeting embedded devices and firmware updates have succeeded
on everything from printers [11] to thermostats [18].

The basic research question we ask in this paper is: is it possible
to make forms of static analysis an intrinsic part of executing on a
microprocessor? In other words, we examine a machine that will
guarantee at the hardware level that any and all code executing on
it is bound to the constraints imposed by a given static program
analysis. This moves the decision to do a proper analysis away from
those that push software updates (who may be making decisions
about updates many years removed from the original purchase) to
the decision to purchase and deploy a particular hardware device
itself.

Such a machine would reject any attempt to load it with code
that fails to meet the specified “bar,” independent of who wrote it,
who signed it, how it was managed, or where the software came
from. The trust one could put in aspects of execution on such a pro-
cessor could be independent of measurement, attestation, or other
active third-party evaluation. By doing the checks in hardware, we
can make them intrinsic to the device’s functionality: the checks
will be fully live right from power-up; the checks will require no
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dependency on other software on the system functioning correctly
(zero TCB); and if properly designed, they will be directly wired
into the operation of the system, making them provably impossible
to bypass.

As this is the first approach to propose and evaluate fully-hardware
implemented static analysis there are two big open questions: a)
is it even possible to do a useful static analysis in hardware, and
b) what would the costs of such an analysis be in terms of time
or area? We answer these questions through the hardware devel-
opment of a new module, the Binary Exclusion Unit (which we
call “the bouncer” more informally), capable of scanning and reject-
ing program binaries right as they are streamed onto the device.
Specifically, we make the following contributions:

e We introduce hardware static binary analysis and show that
it can be implemented in a way that can never be circum-
vented through some clever manipulation of software (e.g. a
compromised set of keys, a bug in the operating system, or
a change in the boot ordering).

We describe a method of static analysis co-design where
the checking algorithm is modified to be more amenable
to hardware implementation while maintaining correctness
and efficiency.

We demonstrate that the analysis, in conjunction with the
functional ISA, ensures all executions are free of memory
and type errors and have guaranteed control flow integrity.
We evaluate the functioning of the system with a complete
RTL implementation (synthesizable Verilog) of the checker
and processor interoperating with gate-level simulation.
Finally, we show that the resulting system is efficient both
in terms of hardware resources required and performance,
and describe how program transformations can make it even
more so.

We elaborate on the motive of our work (Section 2), present our
hardware static analysis in the form of a new hardware/software
co-designed type system and prove its soundness (Section 3), out-
line the checking algorithm implementing the type system (Section
4), and design type annotations that can be easily encoded into
the machine binary and provide a hardware implementation of
the typechecker (Section 5). We prove the non-bypassability of the
circuit in Section 6, something that would be extremely difficult to
achieve for a software solution. Next, we provide hardware syn-
thesis figures, evaluate update-time overhead, and show how to
manage worst-case examples (Section 7). Finally, we discuss related
work (Section 8) and conclude.

2 HARDWARE STATIC ANALYSIS

In building a static analysis hardware engine directly into an embed-
ded micro-controller, one of the big advantages of customization
is that at the hardware level we can see, either physically through
inspection or through analysis at the gate or RTL level, exactly how
information is flowing through a system to introduce safety or
security mechanisms that are truly non-bypassable. No software
can change the functioning of the system at that level. However,
doing static analysis at the level of machine code is no easy task —
even for software.
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Fortunately, there are some great works to draw inspiration from.
Previous work has used types to aid in assembly-level analysis;
specifically TAL [22] and TALx86 [10] have created systems where
source properties are preserved and represented in an idealized
assembly language (the former) or directly on a subset of x86 (the
latter). Working up the stack from assembly, other prior works
attempt to prove properties and guarantee software safety at even
higher levels of abstractions. We seek to take these software ideas
and find a way to make them intrinsic properties of the physical
hardware for embedded systems where needed.

In this work we draw upon the opportunity afforded by archi-
tectures that have already been designed with ease of analysis in
mind. Specifically, we leverage the Zarf ISA, a purely functional,
immutable, high-level ISA and hardware platform used for binary
reasoning, which is suitable for execution of the most critical por-
tions of a system [20]. At a high level, the Zarf ISA consists of
three instructions: Let performs function application and object
allocation, applying arguments to a function and creating an object
that represents the result of the call. Case is used for both pattern-
matching and control flow. One cases on a variable, then gives a
series of patterns as branch heads; only the branch with the match-
ing pattern is executed. Patterns can be constructors (datatypes)
or integer values, depending on what was cased on. Result is the
return instruction; it indicates what value is returned at the end of
a function. Branches in case statements are non-reconvergent, so
each must end in a result instruction.

A big advantage of this ISA for static analysis is that it has a
compact and precise semantics. If we could could guarantee the
physical machine would always execute only according to these
semantics (e.g. always respecting call/return behavior, using the
proper number of arguments from the stack, etc.) we would end up
with a system that has some very desirable properties. In Section 7
we show that these include verifiable control flow integrity, type
safety, memory safety, and others; e.g., ROP [4] is impossible, pro-
grams never encounter type errors, and buffer overruns can never
happen.

Unfortunately, the semantics of any language govern the behav-
ior of execution only for “well-formed” programs. When we are
talking about machine code, as opposed to programming languages,
things are a little trickier, because machines are expected to read
instruction bits from memory and execute them faithfully as they
arrive. As we describe in more detail below, checking membership
in the language of well-formed Zarf programs is actually something
that requires some sophistication and would be difficult to do at
run-time. Even though there are just three instructions, Zarf bina-
ries support casing, constructors, datatypes, functions, and other
higher-level concepts as first-class citizens in the architecture. Our
goal is to correctly implement these checks statically and show that
the only binaries that can ever execute on this machine pass this
static analysis.

2.1 The Analysis Implemented

While one could, in theory, capture every possible deviation from
the Zarf semantics with a set of run-time checks in hardware, ac-
tually catching every possible thing that can go wrong quickly
grows in complexity. An advantage of static checking over dynamic
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Possible failure:

Meaning:

malformed instruction

Bit sequence does not correspond to a valid in-
struction.

fetch out-of-bounds arg

Accessing argument N when there are fewer than
N arguments.

fetch out-of-bounds local

Accessing local N when there are fewer than N
locals allocated.

fetch out-of-bounds field

Accessing field N when there are fewer than N
fields in the case’d constructor.

fetch invalid source

Bit sequence does not correspond to a valid source.

apply arguments to literal

Treating a literal value as a function and passing
arguments to it.

apply arguments to construc-
tor

Treating a saturated constructor as a function and
passing arguments to it.

application with too many
args

Passing more arguments than a function can han-
dle, even if it returns other functions.

application on invalid source

Invalid source designation for function in applica-
tion.

oversaturated error closure

Passing arguments to an error closure.

oversaturated primitive

Passing more arguments than a primitive opera-
tion can handle.

passing non-literal into primi-
tive op

Passing an object (constructor or closure) into a
primitive operation.

case on undersaturated clo-
sure

Trying to branch on the result of a function that
cannot be evaluated.

unused arguments on stack

Oversaturating a function and branching on the re-
sult when not all arguments have been consumed.

matching a literal instead of a
pattern

Branching on a function that returns a constructor,
but trying to match an integer.

invalid skip on literal match

Instruction says to skip N words on failed match,
but that location is not a branch head.

no else branch on literal match

Incomplete case statement because of lack of else
branch.

matching a pattern instead of
a literal

Branching on a function that returns an integer,
but trying to match a constructor.

incomplete constructor set in
case statement

Incomplete case statement because not all possible
constructors are present.

invalid skip on pattern match

Instruction says to skip N words on a failed match,
but that location is not a branch head.

no else branch on pattern
match

Incomplete case statement because of lack of else
branch.

Table 1: Summary of 21 conditions that require dynamic checks in
the absence of static type checking. With our approach, checking
is achieved ahead of time, in a single pass through the program;
energy and time are not wasted with repeated error checking. No
information needs to be tracked at runtime, and the only runtime
hardware check is for out-of-memory errors. All of the listed errors
are guaranteed by our type system to not occur.

checks is that once the binaries are analyzed, no additional energy
and time costs are required during execution. For an embedded
system that runs the same code continuously, any small static cost
is amortized rather quickly. As we will show later, in fact the static
analysis can actually be done in a single streaming pass over the
executable. However, just to see the scope of the problem it is useful
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to enumerate some of the dynamic checks that would be required
to achieve the same objective as our hardware static analysis.

Table 1 lists ways that programs can fail and costs that are in-
curred if one were to dynamically check for errors on the platform.
There are 21 different ways for the hardware to throw errors, the
great majority of which require keeping some significant bookkeep-
ing to actually check. At the very least, we would need to keep extra
information on number of arguments, number of local variables,
number of recently cased constructor fields, and runtime tags on
heap objects to distinguish between closures and constructors —
all of which the hardware would need to track at runtime. Cru-
cially, this information must be incorruptible and inaccessible to
the software for the dynamic checks to be sound. If software is
able to access and corrupt this information, it compromises the
integrity of the dynamic checks. In general, guaranteeing that the
set of dynamic checks are always occurring, i.e. not bypassed, can
be very difficult. With a hardware-implemented static analysis, we
are able to formally prove that our checks cannot be bypassed (out-
lined in Section 6). In addition to the hardware implementation
overhead of these checks, reasoning about software behavior in
the face of dynamic checks becomes more difficult as well if error
states are returned. Programmers that wish to handle errors due
to code that fails such checks are forced to reason about every
situation that can arise (e.g. what if this function encounters an
oversaturated primitive, or cases on an undersaturated closure, and
so on.). Instead, by performing the checks statically, all software
components understand that any other component with which they
might interact on the system is subject to the same analysis as their
own code.

2.2 The Bouncer Architecture

Given that we can develop a unit to actually perform the desired
static analysis, a big question is where it fits into the actual micro-
controller design. Figure 1 shows how a static analysis engine (the
Binary Exclusion Unit) fits into an embedded system at a high level:
all incoming programs are vetted by the checker before being writ-
ten to program storage, ensuring that all code that the core executes
conforms to the type system’s proven high-level guarantees. Dur-
ing programming mode, as a binary image is loaded into the core,
the checker has write access to the program store and can use data
memory as a working space. The Binary Exclusion Unit can thus be
used as a runtime guard, checking programs right before execution
when they are loaded into memory, or as a program-time guard,
checking programs when they are placed into program storage
(flash, NVM, etc.).

Only once the programming mode is complete do the instruction
and data memory become visible. The upshot of catching errors this
way is that this gives you feedback at programming time, before
a device is deployed, that the binary contains errors. It further
ensures that when reprogramming occurs in the field, malicious
or malformed code that exploits interactions outside of the ISA
semantics will never be loaded.

In either case, checking works the same way: each word of the
binary is examined one at a time in a linear pass over the program
as it is fed through the Binary Exclusion Unit. It is trivial to verify
that the BEU is the only unit given access to write to the memory
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Figure 1: The Binary Exclusion Unit works as a gatekeeper, only al-
lowing input binary programs if they pass the static analysis. When
in “Programming” mode, the core is halted while the program is
fed to the checker; if it passes, it is written to the system instruc-
tion memory. The checker makes use of the core’s data memory,
which is otherwise unused during system programming. At run-
time, the checker is disabled and consumes no resources. Programs
that pass static analysis are guaranteed to be free of memory errors,
type errors, and control flow vulnerabilities. The checker is non-
bypassable; all input binaries are subject to the inspection.

— the more interesting discussion, covered later, is the verification
that the only way though the BEU is via a static analysis.

3 STATIC ANALYSIS STRATEGY

While many different static analysis approaches might be imple-
mented in hardware in the way we described in the sections above,
to embody these ideas in a hardware prototype we need a specific
analysis specification and implementation. Here we draw inspira-
tion from TAL [22], and use types to clearly and completely specify
allowed behavior. By extending the Zarf ISA with types, passing a
portion of that type information along with the binary, and then per-
forming the static analysis to check those types, we know the pro-
gram conforms to the allowed behaviors. This new type-extended
Zarf ISA is, unlike untyped Zarf, based on the polymorphic lambda
calculus. Figure 2 describes the abstract syntax of the typed ISA;
note that there are four types: integers, functions, type variables,
and datatypes (which are similar to algebraic datatypes found in
languages like Haskell and ML). Both functions and datatypes are
declared at the top level; since the ISA is lambda-lifted, the introduc-
tion of universally-quantified type variables ranging over a function
body or datatype is limited to the top level as well, simplifying the
ISA’s type system.

Our static analysis requires that type information be encoded
into the binary, but we note specifically that the Binary Exclusion
Unit discards these annotations when finished, leaving a (safe and
certified) standard binary program in protected core memory. To
qualify as a typed Zarf program, a binary must declare types of all
top-level functions and make all (data) constructors members of a
datatype. With this, all types will be tracked and checked, including
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x € Variable n€Z fn, tn, cn € Name & € PrimOp

a € GenericTypeVariable f € RigidTypeVariable

—_—
P € Program := data func

data € Datatype = data tn & = cons
=concn?
=funfnX:27 =e

u= let | case | res

cons € Constructor

func € Function

e € Expression

. P B A}
let € Let :==letx=nine|letx=idargine
- -
case € Case == case x of br | case x of br else e

res € Result := result arg
br € Branch:=cnXx=e|n=>e
id € Identifier := fn|cn| & | x
arg € Argument :=n | x
T e€Types=Int|dt|ft|T
dt € Datatype == tin 7
ft € FuncType :=7 —> T
T € TypeVar := a | B

Figure 2: Typed Zarf Abstract Syntax. An arrow over any metavari-
able signifies a list of zero or more elements, except for a datatype’s
constructor list, which must be non-empty.

type variables for polymorphism, facilitating local type inference
within the bodies of functions.

The type system in Figure 3 describes, using a set of inference
rules, what it means for a Zarf binary to well-typed. Note that the
type returned by applyType is the principal type of the variable
to which it is bound in the Let instruction; no constraints are
propagated to any instructions that follow, limiting the amount
of information that needs to be tracked throughout typechecking,
as well as making error reporting of ill-typed applications more
accurate.

3.1 Properties and Proofs

Two formal properties, when combined, can guarantee that the
machine never has to create and return an error object. The first is
progress, which says that if a term is well-typed, then there is always
a way to continue evaluating it according to the semantic rules;
the second is preservation, which says that if a term is well-typed,
evaluating it will result in a well-typed term. Taken together, we
have a guarantee that there will always be an applicable semantic
rule to evaluate each step of the program, which means that we
never encounter anything outside of our semantic definitions and
never run into type or memory errors.

We prove progress and preservation in a straightforward way,
via induction on the typing rules and the dynamic semantics, giving
a brief overview below.

LemMa 3.1 (Appry TYPE). applyType (i, 7a, C, @) returns the prin-
cipal type of an application of a type to zero or more arguments.
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I' € Env = Variable — Type C € ConstraintSet = P(Type x Type) o € Substitution = TypeVar — Type b € Bool = true + false

701 = makeRigid(z,) Fe: 702

princType([7r1, 7r2]) = Tr1 X ?pl Fe: 72 princType([z,1, Tr2]) = 771
(FUNC-RET)

(Zp1 = 7r1) = makeRigid(zp, — 7,)

(FUNC-PARAMS)
Ffunfn(]lz, =e: 7,

idTy(T, id) = 7; a = freshGenTV I =T[x1 — «a]

Ffunfanx:zy 1, =e:7p = 7,

map(argTy(Th), arg) = 7o applyType(ri, Za, [ ) =71 Tl > nlre:t I[x—Int]re:r
— (LET-vAR) —— " (LET-INT)
I'rletx;=idargine: 1 I'tletx=nine: 7
— - p—
I'(x) =dt cons = getCons(dt) T(x) = dt cont = getCons(dt)
-
allConsPres(con3, br) = true z = brTypes(T, ﬁ’ o)
—
7 = brTypes(T, br, con¥) princType(?) = ¢ Tre:z, princType(ze=7) =1
= (CASE-CON) = (CASE-CON-ELSE)
Tt+casexofbr:c T+ casexofbrelsee:
- — . N
T(x)=Int (n;j=e;)ebr Tre:7; Tre:7, princType(ze:7;) =7 (CASE-INT) argTy(T, arg) = ©
— ————— (RESULT)
I'tcase xof brelsee: r T'kresultarg: v
— ——
applyType € Type X Type X ConstraintSet X TypeVar — Type applyHelper € FuncType X Type
applyType(zy, 7a, C, @) = x ConstraintSet X TypeVar — Type
. i 7, =[] applyHelper(ty =7y — 7, Tq T, Ci, @) =
applyHelper(Zp, — 77, 7, C, @) ifZa #[[AT1=Tp > 77 applyType(s, 7a, Cz, @)
where where
o =unify(C) Cr={rp =12}V,
75 = substitute(o, 71) Tr if 7, =[]
T, =
true = (« ¢ dom(o)) V ((a — 14) € 0 A substitute(o, 74) = 12) ! 7p — 7, otherwise

Figure 3: Zarf Static Semantics (Typing Rules). See Figure 2 for the abstract syntax. Descriptions of each rule and helper function follow: Func-
RET checks each function with zero parameters and compares the body’s type to the expected return type. FUNc-PARAMS checks functions
with parameters; it maps the parameters to their declared types before checking the function body. makeRigid universally quantifies all
type variables in the type declaration across the body. LET-VAR applies a type to zero or more arguments using the helper applyType to get
the principal type of the application. Functions may be partially-applied, and mapping the bound variable to a fresh type variable allows for
recursive definitions. It checks the next expression in an updated environment. LET-INT performs constant assignment. CASE-CON is used when
scrutinizing a datatype; it gets the list of constructors associated with the datatype, replacing all type variables in those constructors’ fields
with any type variable instantiations found in the datatype, using the helper brTypes to get the type of each branch. cASE-CON-ELSE is similar
to CASE-CON, but used when all constructors of the datatype aren’t present; in this case, an else branch is required. RESULT is the base case,
simply producing the type of a bound variable or integer. applyType performs constraint generation, unification (unify), and substitution (o) to
get the principal type of an application. When no arguments are applied, the type of this helper’s first parameter is returned, thus allowing the
Let instruction to apply an integer, datatype, or generic type as well as function types. applyHelper generates constraints between a function
application’s parameters and arguments, taking care to handle over-application appropriately. idTy allows let-polymorphism by replacing
non-rigid type variables with fresh ones. argTy gets the type of an integer or variable; all arguments must be literals or previously bound in the
environment. brTypes typechecks a list of branch bodies, mapping the branch’s binders to the matching constructor’s field types. princType
verifies a list of types can be considered equal, in the presence of type variables.

ProoF. applyType generates a constraint for each parameter and fun fn X% 1 = e produces a value of type T # Error, when the body
argument until the list of arguments 7, is exhausted. Unifying terminates.
these constraints to produce a substitution, it then determines the
principal type of the application; this proof relies on standard proofs Proor. The rule FUNC-PARAMS checks a function body e in an en-
on principal type generation. vironment I that maps the parameters in X to their declared types
in 7. Any type variables in those parameter types are universally
LEMMA 3.2 (PROGRESS OF FUNCTIONS). Assuming the correct ar- quantified across the entire function (rule FUNC-RET follows sim-
guments are given, executing the body of a well-typed function ilarly, except that the initial environment used to typecheck the
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body eis empty). The proof showsT F e : 7, that is, that the function
body evaluates to a non-error value of type 7, by induction on the
derivation of e and using Lemma 3.1.

THEOREM 3.3 (PROGRESS OF PROGRAMS). Let P be a well-typed
— —

program composed of a list of datatypes data and functions func. Let

(fun mainx: 7t = e) € func be the entry point to P where execution

begins. Then P either halts and returns a value of type t # Error, or
it continues execution indefinitely.

Proor. By Lemma 3.2 and rule FUNC-PARAMS, we know that
funmain X: 7 v = e has type 7 (similarly for functions without
parameters, using rule FUNC-RET). Since a hardware error value of
type Error is created when the machine encounters an invalid state
during evaluation, and Lemma 3.2 says that a well-typed function
does not lead to an invalid state, P returns a value of type 7 # Error
when it terminates.

4 ALGORITHM FOR ANALYSIS

As mentioned earlier, the Binary Exclusion Unit (BEU) can be used
as a runtime guard, checking programs right before execution when
they are loaded into memory, or as a program-time guard, checking
programs when they are placed into program storage (flash, NVM,
etc.). In either case, checking works the same way: each word of the
binary is examined one at a time as it streams through. Central to
this process is the embedded Type Reference Table (TRT), which is
copied from the binary into the checker’s memory and contains the
type information for the binary. This serves as a reference during
all stages of the checking process and will be extended during the
checking of each function as local variables are introduced. Later,
when the BEU arrives at a new function, it consults the function
signature, which provides type information for the arguments and
the return type of the function. Each instruction in the function
is then scanned word-by-word, guaranteeing type safety of each
instruction according to the static semantics (Figure 3). Checking
can fail at any step of the process: e.g., a function might expect an
Integer but is passed a List, or the add function, which expects
two Integer arguments, is given three. A single type violation
causes the entire program to be rejected. The steps required to
check each instruction class are described in more detail below:

Let — When a Let instruction is encountered, we first check for
special-case operations: applying no arguments to something will
always result in the same thing, so we can simply assign the result
to that type and do no further checking. Assuming the Let does
have arguments, the checker then gets the type of the function and
creates an alias of it in a new TRT entry. The point of the alias is
to make each type variable unique — e.g., the same type List a(a
list of elements of type “a”) used in two places may not be using
the same type for “a”, so the separate usages should have separate
type variables. In order to allow recursive Let operations, a type
variable is assigned to the result of the operation; when all the
arguments have been processed, that variable will be set equal to
what’s left. The checker goes through each argument, one at a time,
and unifies its type with the function’s expected type. This creates
a list of constraints that, along with the constraint on the resulting
type variable, are checked altogether as the last step. If there are no
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inconsistencies in the constraint set, the operation was valid, and a
new valid type is produced for the local variable.

Because type inference is relatively simple, we chose to forgo
type annotations on each function application that indicate the
result of the operation. Instead, the checker uses function-local type
inference to figure out the return type of each function application.
Because function calls (Let instructions) make up the majority of
the instructions in a binary, the absence of annotations on each one
results in much smaller binary sizes for typed binaries.

Special care must be taken in Let instructions when the result-
ing type is a function, and when the function being applied has
a function in its return type. The former requires creating a new
TRT entry for the function; the latter requires a special “unfolding”
routine to begin applying arguments to the function in the return
type. Both of these are reasons that the Let section of the hardware
checker has so many states (Table 2).

Case — Case instructions are much more straightforward. The
checker simply saves some type information on what the program
is casing on, which is used in later instructions. Specifically, the
primary task is to get the type of the scrutinee (the thing being
cased on) and save a reference both to the particular variable’s
type and the root program datatype (assuming the variable is a
constructor, not an integer). For example, this way branches will
know that a List was cased on, not a Tuple, and know that the
particular variable was a List Int as opposedtoalist Char.

Pattern_literal branch heads are quite simple: the case head
must be an integer, and the value specified in the instruction must
be an integer.

Pattern_con branch heads are one of the more complex things
to check. We have to reconcile the generic type of the indicated
pattern (constructor) with the specific type of the variable that we're
matching against. To do this, the checker must get the function
type specified in the pattern head, then alias it in a new TRT entry.
Then we must generate the constraint that the return type of the
function is the same as the type of the scrutinee — this ensures
that the type variables in this entry will be constrained to be the
same as those in the original scrutinee. Constraints can then be
checked, yielding a map with which the variables can be recursively
replaced to the correct types. Finally, a pointer is set to where the
fields of the constructor begin (if applicable). When we are done,
we have direct, usable information on the type of each field in the
constructor, which can be used by following instructions.

In addition, we must keep track of which constructors we’ve
seen in this case statement; that way, when we get to the end of the
Case, we’ll know if all of the constructors of that type were present
or not. A Case statement must either contain an else branch or
use all constructors of the scrutinee’s type.

5 BEU IMPLEMENTATION

At a high level, the BEU is a hardware implementation of a push-
down automaton (PDA) and is structured as a state-machine with
explicit support for subroutine calls. While there a numerous book-
keeping structures required, we must take care to access a single
structure at a time to ensure we do not create structural hazards.
The final analysis hardware is the result of a chain of successive
lowerings from a high-level static semantics ending with a concrete



Bouncer: Static Program Analysis in Hardware

(a) data List[a] = Cons a List[a] | Nil
fun map :: ((a) -> b, List[a]) -> List[b]
fun map f list =
case list of {
Nil => let ret = Nil in ret
Cons x xs =>
let head = fx in
let tail = map f xs in
let ret = Cons head tail in
ret

}

Error

Int

List a (1 TV, 2 constructors)
Function of 1 arg

arg: Int

return type: Int

Function of 2 args

arg: Int

arg: int

return type: Int

Derived Type on List (List a)
arg: Type variable 0
Function of 2 args (Cons)
arg: Typevar 0 (a)

arg: Lista

return type: List a

Function of 1 arg (a -> b)
arg: Typevar 0

arg: Typevar 1

Derived Type on List (List b)
arg: Type variable 1
Function Signatures:
Function of no args (main)
return type: Int

Function of 2 args (Cons)
arg: Typevar 0

arg: Reference to 10

return type: Reference to 10
Function of no args (Nil)
return type: Reference to 10
Function of 2 args (map)
arg: Reference to 16

arg: Reference to 10

return type: Reference to 19

0 0x40000000
1 0x40000000
2 0x40010002
3 0xa0000002
4 0xc0000001
5 0xc0000001
6 0xa0000003
7 0xc0000001
8 0xc0000001
9 0xc0000001
10 0x80000401
11 0xe0000000
12 0xa0000003
13 0xe0000000
14 0xc000000a
15 0xc000000a
16 0xa0000002
17 0xe0000000
18 0xe0000001
19 0x80000401
20 0xe0000001

(b)

25 0xa0000001
26 0xc0000001
27 0xa0000003
28 0xe0000000
29 0xc000000a
30 0xc000000a
31 0xa0000001
32 0xc000000a
33 0xa0000003
34 0xc0000010
35 0xc000000a
36 0xc0000013

Figure 4: An example Type Reference Table (TRT) for the function
map. The original program is shown in (a), while (b) shows the actual
binary type information that the assembler produces (annotated for
human understanding). This type information is included at the
head of the binary file, leaving the program unchanged. The first
section lists types used in the signatures of the program, while the
second section contains type information for the parameters and
return type of each function. The type system is polymorphic and
uses function-local type inference.

state chart that we could then implement with minimal and straigh-
forward hardware. First, a bit-accurate software checker was made
that checked binary files. Then, a cycle-accurate software push-
down automata was written from that refined specification. From
that program, the leap to real hardware was somewhat straight-
forward (see Section 7 for synthesis results). The full details of the
checker cannot hope to fit in this paper, so we concentrate here on
the strategy used at a high level and a couple of details to give a
better sense for the full design.

The first challenge in implementing this analysis is how to en-
code the type information into the binary. As discussed in the prior
section, we put this information at the head of each binary in the
form of the TRT. To get a sense of what that actually looks like
in a real implementation, Figure 4 shows an example TRT for the
function map. This information is discarded after checking, leaving
a standard, untyped binary, which executes with normal perfor-
mance.
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At the bit-level, we see only a sequential series of bytes. There-
fore, all type information must be encoded into a single list. To avoid
unnecessary complexity, we make all entries in the TRT fixed-width
32-bit words. An entry can be either 1) a program-specified datatype
or built-in type!, or 2) a derived type based on another type. Entries
of type 2 can have one or more argument words, which we refer
to as “typewords.” “Derived” here means that the entry contains
references to other types in the table. This manifests as either a
type applied to some type variables or as a function. For example,
List is specified as a program datatype with one type variable, then
derived type entries can create the types List a, List Int, etc,
where a and Int are typewords following the derived type entry.

The second challenge in bringing the typechecker to a low level
is dealing with recursive types. Implicitly, types in the system may
be arbitrarily nested: for example, one could declare a List of
Tuplesof Lists of Ints. During the checking process, the hardware
typechecker must be able to recursively descend through a type in
order to make copies, do comparisons, and validate types. Because
of this, the Binary Exclusion Unit cannot be expressed as a simple
state machine — a stack is required for recursive operations (and
hence the pushdown automaton).

Data structures used in the higher-level checking, like maps, need
to be converted to structures native to hardware: they must flattened
into a list, which can be stored in memory. In some cases, this
requires a linear scan to check for the presence of some elements,
such as checking case completeness — but those lists tend to be
small, containing just one entry for each constructor of a given
datatype. We found that all of the structures could be represented
as lists with stack pointers, except in the case of the type variable
map used in the recursive replace procedure, which required two
lists (one to check for membership in the map, the second with
values at the appropriate indices).

To create the control structure of the PDA, we started by imple-
menting a software-level checker, broken into a set of functions
implemented with discrete steps, where each step cannot access
more than one array in sequence (in hardware, the arrays will
become memories, which we do not want strung together in a
single cycle). While, given our space constraints, it is difficult to
describe the system in detail, the number of states for each part
of the analysis is a reasonable proxy for complexity. The resulting
state machine has 207 states and they are broken down by pur-
pose in Table 2. We summarize them briefly here, with number of
states denoted in parentheses. The initialization stage reads the
program and prepares the type table (21 states). Function heads
are checked to ensure the argument count matches the provided
function signature, and bookkeeping is done to note the types of
each argument and the return type (15). Dispatch decides which
instruction is executed next and handles saving and restoring state
as necessary for Case statements (6). Let (37), Result (3), Case
(7), Pattern_literal (1), and Pattern_con (21) are checked as
outlined in Section 4.

Because types can be recursively nested, a type entry in the TRT
can reference other types; a set of states is devoted to following
references to find root types as needed (6 states). To handle this,
the state machine implements something akin to subroutines. A

1The Zarf ISA includes integers and an error datatype built-in.
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Purpose Number of States
Initialization 21
Function signatures 15
Dispatch 6
Let checking 37
Return checking 3
Case checking 7
Literal pattern checking 1
Constructor pattern checking | 21
Following references 6
Type variable (TV) counting | 12
Recursive TV replacement 12
Recursive TV aliasing 26
Generating constraints 19
Checking constraints 21
Total 207

Table 2: Number of states devoted to the various parts of the Bi-
nary Exclusion Unit’s state machine. Checking function calls, allow-
ing for polymorphic functions with type variables, and constraint
checking were the most complex behaviors, making up most of the
states.

routine executes at the beginning of each function that counts
the number of type variables used in the signature (these type
variables are “rigid” within the scope of the function and cannot be
forced to equal a concrete type) (12). Another routine recursively
replaces type variables to make one type entry match the variables
in another; it allows pattern heads to be forced to the same type as
the variable in the Case instruction (12). The aliasing subroutine
recursively walks a type and maps its type variables to a “fresh”
set (26). This allows, for example, each usage of List a to have
“a” refer to a different type. Part of the complexity of this task is
keeping track of the variables already seen and what they map
to so that a variable is not accidentally mapped twice to different
values. Constraint generation takes two type entries and, based on
the entries, branches and generates the appropriate constraint for
the constraint set indicating that the entries should be equal (19).

Finally, we have the constraint checking routine (21). This is
invoked at the end of each Let instruction, as well as after a Result.
Constraint propagation proceeds by taking one constraint from
the set, which consists of a pair of types, then walking all the
remaining constraints in the set and replacing all occurrences of the
first type with the second. In this way, for each unique constraint,
one type is eliminated from the constraint set. If at some point
two different concrete types (like Int and List) are found to be
equal, the set is inconsistent and typechecking fails, rejecting the
program. Similarly, if ever a rigid type variable (a type variable used
in the function signature) is found to be equal to a concrete type,
typechecking fails. This second fail condition ensures that functions
with polymorphic type signatures are, in fact, polymorphic. Without
it, one could write a function that takes “a” and returns “a”, which
should work for all types, but in fact only works for integers.

As we developed our software and hardware checkers, we used a
software fuzzing technique to generate 200,184 test cases based on
prior techniques in program testing [15]. Rather than generating
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random bits, which would not meaningfully exercise the checker,
we encode the type system’s semantics with logic programming
and run them “in reverse” to generate, rather than check, well-typed
programs. By performing mutations on half of these programs, we
also generate ill-typed benchmarks. In all 200,184 generated test
cases, the simulated hardware RTL has 100% agreement with the
high-level checker semantics. The tests provide 100% of coverage
of all 207 states of the checker.

While the resulting analysis engine is complex, one could cer-
tainly reuse parts of the analysis for other sets of properties and
automated translation would be an interesting direction for future
work. The software model is 1,593 lines of Python, while the hard-
ware RTL is 1,786 lines (requiring extra code for declarations and
the simulation test harness). Synthesis results are found in Section
7.

6 PROVABLE NON-BYPASSABILITY

The hardware static analysis we developed has a variety of states
governing when it is active, how it initializes, and so on. An impor-
tant point of this paper is the non-bypassibility of these checks, but
we need to know that some sequence of inputs cannot be given to
the checker that causes outputs to write to memory that have not
been checked by analysis. To solve this problem, we can create an
assertion and employ the Z3 SMT solver [13] to check it for us. Z3
is well-suited to our task because of its ability to represent logical
constructs and solve propositional queries. In addition, because we
can directly represent the circuit in Z3 at the logic level (gates), we
do not have to operate at higher levels of abstraction and risk the
proof not holding for the real hardware.

We actually translate our entire analysis circuit into a large Z3
expression. Then, we add two constraints: the first says that, at
some point in the operation of the circuit, it output the “passed”
(meaning well-typed) signal, while the second says that at no point
did the hardware enter the checking states. If the conjunction of the
expressions is unsatisfiable, there is no way to get a “pass” signal
without undergoing checking (and the program will never be loaded
if it fails checking). Around 30 of the states deal with program load-
ing, initialization, etc., and perform no checking; our proof guards
against, for example, situations in which some clever manipulation
of the state machine moves it from initialization directly to passing,
or otherwise manages to circumvent the checking behavior of the
state machine.

In the most direct strategy, we use the built-in bitvec Z3 type
for wires in the circuit, with gates acting as logical operations on
those bitvectors. Memories are represented as arrays. Arrays in Z3
are unbounded, but because we address the array with a bitvector,
there is an implicit bound enforced that makes the practical array
non-infinite.

A straightforward approach to handling sequential operation
of the analysis is to duplicate the circuit once for each cycle we
wish to explore. The cycle number is appended to the name of each
variable to ensure they are unique. Obviously, because the entire
circuit is duplicated for each cycle, this method does not scale well
— both in terms of memory usage and the time it takes to determine
satisfiability. Checking non-bypassability for numbers of cycles
up to 32 took under 2 minutes and used less than 1 GB of RAM.
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Checking for 64 cycles used almost 16 GB and did not terminate
within four days.

To make the SMT query approach scalable, we employ Z3’s
theory of arrays. Instead of representing each wire as a bitvector,
duplicated once for each cycle, we represent it as an array mapping
integers to bitvectors: the integer index indicates the cycle, while
the value at the index is the value the wire takes in that cycle. There
is then one array for each wire in the circuit, and one array of
arrays for each memory in the circuit (the first array represents
the memory in each cycle, while the internal array gives the state
of the memory in that cycle). Logical expression (gates) can then
be represented as universal quantifiers over the arrays. For exam-
ple, an AND expression might look like, ForA11(i, wire3[i] ==
wirel[i] & wire2[i]). This constrains the value of wire3 for all
cycles. Sequential operations are easy, simply referring to the previ-
ous index where necessary for register operations, e.g. ForA11(i,
reg1[i] == regl_input[i-11]). To bound the number of cycles,
we add constraints to each universal quantifier that i is always less
than the bound; this prevents Z3 from trying to reason about the
circuit for steps beyond i.

Solving satisfiability with arrays took under two minutes and
under one GB of RAM, no matter what bound we placed on the
cycle count — in fact, even when unbounded, Z3 was still able
to demonstrate our hardware analysis bypassibility assertion was
unsatisfiable — i.e., the circuit is non-bypassable.

7 EVALUATION
7.1 Checking Benchmarks

To understand if real-world programs can be efficiently typed and
checked with our system, we implement a subset of the benchmarks
from MiBench [17]. These tended to be much longer and more
complex programs when compared to the randomly-generated
ones. While the fuzzer’s programs averaged 50-65 instructions per
program, the embedded benchmarks range from 500 to over 7,000
and represent code structures drawn from real-world applications,
such as hashes, error detection, sorting, and IP lookup. In addition to
the MiBench programs, a standard library of functions was checked,
as well as a synthetic program combining all the other programs
(to see the characteristics of longer programs).

Figure 5 shows how long typechecking took for the benchmark
programs as a function of their code size. A linear trend is clearly
visible for most of the programs, but one stands out from the pack:
the CRC32 error detection function. The default CRC32 implemen-
tation is, in fact, a pathological case for our checking method as it is
dominated by a single large function in the program. This function
constructs a lookup table used elsewhere and is fully unrolled in
the code. No other benchmark had a function nearly as large. The
typecheck algorithm, while linear in program length (it checks in a
single pass), is quadratic in function length and type complexity?.
This insight not only explains the anomalous behavior of the initial
CRC32 program, but provides a clear solution: break up the large
function.

We test this hypothesis by breaking up CRC32 and re-checking it.
While the task of breaking up a function in a traditional imperative

2“Type complexity” refers to how many base types are in a type; i.e., the length of its
member types, recursively.
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programming language is complicated by the large amounts of
global and implicit state, and would be even harder to perform at
level of assembly, in a pure functional environment every piece of
state is explicit. This makes the process not only easier, but even
possible to fully automate. When we look at CRC32 specifically,
the state, passed directly from one instruction to the next for table
composition, can be captured in a single argument. We perform this
transformation on our CRC32 program to break table construction
across 26 single-argument functions, producing the CRC-short data
point in the graphs in Figure 5. It still stands slightly above average
because the table-construction functions are still above the average
function length; recursively applying the breaking procedure could
easily reduce the gap further.

While function length is an important aspect of checking time,
with some care it can be effectively managed, and in the end all of
the programs examined can be statically analyzed in hardware at a
rate greater than 1 instruction per 100 cycles. This rate is more than
fast enough to allow checking to happen at software-update-time,
and could perhaps even be used at load-time, depending on the
sensitivity of the application to startup latency.

7.2 Practical Application to an ICD

In addition to the benchmarks described above, we additionally pro-
vide results for a complete embedded medical application that was
typed and checked; specifically, an ICD, or implantable cardioverter-
defibrillator3. The ICD code was the largest single program exam-
ined (only the synthetic, combined program was larger). Its complex-
ity required the use of multiple cooperating coroutines, managed by
a small microkernel that handled scheduling and communication.
Despite its length and complexity, it had the best typecheck charac-
teristics of any of our test programs, with its cycles-per-instruction
figure falling just below the average at 55.2. The process of adding
types to the application was relatively simple, taking approximately
2 hours by hand.

Since the ICD represents the largest and most complex program,
as well as the exact type of program the BEU is designed to protect,
we attempt to introduce a set of errors in the program to demon-
strate the ability of the BEU to ensure integrity and security. Some
of the errors are designed to crash the program; some are designed
to hijack control flow; others are designed to read privileged data.
The list of attempted attacks and how the BEU caught them are
shown in Table 3.

In an unchecked system, passing an invalid function argument,
writing past the end of an object, and passing an invalid number of
function arguments could all lead to undefined behavior or system
crashes. While past work could establish that a specific piece of
code would not do these things independent of the device, this work
establishes these properties for the device itself, applying to all pro-
grams that can potentially execute — it is simply impossible to load
a binary that will allow these errors to manifest. To establish that
this was indeed the case, Table 3 shows the result of our attempts to
produce these behaviors: a type error, a function application error,
and an undersaturated call error, respectively. Reading past the end

3An ICD is a device planted in a patient’s chest cavity, which monitors the heart for
life-threatening arrhythmias. In the case one is detected, a series of pacing shocks are
administered to the heart to restore a safe rhythm.
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Figure 5: BEU evaluation for a set of sample programs drawn from MiBench, an embedded benchmark suite. For most programs, complete
binary checking will take 150-160 cycles per instruction. LEFT: Time for hardware checker to complete, in cycles, as a function of the input
program’s file size. RIGHT: The same checking time, divided over the number of instructions in each program. Though the stock CRC32 has
the longest typecheck time, an automatic procedure can modify the program to lower the checking time while preserving program semantics,

noted as CRC-short.

Attempted Attack

Result

Binary that reads past the end of an ob-
ject to access arbitrary memory

Hardware refuses to load binary due to
type error "field count mismatch”

Binary that passes an argument to a func-
tion of the wrong type to cause unex-
pected behavior

Hardware refuses to load binary due to
type error "not expected type"

Binary that writes past the end of an
object to corrupt memory

Hardware refuses to load binary due to
“application on non-function type”

Binary that passes too few arguments
to a function to attempt to corrupt the
stack

Hardware refuses to load binary due to
"undersaturated call"

Binary that uses an invalid branch head
to try and make arbitrary jump

Hardware refuses to load binary due to
type error "branch type mismatch”

Binary that jumps past the end of a case
statement to enable creation of ROP gad-
gets

Hardware refuses to load binary due to
"invalid branch target"

Jump past the end of a function to create
ROP gadgets

Hardware refuses to load binary due "in-

valid branch target”

Table 3: A list of some of the erroneous code that may be present
in a binary (tested in our ICD application) and how the BEU identi-
fies it as an error. Some of these errors, such as reading off the end
of an object, writing beyond the end of an object, and jumping to
arbitrary code points, are sufficient to thwart common attacks, like
buffer overflow and ROP.

of an object in an attempt to snoop privileged data was thwarted by
detecting a type error dealing with field count mismatches. Control-
flow hijacks, like using an invalid branch head, jumping past the
end of a case statement, and jumping past the end of a function,
were caught by a type mismatch in the first case and the detection
of an invalid branch target in the latter two.

Though not exhaustive, these attacks show the resilience of
the system to injected errors when compared to an unchecked
alternative and demonstrate its practicality in the face of real errors
and attempted attacks.
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7.3 Synthesis Results

Synthesized with Yosys, the hardware typechecker logic uses 21,285
cells (of which 829 are D Flip Flops, the equivalent of approximately
26 32-bit registers). Mapped to the open-source VSC 130nm library,
it is .131 mm?, with a clock rate of 140.8 MHz. Scaled to 32nm, it is
approximately .0079 mm?. As an addition to an embedded system
or SoC, it provides only a tiny increase in chip area, and requires no
power at run-time (having already checked the loaded program).

Assuming the checker can use the system memory, it requires
no additional memory blocks; if not, it needs a memory space at
least as large as the input binary type information, and space linear
in the size of the program’s functions.

The worst-case checking rate was 301 cycles per instruction
for a pathological program; even a program of 450,000 lines with
worst-case checking performance can be checked in under a second
at the computed clock speed of 140 MHz on 130nm.

8 RELATED WORK

Typed Assembly

When dealing with typed assembly, the most prominent works
are TAL [22] and its extensions TALx86 [10], DTAL [27], STAL [21],
and TALT [9]. In TAL, they demonstrate the ability to safely convert
high-level languages based on System F (e.g. ML) into a typed tar-
get assembly language, maintaining type information through the
entire compilation process. Their target typed assembly provides
several high-level abstractions like integers, tuples, and code labels,
as well as type constructors for building new abstractions.

TALx86 is a version of IA32, extending TAL to handle additional
basic type constructors (like records and sums), recursive types,
arrays, and higher-order type constructors. They use dependent
types to better support arrays; the size of an array becomes part of
its type, and they introduce singleton types to track integer values
of arbitrary registers or memory words. TAL provides a way to
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ensure that high-level properties like type- and memory-safety are
preserved after compiler transformations and optimizations have
taken place.

Unlike TAL, our type system was co-designed with hardware
checking in mind — a distinction that greatly impacts the type
system design. It allows for binary encoding of types and empowers
the target machine, rather than the program authors, to decide if
a program is malformed. TAL requires a complex, compile-time
software typechecker, as opposed to our small, load-time hardware
checker. Our type system operates on an actual machine binary
and not an intermediate language.

The eventual target of TALx86 is untyped assembly code (assem-
bled by their MASM assembler into x86). The types are not carried
in the binary and are not visible to the device that ultimately runs
the code. Though useful, a device cannot trust that the program it
has been given has been vetted; therefore, bad binaries can still run
on TAL'’s target machines.

Our work’s most significant contribution, the Binary Exclusion
Unit (BEU), overcomes this problem. The BEU, a hardware type-
checker for the system capable of rejecting malformed programs,
is an integral, non-bypassable part of the machine; if typechecking
fails, execution cannot begin. To our knowledge, this is the only
hardware module that performs typechecking on binary programs.
We leave expansion of the BEU to other ISAs for future work, but
note that the complexity of the TAL type system indicates that a
hardware implementation would be significantly more work and
overhead on an imperative ISA.

Architecture and Programming Languages

In SAFE [2], the authors develop a machine design that dy-
namically tracks types at the hardware level. Using these types
along with hardware tags assigned to each word, their system
works to prove properties about information-flow control and non-
interference. They claim that the generic architecture of their sys-
tem could facilitate efforts related to memory and control-flow
safety in further work.

There has also been important work in binary analysis, which
seeks to recover information from arbitrary binaries to make sound
and useful observations. For example, Code Surfer [3] is a tool that
analyzes executables to observe run-time and memory usage pat-
terns and determine whether a binary may be malicious. Work on
binary type reconstruction in particular seeks to recover type in-
formation from binaries. In one work [19], they recover high-level
C types from binaries via a conservative inference-based algorithm.
In Retypd [25], Noonan et al. develop a technique for inferring
complex types from binaries, including polymorphic and recursive
structures, as well as pointer, subtyping, and type qualifier informa-
tion. Caballero et al. [5] provide a survey of the many approaches
to binary type inference and reconstruction.

Static safety via on-card bytecode verification in a JavaCard [6] is
an interesting line of work with a similar goal to our approach. How-
ever, a hardware implementation can be verified non-bypassable in
a way that is much harder to guarantee for software. The Java type
system is known to both violate safety [1, 8] and be undecidable
[16] which makes it a far more difficult target for static analysis
and, we would argue, nearly impossible to implement in hardware
directly.
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At the intersection of hardware and functional programming,
previous works have synthesized hardware directly from high-level
Haskell programs [28], even incorporating pipelined dataflow par-
allelism [26]. Run-time solutions to help enforce memory manage-
ment for C programs have been proposed at the software level [24],
as well as in hardware-enforced implementations [14, 23]; these
provide run-time, rather than static, checks.

Other work has used formal methods to find and enforce proper-
ties at the hardware level to help ensure hardware and software se-
curity [29], while others have shows the effectiveness of hardware-
software co-analysis for exploring and verifying information flow
properties in IoT software [7].

9 CONCLUSION

While the micro-controller design in this paper might be an ex-
tremely non-traditional example, going so far as to have proofs of
the properties that hold and rejecting non-conforming programs
outright, it opens the door to other work that limits hardware func-
tionality in meaningful and helpful ways without entirely giving
up programmability. The result of our effort is a Binary Exclusion
Unit that can easily fit into embedded systems or perhaps even
serve as an element in a heterogeneous system-on-chip, provid-
ing a hardware-based solution that cannot be circumvented by
software. Our approach prevents all malformed binaries from ever
being loaded (let alone run), and ensures that all code loaded onto
the machine is free from memory errors, type errors, and erroneous
control flow. It requires neither special keys/attestation nor trust
in any part of the system stack (a size zero TCB), providing its
guarantees with static checks alone (no dynamic run-time checking
is needed).

This approach has many non-traditional moving parts, from
the function-oriented microprocessor at its heart, to the higher-
level instruction set semantics, to the engine that performs static
analysis in hardware. Rather than work on an architecture simulator,
we built both the processor and the hardware checking engine
in RTL, both to provide synthesis results and to demonstrate the
feasibility of actually building such a thing. We have proofs of
correctness for our approach at the algorithm level and gate-level
proofs of non-bypassability. We coded and typed not just a set of
benchmarks, but also a more complete medical application, which
we then tried to break in order to show that such an approach works
in practice as well as in theory. The final design is surprisingly small,
taking no more than .0079 mm?, and is capable of performing our
static analysis on binaries at an average throughput of around 60
cycles per instruction. We believe this is the first time any binary
static analysis has been implemented in the machine hardware,
and we think it opens an interesting new door for exploration
where properties of the software running on a physical platform
are enforced by the platform itself.
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