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Abstract—A quantitative approach to optimizing computer systems requires a good

understandingof howapplicationsexerciseamachine, and real programtraces from

productionenvironments lead to theclearest understanding.Unfortunately, even the

simplest programtracescan leaksensitivedetails about users, their recent activity, or even

details of tradesecret algorithms.Given theclevernessof attackersworking toundowell-

intentioned, but ultimately insufficient, anonymization techniques,manyorganizationshave

simplydecided toceasemaking tracesavailable. Tracewringing is anew formulationof the

problemof sharing traceswhereoneknowsapriorihowmuch information the trace is leaking

in theworst case. Thekey idea is tosqueezeasmuch informationaspossibleoutof the trace

without completelycompromising its usefulness for optimization.Wedemonstrate theutility

of awrung trace throughcachesimulationandexamine thesensitivity ofwrung traces toa

classof attacksonAdvancedEncryptionStandard (AES)encryption.

& PRIVACY IN THE digital age has become

increasingly difficult to achieve and a conten-

tious topic. As technologies that capitalize on

facial recognition, location services, and per-

sonal health tracking become mainstream,

addressing these complex privacy issues is of

foremost importance. Policy makers have put in

place regulations on data protection through the

General Data Protection Regulation (GDPR) and

the California Consumer Privacy Act (CCPA).

Computer scientists and engineers must develop

systems and tools for embedding privacy into

existing and new workflows. In this article, we

describe a new approach to privacy, wringing,

with particular applicability to the problem of

sharing program traces.

When working toward application-tuned sys-

tems, developers often find themselves caught

between the need to share information (so that

partners can make intelligent design choices)

and the need to hide information (to protect
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proprietary methods or sensitive data). One

place where this problem comes to a head is in

the release of program traces; even the simplest

memory access traces leak a tremendous

amount of information. For example, we can cap-

ture the memory access behavior of a critical

cryptographic function (which is known to be a

function of the secret key), a set of

lookups corresponding to the pars-

ing of a social security number, or

even detailed system configuration

parameters that are considered a

trade secret. While the sharing of

these traces between technology

partners can lead to more robust and

high-performance systems, it can

also leak highly sensitive informa-

tion, and expose user data to secu-

rity vulnerabilities. Today when such

traces are needed, programmers may

be asked to obfuscate the key algorithm behav-

iors to hide sensitive data or provide models of

the system, which approximate the same behav-

ior but omit sensitive parts. Hand-built models

of the system are both tedious to code and of

limited predictive power. Since there is no well-

defined and well-trusted approach to this prob-

lem, developers are often forced to resort to

rough human-language descriptions of the

behavior of programs (e.g., it is 80% pointer-

chasing). This leads to missed opportunities,

frustrated optimization, and the design process

ultimately suffers. Ideally, engineers would

access methods to eliminate any sensitive infor-

mation from the traces while still capturing the

program behavior and its interaction with the

underlying hardware. However, the extent to

which “sensitive” data influences program

behavior is rarely understood by a single party,

and even harder to argue is that it is completely

absent from a trace.

We present a new formulation of this prob-

lem of sharing traces where before release one

knows (a priori) exactly how much information

a trace is leaking in the worst case. The key

idea, wringing, is to squeeze as much informa-

tion as possible out of the trace without

completely compromising its utility. In the

ideal case, only the useful structure of the trace

remains and all potentially sensitive data has

been eliminated. While there is no known

mechanism of quantifying the amount of sensi-

tive data that remains in an arbitrary trace, we

can at least say how much total information is

shared, which provides a useful upper bound.

If we share only a couple thousand bits about

a trace, we can then be certain we are not giv-

ing away every user’s social

security number by accident.

Reconstructing a useful trace

from a few thousand bits of

information is hard, but inter-

estingly we are free to use any

public information about the

nature of these traces in help-

ing us accomplish this. Com-

pression, when taken to this

extreme and lossy form, con-

nects to privacy in this unex-

pected way. However, as is

often the case in computer architecture, an

important tradeoff remains between informa-

tion leaked and ability of the trace to capture

the program behavior.

We formalize this new approach specifically in

the context of memory address traces in part

because we have many prior trace analysis tech-

niques to build on.7,9,12 To expose the tradeoff

inherent to this problem, we explore a new class

of memory trace synthesis techniques based on

ideas from signal processing. By projecting the

address space onto a wrapped 2-D heatmap, we

decompose memory behavior into orthogonal

set of features that can then be replayed to repro-

duce the same “visible” patterns as the traces

under examination. Specifically, we use a Hough-

transformed3 trace to find both constant and

strided access patterns. We find that for memory

traces it is indeed possible for useful program

behavior to be conveyed in only a few thousand

bits. We demonstrate the utility of wrung traces

through cache simulation with bounded leakage,

and even examine the sensitivity of wrung traces

to a class of attacks on AES encryption.

TRACE WRINGING AS A NEW GAME
The program traces we look at in this article

are memory access traces specifically, but more

generally fall into a class of traces useful

for application-tuning and hardware–software

The key idea, wringing,

is to squeeze asmuch

information as possible

out of the trace without

completely compromis-

ing its utility. In the ideal

case, only the useful

structure of the trace

remains and all poten-

tially sensitive data has

been eliminated.
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co-optimization (as opposed to debug traces). A

program trace can contain a tremendous

amount of information about the system under

evaluation. But, as we know, such traces are

invaluable for performance evaluation because

they demonstrate the way the system actually

behaves in the face of the workloads it must

actually handle. While the behaviors are impor-

tant at a high level, rarely are the specific ele-

ments of the trace critical. Rather it is the

relationship between those elements and the

proportions that they appear in the trace that is

often the key. This is of course not a new insight;

what we claim as new is the idea that we can for-

malize these schemes in such a way that it

bounds the amount of information leaked about

a system being traced.

Our privacy argument is simple: if we only

share n bits about a specific trace, then we can-

not leak more than n bits about that trace. In

practice, this means that if we share only a few

thousand bits of information about a trace, then

nothing beyond those bits has been leaked.

While it is not a perfect solution (some informa-

tion might be lost), it says something useful

about the maximum amount of information that

can be leaked. For example, it should be impossi-

ble to recover an extensive list of social security

numbers, sensitive health information, or even

an entire set of secret keys from such a trace. To

maximize privacy one wants to give away as little

data as possible about the trace. However, to

maximize utility the opposite is true. The ques-

tion is then how little can one give away from

the trace while still being useful?

Answering this question requires an analysis

across two metrics: information leaked and util-

ity, as described in Figure 1. Information is sur-

prisingly easy to quantify; it is the number of bits

from the secret trace that needs to be

“transmitted” between the full trace (which con-

tains every address) and proxy trace (which is a

stand-in for the full trace and is ready for

release). In Figure 1, Step 1 is to encode the

secret trace. Note that any information from pub-

lic traces or training data can be shared freely

and even hard-coded into the “receiver,” but in

the end, everything you wish to share about the

full trace must be represented in a single n-bit

“packet” (Step 2 in Figure 1). Quantifying utility is

harder and more use-case specific. For memory

address traces, we define a distance function

between cache miss-rates of trace vectors as one

such function (Step 3 in Figure 1), but, in general,

there are many other metrics one might use.

SIGNAL PROCESSING APPROACH
TO WRINGING

Given the above mentioned constraints, the

question is how to encode memory address

trace behavior in a general, and yet incredibly

compact, manner. Our compact representation

must also capture the structure of these traces so

that we can identify, describe, and quantify the

patterns that we care most about. We present a

signal processing pipeline for trace wringing.

Our approach describes traces as a probabilistic

grammar of generators coupled with very high

level accounting of behavior over time. The

“transmitted” bits encode both the structure

and parameters of this scheme.

To understand our approach at a high level it

is useful to start with a visual sense for the struc-

ture of such traces. We project the address trace

onto a fixed-size modulo-mapping of the memory

spaces to create a heatmap. Figure 2 shows such a

Figure 1. Forcing a trace through a channel with a capacity of

only a few bits bounds the amount of sensitive data shared. While

public information such as prior non-private traces can be used in

the creation of the code, the trace to be coded must not be known

to the receiver. The objective is to minimize the number of bits

shared while maximizing the utility of the proxy trace. We measure

the utility in terms of whether or not certain utility tests are passed

by the proxy and/or how close to the original tests results they get.

We present a signal processing approach to reduce the trace to

an n-bit channel.
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heatmap for gcc where

instruction count (time)

runs along the x-axis and

the address runs along the

y-axis. If we were to plot

this for the entirememory,

it would clearly be too

large for such a graph (the

distance between the

stack and heap would

dwarf any local behavior), so instead, we plot the

address modulo a large power of two. Heatmaps

such as this have the advantage of mapping

addresses onto a more manageable space, but at

the same time, keep the spatio–temporal struc-

tures that would actually impact a real cache.

Interesting and intuitive patterns emerge after

looking over this graph. The flat horizontal lines

in the graph are patterns of repeating access to a

set of addresses. These are high temporal locality

behaviors. Sharp diagonal lines, on the other

hand, are regions of high spatial locality as

addresses are accessed one after the other in suc-

cession. If we can concisely capture the character

of these behaviors, without transmitting the

addresses themselves, we can minimize the

amount of information leaked. The modulo-mem-

ory heatmaps exhibit hierarchical organization.

Globally, there exists a recurrence of similar pat-

terns in the order of a few tens of thousand

instructions, i.e., the presence of programphases,

and within them, we observe patterns that we

associate with the more local memory access

activity. In order to find some representative of

the higher echelons of this hierarchy, we employ

k-means clustering for program phase analysis.2,9

Rather than encoding the entire trace monolithi-

cally, we can encode just the k representative

clusters independently. By breaking the pattern

down into a set of simpler behaviors, we can then

tackle them one-by-one. Figure 2 shows the result

of running the phase detector on the memory

address trace for gcc. Each of the three colors in

the bar in the figure show the occurrence of three

unique phases in the memory access trace. The

technique does a good job of lining up with the

repeating structures in the heatmap. With these

phases marked, we can encode the k representa-

tive clusters with log2 k bits.

Given that both strong temporal and spatial

locality features show up as lines, decomposition

into a set of line segments is a natural place to

start. The Hough transform can be used to then

find the locations and orientations of certain geo-

metric primitives, such as lines, in the given space.

We apply Hough transformation, a popular com-

puter vision technique for detecting patterns in

images; for our features, we employ the Hough line

transform. Specifically, we use the progressive

probabilistic Hough transform,5 a rendition of the

Hough transform algorithm that only performs

voting on a subset of the input points. These input

points are chosen based on certain features of the

expected result, such as a threshold, the length of

the expected line, interpolation strategies, and the

angle of the line. By interleaving the voting process

with line detection, this algorithm finds the most

prevalent features first, while also minimizing the

computational load. The progressive probabilistic

Hough transform returns a set of lines, with each

lines (x,y) coordinates in the modulo-memory

heatmap space. We also introduce a variable,

weight, for each line, which is a measure of dark-

ness of the line. Some intuition about how the

probabilistic Hough transform functions is

described in Figure 3.

The list of phase identifiers (the result of clus-

tering), the two ðx; yÞ coordinates of each line

segment detected by the Hough transforms, and

the line’s weight in the representative phase, cre-

ate compact “information packets.” The size of the

total “transmission” isn and bounds themaximum

amount of information leaked.

After phase detection and Hough-line transfor-

mation, we end up with a set of lines for each rep-

resentative phase. We can see the decomposition

of a phase of gcc into lines in Figure 4. Each phase

Figure 2. Phases visible in the trace generated by gcc after k-means clustering. Each of

the three colors in the bar marks a unique phase in the trace. Note, importantly, that phases

reoccur over time.
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is also assigned a label indicating to which cluster

it belongs to, i.e., which representative phase

“represents” it. Since the structural information of

each phase is encoded in the Hough lines, we can

generate an “address tracelet” for each phase

using the representative’s lines. Phases from the

same cluster may occur intermittently and in dif-

ferent lengths. For all phases in the same cluster,

we generate patterns continuously in a rotating

fashion regardless of the length. Upon picking a

Hough line at time t, we generate an address

“segment” from that line based on a fixed segment

length, which captures locality at a small granular-

ity. The final proxy trace has the same length as

the original trace and captures the most salient

aspects of its behavior while at the same time leak-

ing nomore than n bits.

EVALUATION AND OVERVIEW
OF RESULTS

In our pipeline, we pose the problem of shar-

ing traces between technology partners with

two subsystems. The trace-wringing subsystem

minimizes the number of bits used to describe

the trace structure, and the generator subsys-

tem uses budgeted information to generate the

proxy trace. Trace wringing includes the genera-

tion of heatmaps from memory access traces,

phase analysis, decomposition of representative

phases into lines, and creation of packets to

transmit this information. Note that there are

actually many possible values of n and different

parameters will result in different tradeoffs

between utility and privacy.

To evaluate the effectiveness of the

approach, we take a subset of the SPEC20066

traces, wring them through our pipeline to a

target number of bits, a bit budget, and evalu-

ate the traces across a range of cache

Figure 3.We capture information about lines we

observe in trace heatmaps using the Hough

transform. Here, we demonstrate its working. The

points on the test image are surveyed for parameters

in the polar coordinate space described as the

Hough transform. The intersections describe the

parameters of the detected lines. The final figure

shows the probabilistic Hough lines, the more robust

and efficient algorithm. For our heatmaps, we use the

probabilistic Hough line algorithm.

Figure 4. Producing probabilistic Hough lines5 on

top of the heatmap for a program phase in gcc. The

colors are used to indicate distinct lines produced by

the decomposition. Line length, threshold, line gap,

and line slope are input parameters that can be used

to adjust the tradeoff space between information

leakage and utility. For example, choosing a small

line length will ensure that even the smallest lines are

captured, but at the cost of transmitting information

about even the smallest features. Here, we see how

the choice of parameters can be used as a knob to

control the features we want to encode to find a

suitable tradeoff point.
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configurations with regards to miss rate. We

indeed observe that as the bits of information

leakage increase, the proxy miss rate gets

closer to the ground truth miss rate, which

confirms that with more information shared,

the proxy trace we reconstruct becomes more

similar to the original trace in terms of struc-

ture. The exact nature of the tradeoff space is

explained more in the paper. In our setting, we

define utility in terms of similarity of cache

miss rates. We measure and present cache

miss rates in the article. In Figure 5, we com-

pare the proxy heatmap generated for gcc,

against the ground truth. Our wrapped address

space is of height 2048 (cache lines in the heat-

map) and each column in the heatmap corre-

sponds to 10 000 memory accesses. The figure

illustrates that our approach is able to capture

all but the subtlest of patterns.

It is alsoworth noting that we further explored

real attacks on the resulting traces. Specifically,

we choose to examine the trace to see if it is possi-

ble to recover an AES key using known attacks.

AES attacks based on cache sets have been well-

studied.8 We present the details of the attack in

our paper. We find that trace wrung proxies

completely stop traditional AES attacks. We per-

form this attack on a set of traces collected from

runs of AES with a random plaintext. We perform

the same attack pre- and post-wringing. Prewring-

ing, the attacker correctly guesses the upper 5

bits of all 16 key-bytes after 1838 encryptions.

This is the maximal information that can be

learned in a first-round attack with 8-byte cache

lines. Postwringing, the attack guesses wrong for

all 16 bytes of the key after 50 000 traces.

CONCLUSION AND FUTURE IMPACT
Looking further out, the conflict between the

need to share information (to provide more opti-

mal performance) and hide information (for pri-

vacy) is becoming increasingly fundamental in all

of computer science. Threats to personal data pri-

vacy are emerging as a leading concern for users.

While the European GDPR and CCPA put in place

privacy and data protection requirements, the

onus of implementing tools to understand and

embed privacy into systems falls on engineers.

Computer architects must start thinking more

about privacy and provide infrastructure to

enable privacy at all levels of computing. Trace

wringing can be leveraged as one such tool.

We feel the tradeoff space exposed by trace

wringing will open the doors to future work at

the intersection of privacy and computer sys-

tems optimization. We hope to see more follow-

up work that builds on years of community expe-

rience dealing with address traces and to encode

common patterns in a general way. In many

applications, striding memory behavior is an

important component and we believe we are the

first to connect the address trace analysis prob-

lem with the Hough transform. The resulting

analysis is surprisingly robust to noise and can

capture general striding behavior. While this

approach is effective for the memory problems

we examined, there is no shortage of opportu-

nity to build on the techniques we lay out to cre-

ate more robust and higher quality trace

wringing systems. Fully leveraging the best syn-

thetic trace generation,11 trace compression,1,4

quantitative information flow,10 and statistical

modeling12 techniques and understanding what

Figure 5. (a) Heatmaps for the sensitive input trace gcc and (b) the trace-wrung proxy generated by our

pipeline. The heatmap of the trace-wrung proxy shows that both global and local features line up with the input

trace. All but the subtlest of patterns are present in the trace-wrung proxy.
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they each bring to

the problem is one

next step. Bringing

the full algorithmic

power provided by

the fact that any

public trace data

can be leveraged in

the compression is

also very promising.

This opportunity is

particularly inter-

esting as it sits out-

side of any past

lossy compression

or synthetic trace

scheme’s ability to exploit (i.e., minimizing total

data transferred is different than minimizing sen-

sitive data transferred).

In application-tuning and system design, one

can certainly understand how related problems

exist with storage traces, cache coherence traf-

fic, energy usage, user interaction data, and cer-

tainly location data. Clever, yet complex,

techniques have been developed to address cer-

tain anonymity problems in the past, yet the

reality is that they are often dependent on spe-

cific assumptions such as a lack of prior informa-

tion, statistical distributions governing the data,

or that number of queries can be tightly

bounded. Our wringing approach is very direct

and that comes with clarity as to what it does

and does not do. It does not guarantee anything

about how useful the resulting trace will really

be for optimization. However, it does transform

the problem of safe sharing into a measurable

systems problem subject to the myriad tools we

have at our disposal for common-case optimiza-

tion. Furthermore, it does provide a strong and

clear bound on the amount of useful information

given by the trace. For the purposes of privacy

engineering, this is exceedingly valuable. There

is a consensus on the importance of building pri-

vacy into systems that deal with information

about health, legal records and law enforcement,

transportation and location, and other sensitive

information. But, the capability of today’s

tools and methodologies is limited. Trace wring-

ing provides evidence that new methods that

bound information sharing in useful ways are

possible, and perhaps more importantly, they

can then be improved when fed back as a system

requirement.
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