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A B S T R A C T

Background:Maturation of ultrasound myocardial tissue characterization may have far-reaching implications
as a widely available alternative to cardiac magnetic resonance (CMR) for risk stratification in left ventricular
(LV) remodeling.
Methods: We extracted 328 texture-based features of myocardium from still ultrasound images. After we
explored the phenotypes of myocardial textures using unsupervised similarity networks, global LV remodeling
parameters were predicted using supervised machine learning models. Separately, we also developed super-
vised models for predicting the presence of myocardial fibrosis using another cohort who underwent cardiac
magnetic resonance (CMR). For the prediction, patients were divided into a training and test set (80:20).
Findings: Texture-based tissue feature extraction was feasible in 97% of total 534 patients. Interpatient simi-
larity analysis delineated two patient groups based on the texture features: one group had more advanced
LV remodeling parameters compared to the other group. Furthermore, this group was associated with a
higher incidence of cardiac deaths (p = 0.001) and major adverse cardiac events (p < 0.001). The supervised
models predicted reduced LV ejection fraction (<50%) and global longitudinal strain (<16%) with area under
the receiver-operator-characteristics curves (ROC AUC) of 0.83 and 0.87 in the hold-out test set, respectively.
Furthermore, the presence of myocardial fibrosis was predicted from only ultrasound myocardial texture
with an ROC AUC of 0.84 (sensitivity 86.4% and specificity 83.3%) in the test set.
Interpretation: Ultrasound texture-based myocardial tissue characterization identified phenotypic features of
LV remodeling from still ultrasound images. Further clinical validation may address critical barriers in the
adoption of ultrasound techniques for myocardial tissue characterization.
Funding: None.
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1. Introduction

A rise in cardiovascular risk factors, improved survival rate from
ischemic heart disease, and population-ageing have contributed to
the increasing global burden of heart failure [1]. An important step to
prevent the progression of heart failure includes early detection of
left ventricular (LV) remodeling � a process driven by architectural
cellular and interstitial changes in the myocardium and identified
clinically as global changes in LV size, geometry, and function [2].
Studies have shown that the degree of LV remodeling has a strong
correlation with the impact of particular drugs or device therapies as
well as with clinical outcomes [3].
Recent advancements in cardiac magnetic resonance (CMR) have
revealed that myocardial tissue imaging characteristics alter under
various cardiac conditions which reflect structural LV remodeling,
including fibrosis, increased extracellular volume, and altered fibre
orientation [4,5]. Cardiac ultrasound is not currently utilized clinically
for myocardial tissue characterization although previous studies have
reported that the intensity of the ultrasound backscatter is related to
the physical properties of the myocardium and is influenced by tissue
components (e.g. collagen, water, fat) [6,7]. Moreover, there has been
limited information regarding the specific application of texture-
based analysis for cardiac ultrasound imaging. The recent develop-
ments in image analysis and novel bioinformatics approaches have
augmented methods that can extract information from the texture in
a still image. The application of such texture-based image analysis
has been increasingly utilized as a key function in various image-
processing applications such as automated inspection, document
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Research in context

Evidence before this study

We performed a literature search with PubMed on December
20, 2019 and found no study in which the radiomics-based tex-
ture analysis approach was employed using cardiac ultrasound
images for assessing LV remodeling. Before this study, cardiac
ultrasound was not clinically used for tissue characterization
and cardiac MR was the leading imaging modality for the
assessment of myocardial remodeling.

Added value of this study

This study demonstrated that by using a machine learning pipe-
line to integrate and process texture features, important infor-
mation associated with myocardial remodeling can be derived
from ultrasound images. Integrated texture features pheno-
types showed discrimination of patients with impaired cardiac
function from those without cardiac remodeling. Furthermore,
machine learning models enabled the prediction of impaired
systolic function and myocardial fibrosis.

Implications of all the available evidence

Given the portability, wide availability, and cost-effectiveness,
tissue characterization using cardiac ultrasound can provide
huge implications in clinical practice. Moreover, the application
of this approach to other fields of medical research will acceler-
ate them by using it as a noninvasive and repeatable evaluation
of myocardial remodeling. Further studies are warranted to
expand our approach to such a clinical and research world.
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processing, radiology image processing, and content-based image
retrieval [8�11]. Such techniques may also have direct relevance for
cardiac ultrasound techniques like speckle tracking echocardiogra-
phy where myocardial motion is analyzed using frame-by-frame
tracking of natural acoustic markers (often referred in literature as
“speckles”, “patterns”, or “fingerprints”) [12,13]. A functional unit
(kernel) of speckles generated from ultrasound-tissue interactions (i.
e., reflections, interference, and scattering) is unique, allowing soft-
ware to track itself during the entire cardiac cycle [12]. Thus, an ultra-
sound texture of myocardium may carry unique and specific
information of the indexed myocardium.

This study, therefore, presents the development and validation of
a novel approach that combines the texture-based informatics of
myocardium with machine learning techniques. We first extract tex-
ture-based tissue features from still ultrasound images and identify
the association of texture feature-based patient phenotypes with LV
remodeling. Subsequently, we illustrate the value of texture-based
supervised machine learning models in predicting LV systolic dys-
function and the presence of myocardial fibrosis in a remodeled LV.

2. Materials and methods

2.1. Study participants

This study consisted of three parts. The detailed study design is
presented in Fig. 1.

2.1.1. Unsupervised phenotyping based on texture features (Fig. 1a)
We pooled 405 patients from three prospective studies conducted

at West Virginia University between August 2017 and September
2018. Those studies used echocardiography as a reference standard
of LV function and were evaluating [1] the value of a surface ECG
algorithm to predict diastolic dysfunction (n = 196). This study
included adult (>18 years old) subjects who underwent ECG and
echocardiography on the same day [2]; a probe for estimating pulmo-
nary artery pressure from chest wall (n = 145). This study included
adults older than 18 years old, admitted to the hospital for HF who
had an echocardiogram performed within 48 h of presentation, and
[3] a software for the assessment of intracardiac flow (n = 64), which
included consecutive adult patients referred for LV function assess-
ment. The common exclusion criteria for all the three studies
included [1] patients with inadequate echocardiographic views and
[2] patients with chest deformities. Myocardial texture feature
extraction was feasible in 392 patients. We performed an unsuper-
vised machine learning using topological data analysis for aggregat-
ing patients with similar textural properties and compared the
patient characteristics, cardiac function, and outcome between the
phenogroups.

2.1.2. Supervised learning-based prediction of LV remodeling (Fig. 1b)
We used the 392 patient cohort as described above to develop

supervised machine learning models for predicting functional
markers of LV remodeling (impairment in LV ejection fraction [LVEF]
and global longitudinal strain [GLS]), the cohort was randomly
divided into a training (80%) and test (20%) set. Then, machine-learn-
ing models were trained in the training set (with cross-validation)
and subsequently evaluated in the test set.

2.1.3. Supervised learning-based prediction ofmyocardial fibrosis (Fig. 1c)

To assess the value of texture features for predicting the presence
of CMR delineated myocardial fibrosis, we retrospectively identified
89 patients who underwent clinically indicated CMR and cardiac
ultrasound within 48 h between July 2017 and December 2018.
Exclusion criteria were [1] patients with inadequate echocardio-
graphic views [2], patients with chest deformities, and [3] patients
who underwent CMR without gadolinium contrast. The retrospective
cohort was used to train machine learning models with cross-valida-
tion and the developed model was tested in 40 prospective patients
who were enrolled with the same inclusion/exclusion criteria.

2.2. Data collection

The New York Heart Association (NYHA) functional class and the
heart failure stages defined by the American College of Cardiology
and the American Heart Association were used to investigate clinical
severity [14]. Major adverse cardiac event (MACE) was predefined as
the composite of cardiac death, hospitalization due to myocardial
infarction, acute coronary syndrome, heart failure, and arrhythmias
and were tracked on an electronic chart and/or telephone interview.
The Meta-Analysis Global Group in Chronic (MAGGIC) heart failure
risk score was calculated as previously reported [15,16]. All enrolled
patients underwent comprehensive 2-dimensional echocardiography
using commercially available ultrasound equipment (Vivid-9/95, GE
Healthcare; iE-33, Philips Healthcare; and LISENDO 880, Hitachi
Healthcare) with 1 � 5 MHz phased array probes. Ultrasound images
were stored in a DICOM format on the institute’s local Picture Archiv-
ing and Communication System (PACS). Conventional echocardio-
graphic parameters were analyzed per under the current guidelines
[17]. LVEF was measured using 2D disk methods at end-diastole and
end-systole. Speckle tracking strain analysis was performed offline
using vendor-free software (ImageArena, TomTec Inc.) by observers
who were blinded to other information, including the texture-based
tissue features. The longitudinal strain was calculated using apical 4-,
2-, and long-axis views, and the averaged value was reported as the
GLS [17]. CMR was performed using a 1.5 Tesla scanner (MAGNETOM
Arena, Siemens Healthineers, Erlangen, Germany). Late gadolinium
enhancement imaging was performed in all subjects in accordance



Fig. 1. Study process. This study consisted of three parts as shown in panel a to c. In the first part (panel a), we used unsupervised clustering to explore patient phenotypes and their
clinical implications in total 405 patients with various stages of HF. Next, supervised machine learning was used to predict the functional (impaired LVEF and GLS) LV remodeling
using the texture features in the same patient cohort (panel b). Finally, in an independent cohort of patients who underwent CMR and echocardiography, we explored the usefulness
of texture-based supervised models for predicting myocardial fibrosis (panel c). WVU, West Virginia University; HF, heart failure; ML, machine learning; TDA, topological data analy-
sis, LV, left ventricular; RFE, recursive feature elimination; CMR, cardiac magnetic resonance.
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with standard clinical protocols [4]. Late gadolinium enhancement
was defined by hyperenhanced pixels with signal intensities of 5
standard deviations above the mean of normal myocardium. Patients
were considered to have myocardial fibrosis in the studied segments
if positive late gadolinium enhancement was seen in any of the ante-
roseptal and posterior wall myocardial segments (corresponding to
the segments where ultrasound ROIs were placed for extracting tex-
ture features).
2.3. Quantitative texture-based tissue feature extraction

Texture-based tissue features of myocardium were extracted from
still images of traditional parasternal long axis views using LIFEx soft-
ware v4.5 (https://www.lifexsoft.org/) [18]. This technique of tex-
ture-based feature extraction has been popularized in radiology and
referred to as ‘radiomics’ [10,11]. Using 2 still frames, an end-diastolic
and an end-systolic frame, we placed circular regions of interest
(ROIs) including 257 pixels (4 � 9 mm in diameter) per each, at the
basal and mid-segments of the interventricular septum and the left
ventricular posterior wall, respectively. The basal and mid-segments
were defined as the level of the mitral valve leaflet tips and the papil-
lary muscle. The ROI contents were first resampled in 64 discrete val-
ues using the formula:

R xð Þ ¼ round 64 � I xð Þ � min ROI intensity½ �= max ROI intensity � min ROI intensity½ �ð Þ

Where R(x) is the resampled value of pixel x, I(x) is the intensity
of pixel x in the original image, and max and min Intensity are the
maximum and minimum intensities in the ROI, respectively. The soft-
ware extracted 41 texture features, or radiomics features, from each
ROI, including first-order statistics such as the maximum, minimum,
standard deviation, and the mean value of intensity and histogram
features, and second-order indices such as the gray-level co-occur-
rence matrix (GLCM) [19], gray-level run length matrix (GLRLM) [20],
neighboring gray-level dependence matrices (NGLDM) [21], and
gray-level zone length matrices (GLZLM) [22]. More details about the
texture features are provided in the Supplemental Material.

2.4. Feature phenotyping using topological data analysis

A total of 328 texture features extracted during diastole and sys-
tole were included in the topological data analysis using Ayasdi
Workbench v7.4 (Ayasdi Inc., Menlo Park, California). Topological
data analysis is a novel mathematical and data analysis approach that
establishes the topological and geometrical structure of the data to
garner information and patterns from the features in a patient-
patient similarity network [18,23]. The technical details are shown in
the Supplemental Material. In a topological data analysis-based
patient similarity network, patients with similar features (in this
study, texture-based tissue features) form a node or a dot, and adja-
cent nodes, including similar patients, are connected with edges or
lines. Accordingly, the relative distance between nodes (more pre-
cisely, the minimum number of edges between nodes) represents the
similarity of features between the nodes. Thus, clusters or groups of
patients with similar features can be identified based on the shape of
the network. This notion of linking the shape to meaning using

https://www.lifexsoft.org/
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topological data analysis has been extensively validated and increas-
ingly used in various areas of health sciences [23,24]. After we identi-
fied patient clusters using topological data analysis, the clinical
significance of those clusters was studied by summarizing and com-
paring patient characteristics and outcomes.

2.5. Machine learning prediction of functional LV remodeling

As the number of texture features was large (328) and there were
similar features with strong correlations, we used the differences in
important features between patient clusters as highlighted topologi-
cal data analysis for feature selection and pruned the list of features
further with recursive feature elimination to build a supervised
machine learning framework [25,26]. The final number of the fea-
tures was determined by averaged Matthews correlation coefficient.
Using a cloud-based automated machine learning platform (OptiML,
BigML.com, Corvallis, Oregon, http://bigml.com), multiple algorithms,
including decision trees, ensemble models, logistic regression models
with least absolute shrinkage (LASSO) and selection operator, and
deep neural networks, were trained to predict reduced LVEF (�50%)
and impaired GLS (<16% in absolute value). In the training sets, the
platform performed automated model selection and hyperparameter
tuning based on Bayesian parameter optimization using an optimiza-
tion technique called sequential model-based algorithm configura-
tion [27,28]. This process was performed with Monte-Carlo cross-
validation. Finally, several models with the highest performance
were selected and their prediction probabilities were averaged to
create an ensemble model (fusion model), which were evaluated in
the hold-out (not used in the training process) test set. Such techni-
ques of making fusion models help combining diverse and indepen-
dent models for reducing the generalization error.

2.6. Reproducibility of tissue texture

Top texture-based tissue features for predicting myocardial fibro-
sis were defined using the top importance gain of the 4 regions. We
assessed variability related to the operator, device settings, and
device vendors used in the study. We tested the interobserver vari-
ability of feature extraction in 2 blinded observers who indepen-
dently analyzed 20 randomly selected patients and assessed the
consistency of the texture features. To test the resistance of the tex-
ture features to device settings, we evaluated changes of texture fea-
tures in different gain settings and image qualities. After adding 5
levels of gain (to I(x) + 20, I(x) + 40, I(x) + 60, I(x) + 80, I(x) + 100) and
Gaussian additive noise (mean = 0, variance of 0.01, 0.02, 0.03, 0.04,
and 0.05) to 10 images using MATLAB R2018a (The MathWorks,
Natick, MA, USA), the texture features were extracted using exactly
the same ROIs. Lastly, we verified the vendor dependency of the tex-
ture features by testing topological data analysis-based patient simi-
larity networks generated using features extracted from 2 vendors
(GE Healthcare and Hitachi Healthcare).

2.7. Statistical analysis

Data are presented as the median [1st and 3rd interquartile range]
for continuous variables and as the frequency (%) for categorical vari-
ables. Group differences were evaluated using Mann�Whitney U
tests for continuous variables and chi-square or Fisher’s exact tests
for categorical variables. Kaplan�Meier curve analysis, the log-rank
test, and multivariable Cox proportional hazard models were used
for survival analysis. The ROC curves of the machine learning models
were drawn, and the best thresholds were identified based on the
Youden index. Interobserver variability was evaluated using Pear-
son’s r and interclass correlation coefficients. All statistical analyses
were performed with R version 3.5.2 (The R Foundation for Statistical
Computing, Vienna, Austria). A two-tailed p <0.05 indicated statisti-
cal significance.

2.8. Ethics and data sharing statement

The study protocol was approved by the institutional review
board and written informed consents were obtained from all pro-
spective patients. The study was compliant with the Declaration of
Helsinki and the institutional review board approved the study pro-
tocol. Research data are not available for public access due to patient
privacy concerns but can be obtained from the corresponding author
on reasonable request approved by the institutional review boards of
all participating institutions.

3. Results

3.1. Unsupervised phenotyping based on texture features

For the first part of the study (Fig. 1a), we successfully extracted 328
texture features from still-frame ultrasound images in 392 of the 405
(97%) subjects. Overall, the median age of the population was 58 [45 �
68] years, 55.9% were female, 26.3% had severe heart failure symptoms
(NYHA class III or IV) and 32.9% had stage C or D heart failure [29].

Using the extracted texture features, unsupervised topological
data analysis identified a bar-shaped patient similarity network,
where 2 clusters were connected by a single node (Fig. 2A). Clusters
A and B included 196 and 210 patients, respectively, with 14 patients
overlapping between the groups. Interestingly, these identified clus-
ters had significantly different clinical and echocardiographic charac-
teristics even though the clusters were created using only the texture
features of still images. Group differences are summarized in Table 1.
Compared with cluster A, cluster B was associated with greater age
and more advanced heart failure. Furthermore, patients in cluster B
had significant differences in LV remodeling: the intraventricular
septum and LV mass index were greater, the LV dimensions and vol-
umes were larger, the LVEF and LV GLS were reduced, the LV diastolic
function represented by tissue Doppler e’ and E / e’ was impaired,
and the left atrial volume was larger compared to those in cluster A
(Table 1). The differences in texture features between the groups
were summarized in Supplemental Table 1.

Illustrative cases for each cluster are shown in Fig. 2B. Although
functional evaluation of the myocardial textures in the images seems
unfeasible with the human eye, this texture-based approach was able
to identify important information for evaluating cardiac function
from still routine ultrasound images and classified patients in a clini-
cally meaningful way.

3.1.1. Comparison of clinical outcomes between clusters
We further compared the clinical prognosis of the two clusters.

During the follow-up period of a median of 301 [268�323] days, 76
MACEs, including 26 cardiac deaths, were observed. Kaplan�Meier
curves showed that patients in cluster B had a significantly higher
incidence of cardiac death and MACE than those in cluster A (p <

0.001 by log-rank test, for both, Fig. 3). Cox proportional hazard mod-
els showed that even after adjusting for the MAGGIC score, a well-
established risk score for patients with heart failure validated in vari-
ous clinical settings [15,16], texture-based clustering was signifi-
cantly associated with cardiac death (HR 6.23, 95% CI 1.46 � 26.5,
p = 0.013 by Cox proportional hazard analysis). The association of tex-
ture-based clustering with MACE was significant in the univariate
model (HR 2.85, 95% CI 1.69 � 4.78, p <0.001 by Cox proportional
hazard analysis) and a model adjusted with other clinical factors
(age, sex, body mass index, history of coronary heart disease, hyper-
tension, and LVEF; HR 1.74, 95% CI 1.01 � 3.00, p = 0.047 by Cox pro-
portional hazard analysis), and showed borderline significance in a
model adjusted with the MAGGIC score (HR 1.68, 95% CI 0.99 � 2.87,

http://bigml.com


Fig. 2. Patient similarity network based on myocardial texture features. Panel a: Extracted texture features were integrated using topological data analysis to create a patient simi-
larity network. In the network, patients with similar features form a node, and adjacent nodes, including similar patients, are connected with edges. The network demonstrated the
shape of a bar that was geometrically divided into two parts which had significantly different clinical and echocardiographic characteristics although the groups were created using
only texture features. Panel b. Patients X, Y, Z, and W were identified in corresponding x, y, z, and w nodes, respectively. X and Y had a normal cardiac function and were found in
cluster A, whereas Z andWwere located in cluster B with significantly impaired cardiac function. GLS, global longitudinal strain; LVEF, left ventricular ejection fraction.
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p = 0.057 by Cox proportional hazard analysis). The results for the Cox
models are summarized in Table 2 and HRs for all variables are listed
in Supplementary Table 2.

3.2. Supervised learning-based prediction of functional LV remodeling

This part is summarized in the bottom left of Fig. 1. To explore the
value of the texture-based tissue features to directly predict functional
LV remodeling, the patient cohort was randomly divided into training
(80%) and test set (20%), and supervised machine learning algorithms
were trained in the training set using only the texture features
extracted from the still images. Topological data analysis and subse-
quent recursive feature elimination were used for feature selection
and 18 features per each were used to train prediction models for
reduced LVEF (<50%) and GLS (<16%). Panel A and B in Fig. 4 show the
ROC curves for the prediction of reduced LVEF and GLS obtained in the
test set. The best model for predicting reduced LVEF was an ensemble
of 10 models (2 boosted trees, 3 random decision forests, 2 LASSO
regressions, 2 ridge regressions, and 1 neural network: the perfor-
mance of each model in the cross-validation is summarized in Supple-
mentary Table 3) and showed performance of ROC AUC 0.83,
sensitivity 91.7%, and specificity 72.3%, whereas the one for impaired
GLS was an ensemble of 10 different models (5 bootstrap decision for-
est, 2 ridge regressions, 2 LASSO regressions, and 1 neural network)
and had ROC AUC of 0.87, sensitivity of 88.5%, and specificity of 71.2%.

3.3. Supervised learning-based prediction of myocardial fibrosis
For investigating the value of the cardiac ultrasound texture-

based features in predicting whether the patient has myocardial
fibrosis detected by CMR, we studied 89 retrospectively identified
patients who had undergone CMR and echocardiography within 48 h
as the training set, and 40 independent prospective patients as the
test set, as shown in Fig. 1b. Texture feature extraction was feasible
in 85 (96%) and 40 (100%) patients, respectively. The clinical charac-
teristics of the training and test set are summarized in Table 3. There
were 48 (56.4%) and 22 (55.0%) patients who had myocardial fibrosis
in at least one of the four ROIs where the texture features were
extracted using the ultrasound images in the training and test set,
respectively.

Out of the extracted texture features, we performed feature selec-
tion and identified 5 best features to develop supervised machine
learning models. The models were trained to predict whether the
patient has myocardial fibrosis using cross-validation in the training
set (Fig. 5). In the test set, the developed model (an ensemble of 2
LASSO regressions) predicted myocardial fibrosis with an ROC AUC of
0.84 (sensitivity 86.4%, and specificity 83.3%).

3.4 . Robustness of texture-based feature extraction

To confirm the stability of the texture features, we assessed vari-
ability related to the operator, image quality, and device vendors
used in the study. Supplementary Table 4 summarizes the impor-
tance and the interobserver variability of top features. Briefly, most
features had a good interobserver agreement with interclass correla-
tion coefficient 0.74�0.96, except for correlation in GLCM (0.54). Sup-
plementary Fig. 1 shows the variability of the features by the image
quality. We artificially increased noise and gain on each image and
tested the change of the features. As shown, each feature showed



Table 1
Patient characteristics.

Factor Overall Cluster A Cluster B p value

Number of patients 392 196 210
Age, years 58 [45�68] 54 [40�65] 61 [50�71] <0.001
Female, n (%) 219 (55.9) 113 (57.7) 113 (53.8) 0.484
BSA, m2 2.02 [1.8�2.22] 2.03 [1.84�2.23] 1.97 [1.77�2.20] 0.041
BMI, kg/m2 29.2 [25.7�36.0] 29.9 [25.7�37.4] 28.8 [25.7�33.8] 0.113
Coronary artery disease, n (%) 148 (37.8) 63 (32.1) 90 (42.9) 0.031
Hypertension, n (%) 272 (69.4) 133 (67.9) 148 (70.5) 0.592
Cerebral vessel disease, n (%) 46 (11.8) 21 (10.7) 25 (12.0) 0.755
Diabetes mellitus, n (%) 119 (30.4) 50 (25.5) 72 (34.3) 0.065
Atrial fibrillation, n (%) 50 (12.8) 12 (6.1) 42 (20.0) <0.001
NYHA �III, n (%) 103 (26.3) 37 (18.9) 73 (34.8) <0.001
HF stages C or D, n (%) 129 (32.9) 56 (28.6) 78 (37.1) 0.073
Echocardiography

IVSd, mm 10 [9�12] 10 [8�12] 11 [9�13] 0.005
PWd, mm 9 [8�11] 9 [8�10] 9 [8�11] 0.068
LVIDd, mm 46 [42�51] 46 [42�49] 47 [42�52] 0.036
LVIDs, mm 32 [28�37] 31 [28�35] 34 [29�40] <0.001
LVEDVi, mL/m2 52 [43�64] 50 [41�60] 56 [45�68] <0.001
LVESVi, mL/m2 21 [15�28] 19 [15�26] 22 [16�33] <0.001
LA volume index, mL/m2 25 [20�35] 23 [18�32] 28 [21�41] <0.001
LV mass index, mg/m2 76 [59�101] 72 [56�90] 82 [64�112] <0.001
E wave velocity, m/s 0.84 [0.69�0.96] 0.81 [0.69�0.94] 0.87 [0.70�1.01] 0.057
A wave velocity, m/s 0.70 [0.54�0.89] 0.70 [0.53�0.89] 0.70 [0.55�0.90] 0.897
E / A ratio 1.14 [0.85�1.55] 1.11 [0.85�1.51] 1.16 [0.84�1.56] 0.720
e', cm/s 8.1 [6.0�10.5] 8.5 [7.0�10.7] 7.6 [5.5�10.5] 0.001
E / e' 9.3 [7.2�14.5] 9.0 [7.2�12] 10.1 [7.7�17.2] 0.003
LVEF, % 60 [53�65] 61 [55�65] 59 [46�65] 0.011
GLS, absolute % 19.3 [15.7�22.0] 20.2 [18.1�23.5] 17.3 [12.5�20.4] <0.001
LV hypertrophy, n (%) 84 (21.4) 23 (11.7) 63 (30.0) <0.001
LV diastolic function, n (%) <0.001
normal 188 (49.3) 120 (61.9) 74 (36.8)
grade 1 29 (7.6) 10 (5.2) 20 (10.0)
grade 2 63 (16.5) 22 (11.3) 45 (22.4)
grade 3 34 (8.9) 8 (4.1) 27 (13.4)
indeterminate 61 (16.0) 31 (16.0) 32 (15.9)
indeterminate grade 6 (1.6) 3 (1.5) 3 (1.5)

BSA, body surface area; BMI, body mass index; NYHA, New York Heart Association; HF, heart failure; IVSd,
interventricular septum thickness in diastole; PWd, posterior wall thickness in diastole; LVIDd, left ventric-
ular end-diastolic diameter; LVIDs, left ventricular end-systolic diameter; LVEDVi, left ventricular end-dia-
stolic volume index; LVESVi, left ventricular end-systolic volume index; LA, left atrial; LVEF, left ventricular
ejection fraction; GLS, global longitudinal strain.

Fig. 3. Clinical outcomes between clusters. Kaplan�Meier curve analyses showed that cluster B had a significantly higher incidence of cardiovascular death (panel a) and of the
composite of cardiovascular death and major adverse cardiac events (MACE; panel b) compared with cluster A.
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Table 2
Cox regression models.

For cardiac death For MACE

HR 95% CI p value HR 95% CI p value

Cluster B 11.09 2.62�46.93 0.001 2.85 1.69�4.78 <0.001
Adjustment for
MAGGIC score

6.23 1.46�26.50 0.013 1.68 0.99�2.87 0.057

Adjustment for
clinical factors*

1.74 1.01�3.00 0.047

The column names and the row names indicate the dependant and the independent
variables, respectively. The full models are provided in the Supplementary materials.
MACE, major adverse cardiac event; HR, hazard ratio; CI, confidence interval; MAG-
GIC, Meta-Analysis Global Group in Chronic Heart Failure.
* Clinical factors include age, sex, body mass index, history of coronary heart

disease, hypertension, and left ventricular ejection fraction.

Table 3
Patient characteristics of the patients with a magnetic resonance scan.

Factor Retrospective
(training)

Prospective
(test)

p value

Number of patients 85 40
Age, years 55 [41�66] 56 [46�64] 0.667
Female, n (%) 53 (62.4) 16 (40.0) 0.022
BSA, m2 2.03 (0.35) 2.03 (0.27) 0.984
BMI, kg/m2 55.37 (231.98) 29.77 (6.23) 0.488
Coronary artery disease,
n (%)

38 (44.7) 13 (33.3) 0.246

Hypertension, n (%) 43 (50.6) 27 (69.2) 0.078
Cerebral vessel disease,
n (%)

6 (7.1) 3 (12.5) 0.410

Diabetes mellitus, n (%) 21 (24.7) 13 (33.3) 0.387
Atrial fibrillation, n (%) 8 (9.4) 4 (10.3) >0.99
NYHA �III, n (%) 12 (14.1) 16 (40.0) 0.002
HF stages C or D, n (%) 17 (20.0) 21 (52.5) <0.001
Echocardiography
IVSd, mm 10 [8�12] 10 [9�11] 0.983
PWTd, mm 9 [8�11] 10 [9�11] 0.503
LVIDd, mm 48 [42�53] 48 [45�57] 0.165
LVIDs, mm 34 [29�42] 35 [30�48] 0.378
LVEDVi, mL/m2 54 [40�67] 57 [45�69] 0.537
LVESVi, mL/m2 23 [16�40] 27 [20�45] 0.168
LA volume index,
mL/m2

22 [18�33] 32 [21�39] 0.011

LV mass index, mg/m2 79 [67�103] 96 [70�132] 0.057
E wave velocity, m/s 0.85 [0.62�1.00] 0.86 [0.69�1.00] 0.816
A wave velocity, m/s 0.60 [0.51�0.84] 0.68 [0.49�0.83] 0.980
E / A ratio 1.26 [0.84�1.77] 1.16 [0.90�1.66] 0.810
e’, cm/s 9 [6�12] 8 [6�11] 0.317
E / e’ 8.4 [6.6�11.3] 10.4 [7.6�14.8] 0.093
LVEF, % 55 [42�63] 48 [34�56] 0.025
GLS, absolute % NA 12.8 [7.9�19.4] NA
LV hypertrophy, n (%) 0.136
LV diastolic function,
n (%)

0.173

Normal 17 (20.0) 3 (8.3)
Grade 1 28 (32.9) 11 (30.6)
Grade 2 18 (21.2) 15 (41.7)
Grade 3 17 (20.0) 5 (13.9)
Indeterminate 5 (5.9) 2 (5.6)
Indeterminate grade 0 (0.0) 0 (0.0)

Abbreviations are the same as in Table 1.
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different behavior against increases in gain and noise. For example,
gray-level non-uniformity of the GLRLM, the second most important
feature for predicting functional LV remodeling, was resistant to an
increase in gain, while it markedly increased with additional noise in
the images. On the other hand, the high gray-level run emphasis of
GLCM, one of the important features for predicting myocardial fibro-
sis, was relatively resistant to an increase in noise, whereas it dramat-
ically increased with additional gains on the images.

To elucidate the value of the texture features among different
vendors, patient similarity networks were created using data
obtained from each of the two dominant vendors using topological
data analysis. The created networks from both vendors formed simi-
lar loops, where most patients with reduced LV systolic function
were segregated in a part of a loop (Supplementary Fig. 2), suggesting
that the information content of the texture features were relatively
invariant to the data source.

4. Discussion

In the present study, we illustrated that [1] texture-based analysis
was feasible for most clinical cardiac ultrasound (97%) [2], unsuper-
vised patient-similarity analysis revealed that a specific pattern of
information from myocardial texture was associated with functional
LV remodeling, advanced heart failure, and adverse clinical outcome,
and [3] the texture features extracted from still cardiac ultrasound
images could be used for developing supervised machine learning
models that enable clinical prediction of functional and structural LV
remodeling. Texture-based analysis has been recently used in radiol-
ogy (also referred to as radiomics) to extract maximal information
Fig. 4. Direct prediction of impaired cardiac function. Panels a to c show receiver operator ch
presence of myocardial fibrosis. Supervised machine learning models were successful in pred

LVEF, left ventricular ejection fraction; GLS, global longitudinal strain; ROC AUC, area und
from standard-of-care images using high-throughput computing
[10,11] Our work resembles the general principles of radiomics and
specifically defines a computational pipeline where texture-based tis-
sue features were extracted and used for building supervised machine
learning models for individualized predictions. This approach may
aracteristics curves for predicting reduced LVEF (<50%), impaired GLS (<16%), and the
icting these outcomes with the texture features extracted from still ultrasound images.
er the curve; Accu, accuracy; Sens, sensitivity; Spec, specificity; F-1, F1 score.



Fig. 5. Prediction of myocardial fibrosis. The upper panels show still ultrasound images and the corresponding myocardial textures where the texture features were extracted. The
lower panels showmagnetic resonance images with late gadolinium enhancement.
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potentially address a long-described objective of cardiac ultrasound in
providing myocardial tissue characterization in clinical practice.

It is well known that in typical cases, the pathological myocardial
texture is visually distinguishable with ultrasound images. For exam-
ple, scar lesions after myocardial infarction have high echo intensity
and thin walls, and myocardium with infiltration of amyloid has a
granular sparkling texture [30]. However, many previous attempts to
characterize myocardial tissue using ultrasound images, such as inte-
grated backscatter analysis, have resulted in suboptimal results
because of variations in the quality and texture of the cardiac ultra-
sound images [31,32]. As a consequence, in current clinical practice,
CMR imaging is preferred modality for myocardial tissue characteri-
zation using late gadolinium enhancement imaging and methods
such as parametric and non-parametric T1, T2 and T2* imaging. How-
ever, due to its cost, accessibility, and contraindications, CMR is not
available for every patient and in every place. Since cardiac ultra-
sound remains portable, low-cost, and the most common cardiac
imaging procedure performed in clinical practice, implementation of
tissue characterization with cardiac ultrasound may have a wider
clinical impact. In our initial attempt, we illustrated that the use of
cardiac ultrasound texture-based tissue features of myocardium was
robust and concordant in several steps of analyses: i.e., cluster analy-
sis with topological data analysis with clinical outcome prediction;
supervised machine learning analysis for predicting impaired LV sys-
tolic function; and identification of the presence of myocardial fibro-
sis. We also showed that the segregation of high-risk myocardium
was vendor-independent and that interobserver agreement was ade-
quate for clinical application. These results reconfirmed that impor-
tant information associated with myocardial remodeling that can be
captured by CMR is also carried in ultrasound texture features and
can be retrieved using a modern high-throughput computing pipe-
line, which possibly amended the signal to noise ratio and helped
extraction of useful information from noisy ultrasound data.
Although some features were sensitive to changes in gain or noise,
the majority of the features were stable and resistant to the changes
in image quality. More work would be needed for appropriate feature
engineering and building models that are even more resistant to the
changes in image quality.

Although we used radiomics-based texture analysis approach in
this study, deep learning may be another choice of approaches with
which images can be analyzed in an end-to-end pipeline. Both deep
learning and radiomics have received considerable attention in
recent years in radiology and the relative merits of both techniques
remains an area of active investigation [33]. While some investigators
have only recently compared the two approaches citing the advan-
tage of deep learning approaches for radiological images [34], others
have suggested that both approaches are complementary and can
unite in the future to produce a single unified framework [34]. Such
comparative studies have been performed mostly in radiology, in
general, and the application of radiomics for cardiac imaging is still in
its infancy. To the best of our knowledge, our study is the first to
attempt the application of traditional radiomics approach to extract
semantic and agnostic features from cardiac ultrasound images for
predicting LV remodeling. The recent successful application of hand-
crafted radiomics features in myocardial tissue characterization
[35�37] further supports our choice of restricting the initial analysis
to only using handcrafted radiomics approach. We agree that deep
learning based radiomics may have several advantages including its
generalization capability and its independence from the supervision
of experts, however, the lack of reproducibility and interpretability,
as well as over-fitting on small datasets like ours, poses substantial
challenges in readily adapting deep networks for this study. We have
added this information in the Supplementary Table 3

Our study results will open up new lines of investigations. Cur-
rently, our description of cardiac ultrasound texture-analysis
addresses only texture-based myocardial properties. However, per-
haps in the near future, the addition of newer tissue material proper-
ties such as myocardial stiffness obtained using ultrafast-ultrasound
techniques could provide a similar multiparametric yield as
described in CMR [38]. Furthermore, extracellular volume quantifica-
tion and other myocardial characteristics seen in specific diseases
such as cardiac amyloidosis and hypertrophic cardiomyopathy will
merit important future considerations. Moreover, due to its noninva-
sive and repeatable nature, it may allow serial assessments of myo-
cardial properties after clinical therapies.

The present study has several limitations that require future con-
siderations. First, this study was a single-center study using ultra-
sound images acquired in only one laboratory. External validation in
ultrasound images acquired in other centers is necessary before clini-
cal application. Next, we used only parasternal long axis views
because this view is the most standardized and feasible view in rou-
tine clinical cardiac ultrasound examination and provides good qual-
ity images in most cases. The usability of other views, such as apical
four chamber views and parasternal short axis views, should also be
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tested. Moreover, in this study, as proof of the initial concept, we
focused on the prediction of fibrosis within the four ROI applied in
four-segments studied by cardiac ultrasound and CMR. Also, the asso-
ciation of texture features with quantitative measures of myocardial
remodeling, such as extracellular volume, is of interest in future stud-
ies. The parasternal long-axis echocardiographic view provides
images with the insonifying ultrasonic field primarily perpendicular
to the predominant myocardial fibre orientation and, hence, reduces
the confounding effects of tissue anisotropy on echocardiographic
image quality. Extraction of the texture-based informatics for each
myocardial segment and for all the views of the LV (from both apical
and parasternal views) using novel segmentation and machine learn-
ing techniques could potentially improve the yield and applicability
of the overall technique. Finally, although we showed that changes in
myocardial texture were associated with impaired cardiac function,
fibrosis and high-risk patient characteristics and adverse clinical out-
comes, the direct comparison with histological features of LV remod-
eling would be desirable.

In conclusion, our new approach using a low-cost texture-based
pipeline identifies a tissue texture of LV remodeling that is associated
with clinical characteristics and outcomes in early and advanced
stages of heart failure. Further clinical validation of this quantitative
approach using advanced image processing and artificial intelligence
may address critical barriers in the adoption of ultrasound techniques
as a viable cost-effective alternative to CMR techniques for myocar-
dial tissue characterization.
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