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A framework for data assimilation combining aspects of operator-theoretic ergodic theory and quantum
mechanics is developed. This framework adapts the Dirac—von Neumann formalism of quantum dynamics and
measurement to perform sequential data assimilation (filtering) of a partially observed, measure-preserving
dynamical system, using the Koopman operator on the L? space associated with the invariant measure as an
analog of the Heisenberg evolution operator in quantum mechanics. In addition, the state of the data assimilation
system is represented by a trace-class operator analogous to the quantum mechanical density operator, and
the assimilated observables by self-adjoint multiplication operators. An averaging approach is also introduced,
rendering the spectrum of the assimilated observables discrete and thus amenable to numerical approximation.
We present a data-driven formulation of the quantum mechanical data assimilation approach, utilizing kernel
methods from machine learning and delay-coordinate maps of dynamical systems to represent the evolution and
measurement operators via matrices in a data-driven basis. The data-driven formulation is structurally similar
to its infinite-dimensional counterpart and shown to converge in a limit of large data under mild assumptions.
Applications to periodic oscillators and the Lorenz 63 system demonstrate that the framework is able to naturally

handle highly non-Gaussian statistics, complex state space geometries, and chaotic dynamics.
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I. INTRODUCTION

Data assimilation is a framework for state estimation and
prediction for partially observed dynamical systems [1,2]. Its
sequential formulation, also known as filtering, is based on
a predictor-corrector procedure, whereby a forward model
is employed to evolve the probability distribution for the
system state until a new observation is acquired, at which
time that probability distribution is updated in an analysis step
to a posterior distribution correcting for model error and/or
uncertainty in the prior distribution. Since the seminal work of
Kalman [3] on filtering (which utilizes Bayes’ theorem for the
analysis step, under the assumption that all distributions are
Gaussian), data assimilation has evolved to an indispensable
tool in virtually every modeling scenario for complex systems,
including object tracking [4], weather forecasting [5], and
many other important applications [6].

In certain aspects, the predictor-corrector approach in data
assimilation resembles another extremely successful branch
of modern science, namely, quantum mechanics. Between
measurements, the quantum mechanical state evolves under
unitary dynamics through the Heisenberg operators, while the
measurement process is described by projective dynamics (the
so-called wave-function collapse). As is well known, a funda-
mental difference between quantum and classical physics is
that the quantum mechanical observables are represented by
linear operators on a Hilbert space, as opposed to functions
on state space in classical physics. In particular, quantum
mechanical observables may be noncommuting, and this fun-
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damentally affects the evolution of uncertainty in a quantum
system.

Yet, despite these differences with classical physics, the
unitary and projective dynamics underpinning quantum me-
chanical systems bear some conceptual similarity with the
forecast and analysis steps in filtering, respectively, even if
the underlying dynamical system is deterministic (i.e., “clas-
sical”). The goal of this work is to explore whether these
conceptual similarities can be extended to the level of a
mathematically precise data assimilation framework. In fact,
we will formulate such a framework by literally transcribing
the axioms of quantum mechanics to the setting of a partially
observed dynamical system encountered in data assimilation.

This approach, which we refer to as quantum mechanical
data assimilation (QMDA), can naturally handle a number of
challenges faced by classical data assimilation schemes. In
particular, in many real-world applications, rigorous Bayesian
approaches (implemented, e.g., via particle filters [7]) become
intractable, and as a result ad hoc approximation schemes
are commonly employed in both the forecast and analysis
steps [8]. These schemes oftentimes impose various types of
Gaussianity assumptions, with difficult to control convergence
properties, particularly in the presence of complex determin-
istic dynamics exhibiting features such as fractal attractors
and singular probability measures. On the other hand, QMDA
employs finite-rank approximations of the intrinsic evolution
and measurement operators of such systems, realized through
Koopman operator theory [9,10] and kernel methods for
machine learning [11-14], with well-established convergence
properties.

It should be noted that while connections between quan-
tum theory and data assimilation have been studied in the
literature [15,16], these works have generally approached the
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problem of performing data assimilation for an actual physical
quantum system. To our knowledge, the approach presented
here, which combines the Koopman operator formalism with
abstract quantum mechanical axioms to construct a data
assimilation algorithm for deterministic dynamical systems,
as well as its approximation via machine-learning techniques,
has not been studied elsewhere.

The plan of this paper is as follows. In Sec. II, we describe
the basic mathematical formulation of the QMDA approach.
In Sec. III, we illustrate the behavior of this framework in
a simple example involving a periodic dynamical system
observed through a binary observation function. In Sec. 1V,
we consider data assimilation of observables with potentially
continuous spectrum and present an averaging approach to
render their spectra discrete. In Sec. V, we describe the data-
driven formulation of our schemes using kernel algorithms.
The data-driven approach is demonstrated in Sec. VI in the
context of the partially observed Lorenz 63 (L63) system.
Section VII discusses some aspects of QMDA in relation to
classical data assimilation methodologies, and our primary
conclusions are stated in Sec. VIII. A technical result on
convergence of the data-driven formulation of QMDA is
included in Appendix A. Appendix B contains a discussion
of numerical implementation and computational cost, along
with formulas for the QMDA steps expressed in matrix-vector
notation.

II. QUANTUM MECHANICAL FORMULATION
OF DATA ASSIMILATION

We begin by reviewing the axioms of quantum mechanics
according to the canonical Dirac—von Neumann formulation
[17].

(QM1) Associated with every quantum system is a sep-
arable Hilbert space (H, (-, -)y) over the complex numbers.
The possible states of the system correspond to the set of non-
negative, trace-class operators p : H — H, suchthattr p = 1.
The observables of the system are self-adjoint linear operators
on H. We will denote the sets of bounded and trace-class op-
erators on a Hilbert space H by B(H ) and B (H ), respectively.

(QM2) Between measurements, the state evolves under
the action of a strongly continuous group of unitary operators
U':H — H, t € R, called Heisenberg operators. Specifi-
cally, the state p, reached at time ¢ starting from a state
0o € B1(H) is given by

o =U"poU".

(QM3) Let A: D(A) — H be an observable, defined on
a dense subspace D(A) C H. By the spectral theorem for
self-adjoint operators, there exists a unique projection-valued
measure E4 : B(R) — B(H) on the Borel o algebra B(R) on
R, such that A = fR adE4(a). The set of possible values that
a measurement of A can take in a physical experiment is given
by the spectrum of A, 0 (A) C R.

(QM4) If the system is in state p € B;(H ), then the proba-
bility that a measurement of an observable A will yield a value
lying in a Borel set 2 C R is equal to tr(E4(2)p).

(QMS) If the system state immediately before a measure-
ment is p~, and a measurement of A yields a value a € o (A),
with Eq({a}) # 0 (i.e., a is an eigenvalue of A), then the state

ot immediately after the measurement is given by

. _ _Ea(a)p Er(la)
r(Ex(lah)p Ea((ah)’

Axioms QM2 and QMS describe the unitary and projective
parts of quantum dynamics, respectively. Note that we have
stated QM5 only in the case of measurements lying in the
point spectrum of A. This will be sufficient for our purposes,
since the QMDA framework will employ an averaging proce-
dure, approximating the measurement operator in data assim-
ilation by a self-adjoint operator with pure point spectrum.

We now consider how to construct a data assimilation
scheme that mimics the quantum mechanical axioms listed
above. In this construction, we will assume that the dynamics
is described through a continuous measure-preserving flow
® M — M, t € R, on a metric space M, with an ergodic,
invariant, compactly supported Borel probability measure L.
Associated with the flow @' is a unitary group of Koopman
evolution operators [9,10,18], acting on vectors in L2(u) by
composition, U’ f = f o ®'. We consider that the system is
observed through a real-valued, bounded measurement func-
tion & € L*°(w). With these definitions, the data assimilation
analogs of the quantum mechanical axioms above are as
follows.

(DA1) Associated with the data assimilation system is the
separable Hilbert space L?(it), equipped with the standard
inner product, (f, g), = fM f*gdu. The state of the system
lies in the set of non-negative, trace-class operators p €
B (L*(w)), such that tr p = 1. The observables of the data
assimilation system are self-adjoint linear operators on L*(u).
In particular, associated with the measurement function 4 is a
self-adjoint multiplication operator T}, € B(L*(it)), such that

Tof = hf.

(DA2) Between measurements, the state evolves under the
action of the unitary Koopman operators U’ : L?(j1) — L*(u)
induced by the dynamical flow. In particular, the state reached
at time ¢ starting from a state py € B (L*(w)) is given by

o =U"pU".

(DA3) Let A:D(A) — L?>(i) be an observable with
the corresponding projection-valued measure E4 : B(R) —
B(L*(w)). The set of values of A that can be observed with
nonzero probability is given by the spectrum o (A). In particu-
lar, in the case of the multiplication operator 7}, the spectrum
o (Ty,) coincides with the essential range of #. We will use the
notation E; = Ey, to represent the projection-valued measure
associated with a real multiplication operator 7.

(DA4) If the data assimilation system has state p €
Bi(L*(10)), then the probability that a measurement of A
will yield a value lying in a Borel set 2 C R is equal to
tr(Ea(2)p).

(DAS) If the data assimilation state immediately before
a measurement is p~ € B;(L*(w)), and a measurement of A
yields the value a € o(A), with E4({a}) # O, then the state
o7 immediately after the measurement is given by

. _ _Ea(a)p Ea(la))
r(Ex(lah)p Ea((ah)’
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TABLE I. Comparison between the “classical” and “quantum” formulations of sequential data assimilation for a bounded measurement
function 2 € L* (). In the classical formulation, P (M) denotes the set of Borel probability measures on M. Moreover, v, : B(IM) - R,a € R,
denotes the Borel measure on M satisfying v,(S) = v(S N 1,-1,)). Note that the projective dynamics step in the classical formulation is the
Bayesian update rule. In both the classical and quantum formulations, the projective dynamics steps are only well defined if the denominators

in the respective formulas are nonvanishing.

Classical Quantum
State Probability measure v € P(M) Trace-class operator p € By (L*(11))
Observable he L™ T, € B(L*(w))
Evolutionary dynamics Vi vod o= U*pU’
Measurement probability v(1,-1q) tr(E,(2)p)
. . Vo Ep({a})pEy({a})
Projective dynamics V> e 0 TE, (@) (@)

A comparison between the “classical” and “quantum”
formulations of sequential data assimilation is displayed in
Table I. There, it can be seen that QMDA reformulates the for-
ward dynamics and Bayesian analysis steps in classical data
assimilation using the Koopman operator U’ and the spectral
projectors Ej({a}), respectively, both of which are intrinsi-
cally linear. We now discuss some of the general properties
of this scheme, which we will expand upon and demonstrate
with numerical experiments in the ensuing sections.

First, it should be noted that, as in our statement of the
quantum mechanical axioms, the state update in DAS is
defined only for measurements lying in the point spectrum,
denoted 0,,(A), of the observable A. When A is a multiplication
operator 7, associated with a bounded measurement function
h, as would be the case in typical data assimilation scenar-
ios, the condition that a € 0,(A) is equivalent to the subset
h~'({a}) € M of state space having positive ;1 measure.

An observable A is said to have pure point spectrum if there
exists an orthonormal basis of L?(11) consisting of its eigen-
functions. In that case, 0,,(A) is a dense subset of o (A), so that
every measurement of A is arbitrarily close to an eigenvalue.
Examples of measurement functions # resulting in A =T,
with pure point spectrum are indicator functions of non-null
subsets of M, representing binary measurements. Indicator
functions are in turn special cases of simple (“quantized”)
functions taking finitely many values, where 7, has again pure
point spectrum. Such functions are appropriate for modeling
experimental scenarios with detectors of finite resolution and
dynamic range. In contrast, if there exists a € o (T},) such that
w(h~'({a})) vanishes, then E,({a}) also vanishes and a lies
in the continuous spectrum of 7j,. Clearly, as with quantum
mechanical axiom QMS, for such measurements the update
formula in DAS is not applicable. We will discuss how to
address this situation in Sec. IV below. For now, observe
that for an arbitrary self-adjoint multiplication operator 7;,
the spectral projection Ej,(2) associated with a Borel subset
Q C R is itself a multiplication operator; specifically,

Ey(Q2) =T

@)’

where 15 : M — R denotes the characteristic function of any
set § € M. It follows from the above that Ej;(€2) vanishes
whenever u(h~'(Q)) = 0, which includes the case discussed
above with Q = {a} € 0(T};) and a lying in the continuous
spectrum of 7j,.

Next, observe that because every data assimilation state
p € B{(L*(1)) is a non-negative operator with unit trace, its
diagonal elements ¢; = (¢}, p¢;), in any orthonormal basis
{#;}72, of L*(u) correspond to the density of a probability
measure o on the non-negative integers, Ny (i.e., the indexing
set of the basis); in particular, we have ¢; > 0 and Z;io 0j =
1. Adopting quantum mechanical terminology, we will say
that p is a pure state if there exists f € L?>(i) such that
p ={f,)uf, and will otherwise refer to it as mixed. If
p = {f, ). f is pure, then in any orthonormal basis of L*(p)
having f as one of its elements o becomes a Dirac § measure.
In step DAS, if a is a simple eigenvalue of A, then the state
oT following a measurement of A yielding the value a will
be pure; otherwise, p* will be generally mixed. On the other
hand, the unitary evolution between measurements in DA2
always maps pure states to pure states.

Note now that it is a standard result from ergodic theory
[10] that the Koopman group {U'};cr has a simple eigenvalue
equal to 1, with a constant corresponding eigenfunction equal
to 1y. It is straightforward to verify that the corresponding
pure state, p = (1p, -), 1y, satisfies

r(E(Q)p) = f dp

Q

for every measurement function i € L°°(u) and Borel set
Q C R, where u;, : B(R) — [0, 1] is the pushforward prob-
ability measure induced on the real line by % and the in-
variant measure, satisfying 1;,(2) = w(h™'(Q)). As a result,
all probabilities computed via step DA4 for the state p (and
thus all statistics such as expectation values, variances, etc.,
derived from it) are equivalent to probabilities and statistics
computed with respect to the stationary distribution w; of A.
For this reason, we refer to p as the stationary state of the data
assimilation system.

As a final general remark, it is worthwhile noting that
even though the focus of this work is largely on observables
associated with multiplication operators 7j, which have an
underlying “classical” observable h, our framework is also
applicable to general observables A with no classical coun-
terparts. In the context of measure-preserving, ergodic dy-
namical systems with strongly continuous unitary Koopman
groups, a natural such observable is the generator of the
Koopman group. In particular, it follows from Stone’s theorem
for one-parameter unitary groups [19] that there exists a
skew-adjoint operator V : D(V) — L?(u), defined on a dense
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domain D(V) C L*() via

Vf:lim@,

t—0

Vf e D(V).

This operator generates the Koopman group, in the sense that
U' = ¢V, with operator exponentiation computed through the
spectral theorem for skew-adjoint operators. In particular,
after multiplication by the imaginary number i to render
it self-adjoint, V behaves analogously to the Hamiltonian
operator in quantum physics, which generates the unitary
group of Heisenberg operators. In light of this analogy, V can
be viewed as an energy observable for the data assimilation
system, which has no classical counterpart associated with a
multiplication operator.

III. DEMONSTRATION IN A SIMPLE ERGODIC
DYNAMICAL SYSTEM

In this section, we demonstrate the framework described in
Sec. II in the context of a simple measure-preserving, ergodic
dynamical system, namely, a rotation on the circle, M = S'.
In this case, the dynamical flow ®' : M — M is given by

®' (@) =0+ wt mod 2,

where w € R is a frequency parameter. This system has a
unique ergodic invariant Borel probability measure i, equal to
the Haar measure on S'. The corresponding Koopman opera-
tors U’ : L?>(i) — L*() have a pure point spectrum, with an
associated orthonormal basis of L2(w), {. .., ¢_i, b0, b1, ...}
consisting of Koopman eigenfunctions,

¢;(0) =€, U'¢p;=e""¢;, ($j bx)p = k-

Note that the Koopman eigenfunctions for this system coin-
cide with the Fourier functions on the circle.

We consider that we observe the system through a binary
measurement function 2 : M — R, with

h=1ly,. M =1[0,0), «c,271).

We also define My = M{ = [«, 27r). For this choice of obser-
vation map, the associated multiplication operator A = T}, €
B(L?(1)) has pure point spectrum, o (A) = op(A) = {ao, a1},
where gy = 0 and a; = 1. Moreover, the orthogonal projec-
tion operators to the corresponding eigenspaces, respectively
denoted by Ho and H\, are given by proj, = Ti,, . The spectral
measure Ej, : B(R) — B(L*(w)) associated with A is then
given by

En(2) = 1g(ao) projy, +1a(ai) projy,
= la(ao)Th,, + le(a)Th,, ,

and we also have
A= / adEy(a) = ap projy, +ai projy, = projy, -
R

We now examine how (i) the state and measurement
probability evolve between measurements under the unitary
Koopman operators and (ii) how the state is updated when
measurements take place under projective dynamics. Working
throughout in the Koopman eigenfunction basis {¢;}, we
begin by computing the matrix elements of the state p, =

U™ poU" reached after dynamical evolution for time ¢ starting
from a state py € B1(L*(w)), in accordance with step DA2,
viz.

Prjk = (Pjs i) = (U5, poU" i)
= CDY B podr)y = €5 pg i, (1)

where po_jx = (@}, podr),.. Next, we compute the matrix el-
ements of the spectral projectors Ej({a;}) in the Koopman
eigenfunction basis, i.e.,

E; jx = (¢}, Ex({a;})di) = <¢j,Pr0J'H,. ¢k>u,

where
o 7 —
E = 1 - Ea J - k’
0.jk = 1 itk—ja/2 gin (k=D :
=’ “sin (55), j #k,
o ; —
E Es ] — k9
Ljk = 1 itk—j)a/2 i (k=) :
apme T sin (S), Ak

Using these formulas, the probability P;(¢) for a measurement
of A to take value g; at time ¢, starting from state pgy, and
assuming no intervening measurements, is given by (DA4),

P(t) = tw(Ex({aiDp) = Y Eijprij- ©)

Jk=—00

Moreover, the state ,oi+ immediately after a measurement a;
of A has been observed, and the system was in state p~ right
before the measurement, has matrix elements (DAS)

(@j, Ex({ai))p~ En({ai}) i)

,O,Tjk = (d’jv pi+¢k>;/_ = Zi

. i Ei j10y, Eimk
Z;

l,m=—00

, 3)
where p,, = (¢1, 0~ ¢n), and

Z = w(E({aDp E({a)) = D EijppEimj-

Jil,m=—00

To perform data assimilation in practice using the ex-
pressions derived above, we choose a spectral resolution
parameter L € Ny, and approximate all operators by com-
posing them by orthogonal projections T : L?(i) — L*(u),
mapping into the (2L + 1)-dimensional subspace spanned by
é_r, ..., ¢r. That is, we approximate p, in DA2, P;(¢) in (2),
and p;" in (3) by

. UrpoUp
" w U eoUy)
L
Pty =twEpap) = Y Eiubiky @)
Jjk=—L

bt = Enr({aiPDp” Enc({a;})
" w(Enr(ai)p Enr({ai})’

respectively, where U] =TI,U'Il;, and E; (Q)=
[ E,(2)I1; for any Borel set 2 C R. In particular, p;
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and p;" have matrix elements

i(k— ot
eI poy i
L i(g—p)wt ’
Zp,qulle(q P 00, pq
o LEijp E
_ 2t met Ei j1 01, Eimk

n = L _ ’
Zpﬁq,r:—L Ei’PqpqrEiJP

Prjk = (Pjs PrPr) e =

Pl = (@) b )

respectively. Note that the division by tr(U/*poU}) in the
expression for p, is due to the fact that, unlike U’, U] is not
unitary, and thus does not preserve the trace of py. Since all
operators involved are bounded, and thus continuous, linear
operators, the expressions above converge as L — 00.

Figure 1 displays the evolution of the probability P, (¢) for
a measurement a; = 1 to occur, computed via this approach
for three different choices of « (controlling the relative size of
the subsets M; C M on which h takes values a;) and the time
interval between observations, denoted At. All experiments
start at time ¢ = O from the stationary state p (see Sec. II),
which corresponds to a probability P;(0) = « /27 to observe
a;. Moreover, the initial state 6, € S' in state space has
phase angle equal to 0, and we use the spectral resolution
parameter L = 64. In Figs. 1(a), 1(b), and 1(c), weset o = 7
and 7 /6, respectively. In the former two cases, this results
in equal probability to observe 0 and 1 with respect to the
invariant measure, which is manifested by the “true” time
series h(t) = h(®'(6y)) exhibiting a regular square waveform.
On the other hand, in Fig. 1(c), h(¢) has an intermittent
character, as the probability for / to take value 1 is six times
smaller than the probability for it to take value 0. In all three
cases, the observation time interval At is set to an irrational
multiple of the rotation period, T = 27 /w; specifically, At =
qT /(504/2) 2 0.014¢, with ¢ = 20 in Fig. 1(a) and 200 in
Figs. 1(b) and 1(c). Thus, Fig. 1(a) corresponds to frequent
observations and Figs. 1(b) and 1(c) correspond infrequent
observations relative to the rotation period.

In all three cases, following an initial transient period,
whose length depends strongly on both o and Af/T, the
data assimilation system locks in a pattern for P;(f), which
tracks the signal h(t) essentially in a deterministic manner.
That is, P;(z) ~ 0 whenever h(t) = 0, and P,(r) ~ 1 when-
ever h(t) = 1. In Fig. 1(a), accurate tracking of h(¢) is seen
to take place from approximately r = 14. In Fig. 1(b), the
time to attain accurate tracking increases to t ~ 55 (due to
infrequent observations), while in Fig. 1(c) accurate tracking
does not take place until after + = 300 [due to both infre-
quent observations and low probability to observe h(t) =
1]. It is worthwhile noting that in both Figs. 1(b) and 1(c)
there is a marked increase in tracking accuracy after the first
h(t) = 1 observation is made; this is particularly evident in
Fig. 1(c).

IV. SPECTRAL DISCRETIZATION OF OBSERVABLES

As indicated in Sec. II, the state update formula in step
DAS is only applicable if the measurement a lies in the point
spectrum of the observable A. In this section, we introduce
a modification of that step, which renders it applicable for
arbitrary bounded observables associated with multiplication

0.6 F
0.4 r

P % obs.

1A 5 5 H-
0.8 1 F

0.4 1 r
0.2 1 r

0 20 40 60 80 100

0.8 r

0.2 1 r

F T T T

250 275 300 325 350

FIG. 1. Evolution of the measurement probability P, (r) for the
binary observable 7}, of the circle rotation, determined via QMDA.
Three cases are shown, the first two of which [(a), (b)] have a =
7 (i.e., equal probability to observe O and 1 with respect to the
invariant measure), with frequent [(a); Az/T = 0.28] and infrequent
[(b); At/T = 2.8] observations relative to the rotation period 7' =
2w /w = 2m. Case (c) has @ = /6 (i.e., the stationary probability
to observe 1 is 1/6 of the probability to observe 0) and infrequent
observations as in case (b). The true signal A(z) and observations are
also shown in each panel for reference. In panel (c), the first 250 time
units of the data assimilation period are omitted for clarity of visu-
alization but have no @; = 1 measurements. Notice the improvement
of skill after an a; measurement is made shortly after + = 300.

operators. Specifically, we consider the case A = T}, with & :
M — R a function in L*°(w).
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Recall that a € R lies in the point spectrum of 7}, if and
only if the corresponding level set 2~ !({a}) € M has positive
1 measure. As a result, the problematic measurement points a
in the context of step DAS are those with null corresponding
level sets with respect to . These facts suggest that a possible
remedy for the ill definition of DAS is to approximate h
by a function i : M — R whose level sets have all positive
p measure. Because s is a probability measure, & would
necessarily take countably many values on a full-measure
subset of M. Here, we will in fact construct 4 so as to take
finitely many values through an averaging procedure applied
to h, which we now describe.

A. Conditional averaging

Let 7, : R — [0, 1] be the cumulative distribution func-
tion (CDF) of #, defined as

Fu(a) = u({x € M : h(x) < a}).

Any finite partition {Jy,...,Js—1} of (0, 1) into intervals
J; € [0,1] of equal length, 1/S, induces partitions & =
{Ep,...,Bg_1} and M = {M,, ..., Ms_;} of R and M, re-
spectively, whose elements E; = f,fl(fi) and M; = ' (&)
have equal measure, u,(E;) = u(M;) = 1/§, by construction.
Here, F, L. (0, 1) — R is the quantile function of /, defined

as

F,'(s) = inf{a € R : Fi(a) > s}.

Let also 7, : R — {0, ..., S — 1} be the affiliation function
(projection map) associated with the partition E, mapping
a € R to the index i of the unique set E; € & in which a lies.
Similarly, define the affiliation functionw : M — {0, ..., S —
1} for M, where @ = m;, o h. We approximate 4 by its condi-
tional expectation, h: M — R, conditioned on the affiliation
function 7, viz.

S—1

h=Eh|m)=) aly, a,:/ hdu.

i=0 Mi

It then follows that the corresponding multiplication operator
T; € B(L*(1)) has pure point spectrum and is characterized
by the purely atomic projection-valued measure Ej, : B(R) —
B(L?(w)) satisfying

E;({ai}) = Ex(Ei) =T, (3)

With these definitions, we replace step DAS5 with the
following:

(DA1’) If the data assimilation state immediately before
a measurement is p~ € B;(L?(1)), and a measurement of 7j,
yields the value a € o (T},), then the state p* immediately after
the measurement is given by

+_ E@)o Eya)
w(E(aiDp (@)

Note that despite this modification of DAS, the mea-
surement probabilities P;(#) in step DA4, evaluated with

i = my(a).

respect to 7j, on the elements E; of the partition, are consis-
tent with the measurement probabilities with respect to the
quantized observableT; on the same set, i.e., for any state

o € Bi(L2()),

Fi(t) := uw(Ex(E)pr) = r(Ez({ai}) o). (6)

B. Information-theoretic measures of skill

To assess the skill of QMDA, we use relative-entropy mea-
sures associated with the partition E [20]. In particular, at any
given time ¢, associated with this partition are three discrete
probability measures on R, namely (i) the equilibrium mea-
sure D($2) = Y ;. gng 4 1/S induced by the invariant measure
of the dynamics; (ii) the measure v,(2) = Zi:ms,-;éw P:(t) as-
sociated with the data assimilation probabilities from (6); and
(iii) the measure ¥,(2) = Zi:m&#} Lg,(mmp(h(t))) = Sny(2)
associated with the true signal h(r) = h(®'(6y)). Here, Q is
an arbitrary Borel subset of R, and §, is the Dirac measure
supported at a € R. Using these probability measures, we
compute the relative entropies

S—1

D(t) = Dk (v, || v) = Y _ Pi(t)log,(SPi(t)),
i=0

E(t) = DxL(V; 1] v) = —10gy Pr,haryy (1),

where Dk (- || -) denotes relative entropy (Kullback-Leibler
divergence) between discrete probability distributions.

The quantities D(¢r) and E£(¢) are information-theoretic
measures of the precision and ignorance of the distribution
v;. Specifically, D, measures the information content of v,
beyond the equilibrium measure ¥ (which can be thought of as
a null hypothesis), while & measures the lack of information
of v, relative to the truth distribution ¥,. The fact that we
work with relative entropies associated with base-2 logarithms
means that these information gains and losses are measured
in “bits.” Note that it follows from standard properties of
relative entropy that D(¢) is non-negative, vanishes if and
only if v(¢) = v, and is bounded above by log, S. The latter
is equal to Dgp (¥, || ). £(¢) is similarly non-negative and
vanishes if and only if v, = ¥;. Thus, a “perfect” data as-
similation scheme would attain D(t) = log, S and £(r) = 0.
Unlike D(¢), £(¢) is unbounded, but the value log, S happens
to also be equal to Dk (¥ || ), so that data assimilation
distributions with £(¢) > log, S have more ignorance relative
to the truth than the equilibrium measure. As a result, £(r) <
log, S and &£(t) > log, S are natural criteria to distinguish
between useful versus nonuseful data assimilation predictions,
respectively.

C. Application to the circle rotation

As a demonstration of the approaches in Secs. IV A and
IV B, consider again the periodic dynamical system from
Sec. III, now observed via the continuous observation map
h: M — R with h(6) = cos 6. For this choice of observation
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map, T, has purely continuous spectrum, and

0s~!(a)

Fula)=1— CT FU(b) = cos((1 — b)n).

It thus follows that for any interval J; € {Jp, ..
endpoints b; < b4,

.y JS—]} with

E; = [cos((1 — b;)m), cos((1 — biy1)m)),
i =1 =bippm, (1 =b)mlU((bj — D, (biys — D],
sin((1 — bj1)mw) — sin((1 — b))

- )

<

a; =

Using the above, we can compute formulas for the ma-
trix elements E; jx = (¢;, E;({a;})¢x),, in the Koopman
eigenfunction basis, namely,

biy1 — b;,

sin((k—j)(1—bi)m ) —sin((k—j)(1 —bir1)7)
(k=j)m ’

j=k

E ;=
Jk j £k

These formulas, evaluated for b; = i/S, in conjunction with
the expressions in (1) and (2) for the evolution of the state and
measurement probabilities, are sufficient to carry out our data
assimilation scheme. As in Sec. III, in practice we compute
with finite-rank approximations of the state, evolution, and
measurement operators derived using the projections IT; and
denote the resulting measurement probabilities by Pi(r).

Figures 2 and 3 show results for the measurement probabil-
ities P.(¢) and the relative-entropy metrics D(¢) and £(¢), ob-
tained for the circle rotation from Sec. III with frequency o =
27 /T = 1 and measurement interval At = 2007 /(50+/2) ~
2.8T [i.e., the infrequent-observations case from Sec. III
and Fig. 1(c)], using a partition of § = 32 elements and a
spectral resolution of L = 64 for operator approximation. As
in Sec. III, the experiment starts from the stationary state p
(setting again the initial state of the underlying dynamical sys-
tem to 6y = 0). Correspondingly, until the first measurement
is made at r &~ 2.8T, the measurement probability is uniform,
P(t)=1/S ~ 0.03, the precision metric is zero, D(t) = 0,
and the ignorance metric is equal to the number of bits in the
partition, £(t) = log, S = 5.

When the first measurement is made, Pi(¢) collapses to
a strongly bimodal distribution, consistent with the fact that
h(6) = cos() is a two-to-one function on the circle. Note, in
particular, that in Figs. 2(a) and 3(a) one of the two branches
of the measurement probability distribution accurately tracks
the true signal /(t), but on the basis of a single measurement,
the data assimilation system assigns nearly equal probability
to the two branches. The increase of skill following the
first measurement is also manifestly visible in the relative-
entropy plots in Fig. 1(c), where D(¢) is seen to jump to
2~ 3.5 upon occurrence of the first measurement. At that time,
the ignorance metric £(¢) exhibits an appreciable decrease
from log, S, but is seen to undergo intermittent excursions
to > log, S values. Closer inspection [Figs. 2(b), 3(a), and
3(b)] indicates that these excursions are likely due to phase
alignment errors between P:(¢) and h(z).

0.8
0.6

0.4

<L

465 470 475 480 485 490 495 500

FIG. 2. Results of QMDA applied to observable h(8) = cos 6
of the periodic dynamical system on the circle for an observation
interval At ~ 2.87 and initial state p as in Fig. 1(c). (a) Logarithm
of the measurement probability 2:(¢) for & to take values in a partition
E of R, consisting of S = 32 elements of equal probability mass
with respect to the invariant measure . The time interval shown
contains the first two observations, indicated by red asterisks. The
true signal A(t) is shown in a red line for reference. (b) Measurement
probability Isi(t) for element E,7; ~ [0.00, 0.10) of the partition (blue
line). The thin shaded grid regions indicate time intervals where
h(t) takes values in E;7, and vertical red lines indicate observation
time instances. [(c), (d)] Precision and ignorance metrics, D(¢) and
E(t), for (c) the time interval shown in panels (a) and (b) and for
(d) a later time interval. Red vertical and magenta horizontal lines
indicate observation time instances and the maximal number of bits,
log, S =5, associated with the partition, respectively. Observe the
gradual decrease of £(¢) caused by misassignment of the occupancy
times of the elements of E at early times. This effect is visible upon
close inspection of the P.(r) plot in panel (b) and better visualized in
the contour plots in Fig. 3.
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494 495 496 497 498 499 500

FIG. 3. [(a), (b)] Detailed views of the evolution of the mea-
surement probability P.(t) in Fig. 2(a) for time intervals containing
the first (a) and second (b) measurements. Observe the collapse
of the uniform distribution to a bimodal distribution in panel (a) and
the subsequent collapse of the latter to a unimodal distribution in
panel (b). (c) Detailed view of the measurement probability for a
later time interval. Notice the improved alignment of the maximal
P.(¢) with the true signal h(¢) compared to panels ((a) and (b).

Next, as soon as the second measurement arrives, the
measurement probability collapses to a unimodal distribution
that accurately tracks the true signal. This contrasts with
the behavior seen in Figs. 1(b) and 1(c), where, due to the
lower discriminating power of the binary observable em-
ployed there, multiple measurements are required before the
data assimilation system accurately tracks A(z). With succes-
sive measurements, the phase alignment error seen at early
times gradually diminishes, and by ¢ ~ 500, the measurement
probabilities £;(¢) track the true signal with persistently high
precision and low ignorance [see Figs. 2(d) and 3(c)].

V. DATA-DRIVEN APPROXIMATION

The data assimilation framework presented thus far oper-
ates under the assumptions that (i) an orthonormal basis {¢;}
for the Hilbert space L* (1) associated with the invariant mea-
sure is available and (ii) the action of the Koopman operators
U' and spectral projectors Ej(E;) on the basis elements can
be computed so as to construct matrix representations of these
operators. Arguably, this information will seldom be available
in real-world applications, not least because p is generally an

unknown measure, supported on a nonsmooth subset of state
space M (e.g., a fractal attractor). Moreover, the equations of
motion, allowing one in principle to act with the Koopman
operator, may be unknown or partially known. In response, in
this section we establish a data-driven formulation of QMDA,
which employs a finite, time-ordered dataset consisting of
observations of the system to (i) build an orthonormal basis
for an appropriate Hilbert space approximating L?(j4) and (ii)
construct matrix representations of operators approximating
the Koopman operator and spectral projectors on that space.
Convergence of the data-driven approximation scheme to its
infinite-dimensional counterpart then follows in the limit of
large data under natural assumptions such as ergodicity (see
Appendix A).

Our approach follows closely Refs. [21-26], which employ
kernel algorithms for statistical learning [11,12,14] to build
the basis through eigenfunctions of kernel integral opera-
tors obtained from the data. In what follows, we describe
the main elements of this procedure, referring the reader to
Refs. [21-26] for some of the mathematical details. Hereafter,
X € M will denote the (compact) support of the invariant
measure 4.

A. Data-driven modeling scenario

We consider that available to us is a time-ordered sequence
F(x9), F(x1), ..., F(xy_) of N data points, sampled along a
dynamical trajectory x, = ®"*'(xq), xo € M, through a con-
tinuous, injective observation map F : M — Y, taking values
in a metric space Y (the data space). Here, At is a positive
sampling interval such that the discrete-time map ®*’ : M —
M is ergodic for the probability measure p. In applications,
the data space is typically linear and finite dimensional, ¥ =
R™, but our methods also apply for nonlinear data spaces
(e.g., directional data with ¥ = S§?), or infinite-dimensional
linear spaces (e.g., scalar-field, “snapshot” data). We will
additionally assume that the observation function h: M —
R is continuous, and its values h(xgp), ..., h(xy—_1) on the
sampled dynamical states are known.

The observations F'(x,,) will be used below to construct the
data-driven basis employed for operation approximation. In
that context, the injectivity of F will be important to ensure
completeness of the basis. In practical applications, the joint
values (F (x,), h(x,)) could be acquired in an offline training
phase where one has access to the full dynamical system on
M. If access to an explicit injective map F is not available, but
the values h(x,) are still known, it is possible to employ an
alternative approach, which involves building an injective map
from h through the use of delay-coordinate maps of dynamical
systems [27-29]. Specifically, given a nonzero integer param-
eter O (the number of delays), we define hp : M — R with

ho(x) = [h(x), (D2 (x)), ..., (D@ DA ). (7)

It is known that under mild assumptions on @', h, and At,
if M is a finite-dimensional differentiable manifold, then for
any compact set i C M there exists Q, € N such that, for all
0 > 0, hg is injective on U [27,28]. Moreover, an analogous
result holds if M is a (potentially infinite-dimensional)
Hilbert space and &/ C M is a compact subset of finite upper
box-counting dimension, forward-invariant under @' [29].
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Together, the results in Refs. [27-29] hold for many of
the dynamical systems encountered in physical applications,
including a broad range of ordinary differential equation and
partial differential equation models. Noting, in particular,
that hp(x,) can be evaluated for Q — 1 <n < N — 1 given
the time series h(xp), ..., h(xy—1), without knowledge of the
dynamical flow @', delay-coordinate maps provide a practical
tool for constructing injective observation maps from partial
(noninjective), time-ordered observations. As a result, in the
absence of an explicit injective observation map F, our ap-
proach will be to set F' = hg with Q sufficiently large.

B. Sampling measures and the associated L? spaces

Associated with the dynamical trajectory xo, ..., xy—1 iS a
sampling probability measure uy = Zf::ol dx, /N, consisting
of equally weighted Dirac measures &, supported at the
sampled states. Note that integration of a measurable func-
tion f: M — C with respect to uy corresponds to a time
average of its values at the sampled points, i.e., |, wfdun =

SV f(x)/N. In particular, | \y fduy can be evaluated
given the values f(x,) without explicit knowledge of the un-
derlying dynamical states. A sequence of sampling measures
wuy starting from a fixed state xo € M is said to converge to
the invariant measure pu weakly if for every bounded continu-
ous function f : M — C, [,, f duy converges to [, fdu as
N — oo (i.e., in the limit of large data). The set of all starting
points xo € M for which this property holds is said to be the
basin of  and will be denoted by B,,. By ergodicity, ; almost
every point in the support X of u lies in B,; that is, B,, is a
full-measure set with u(B,) = 1. In fact, for many systems
encountered in applications, B, is a significantly “larger”
set than X. For example, for systems that possess physical
measures [30], B, has positive measure with respect to a
reference ambient measure in state space (e.g., a Riemannian
measure if M is a Riemannian manifold). This means that the
method will converge from a sufficiently large, experimentally
accessible, set of initial conditions.

Hereafter, we will always assume that wy is a sampling
measure associated with a dynamical trajectory starting in
B,,. By the assumptions stated above and time continuity of
the flow @', apart from the trivial case where u is a Dirac
measure supported at a fixed point of the dynamics (which we
will exclude by assumption), all states xg, x1, ... are distinct.
Besides these assumptions, an additional requirement we will
make is that the dynamics has an absorbing ball property.
Specifically, we require that the trajectory starting from any
Xo € B, is contained within some compact, forward-invariant
subset X C M [i.e., ®'(X) C X for all t € R], containing X .
This assumption endows the space of continuous functions
on X, C(X), with the structure of a Banach space, equipped
with the uniform norm, which will be important for the
convergence of the data-driven basis in Sec. V C.

Next, as a data-driven analog of L*(w), we consider the
Hilbert space L?(jy) associated with the sampling measure
. This space consists of equivalence classes [f],,, of mea-
surable functions f : M — C having common values at the
sampled states xo, ..., xy—; and is equipped with the inner
product (f, g),, = fM f*gduy. Because xo, ..., xy_1 are all
distinct points, L?(jy) is an N-dimensional space isomorphic

as a Hilbert space to CV, the latter equipped with a normalized
Hermitian dot product, f8/N. As a result, we can represent
the L?(uy) equivalence class [f],, in which f: M — C

lies by a column vector f: [fxo), ..., fy_1]" € CV,
whose elements contain the values of f at the sampled
points. Moreover, we can represent every linear operator 7 :
L*(uy) = L?(uy) by a unique N x N matrix T such that
g=T f is the column-vector representation of T'[f],,, . All of
our data-driven techniques will utilize vectors and operators
on L?(uy), so that they are readily implementable via the tools
of matrix algebra; see Appendix B for further details.

C. Kernels and their associated eigenfunction bases

We now describe how to build an orthonormal basis of
L*(uy) from the observed data F(x,) using kernel integral
operators and discuss the convergence of this basis to an
orthonormal basis of L2(x) in the limit of large data. For the
purposes of this work, a kernel will be a continuous, symmet-
ric, positive-definite function k : M x M — R; that is, a con-
tinuous function with the properties that (i) k(x, x") = k(x/, x)
for all x, X' € M and (ii) for any finite sequence xy, ..., Xy_|
of points in M, the N x N matrix K = [k(x,,, Xx,,)] is positive
semidefinite. Given any Borel probability measure v on M
with compact support X,,, the kernel k induces a self-adjoint,
trace-class (thus compact) integral operator G, : L*(v) —>
L*(v), defined as

Gufz/l;/lk(',x)f(x)dv(x).

In particular, there exists an orthonormal basis {¢g, @1, ...}
of L*(v) consisting of eigenfunctions of G, corresponding
to non-negative eigenvalues Ag, Aj, .... By convention, we
order the eigenvalues A; in decreasing order. By continuity
of k and compactness of X,, every eigenfunction ¢; with
nonzero corresponding eigenvalue has a continuous represen-
tative ¢; € C(M), such that

0= 5 [ ks an)

The kernel k will be said to be L?(v) strictly positive if
G, is a positive operator, i.e., all eigenvalues A; are strictly
positive. In that case, all eigenfunctions ¢; have continuous
representatives. Moreover, k will be called L?(v) Markov if
G, is a Markov operator, i.e., Gf > 0if f > 0and Gf = f if
f is constant. L?(v) Markovianity implies, in particular, that
the maximal eigenvalue Ay of G, is equal to 1, and there is
a constant corresponding eigenfunction ¢, also equal to 1.
An L?(v)-Markov kernel will be said to be ergodic if A is a
simple eigenvalue. We will use the symbol p: M x M — R
to distinguish a Markov kernel from a general kernel.

Intuitively, the eigenbases {¢;} associated with L*(v)
strictly positive and Markov ergodic kernels can be thought
of as generalizations of the Laplace-Beltrami eigenfunction
bases associated with heat operators on Riemannian mani-
folds. In particular, if X, had the structure of a smooth, closed
Riemannian manifold and p was set to the heat kernel, the
¢; would become Laplace-Beltrami eigenfunctions, which are
well known to provide a smooth orthonormal basis for the L>
space associated with the Riemannian measure [31].
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FIG. 4. Representative data-driven eigenfunctions ¢; 5 and their corresponding eigenvalues A ; 5, computed from the fully observed L63
dataset in Sec. VI. Top: Scatterplots of the eigenfunction values ¢; y(x,) on the training dataset, with yellow (blue) colors corresponding
to positive (negative) values. Bottom: Eigenfunction time series #, — ¢; y(x,) over a portion of the training dataset spanning 10 natural
time units. Notice that, despite the fact that the L63 attractor is not a Riemannian manifold, the eigenfunctions qualitatively resemble a
Laplace-Beltrami eigenfunction basis with the corresponding heat-operator eigenvalues. That is, as A ; y decreases, ¢; y exhibits increasingly
small-scale oscillatory behavior, allowing one to represent functions of increasingly fine structure through eigenfunction expansions.

Given a dynamical trajectory xo, X1, . .. starting at xo € B,
with an associated forward-invariant compact set X and the
corresponding sampling measures uy, N € N, we will be
interested in a family of kernels py : M x M — R with the
following properties:

(1) py is a pullback kernel from data space; that is, there
isakernel py : Y x Y — R such that

pn(x,x") = py(F (x), F(x)),

(2) py is L*(jy) strictly positive and Markov ergodic.

(3) As N — 00, the restriction of py to X x X converges
uniformly to an L? (1) strictly positive, Markov ergodic kernel
p: X xX—R.

Property 1 above implies that the kernels py are data
driven, i.e., they can be evaluated at arbitrary states x €
M from the corresponding observations F(x) € Y alone.
Property 2 implies that associated with the py is a
Laplace-Beltrami-like, orthonormal basis {¢y0, ..., dvn—1}
of L*(juy) consisting of eigenfunctions ¢;y of G, with
continuous representatives ¢; y € C(M). In particular, this
basis can be obtained from the eigenvectors ¢ ; of a known
N x N kernel matrix G = [py (X, X,)], where 5 ; and G rep-
resent ¢; vy and G, , respectively, as described in Sec. V B.
Under the assumptions stated in Secs. V A and V B, property
3 implies that for every j € Np, in the limit of large data,
N — 00, ¢y converges uniformly on X to the continu-
ous representative ¢; associated with an orthonormal basis
{¢0, @1, ...} of L>(), consisting of eigenfunctions of G, See
Refs. [25,26] for proofs of these results, which make use of
spectral convergence results for kernel integral operators [13].

Following Ref. [25], we construct the kernels py starting
from an unnormalized kernel ky : M x M — R, and apply-
ing to that kernel a normalization procedure to render it

Vx,x € M.

Markovian. Specifically, we set ky to the variable-bandwidth
Gaussian kernel introduced in [14],
2 ’
Ex () = exp ( - M) ®)
ean()on (')
and apply the symmetric (bistochastic) normalization pro-
posed in Ref. [32] to obtain py. In (8),d : Y xY — R, isa
distance function, which we will nominally set to Euclidean
distance (2-norm) for data in Y = R™. Moreover, € is a
positive parameter, tuned via an automatic procedure [21, Ap-
pendix A], and oy : ¥ — R a continuous, positive-valued
function whose role is to adaptively modify the localization
of the kernel with respect to the sampling measure uy. In
particular, it can be shown [23] that if the support X has the
structure of a smooth closed manifold, the corresponding ¢;
basis functions converge to Laplace-Beltrami eigenfunctions
with respect to a Riemannian metric whose volume form has
constant density relative to the invariant measure p of the
dynamics. While here we do not assume that X has manifold
structure (and thus cannot, in general, interpret the ¢; as
Laplace-Beltrami eigenfunctions), the balancing of the kernel
localization due to oy plays an important role in enhancing
the robustness of the data-driven basis to sampling errors. We
refer the reader to Ref. [25, Algorithm 1] for further details
on the procedure to construct py and select the bandwidth
parameter €.

In what follows, we will employ the ¢; y basis of L*(uy)
obtained via this approach to formulate data-driven analogs
of the QMDA framework described in Secs. II and IV. Rep-
resentative eigenfunctions ¢; 5 obtained from data generated
by the L63 system (to be studied in Sec. VI) are displayed in
Fig. 4.
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D. Operator approximation and convergence

We now have the necessary ingredients to formulate a
data-driven analog of the data-assimilation scheme presented
in Secs. II and IV. Structurally, the data-driven formulation
resembles closely its infinite-dimensional counterpart, with
the Hilbert space L*(w) replaced by L*(uy) as described
in Sec. VB, and the dynamical and measurement operators
on L?(u) replaced by finite-rank operators on L>(uy), as
follows.

(1) The state p € Bi(L*(n)) is replaced by a non-
negative operator py € B(L*(y)) with tr py = 1. In partic-
ular, the analog of the stationary state p € Bi(L*(w)) is py =
(¢N,0’ '>;LN¢N,0~

(2) The Koopman operator U’ € B(L*(u)) for t = g At,
q €7, is replaced by the g-step shift operator U@ ¢
B(L*(jy)), defined by

f(anrq )1

<n<N-qg-—
U]i/q)f(xn) — {0 0<ngN q-—1,

N—-—g<n<N-1.

(3) The CDF function F;, employed in the construction of
the partition M in Sec. IV A is replaced by the empirical CDF,
Fun i R — [0, 1], where

Fan(a) = pun({x € M : h(x) < a})

= > 1/N.

0<n<N—1:h(x,)<a

Given a uniform partition {Jy, ..., Js_1} of (0,1), the empir-
ical CDF induces partitions By = {Eon, ..., Ey—1 ) and
My ={Mon,...,Ms_1y} of R and M, analogously to E
and M, with affiliation functions 7w,y : R — {0,...,S —
1} and my = 7, N o h, respectively, leading to the empirical
quantized observation function

5-1
hy =K, (h|my) = Z&i,NlM,-VNy
i=0
where @; y = fM'N hduy.

(4) The multiplication operator T; € B(L*(11)) is replaced
by the multiplication operator T; € B(L*(un)). Note that the
spectral measure measure £ of the latter satisfies [cf. (5)]

E]TLN({ai,N}) = EBN(Ei,N) = TlMi,N .

With these definitions, the data-driven formulation of
QMDA proceeds entirely analogously to its counterpart
from Secs. II and IV. Specifically, selecting a spectral
resolution parameter L < N — 1 and introducing the or-
thogonal projections Iy y : L?(uy) — L*(juy) mapping into
span{do v, ..., ¢r—1.n}, the state p, y reached at time ¢t =
g At between measurements of h, starting from pgy €
B(L*(uy)) is given by [cf. (4)]

U pon U
tr (UL(qlzl* PO.N UL(qlzl)

Moreover, the probability for 4 to lie in interval E; y € By at
a time t between measurements is determined from [cf. (6)],

Py () = (B, ({@in}) prn),

PN = UL(([K/ = HL,NUA(/q)HL,N-

while the update from a state p, € B(L*(uy)) following a
measurement a € R becomes [cf. (4)]

b = Ey, L{ainDoy Er, L{aint)
N wlEy, (@i Doy Eny L (a@iv D]

with Ej ;(2) = My nE}, ()N, VQ € B(R), and i =
7Thn (@)

The formulas stated above are sufficient to sequentially
perform data assimilation starting from some initial state,
which we will set by default to the state py; see Appendix
B for additional details. Then, under the assumptions stated in
Secs. V A and V B, and an additional mild assumption on the
partition E, the data-driven scheme can be shown to converge
in the limit of large data, N — oo, in the sense that for a
fixed spectral resolution L and bounded time interval for data
assimilation, the matrix elements of all operators involved, as
well as the partition intervals E; y and assignments my(a),
converge to their counterparts from Secs. II and IV. This im-
plies, in particular, that all measurement probabilities P; y(t)
produced by the data-driven assimilation scheme converge. A
precise statement of this convergence is made in Theorem 1
in Appendix A. It is important to note that the result holds
for fixed L. Thus, in order to obtain convergence of the data-
driven assimilation scheme in a limit of N — oo (training data
size) and L — oo (spectral resolution), the latter limit must be
taken after the former, or, a sequence N(L) with N >> L must
be employed. Effectively, this is because while every matrix
element of the form (¢; v, TyPx n) .,y converges as N — oo,

where Ty stands here for the shift operator U ,i,q) or any of the
spectral projectors Ej, ({a; v}), the convergence is not uniform
with respect to j, k.

VI. APPLICATION TO THE LORENZ 63 SYSTEM

In this section, we apply the data-driven QMDA frame-
work described in Sec. V to data assimilation of the L63
system [33] on M = R3. The L63 system is generated
by the smooth vector field V : R® — R3 with components
(VLVv2 v3atx = (x', x%,x3) e M given by V! = o (x*> —
xh), V2 =x'(p —x*) — x2, and V3 = x'x*> — 8x>. Here, B,
p, and o are real parameters set to the standard values g =
8/3, p =28, and o = 10. For this choice of parameters, the
L63 system is rigorously known to have a compact attractor
X C M [34] with fractal dimension =~ 2.06 [35], supporting a
physical invariant measure p with a single positive Lyapunov
exponent A ~ 0.91 [36]. As a result of dissipative dynamics,
the attractor is contained within absorbing balls [37], playing
here the role of the forward-invariant compact set X C M. In
light of these facts, all of the assumptions on the dynamical
system made in Secs. VA and V A rigorously hold. The
L63 system is also known to be mixing [38], which implies
that its associated Koopman unitary group on L>(u) has no
nonconstant eigenfunctions.

In the experiments that follow, we perform data assim-
ilation for the continuous observation function #: M — R
projecting onto the first component of the state vector, h(x) =
x!'. We consider two training scenarios, namely one where
the observation map F is the identity map on R? (i.e., the
full state vector is observed), and another where only 7% is
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observed and an injective map F is built using delays. In
both cases, we sample F at N = 64000 points x,, taken
along a numerically generated dynamical trajectory at times
t, = n At for a sampling interval Az = 0.01. The first point
Xo in the trajectory is obtained by integrating the L63 system
from an arbitrary initial condition in R® for N At natural
time units and setting xo to the state reached at the end of
that interval. In the experiment with fully observed training
data, we have F'(x,) = x,; the experiments with partial ob-
servations use F(x,) = ho(xy) with Q = 24 delays. Using

the data F(xp), ..., F(xy—1), we compute orthonormal basis
functions ¢; y of L*(uy) as described in Sec. V C. Then, using
the values h(xp), ..., h(xy_1) of the observation function, we

build a partition Ey with S = 32 elements and the correspond-
ing projection operators Ej , ({a;}) as described in Sec. V D.
Additional details on numerical implementation can be found
in Appendix B.

The experiments with fully observed and partially observed
training data use L = 1000 and 800 basis functions, respec-
tively. In both cases, the time interval between observations
during data assimilation is equal to 100 Az = 1, which is com-
parable to the characteristic Lyapunov timescale 1/A ~ 1.1
of the system. In the data assimilation phase, we employ an
underlying true signal h(t) = h(d' (X)) starting from a state
Xo sampled on a trajectory independent of the training data.
Results from these experiments for the fully and partially ob-
served training data are shown in Figs. 5 and 6, respectively.

Starting from the example with the fully observed training
data, in Fig. 5(a), the initially uniform measurement probabil-
ity distribution 13, ~ () associated with the stationary state py
is seen to collapse to a highly sharp probability distribution
following a large negative value A (f) measured at time r = 1.
After that initial measurement, f’i,N(t) tracks the evolution
of h(t) fairly well, though with increasing uncertainty and
development of some bimodality for ¢ 2 1.2. The second
measurement at ¢+ = 2 produces a value h(t) significantly
closer to the origin—this is presumably less informative than
the + = 1 measurement since h(t) >~ 0 corresponds to the
mixing region between the two lobes of the L63 attractor. The
lack of information in the + = 2 measurement is manifested
in the ensuing evolution of 13, ~ (1), which exhibits significant
bimodality and erroneously places the highest probability on
positive values of A, whereas the true signal takes negative
values. This error is clearly visible in the £(¢) metric in
Fig. 5(d), which exhibits a pronounced increase to greater
than log, S = 5 values over the time interval (2, 3). In spite
of the poor data assimilation performance for ¢ € (2, 3), when
the next measurement hi(¢) is made at r = 3, the ensuing
measurement probability If’i‘N(t) tracks the true signal with
significantly higher accuracy, despite the fact that h(r3) is
comparably close to zero as h(f;). This improvement of
skill demonstrates that the data assimilation state p, y can
progressively become more informative from a succession of
uninformative measurements. Indeed, as shown in Fig. 5(d),
following a spike in £(¢) for t € (7, 8), the data assimilation
system appears to settle in a regime where £(¢) is either signif-
icantly smaller than 5 or slightly exceeds that threshold [e.g.,
the interval ¢ € (19, 20)]. In general, these periods of larger
error £(t) appear to correlate with observations /A(t) close to
zero. For instance, see the measurement at ¢ = 19 in Fig. 5(b),

Iong

FIG. 5. Results of QMDA applied to observable 4(x) = x' of the
L63 system using the full system state in the training phase (i.e.,
the eigenfunctions depicted in Fig. 4). [(a), (b)] Logarithm of the
measurement probability B, y(t) for & to take values in a partition
Ey of R, containing § = 32 elements of equal probability mass with
respect to the sampling measure py. (c) Time series ISi,N(t) of the
probability to obtain a measurement in element Zy ;5 &~ [0.20, 0.84)
of the partition. (d) Information-theoretic precision and ignorance
metrics, D(t) and £(¢), respectively. Colored lines and regions in
panels (c) and (d) are as in Figs. 2(b) and 2(c), respectively.

which is followed by probability distributions 2, y (¢) of com-
paratively large uncertainty. It is also worthwhile noting that
the precision metric D(¢) in Fig. 5(d) exhibits markedly more
appreciable drops between measurements than in the case of
the circle rotation in Figs. 2(c) and 2(d), as expected from the
mixing nature of the L63 dynamics.

Turning now to the example with partial observations in
the training phase, a comparison of Figs. 5 and 6 shows a
broadly consistent behavior with the experiment trained with
full observations. That is, following an initial period ¢ € [0, 8)
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FIG. 6. As in Fig. 5, but for partial observations in the training
phase, using Q = 24 delays to compute the basis functions.

which exhibits similar errors to the fully observed case, the
data assimilation system reaches a regime of smaller £(¢) met-
ric, characterized by moderate and infrequent crossings of the
E(t) = 5 threshold when h(¢) takes values close to zero (e.g.,
t = 16 and 19). Overall, this behavior demonstrates that the
delay-coordinate mapping was able to successively recover
lost information due to partial observations in the training
phase, enabling the construction of a purely data-driven data
assimilation scheme for this chaotic dynamical system.

VII. DISCUSSION

To place the QMDA approach proposed in this paper in
context, we now discuss some of its advantages and short-
comings compared to classical sequential data assimilation
schemes. Here, by “classical” we mean data assimilation
approaches whose ultimate goal is to perform Bayesian in-
ference; that is, compute the Bayesian posterior distribution

of a quantity of interest (which may be the full system state),
given a history of observations made on the system [8]. In
practical applications involving complex systems, rigorous
Bayesian inference is not feasible for a variety of reasons,
including imperfect or computationally intractable equations
of motion for the system dynamics, unknown observational
modalities, and singular probability measures (particularly in
the setting of deterministic dynamics studied in this paper).
As a result, starting from the original work of Kalman [3],
a vast array of approximation techniques has been developed
and currently deployed in operational environments [1,2,4-6].
An attractive feature of QMDA is that it naturally circumvents
a number of the challenges in classical data assimilation, and
thus avoids the need for ad hoc approximations, by employing
intrinsic linear operators to represent the state, dynamics, and
observables.

First, the density operator p representing the state of the
data assimilation system (i.e., the analog of the probability
measure in Bayesian data assimilation; see Table I) is a
well-behaved linear operator on the L? space associated with
an invariant measure p of the system, even if the support
of p is a null set with respect to an ambient measure on
state space (e.g., Lebesgue measure), and/or does not have
a smooth structure. This situation clearly occurs in the L63
example of Sec. VI, where w is supported on the fractal
Lorenz attractor, but also occurs in systems with considerably
simpler dynamics. For instance, the circle, S', employed as
the state space of the periodic dynamical system in Sec. III,
can be thought of as the support of an invariant measure
of the simple harmonic oscillator on R? corresponding to
constant energy, and treating R? as the ambient state space
equipped with the Lebesgue (area) measure makes S' C R?
a zero-measure set. In a Bayesian data assimilation setting,
this means that it is not possible to represent the posterior
measure by a density function, necessitating in practice some
form of approximation, such as addition of stochastic noise to
regularize the support of the invariant measure.

Particle filters [7] perform this approximation by represent-
ing the posterior through a weighted ensemble of Dirac mea-
sures (the particles) and can theoretically converge to the true
posterior in a large-ensemble limit. In practice, however, these
methods suffer from well-known issues of ensemble collapse
[39], particularly in high dimensions and/or in the presence
of dissipation. As a result, one must resort to some type of
ensemble regeneration procedure, with generally difficult to
control convergence guarantees. Methods which are not based
on sampling frequently invoke Gaussianity assumptions, lead-
ing to popular schemes such as the 3DVAR filter, the extended
Kalman filter, and the ensemble Kalman filter [1,2,5]. Despite
their popularity, theoretical studies on the behavior of these
methods have been limited to particular cases and have mainly
focused on filter accuracy, as opposed to convergence to the
full Bayesian posterior distribution. See, e.g., Ref. [37] for an
analysis of the 3DVAR filter applied to linear observations of
the L63 system. In contrast, the consistency of the data-driven
formulation of QMDA in the large data limit, i.e., its ability
to converge to the “true” quantum mechanical state update
(step DAS in Sec. II), is essentially a direct consequence of the
approximability of trace-class operators by finite-rank opera-
tors (e.g., Theorem 1). While filter accuracy results analogous
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to those in Ref. [37] are outside the scope of this work, it
is expected that the framework of linear operator theory on
Hilbert spaces could be used to address such questions in a
unified manner for broad classes of systems.

Next, with regards to the representation of the forward
dynamics, the Koopman operator formalism employed by
QMDA is again intrinsically linear. Moreover, as discussed in
Sec. V, it is amenable to data-driven approximation through
the use of kernel and delay-coordinate techniques without
requiring prior knowledge of the equations of motion and/or
diffusion regularization, while exhibiting rigorous conver-
gence guarantees. Previously, delay-coordinate maps and ker-
nel methods have been employed in data-driven filtering al-
gorithms to reconstruct unknown dynamics [40] and correct
for observational biases [41], respectively. These methods
are, however, closer to classical data assimilation approaches
since their focus is on approximating the Bayesian posterior
distribution as consistently as possible. Other data-driven ap-
proaches to filtering have employed neural network architec-
tures in either the forecast [42] or analysis [43] steps. In recent
years, data analysis techniques for dynamical systems based
on spectral decomposition of Koopman and the related trans-
fer operators have received significant attention [22-25,44—
51], and QMDA may provide a useful framework for applying
these techniques to data assimilation problems.

Of course, it should be kept in mind that an operator-
theoretic, fully empirical approximation of the dynamics does
not come without its disadvantages. In particular, in many ap-
plications of interest one does have access to a first-principles
parametric model (e.g., a numerical weather model), which
even if imperfect may be indispensable in intrinsically high-
dimensional applications. At present, we do not have a tech-
nique allowing us to seamlessly combine a data-driven Koop-
man operator model with a first-principles state space model,
although recent techniques on semiparametric modeling [52]
and the Mori-Zwanzig formalism [53] could pave the way for
such developments. That being said, it should be noted that in
a number of phenomena of interest (e.g., large-scale coherent
patterns in climate dynamics [54], such as the El Nifio South-
ern Oscillation and the Madden-Julian Oscillation) there are
no known “exact” first-principles models, while the effective
dimension of the dynamics is moderate. In such scenarios,
fully data-driven filtering approaches such as QMDA may
be competitive or even exceed the performance of large-scale
parametric data assimilation systems.

As a final remark, we note that the quantum mechani-
cal representation of observables through intrinsically linear
multiplication operators, in conjunction with the spectral dis-
cretization approach described in Sec. IV, allows QMDA to
naturally handle nonlinear observation functions 4, as well
as observational noise. In particular, even though we did not
study this topic explicitly here, the number of elements S in
the partition E employed for spectral discretization could be
selected according to a desired tolerance to noise. That is, in
general, as S decreases, the state update step DAS’ becomes
more noise robust (see Sec. IV A), at the expense of a loss of
resolution provided by the measurements. Moreover, if prior
knowledge about the noise statistics is available, the elements
of E could be chosen nonuniformly so as to ensure high
robustness in subsets of the range of 7 where the noise has

high strength, and high resolution in subsets where the noise is
weaker. It is also worthwhile noting that the prediction output
of QMDA for observables is intrinsically probabilistic; that
is, according to step DA4, the density operator and spectral
measure of an observable provide the probability for it to
take values in arbitrary Borel sets. This output can be further
postprocessed to yield the mean, variance, skewness, and
other statistical quantities of interest. In contrast, classical
data assimilation techniques utilizing Gaussian approxima-
tions only dynamically evolve the mean and covariance.

VIII. CONCLUSIONS

In this work, we have developed a framework for sequential
data assimilation in measure-preserving, ergodic dynamical
systems, combining elements of operator-theoretic ergodic
theory and quantum mechanics. A key aspect of this ap-
proach has been to transcribe the Dirac—von Neumann ax-
ioms of quantum dynamics and measurement to the setting
of measure-preserving ergodic dynamics by choosing as the
quantum mechanical Hilbert space the L?(ut) space associated
with an invariant measure u of the dynamics, and as the
Heisenberg evolution operators the unitary Koopman opera-
tors acting on L?(u). Also, in direct analogy with quantum
mechanics, we represent the time-dependent state of the data
assimilation system by a density operator on L?(;) and the
system observation function A by its corresponding self-
adjoint multiplication operator 7;,. With these identifications,
a quantum mechanical data assimilation (QMDA) scheme
follows naturally by allowing the state to evolve under unitary
dynamics induced by Koopman operators between measure-
ments, and projective dynamics under the spectral projectors
of the observation operator during measurements.

One issue that such a scheme must confront is that the
multiplication operators associated with typical observation
functions have continuous spectrum. Here, we addressed this
issue via a spectral discretization approach, whereby 4 is
replaced by a discrete variable / such that the corresponding
multiplication operator 7j has pure point spectrum. In par-
ticular, 7 was constructed by binning / into bins of equal
probability mass with respect to p, but one could employ
different averaging approaches, e.g., to take into account ob-
servational noise. We also studied the problem of constructing
a data-driven formulation from a finite collection of time-
ordered observations of the system state or 4, assuming no
prior knowledge of the equations of motion. This formulation
employs operator approximation techniques in a basis of
L?(w) learned from the observed data [21,23,25], leading to
representations of the density, Koopman, and measurement
operators by matrices that provably converge in an asymptotic
limit of large data (Theorem 1 in Appendix A).

An attractive feature of QMDA is that it requires no ad hoc
approximations of the dynamics and/or observation modality,
which are frequently necessary in order to apply classical data
assimilation techniques to measure-preserving deterministic
systems. Indeed, as we demonstrated here with examples,
whether the underlying dynamics is a periodic rotation on
a circle (Sec. IV) or a mixing system with a fractal attrac-
tor (Sec. VI) makes little difference from a methodological
standpoint in the context of QMDA. In both cases, we saw
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that the method can successfully capture highly non-Gaussian
features of the measurement distribution that accurately track
the evolution of the assimilated observable.

Another advantageous aspect of QMDA is that it outputs
full probability distributions, as opposed to point forecasts
such as mean or maximum likelihood estimates. This output
can be postprocessed in a variety of ways to enable uncertainty
quantification, as well as probabilistic decision making in an
operational environment. We also saw that the probability
distribution outputs of QMDA lead to natural information-
theoretic metrics for quantification of the precision and ig-
norance of data assimilation. Such metrics have been found
to provide more informative model assessment and validation
than conventional root mean square error and pattern correla-
tion scores in a different context [55].

Before closing, we outline a few aspects of QMDA that
warrant future study and potential improvement, some of
which have already been alluded to in Sec. VII. First, while
in this paper we have shown that the method converges in a
limit of large data, one question that has not been addressed
is convergence under refinement of the partition employed
for spectral discretization of T7;,. It is possible that a general
treatment of this problem in the case of observables with
continuous spectrum would employ a rigged Hilbert space
structure, allowing p to be extended to an operator on dis-
tributions. Second, we have restricted ourselves to the case
of scalar-valued observation maps. An interesting question
would be how to carry out an analogous QMDA construc-
tion for vector-valued functions, possibly taking values in an
infinite-dimensional Banach space. Such a construction may
have connections with the framework of quantum field theory.
Algorithmically, it could be implemented by replacing the
scalar-valued kernels employed here in the construction of the
data-driven basis by operator-valued kernels appropriate for
spaces of vector-valued functions [26]. Finally, an important
task would be to devise ways of effectively coupling an
observable-centric scheme such as QMDA, which employs
linear operators on function spaces at its core, with dynamical
models based on discretizations of the dynamics in state space
(e.g., a partial differential equation model of fluid flow). With
the advent of quantum information processing technologies,
it is possible that schemes such as QMDA could provide
guidance to the design of next-generation models of complex
dynamical systems.
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APPENDIX A: CONVERGENCE IN THE LIMIT
OF LARGE DATA

In this Appendix, we state and prove the following theorem
establishing asymptotic consistency of the data-driven QMDA

scheme from Sec. V in the limit of large data. In what follows,
we will say that a sequence of S-element partitions Ey of
R converges as N — oo to an S-element partition E if all
boundary points of the elements of Ey (ordered in increasing
order at each N) converge to the corresponding boundary
points of E.

Theorem 1: Consider data assimilation with a bounded
observation function & € L*°(u) via the scheme of Sec. V,
using a partition Ey = {Eon, ..., Bs—15} of R determined
through the empirical quantile function F,- 1{,, and starting
from the stationary state py. Assume that the partition E =
{80, ..., Bs_1} of R associated with the true quantile func-
tion JF,.° 'is such that u;({&}) = 0 for all boundary points
& of the E; € E. Then, under the assumptions of Secs. VA
and VB, for any time 7, = n At, n € Ny, and any spectral
resolution parameter L, as N — oo, the partitions Ey and
corresponding measurement probabilities P, y (#,) converge to
E and the probabilities P:(t,) obtained via the scheme of
Sec. IV, respectively.

Proof. Tt suffices to show that, as N — o0, (i) the elements
of all L x L matrices representing the operators employed in
the data-driven scheme converge to their counterparts from
Sec. IV and (ii) Ey converges to E. Note, in particular, that
the latter convergence implies that the affiliation functions
N converge to my pointwise, and thus that the finitely
many evaluations of mj, y during the time interval [0, #,] also
converge.

Starting from (ii), recall that the boundary points & and
& n of the intervals in E and Ey, respectively, are obtained by
evaluating the corresponding quantile and empirical quantile
functions at the same quantile points b; € (0, 1); that is,
& = F;, '(by) and & v = F; y(bi). Because up({&}) = 0, &
and by are continuity points of F, and F; ', respectively.
As a result, by the assumed weak convergence of the sam-
pling measures uy to p (which implies weak convergence
of the corresponding push-forward measures (i, y under A to
), the values ]—'}: ll\,(bk) of the empirical quantile functions
converge, as N — 00, to ]-'h’l(bk) [56]. This shows that Ey
converges to 2.

Turning to (i), the operators that we need to consider are
(a) the initial state py; (b) the shift operator UIS,"); and (c)
the projection operators Ej ({G;n}) = T‘M,-,N’ where M; y =
R (Eiw).

(a) The matrix elements {(¢;n, ONPk,N)uy = 8jodko are
trivially equal to (¢b;, pPr), = §oSko-

(b) Because the basis functions ¢; 5 converge uniformly
to ¢; on X (see Sec. V C), the matrix elements of the shift
operator UIE,") converge to those of the Koopman operator U’
att = q At, viz.

lim (@), Uy ),

1 N-1
= 1\]]220 N Z ¢j,N(xn )¢k,N(xn+q)

n=0
N—1

. 1
= Nll_I;I;c N Z(; goj,N(xn)(pk,N(xn+q)
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N—1
o1
=ymoN 2(; 9j.n )@y © P)(xn)
n=|

=/ @;(x) (@ 0 D) (x) du(x)
M

=/M¢j(X)U’¢k(x)du(X)
= (¢, U'di) -

(c) Let E;y and E; be the ith elements of Ey and
&, respectively, where i € {0,...,S — 1} is arbitrary. We
must show that, as N — oo, (¢ n, T lM[N¢k,N) uy converges to
(@;, TIM,- @r) .- To that end, observe that (¢; v, TIM,;N PNy =
An(M;n) and (@), T, ¢x) = L(M;), where fiy and fi are
finite, signed Borel measures on M such that jiy(R2) =
Jo@inokndpy and 1(Q) = [, @j@rdu. As a result, the
claim will follow if it can be shown that

iy (M;n) — (M| < |fiv(Min) — fn(M;)]
+ i (M) — (M) (A1)

vanishes as N — oo. Now, it is straightforward to verify that,
by uniform convergence of ¢; y to ¢;, fiy converges weakly
to fi. As a result, because M; is a continuity set of i [i.e.,
fL(0M;) = 0, which follows from the fact that w,({&}) =0
for all boundary points &], fix(M;) converges to fi(M;), and
the second term in the right-hand side of (Al) vanishes.
Similarly, it follows by uniform convergence of ¢; y to ¢; that
there exists a constant C such that |fiy(M; ) — iy (M;)| <
Clun(M; n) — pun(M;)|. Therefore, because uy(M;y) = 1/S
by construction, we can conclude that the first term in the
right-hand side of (A1) will also converge to zero if it can
be shown that uy(M;) converges to 1/S. The latter follows
immediately from the weak convergence of wy to n and the
fact that M; is a continuity set of u.

This completes the proof of claim (i) and of the theorem.

It should be noted that the assumption in Theorem 1 that
the boundary points have vanishing 1, measure is mild, in the
sense that if not satisfied, the condition can be met by shifting
the problematic &, by arbitrarily small amounts.

APPENDIX B: COMPUTATIONAL CONSIDERATIONS

In this Appendix, we outline aspects of the numerical
implementation and computational cost of the data-driven
implementation of the QMDA framework described in Sec. V
and employed in the numerical experiments of Sec. VI. Algo-
rithmically, the main steps of the procedure are (i) computa-
tion of the eigenvectors ¢ ;v representing the data-driven basis
elements ¢; y from the training data; (ii) representation of the
Koopman operator (approximated by the shift operator) and
spectral projectors in this basis by matrices; and (iii) execu-
tion of the prediction-correction data assimilation cycle from
sequential observations of the system. A key element of this
procedure is that following an expensive, offline calculation
step to compute the ¢; y, the cost of operator representation
is controlled by the spectral resolution parameter L, which is
independent of the dimension of the ambient data space and
number of training samples. This feature aids the scalability

of the framework to large training datasets. The numerical
experiments in Sec. VI were carried out using a MATLAB code
for QMDA running on a desktop-class workstation of modest
specifications at the time of writing of this paper (Intel Core
17-3770 CPU at 3.40 GHz, with 32GB of memory).

1. Data-driven basis

The computation of the ¢ ;N proceeds via well-established
kernel algorithms for machine learning. In this step, a major
component of the computational cost, both in terms of CPU
time and memory, is associated with the computation of
the N x N kernel matrix G associated with the observations
F(x,) € R™. Here, we compute this matrix in brute force, re-
sulting in an O(mN?) time cost, but the calculation is trivially
parallelizable. As is customary, to address the memory cost
for G, which is nominally O(N 2), we take advantage of the
exponential decay of the kernel in (8) and approximate G by
a sparse, symmetric N x N matrix G, such that Gon = Gy if
data point F (x,,) is in the rth nearest neighborhood of F(x;,),
or F(x,) is in the rth nearest neighborhood of F (x,,) for some
neighborhood parameter r < N, and G,,, = 0 otherwise. In
the experiments of Sec. VI, we use r = 5000, corresponding
to 2~ 8% of the N = 64 000 training data points.

We compute the leading L eigenvectors G0, ..., Pr_1 of
G using MATLAB’s eigs solver, which is based on implicitly
restarted Arnoldi methods in the ARPACK library [57]. The
eigenvectors é ; then provide representations of the basis ele-
ments ¢; v (see Sec. V C). Elsewhere, we have demonstrated
the feasibility of this implementation for computing eigen-
functions from high-dimensional datasets of moderate sample
number, (d, N) = O(10°, 10*) [58], or datasets of moderate
dimension and high sample number, (d, N) = O(10%, 10°)
[26]. In the latter case, it should be possible to speed up the
kernel matrix calculation using tree-based [59] or randomized
[60] approximate nearest-neighbor algorithms, though we
have not explored such options in the present work.

2. Operator representation

Having obtained the data-driven basis functions ¢; y, we
proceed to construct the L x L matrices representing the
Koopman operators and spectral projectors from Sec. V D.

In the case of the Koopman operators, we represent UL(’q;,
for each time step g € Ny of interest by a matrix U? with
elements

1 N—-1—¢q
Uﬂ) = {pjn, UL(?K/M,N)MN =y > Ginbrnsg:
n=0
where 0 < j,k <L —1, and (5 ;,» denotes the nth component
of ¢ ;. The computation cost to form this matrix is O(NL?).In
order to carry out the forward evolution of the density operator
between measurements (step DA2 in Sec. II), one requires the
formation of U@ at least for ¢ equal to number of time steps
At in each data assimilation interval (e.g., in Sec. VI, ¢ =
100). The matrices U? can be computed for other values of
q if forecast output at other times is desired. In particular, to

obtain the results in Figs. 5 and 6 we employ U?, ..., U1,
Alternatively, one can compute the one-step matrix U" and
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use the matrix power (U")? instead of U'?. This approach
avoids the storage cost for U@ (at an additional computation
cost for on-the-fly computation of (U")?), without affecting
the asymptotic convergence properties of the method in the
large data limit but introduces a risk of numerical instability
at large ¢ (e.g., if UV has eigenvalues with positive real part).

Next, for each of the S elements E;y of the averaging
partition for the assimilated observable i, we compute an L x
L matrix E; representing the spectral projection £y ; ({aG;n}).
For a given E;y, this is done by first identifying the time
stamps in the training data for which % takes values in this
set, viz.

Ni={n€[0,N —1]: h(x,) € Bin},

and then computing the matrix elements

1 N
Eij=(ojn. E;;N({é_li,zv})%,zv)w =5 Z D jnPk.ns

nen;

where 0 < 7, j < L — 1. As with the Koopman matrices U @
the computational cost of forming the E; is O(N L?).

3. Sequential data assimilation

The necessary ingredients to perform QMDA given
discrete-time observations of 4 are the L x L matrices U@
and E;, representing the Koopman operator and spectral pro-
jectors, respectively, as well as L x L matrices p and p*, con-
taining the matrix elements of the density operators p, y and
Py between observations and immediately after observations
of h, respectively (see Sec. V D). In particular, suppose that
observations of & are made every g At time units, with g a
positive integer, and right after a measurement h(t,) € E; y
at time 1, = n At, n € Ny, the density matrix is equal to i)+,
where p;”k = (djv+ Dy BkN)uy> O < jok < L — 1. Then, the
density matrix immediately before the measurement at time

t,+1 1S given by

U(q)*p+U(q)

p= tr(U(q)*p+U(q)) ’

where Pjx = (Djn, OrNPeN)uy and 0 < j, k < L — 1. More-
over, the measurement probability for 4 to lie in interval &; y
is determined via

Pin(tns1) = w(Eip).

When the measurement of /4 at time 7, is made, and found to
lie, say, in interval E; y € By, the density matrix p is updated
to obtain a new density matrix p*, given by

+ — EipEi
tr(E;pE;)’

The data assimilation cycle described above is then repeated
using the updated density matrix p*.

The computational cost to compute p from p* by forward
evolution with the Koopman operators and to update p*
to p by spectral projection is dominated by matrix-matrix
multiplication of L x L matrices and is thus O(L?). The cost
to compute the measurement probabilities P, y(t) for all S
elements of E is O(SL). As previously stated, a key aspect
of this procedure is that following the offline computations of
the basis and operator representations in Appendixes B 1 and
B 2, respectively, the computation cost becomes decoupled
from the dimension m of the ambient data space and the
number N of training samples, depending only on the spectral
resolution parameter L and the size of the partition S. This
is particularly advantageous in real-time applications (e.g.,
short-term weather forecasting), where computational wall-
clock time must be significantly smaller than physical time
between observations in order for data assimilation to provide
useful information.
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