A non-linear relationship between marsh size and sediment trapping capacity compromises salt marshes' stability Carmine Donatelli^{1†}, Xiaohe Zhang^{2†}, Neil K. Ganju³, Alfredo L. Aretxabaleta³, Sergio Fagherazzi^{2*}, Nicoletta Leonardi^{1*} 1 Department of Geography and Planning, School of Environmental Sciences, Faculty of Science and Engineering, University of Liverpool, Roxby Building, Chatham St., Liverpool L69 7ZT, UK 2 Department of Earth Sciences, Boston University, 675 Commonwealth Avenue, Boston, MA 02215, USA 3 U.S. Geological Survey, Woods Hole Coastal and Marine Science Center, MA 02543, USA † E-mail: Carmine@liverpool.ac.uk; zhangbu@bu.edu * Contributed equally to this work.

Abstract:

Global assessments predict the impact of sea-level rise on salt marshes with present-day levels of sediment supply from rivers and the coastal ocean. However, these assessments do not consider that variations in marsh extent and the related reconfiguration of intertidal area affect local sediment dynamics, ultimately controlling the fate of the marshes themselves. Herein, we conduct a meta-analysis of six bays along the US East Coast to show that a reduction in the current salt marsh area decreases the sediment availability in estuarine systems through changes in regional scale hydrodynamics. This positive feedback between marsh disappearance and the ability of coastal bays to retain sediments reduces the trapping capacity of the whole tidal system and jeopardizes the survival of the remaining marshes. Here, we show that on marsh platforms the sediment deposition per unit area decreases exponentially with marsh loss. Marsh erosion enlarges tidal prism values and enhances the tendency towards ebb dominance thus decreasing the overall sediment availability of the system. Our findings highlight that marsh deterioration reduces the sediment stock in back-barrier basins and therefore compromises the resilience of salt marshes.

Keywords: salt marshes, coastal resilience, ecosystem services, COAWST, Delft3D.

Introduction

38

39 Salt marshes provide critical ecosystem services [Costanza et al., 1997]. In recent years salt marshes 40 have been the focus of many restoration plans built on the concept of 'nature-based solutions' for 41 flood defenses that aim to use vegetated surfaces to protect coastal communities from storms 42 [Temmerman et al., 2013]. The economic value of salt marsh ecosystem services has been estimated 43 to be up to 5 million USD per km² in the United States [Costanza et al., 2008], and 786 million GBP 44 per year for all UK marshes [Foster et al., 2013; Leonardi et al., 2017]. Projections of salt marsh 45 response to climate change are variable, with initial studies suggesting a 46% to 59% reduction of the 46 present-day area by 2100 under moderate sea-level rise [Spencer et al., 2016], and more refined 47 studies estimating "coastal squeezing" up to 30% when accounting for landward migration [Schuerch 48 et al., 2018]. When allowed by the availability of accommodation space, the landward migration of 49 fringing marshes supports the maintenance of marsh extent but erosion at the seaward side remains a 50 serious threat to areal preservation [Schwimmer and Pizzuto, 2000]. 51 Apart from hydrodynamics, salt marsh resilience has been linked to the sediment budget of the marsh 52 complex as a whole, including not only the vegetated surfaces, but surrounding tidal flats, sea bed, 53 and tidal channels [Ganju et al., 2013; Fagherazzi, 2014]. Ganju et al. [2017] synthesized sediment 54 budgets of eight micro-tidal salt marsh complexes, and demonstrated the existence of a relationship 55 between sediment budget and the unvegetated-vegetated marsh ratio (UVVR), indicating that 56 sediment deficits are linked to conversion of vegetated marsh into open water. A positive sediment 57 budget is indeed necessary to allow marshes and tidal flats to keep pace with sea-level rise [Mariotti 58 and Fagherazzi, 2010]. 59 Regional effects are crucial when evaluating coastal interventions under the management of multiple 60 agencies. Though many studies have focused on local marsh dynamics, less attention has been paid 61 to how changes in marsh areal extent might drive large-scale variations of hydrodynamic and 62 sediment transport processes [Donatelli et al., 2018a; Zhang et al., 2018]. Donatelli et al. [2018b] 63 studied the influence of salt marsh deterioration on the sediment budget in Barnegat Bay-Little Egg Harbor estuary and showed the existence of a positive feedback between marsh erosion and the decrease in the trapping efficiency of the marsh and the whole tidal system.

Herein, we conduct a meta-analysis of high resolution numerical modeling results for the hydrodynamics and sediment transport of six back-barrier estuaries along the US Atlantic Coast, extending the results presented in Donatelli et al., [2018b] to other five systems. The sediment dynamics of these bays were simulated under different scenarios of salt marsh loss obtained by artificially changing the current bathymetries [Donatelli et al., 2018b; Zhou et al., 2016]. The erosion of salt marshes was simulated by removing vegetation from the eroded marsh cells, and by matching the corresponding bathymetry values with the elevation of the surrounding tidal flats. Lowering marsh platforms to the tidal flat depth represents how salt marshes erode under wind-wave attack [Leonardi and Fagherazzi, 2014; Priestas et al., 2015]. The Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modelling system [Warner et al., 2010] and the computational fluid mechanics package Delft3D [Lesser et al., 2004] were used to carry out a set of exploratory models [Murray, 2007]. Our study demonstrates that marsh vulnerability can be underestimated when not accounting for the effect of marsh loss on potential sediment storage of the entire system. The study sites are listed in Table 1, while the present-day salt marsh area is highlighted in Figure 1. Details of the model setup can be found in the supplementary material.

Results

For each bay, five simulations were run with different marsh loss percentages: 0% (present-day salt marsh distribution), 25%, 50%, 75% and 100% (vegetated area completely eroded). Salt marsh erosion alters tidal prism values (SI Appendix, Figure S8), and consequently the inlet morphology [D'Alpaos et al., 2010]. The tidal signal also changes across different portions of the basins. A comparison of tidal amplitude and phase lag (timing delay of high tide across the bay) values between the pre- and post-erosion salt marsh configurations suggests that changes in tidal amplitude depend on the increased filling time of the back-barrier bay due to post-erosion increases in intertidal storage

volume of the estuary. Indeed, tidal water levels in back-barrier basins are controlled by the ratio between inlet cross-sectional area and basin planform area [Keulegan, 1967]. High ratios mean that tidal water levels in the back-barrier basin adjust quickly to offshore water level fluctuations and therefore the phase lag between the ocean and the lagoon tidal wave is small. For those systems where marshes mainly fringe the mainland and barrier island boundary (Plum Island Sound, Jamaica Bay, and Barnegat Bay-Little Egg Harbor in our study), the tidal phase lag between the ocean and the lagoon increases, leading to a reduction in tidal amplitude over the entire back-barrier bay. In contrast, in Great South Bay, Chincoteague Bay, and Virginia Coast Reserve, large marsh portions are detached from the mainland, and different parts of the domain experience different variations in tidal amplitude. When salt marshes are detached from the mainland, the deterioration of the marshes produces an increase in tidal amplitude behind the eroded patches, and a decrease in tidal amplitude between the eroded vegetated areas and the inlets. This suggests that locations near the mainland sheltered by marsh will be more affected by frictional reduction due to marsh disappearance than by the increase in filling time. The spatial distribution of tidal amplitude and phase lag before and after salt marsh removal for each bay are depicted in Figure 2a, b, e, f and in the SI Appendix (SI Appendix, Figure S5-6-7f, g and S50, p). We isolated the effect of salt marsh location from the effect of tidal wave interaction coming from multiple inlets by artificially transforming the estuaries into systems with a single entrance (SI Appendix, Figure S9-S11). For coastal bays with multiple inlets, water levels are controlled by overlapping waves propagating from each inlet, and changes in estuary morphology can alter their relative phase and amplitude. Additional simulations were conducted to verify that increases/decreases in tidal amplitude were caused by changes in salt marsh area rather than by the interference of multiple tidal constituents (SI Appendix, Figure S9-S11). Salt marsh erosion also influences tidal asymmetry. Asymmetric tides are important for the transport and deposition of sediment in shallow estuaries [Aubrey and Speer, 1985; Gerkema, 2019]. When asymmetry occurs, the associated distortion of the tidal wave is generally described by superposing

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

a shorter period overtide (M_4) on the normal (M_2) tidal shape. Changes in the M_4 to M_2 water level amplitude ratio and the phase difference between M_4 and M_2 were calculated for each scenario. The relative phase shift is computed as $2\varphi_2$ - φ_4 , where φ_2 is the M_2 phase and φ_4 is the M_4 phase as per Friedrichs and Aubrey [1988]. In this formulation a relative phase between 0° and 180° means that the tidal wave has a shorter flood duration (flood dominance, stronger flood currents), while for a relative phase between 180° and 360° the tidal wave has a shorter ebb duration (ebb dominance, stronger ebb currents). The maximum flood and ebb dominance occur for a relative phase of 90° and 270°. For all test cases the estuaries remain flood dominated, even though marsh loss raises the tendency towards ebb dominance in some systems (Figure 2c, d, g, h; SI Appendix, S13-S14c, d, g, h); the magnitude of the non-linear distortion increases with marsh removal (SI Appendix, Figure S12 and S13-14a, b, e, f). These results are consistent with previous 1D numerical investigations [Friedrichs and Aubrey, 1988]. Recent 2D numerical studies suggest that these findings might be also dependent on the choice of friction for small ratios of tidal amplitude to mean water depth [Zhou et al., 2018]. To quantitatively evaluate how changes in tidal dynamics impact the sediment budget of the systems, we quantified sediment trapping efficiency before and after the removal of the marsh. Sediment trapping was evaluated by releasing a fixed amount of sediment in the bay, and then computing the fraction stored in the marshes, tidal flats and channels. We stopped the simulations after 30 days because the deposited volume did not change significantly after this period. The sediment deposit was sampled in the last day of simulation. Results are presented as a function of the ratio between marsh extent and basin area (Figure 3). The fraction of sediment potentially stored in channels and tidal flats per unit area decreases exponentially as the ratio between marsh area becomes smaller (Figure 3a); similarly, the fraction of sediment per unit area trapped by salt marshes drops exponentially (Figure 3b). Excluding Jamaica Bay, the exponential decay in sediment trapping as a function of marsh loss is relatively similar in each bay and close to the overall trend.

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

Discussions and conclusions

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

Our findings in relation to the sediment budget are relevant for the long-term resilience of the systems, as the sediment budget is an integrated metric of ecosystem stability [Ganju et al., 2017]. More specifically, our model results demonstrate that variations in marsh extent affect the sediment storage capacity of back-barrier estuaries in both vegetated and un-vegetated areas. Herein, we extend the results of Donatelli et al., [2018b] for Barnegat Bay-Little Egg Harbor estuary to other five backbarrier bays and we demonstrate that the sediment trapping capacity of salt marshes in back-barrier estuaries depends on their size with respect to the basin area. This study shows that marsh resilience to negative stressors might be compromised even by small percentages of marsh lateral erosion, as the relationship between marsh areal extent and marsh sediment trapping capacity is strongly nonlinear. Changes in marsh extent due to erosion or restoration projects will cause changes in the amount of sediments trapped within the entire estuarine system. This might in turn promote further establishment or erosion of salt marshes. A decrease in salt marsh area causes a decrease in sediment trapping of the system, which could in turn promote further marsh deterioration. Given the assumption that the net sediment budget is the driving factor for marsh stability, the non-linear relationship further suggests that any restoration project increasing salt marsh areas will trigger a positive feedback increasing sediment retention. A shortcoming of this modeling framework is related to the choice to remove all of the sediments deriving from marsh erosion. In reality, the sediment generated by marsh deterioration could contribute to salt marsh survival [Mariotti and Carr, 2014], or might be distributed in the basin modifying the hydrodynamic field and mitigating the sediment loss. Furthermore, the sediment injected in each system to evaluate the sediment stock after 30 days represents a fictitious input, and therefore we neglect that sediments released in the basin by rivers might be trapped with a different efficiency with respect to sediments coming from offshore. Under future sea-level rise scenarios, further tidal prism enlargements and additional fragmentation of the barrier islands might be expected and these could potentially compromise the survival of entire lagoon ecosystems [FitzGerald and al., 2006]. Even if increasing hydraulic depth would reinforce existing tidal asymmetries [Friedrichs et al., 1990] and enlarge the mean tidal range of the estuary, with insufficient sediment supply the system will not be able to keep pace with sea-level rise. In the long-term, a reduced sediment trapping capacity might also control the lateral extension of salt marshes. A simple model proposed by Mariotti and Fagherazzi [2013] shows that the ratio between marsh to open water area in a bay is controlled by sediment availability (and sediment concentration). Similarly, the long-term modelling framework of Walters et al. [2014] indicates that marsh extension in back-barrier areas is a function of sediment supply; more sediment flushing and less trapping would therefore lead to a reduced marsh extension in these models. Our study highlights the efficacy of coastal restoration interventions, which should target coastal erosion before the vegetated surface becomes too small compared to the basin area in order to maximize the large-scale efficiency of the interventions. Our findings further show the necessity to account for the nonlinearity of ecosystem response to changes in habitat size. A simplified approach that assumes ecosystem services provided by coastal habitats change linearly with their size would lead to a misrepresentation of the true economic value of salt marshes in terms of coastline resilience [Barbier, 2008].

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

185 186 187	Acknowledgments Data Input files are available in the following repository:
188	https://zenodo.org/deposit?page=1&size=20. Support was provided by the Department of the
189	Interior Hurricane Sandy Recovery program ID G16AC00455 and associated award to University
190	of Liverpool. X.Z. and S.F. were also funded by the USA National Science Foundation award
191	1832221 (VCR LTER), 1637630 (PIE LTER) and the China Scholarship Council (201606140044).

References

- Aubrey, D. G., and Speer, P. E., (1985). A study of non-linear tidal propagation in shallow inlet
- estuarine systems. Part I. Observations. Estuarine, Coastal and Shelf Science, 21(2), 185–205.
- 197 https://doi.org/10.1016/0272-7714(85)90096-4.
- Barbier, E. B., (2008). Ecosystems as natural assets. Foundations and Trends in Microeconomics 4:
- 199 611-681.
- 200 Costanza, R., d'Arge, R., de Groot, R.S., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem,
- S., O'Neill, R.V., Paruelo, J., Raskin, R.G., Sutton, P., and van den Belt, M., (1997). The value of
- the world's ecosystem services and natural capital. Nature, 387, pp. 253-260.
- Costanza, R., Perez-Maqueo, O., Martinez, M. L., Sutton, P., Anderson, S. J., and Mulder, K., (2008).
- The value of coastal wetlands for hurricane protection: Ambio, v. 37, no. 4, p. 241-248.
- 205 Donatelli, C., Ganju, N. K., Fagherazzi, S., and Leonardi, N., (2018a). Seagrass impact on sediment
- exchange between tidal flats and salt marsh, and the sediment budget of shallow bays, Geophysical
- 207 Research Letters, doi:10.1029/2018GL078056.
- 208 Donatelli, C., Ganju, N. K., Zhang, X., Fagherazzi, S., and Leonardi, N., (2018b). Salt marsh loss
- 209 affects tides and the sediment budget of shallow bays, Journal of Geophysical Research: Earth
- 210 Surface, doi: 10.1029/2018JF004617.
- D'Alpaos, A., Lanzoni, S., Marani, M., and Rinaldo, A., (2010). On the tidal prism-channel area
- relations. Journal of Geophysical Research, 115. F01003doi:10.1029/2008JF001243.
- Fagherazzi, S., (2014). Coastal processes: Storm-proofing with marshes. Nature Geoscience 7(10):
- 214 701–702.
- FitzGerald DM, Buynevich IV, Argow BA., 2006. Model of tidal inlet and barrier island dynamics
- in a regime of accelerated sea-level rise. J. Coast. Res. 39:789–95.
- Foster, N. M., Hudson, M. D., Bray, S., and Nicholls, R. J., (2013). Intertidal mudflat and salt marsh
- 218 conservation and sustainable use in the UK: a review. Journal of Environmental Management, 126,
- 219 96–104.
- 220 Friedrichs, C. T., and Aubrey, D.G., (1988). Non-linear tidal distortion in shallow well-mixed
- estuaries: a synthesis. Estuarine Coastal and Shelf Science, 27(5), 521-545.
- Friedrichs, C.T., Aubrey, D.G., and Speer, P.E., (1990). Impacts of relative sea-level rise on evolution
- of shallow estuaries. In: Cheng, R.T. (ed.), Residual Currents and Long-Term Transport. New York:
- 224 Springer-Verlag, 105-122.
- 225 Ganju, N.K., Nidzieko, N.J. and Kirwan, M.L., (2013). Inferring tidal wetland stability from channel
- sediment fluxes: Observations and a conceptual model. Journal of Geophysical Research: Earth
- 227 Surface, 118(4), pp.2045-2058.

- 228 Ganju, N.K., Defne, Z., Kirwan, M.L., Fagherazzi, S., D'Alpaos, A. and Carniello, L., (2017).
- 229 Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes. Nature
- communications, 8, p.ncomms14156.
- Gerkema, T., (2019). An Introduction to Tides. Cambridge: Cambridge University Press.
- 232 doi:10.1017/9781316998793
- 233
- Keulegan, G.H., (1967). Tidal flow in entrances: water level fluctuations in basins in communication
- with seas. Comm. Tidal Hydraul., U.S. Army Corps Eng., Tech. Bull. 14, p. 89, Vicksburg.
- Lathrop, R. G., Jr., and Bognar, J. A., (2001). Habitat loss and alteration in the Barnegat Bay Region,
- 237 J. Coastal Res., 212–228, doi:10.2307/25736235.
- Leonardi, N. and Fagherazzi, S., (2014). How waves shape salt marshes. Geology, 42(10), pp.887-
- 239 890.
- 240
- Leonardi, N., Carnacina, I., Donatelli, C., Ganju, N. K., Plater, A. J., Schuerch, M., and Temmerman,
- 242 S., (2017). Dynamic interactions between coastal storms and salt marshes: A review.
- 243 Geomorphology, 301, 92–107. https://doi.org/10.1016/j.geomorph.2017.11.001.
- Mariotti, G., and Carr, J., (2014). Dual role of salt marsh retreat: long-term loss and short-term
- resilience. Water Resour. Res. 50, 2963-2974.
- Mariotti, G., and Fagherazzi, S., (2010). A numerical model for the coupled long-term evolution of
- salt marshes and tidal flats. J Geophys Res 115:F01004.
- Mariotti, G., and Fagherazzi, S., (2013). Critical width of tidal flats triggers marsh collapse in the
- absence of sea-level rise. Proceedings of the National Academy of Sciences, 110(14), pp.5353-5356.
- 250 Murray A. B., (2007). Reducing model complexity for explanation and prediction. Geomorphology,
- 251 90 (3-4), 178-191.
- 252 Pethick, J. S., (1981). Long-term accretion rates on tidal marshes. Journal of Sedimentary Petrology
- 253 61: 571–577.
- 254 Priestas, A.M., Mariotti, G., Leonardi, N. and Fagherazzi, S., (2015). Coupled wave energy and
- erosion dynamics along a salt marsh boundary, Hog Island Bay, Virginia, USA. Journal of Marine
- 256 Science and Engineering, 3(3), pp.1041-1065.

- Schuerch, M., Spencer, T., Temmerman, S., Kirwan, M.L., Wolff, C., Lincke, D., McOwen, C.J.,
- 259 Pickering, M.D., Reef, R., Vafeidis, A.T. and Hinkel, J., (2018). Future response of global coastal
- wetlands to sea-level rise. Nature, 561(7722), p.231.
- Schwimmer, R.A. and Pizzuto, J.E., (2000). A model for the evolution of marsh shorelines. Journal
- of Sedimentation Research, 70, 1026–1035.

- 263 Spencer, T., Schuerch, M., Nicholls, R.J., Hinkel, J., Lincke, D., Vafeidis, A.T., Reef, R., McFadden,
- L., and Brown, S., (2016). Global coastal wetland change under sea-level rise and related stresses:
- the diva wetland change model, Global and Planetary Change, 139, 15-30.
- Temmerman, S., Meire, P., Bouma, T.J., Herman, P.M., Ysebaert, T., and De Vriend, H.J., (2013).
- 267 Ecosystem-based coastal defence in the face of global change. Nature 504 (7478): 79–83.
- 268 https://doi.org/10. 1038/nature12859.

269

- Walters, D., Moore, L.J., Duran Vinent, O., Fagherazzi, S., and Mariotti, G., 2014. Interactions
- between barrier islands and backbarrier marshes affect island system response to sea level rise:
- 272 Insights from a coupled model. Journal of Geophysical Research: Earth Surface, 119(9), pp.2013-
- 273 2031.

274

- Warner, J.C., Armstrong, B., He, R., and Zambon, J.B., (2010). Development of a coupled ocean-
- atmosphere-wave-sediment transport (COAWST) modeling system. Ocean Model., 35 (3), pp. 230-
- 277 244.
- 278 Zhang, X., Fagherazzi, S., Leonardi, N., and Li, J., (2018). A positive feedback between sediment
- 279 deposition and tidal prism may affect the morphodynamic evolution of tidal deltas, Journal of
- 280 Geophysical Research: Earth Surface, doi: 10.1029/2018JF004639.

281

- Zhou, Z., et al. (2017). Is "morphodynamic equilibrium" an oxymoron?, Earth Sci. Rev., 165, 257–
- 283 267, doi:10.1016/j.earscirev.2016.12.002.

284

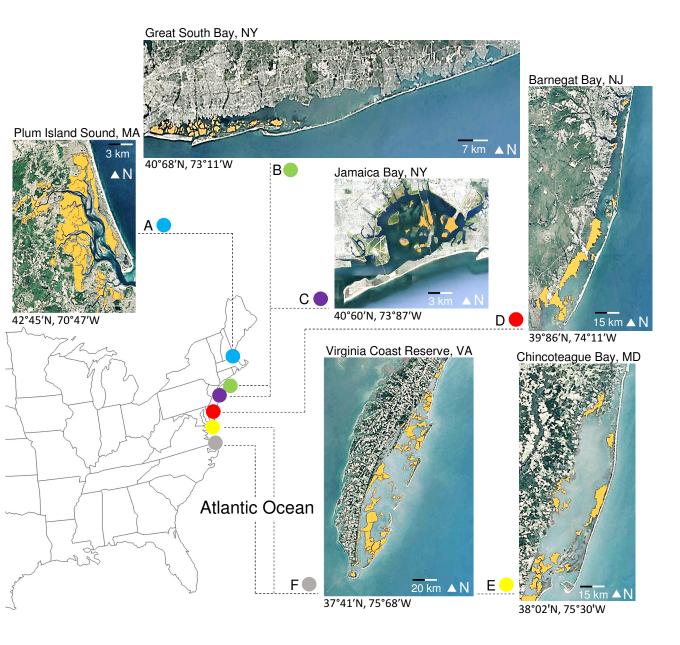
- Zhou, Z., Chen, L.Y., Townend, I., Coco, G., Friedrichs, C. T., and Zhang, C.K., (2018). Revisiting
- the relationship between tidal asymmetry and basin morphology: A comparison between 1D and 2D
- models. Journal of Coastal Research, SI 85 (Special Issue for International Coastal Symposium 2018),
- 288 117-121.

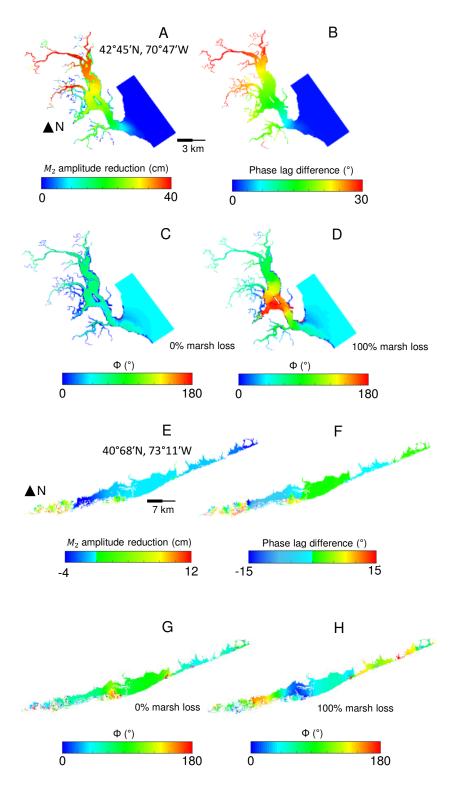
289290

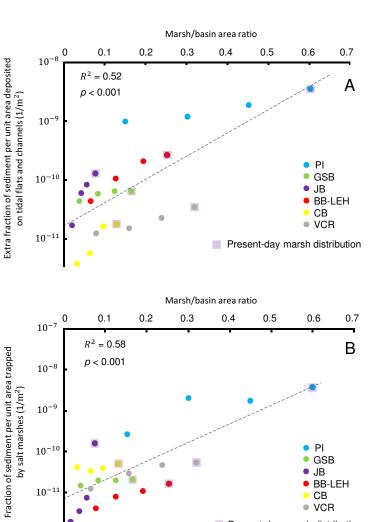
291 292

Figure captions

- Figure 1: Satellite images of the studied bays. All the systems are located along the Atlantic coast
- of the USA: Plum Island Sound (a), Great South Bay (b), Jamaica Bay (c), Barnegat Bay-Little Egg
- Harbor (d), Chincoteague Bay (e) and Virginia Coast Reserve (f). The satellite images were acquired
- from Google Earth.


297


- 298 Figure 2: Changes in tidal dynamics induced by marsh loss in Plum Island Sound and Great
- South Bay. Reduction in M_2 amplitude (cm) and increase in phase lag (Φ) after the removal of the
- 300 entire marsh surface (a-b, e-f); sea-surface phase of M_4 relative to M_2 for the current marsh
- distribution (c, g) and marsh completely eroded (d, h).


302

- Figure 3: Effect of marsh extent on the ability of tidal flats, channels and salt marshes to trap
- 304 **sediment inputs.** Fraction of sediment per unit area deposited on tidal flats and channels directly
- related to marsh presence as a function of normalized marsh area (a); fraction of sediment per unit
- area trapped on the marshes as a function of normalized marsh area (b). The four values for each
- location are the four quartiles tested (0, 25, 50 and 75%).

Table 1: Location (latitude and longitude) of each bay, initial marsh extent, average water depth (m), mean tidal range (m), marsh elevation above mean sea level (m), tidal prism (m³) and numerical framework used for each estuary.

 10^{-11}

 10^{-12}

BB-LEH
CB
VCR

Present-day marsh distribution

Table 1: Location (latitude and longitude), initial marsh extent, average water depth (m), mean tidal range (m), mean marsh elevation with respect MSL (m), tidal prism (m³) and numerical framework used for each estuary.

System	Location		Marsh/basin area ratio	Average water depth (m)	Mean tidal range (m)	Marsh elevation, MSL (m)	Tidal prism (m^3)	Numerical model
Plum Island Sound (PI)	42°45'N	70°47'W	0.6	3	2.6	0.4	6.4· 10 ⁷	Delft3D
Great South Bay (GSB)	40°68'N	73°11'W	0.16	1.2	0.25	0.45	5· 10 ⁸	COAWST
Jamaica Bay (JB)	40°60'N	73°87'W	0.07	4	1.5	0.35	1.4· 10 ⁸	COAWST
Barnegat Bay-Little Egg Harbor (BB-LEH)	39º86'N	74°11'W	0.25	1.5	0.4	0.55	3.3· 10 ⁸	COAWST
Chincoteague Bay (CB)	38°02'N	75°30'W	0.13	1.4	0.25	0.25	2.1· 10 ⁸	COAWST
Virginia Coast Reserve (VCR)	37º41'N	75°68'W	0.32	1.35	1.2	0.4	7.8· 10 ⁸	Delft3D