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Abstract—A quantitative approach to optimizing computer systems requires a good
understanding of how applications exercise a machine, and real program traces from
production environments lead to the clearest understanding. Unfortunately, even the

simplest program traces can leak sensitive details about users, their recent activity, or even
details of trade secret algorithms. Given the cleverness of attackers working to undo well-
intentioned, but ultimately insufficient, anonymization techniques, many organizations have
simply decided to cease making traces available. Trace wringing is a new formulation of the
problem of sharing traces where one knows a priorihow much information the trace is leaking
in the worst case. The key idea is to squeeze as much information as possible out of the trace
without completely compromising its usefulness for optimization. We demonstrate the utility
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of a wrung trace through cache simulation and examine the sensitivity of wrung traces to a
class of attacks on Advanced Encryption Standard (AES) encryption.

M Privacy INn THE digital age has become
increasingly difficult to achieve and a conten-
tious topic. As technologies that capitalize on
facial recognition, location services, and per-
sonal health tracking become mainstream,
addressing these complex privacy issues is of
foremost importance. Policy makers have put in
place regulations on data protection through the
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General Data Protection Regulation (GDPR) and
the California Consumer Privacy Act (CCPA).
Computer scientists and engineers must develop
systems and tools for embedding privacy into
existing and new workflows. In this article, we
describe a new approach to privacy, wringing,
with particular applicability to the problem of
sharing program traces.

When working toward application-tuned sys-
tems, developers often find themselves caught
between the need to share information (so that
partners can make intelligent design choices)
and the need to hide information (to protect
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proprietary methods or sensitive data). One
place where this problem comes to a head is in
the release of program traces; even the simplest
memory access traces leak a tremendous
amount of information. For example, we can cap-
ture the memory access behavior of a critical
cryptographic function (which is known to be a
function of the secret key), a set of
lookups corresponding to the pars-
ing of a social security number, or
even detailed system configuration
parameters that are considered a
trade secret. While the sharing of
these traces between technology
partners can lead to more robust and
high-performance systems, it can
also leak highly sensitive informa-
tion, and expose user data to secu-
rity vulnerabilities. Today when such
traces are needed, programmers may
be asked to obfuscate the key algorithm behav-
iors to hide sensitive data or provide models of
the system, which approximate the same behav-
ior but omit sensitive parts. Hand-built models
of the system are both tedious to code and of
limited predictive power. Since there is no well-
defined and well-trusted approach to this prob-
lem, developers are often forced to resort to
rough human-language descriptions of the
behavior of programs (e.g., it is 80% pointer-
chasing). This leads to missed opportunities,
frustrated optimization, and the design process
ultimately suffers. Ideally, engineers would
access methods to eliminate any sensitive infor-
mation from the traces while still capturing the
program behavior and its interaction with the
underlying hardware. However, the extent to
which “sensitive” data influences program
behavior is rarely understood by a single party,
and even harder to argue is that it is completely
absent from a trace.

We present a new formulation of this prob-
lem of sharing traces where before release one
knows (a priori) exactly how much information
a trace is leaking in the worst case. The key
idea, wringing, is to squeeze as much informa-
tion as possible out of the trace without
completely compromising its utility. In the
ideal case, only the useful structure of the trace
remains and all potentially sensitive data has
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The key idea, wringing,
is to squeeze as much
information as possible
out of the trace without
completely compromis-
ing its utility. In the ideal
case, only the useful
structure of the trace
remains and all poten-
tially sensitive data has
been eliminated.

been eliminated. While there is no known
mechanism of quantifying the amount of sensi-
tive data that remains in an arbitrary trace, we
can at least say how much total information is
shared, which provides a useful upper bound.
If we share only a couple thousand bits about
a trace, we can then be certain we are not giv-
ing away every user’s social
security number by accident.
Reconstructing a useful trace
from a few thousand bits of
information is hard, but inter-
estingly we are free to use any
public information about the
nature of these traces in help-
ing us accomplish this. Com-
pression, when taken to this
extreme and lossy form, con-
nects to privacy in this unex-
pected way. However, as is
often the case in computer architecture, an
important tradeoff remains between informa-
tion leaked and ability of the trace to capture
the program behavior.

We formalize this new approach specifically in
the context of memory address traces in part
because we have many prior trace analysis tech-
niques to build on.”?!? To expose the tradeoff
inherent to this problem, we explore a new class
of memory trace synthesis techniques based on
ideas from signal processing. By projecting the
address space onto a wrapped 2-D heatmap, we
decompose memory behavior into orthogonal
set of features that can then be replayed to repro-
duce the same “visible” patterns as the traces
under examination. Specifically, we use a Hough-
transformed® trace to find both constant and
strided access patterns. We find that for memory
traces it is indeed possible for useful program
behavior to be conveyed in only a few thousand
bits. We demonstrate the utility of wrung traces
through cache simulation with bounded leakage,
and even examine the sensitivity of wrung traces
to a class of attacks on AES encryption.

TRACE WRINGING AS A NEW GAME
The program traces we look at in this article
are memory access traces specifically, but more
generally fall into a class of traces useful
for application-tuning and hardware-software
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Figure 1. Forcing a trace through a channel with a capacity of
only a few bits bounds the amount of sensitive data shared. While
public information such as prior non-private traces can be used in
the creation of the code, the trace to be coded must not be known
to the receiver. The objective is to minimize the number of bits
shared while maximizing the utility of the proxy trace. We measure
the utility in terms of whether or not certain utility tests are passed
by the proxy and/or how close to the original tests results they get.
We present a signal processing approach to reduce the trace to
an n-bit channel.
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co-optimization (as opposed to debug traces). A
program trace can contain a tremendous
amount of information about the system under
evaluation. But, as we know, such traces are
invaluable for performance evaluation because
they demonstrate the way the system actually
behaves in the face of the workloads it must
actually handle. While the behaviors are impor-
tant at a high level, rarely are the specific ele-
ments of the trace critical. Rather it is the
relationship between those elements and the
proportions that they appear in the trace that is
often the key. This is of course not a new insight;
what we claim as new is the idea that we can for-
malize these schemes in such a way that it
bounds the amount of information leaked about
a system being traced.

Our privacy argument is simple: if we only
share n bits about a specific trace, then we can-
not leak more than n bits about that trace. In
practice, this means that if we share only a few
thousand bits of information about a trace, then
nothing beyond those bits has been leaked.
While it is not a perfect solution (some informa-
tion might be lost), it says something useful
about the maximum amount of information that

can be leaked. For example, it should be impossi-
ble to recover an extensive list of social security
numbers, sensitive health information, or even
an entire set of secret keys from such a trace. To
maximize privacy one wants to give away as little
data as possible about the trace. However, to
maximize utility the opposite is true. The ques-
tion is then how little can one give away from
the trace while still being useful?

Answering this question requires an analysis
across two metrics: information leaked and util-
ity, as described in Figure 1. Information is sur-
prisingly easy to quantify; it is the number of bits
from the secret trace that needs to be
“transmitted” between the full trace (which con-
tains every address) and proxy trace (which is a
stand-in for the full trace and is ready for
release). In Figure 1, Step 1 is to encode the
secret trace. Note that any information from pub-
lic traces or training data can be shared freely
and even hard-coded into the “receiver,” but in
the end, everything you wish to share about the
full trace must be represented in a single n-bit
“packet” (Step 2 in Figure 1). Quantifying utility is
harder and more use-case specific. For memory
address traces, we define a distance function
between cache miss-rates of trace vectors as one
such function (Step 3 in Figure 1), but, in general,
there are many other metrics one might use.

SIGNAL PROCESSING APPROACH
TO WRINGING

Given the above mentioned constraints, the
question is how to encode memory address
trace behavior in a general, and yet incredibly
compact, manner. Our compact representation
must also capture the structure of these traces so
that we can identify, describe, and quantify the
patterns that we care most about. We present a
signal processing pipeline for trace wringing.
Our approach describes traces as a probabilistic
grammar of generators coupled with very high
level accounting of behavior over time. The
“transmitted” bits encode both the structure
and parameters of this scheme.

To understand our approach at a high level it
is useful to start with a visual sense for the struc-
ture of such traces. We project the address trace
onto a fixed-size modulo-mapping of the memory
spaces to create a heatmap. Figure 2 shows such a
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this for the entire memory,
it would clearly be too
large for such a graph (the
distance between the
stack and heap would
dwarf any local behavior), so instead, we plot the
address modulo a large power of two. Heatmaps
such as this have the advantage of mapping
addresses onto a more manageable space, but at
the same time, keep the spatio-temporal struc-
tures that would actually impact a real cache.

Interesting and intuitive patterns emerge after
looking over this graph. The flat horizontal lines
in the graph are patterns of repeating access to a
set of addresses. These are high temporal locality
behaviors. Sharp diagonal lines, on the other
hand, are regions of high spatial locality as
addresses are accessed one after the other in suc-
cession. If we can concisely capture the character
of these behaviors, without transmitting the
addresses themselves, we can minimize the
amount of information leaked. The modulo-mem-
ory heatmaps exhibit hierarchical organization.
Globally, there exists a recurrence of similar pat-
terns in the order of a few tens of thousand
instructions, i.e., the presence of program phases,
and within them, we observe patterns that we
associate with the more local memory access
activity. In order to find some representative of
the higher echelons of this hierarchy, we employ
k-means clustering for program phase analysis.*?
Rather than encoding the entire trace monolithi-
cally, we can encode just the %k representative
clusters independently. By breaking the pattern
down into a set of simpler behaviors, we can then
tackle them one-by-one. Figure 2 shows the result
of running the phase detector on the memory
address trace for gcc. Each of the three colors in
the bar in the figure show the occurrence of three
unique phases in the memory access trace. The
technique does a good job of lining up with the
repeating structures in the heatmap. With these
phases marked, we can encode the k representa-
tive clusters with log, k bits.

reoccur over time.
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Given that both strong temporal and spatial
locality features show up as lines, decomposition
into a set of line segments is a natural place to
start. The Hough transform can be used to then
find the locations and orientations of certain geo-
metric primitives, such as lines, in the given space.
We apply Hough transformation, a popular com-
puter vision technique for detecting patterns in
images; for our features, we employ the Hough line
transform. Specifically, we use the progressive
probabilistic Hough tramsform,5 a rendition of the
Hough transform algorithm that only performs
voting on a subset of the input points. These input
points are chosen based on certain features of the
expected result, such as a threshold, the length of
the expected line, interpolation strategies, and the
angle of the line. By interleaving the voting process
with line detection, this algorithm finds the most
prevalent features first, while also minimizing the
computational load. The progressive probabilistic
Hough transform returns a set of lines, with each
lines (x,y) coordinates in the modulo-memory
heatmap space. We also introduce a variable,
weight, for each line, which is a measure of dark-
ness of the line. Some intuition about how the
probabilistic Hough transform functions is
described in Figure 3.

The list of phase identifiers (the result of clus-
tering), the two (z,y) coordinates of each line
segment detected by the Hough transforms, and
the line’s weight in the representative phase, cre-
ate compact “information packets.” The size of the
total “transmission” is n and bounds the maximum
amount of information leaked.

After phase detection and Hough-line transfor-
mation, we end up with a set of lines for each rep-
resentative phase. We can see the decomposition
of a phase of gcc into lines in Figure 4. Each phase

Figure 2. Phases visible in the trace generated by gcc after k-means clustering. Each of
the three colors in the bar marks a unique phase in the trace. Note, importantly, that phases
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Figure 3. We capture information about lines we
observe in trace heatmaps using the Hough
transform. Here, we demonstrate its working. The
points on the test image are surveyed for parameters
in the polar coordinate space described as the
Hough transform. The intersections describe the
parameters of the detected lines. The final figure
shows the probabilistic Hough lines, the more robust
and efficient algorithm. For our heatmaps, we use the
probabilistic Hough line algorithm.

is also assigned a label indicating to which cluster
it belongs to, i.e., which representative phase
“represents” it. Since the structural information of
each phase is encoded in the Hough lines, we can
generate an “address tracelet” for each phase
using the representative’s lines. Phases from the
same cluster may occur intermittently and in dif-
ferent lengths. For all phases in the same cluster,
we generate patterns continuously in a rotating
fashion regardless of the length. Upon picking a
Hough line at time ¢, we generate an address
“segment” from that line based on a fixed segment
length, which captures locality at a small granular-
ity. The final proxy trace has the same length as
the original trace and captures the most salient
aspects of its behavior while at the same time leak-
ing no more than n bits.

EVALUATION AND OVERVIEW
OF RESULTS

In our pipeline, we pose the problem of shar-
ing traces between technology partners with
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Figure 4. Producing probabilistic Hough lines® on
top of the heatmap for a program phase in gcc. The
colors are used to indicate distinct lines produced by
the decomposition. Line length, threshold, line gap,
and line slope are input parameters that can be used
to adjust the tradeoff space between information
leakage and utility. For example, choosing a small
line length will ensure that even the smallest lines are
captured, but at the cost of transmitting information
about even the smallest features. Here, we see how
the choice of parameters can be used as a knob to
control the features we want to encode to find a
suitable tradeoff point.

two subsystems. The trace-wringing subsystem
minimizes the number of bits used to describe
the trace structure, and the generator subsys-
tem uses budgeted information to generate the
proxy trace. Trace wringing includes the genera-
tion of heatmaps from memory access traces,
phase analysis, decomposition of representative
phases into lines, and creation of packets to
transmit this information. Note that there are
actually many possible values of n and different
parameters will result in different tradeoffs
between utility and privacy.

To evaluate the effectiveness of the
approach, we take a subset of the SPEC2006°
traces, wring them through our pipeline to a
target number of bits, a bit budget, and evalu-
ate the traces across a range of cache
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Figure 5. (a) Heatmaps for the sensitive input trace gcc and (b) the trace-wrung proxy generated by our
pipeline. The heatmap of the trace-wrung proxy shows that both global and local features line up with the input
trace. All but the subtlest of patterns are present in the trace-wrung proxy.

configurations with regards to miss rate. We
indeed observe that as the bits of information
leakage increase, the proxy miss rate gets
closer to the ground truth miss rate, which
confirms that with more information shared,
the proxy trace we reconstruct becomes more
similar to the original trace in terms of struc-
ture. The exact nature of the tradeoff space is
explained more in the paper. In our setting, we
define utility in terms of similarity of cache
miss rates. We measure and present cache
miss rates in the article. In Figure 5, we com-
pare the proxy heatmap generated for gcc,
against the ground truth. Our wrapped address
space is of height 2048 (cache lines in the heat-
map) and each column in the heatmap corre-
sponds to 10000 memory accesses. The figure
illustrates that our approach is able to capture
all but the subtlest of patterns.

It is also worth noting that we further explored
real attacks on the resulting traces. Specifically,
we choose to examine the trace to seeif it is possi-
ble to recover an AES key using known attacks.
AES attacks based on cache sets have been well-
studied.® We present the details of the attack in
our paper. We find that trace wrung proxies
completely stop traditional AES attacks. We per-
form this attack on a set of traces collected from
runs of AES with a random plaintext. We perform
the same attack pre- and post-wringing. Prewring-
ing, the attacker correctly guesses the upper 5
bits of all 16 key-bytes after 1838 encryptions.
This is the maximal information that can be
learned in a first-round attack with 8-byte cache
lines. Postwringing, the attack guesses wrong for
all 16 bytes of the key after 50 000 traces.
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CONCLUSION AND FUTURE IMPACT

Looking further out, the conflict between the
need to share information (to provide more opti-
mal performance) and hide information (for pri-
vacy) is becoming increasingly fundamental in all
of computer science. Threats to personal data pri-
vacy are emerging as a leading concern for users.
While the European GDPR and CCPA put in place
privacy and data protection requirements, the
onus of implementing tools to understand and
embed privacy into systems falls on engineers.
Computer architects must start thinking more
about privacy and provide infrastructure to
enable privacy at all levels of computing. Trace
wringing can be leveraged as one such tool.

We feel the tradeoff space exposed by trace
wringing will open the doors to future work at
the intersection of privacy and computer sys-
tems optimization. We hope to see more follow-
up work that builds on years of community expe-
rience dealing with address traces and to encode
common patterns in a general way. In many
applications, striding memory behavior is an
important component and we believe we are the
first to connect the address trace analysis prob-
lem with the Hough transform. The resulting
analysis is surprisingly robust to noise and can
capture general striding behavior. While this
approach is effective for the memory problems
we examined, there is no shortage of opportu-
nity to build on the techniques we lay out to cre-
ate more robust and higher quality trace
wringing systems. Fully leveraging the best syn-
thetic trace generation,” trace compression,l'4
quantitative information flow,!° and statistical
modeling'? techniques and understanding what
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they each bring to
the problem is one
next step. Bringing
the full algorithmic
power provided by
the fact that any
public trace data
can be leveraged in
the compression is
also very promising.

We feel the tradeoff
space exposed by
trace wringing will open
the doors to future work
at the intersection of
privacy and computer
systems optimization.
We hope to see more
follow-up work that
builds on years of com-
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munity experience
dealing with address
traces and to encode
common patterns in a
general way.

This opportunity is
particularly inter-
esting as it sits out-
side of any past
lossy compression
or synthetic trace
scheme’s ability to exploit (i.e., minimizing total
data transferred is different than minimizing sen-
sitive data transferred).

In application-tuning and system design, one
can certainly understand how related problems
exist with storage traces, cache coherence traf-
fic, energy usage, user interaction data, and cer-
tainly location data. Clever, yet complex,
techniques have been developed to address cer-
tain anonymity problems in the past, yet the
reality is that they are often dependent on spe-
cific assumptions such as a lack of prior informa-
tion, statistical distributions governing the data,
or that number of queries can be tightly
bounded. Our wringing approach is very direct
and that comes with clarity as to what it does
and does not do. It does not guarantee anything
about how useful the resulting trace will really
be for optimization. However, it does transform
the problem of safe sharing into a measurable
systems problem subject to the myriad tools we
have at our disposal for common-case optimiza-
tion. Furthermore, it does provide a strong and
clear bound on the amount of useful information
given by the trace. For the purposes of privacy
engineering, this is exceedingly valuable. There
is a consensus on the importance of building pri-
vacy into systems that deal with information
about health, legal records and law enforcement,
transportation and location, and other sensitive
information. But, the capability of today’s
tools and methodologies is limited. Trace wring-
ing provides evidence that new methods that
bound information sharing in useful ways are

possible, and perhaps more importantly, they
can then be improved when fed back as a system
requirement.
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