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ABSTRACT
Intensity Analysis is a mathematical framework to express differences within a set of categories
that exist at multiple time points. The original version of Intensity Analysis communicated land
change in one region during time intervals that have various durations. Our new manuscript
modifies Intensity Analysis’ equations and graphics to compare various regions during time
intervals that have the same duration. This manuscript also combines Intensity Analysis with
a method to express change as the sum of three components: quantity, exchange, and shift. We
give two new insights concerning interpretation, which apply also to the original version of
Intensity Analysis. First, we quantify the proportion of each change that is attributable to the start
size of the category versus the deviation from a uniform intensity. Second, we clarify that
a category’s gain intensity expresses the percentage of the category’s end size that derives
from the gain during the time interval, while a category’s uniform transition intensity indicates
the aggressiveness of the category’s gain. We illustrate the approach by comparing the Inland
versus the Coastal regions of Quanzhou City, China. Inputs are GIS maps at 1995, 2000, 2005, and
2010 that show six land categories: Built, Cultivated, Forest, Garden, Unused, and Water. Change
as a percentage of the Coastal region is greater than change as a percentage of the Inland region
during each time interval. Exchange between categories is the largest component of change in
each region during each interval. Cultivated loses and Built gains more intensively than the
uniform change intensity in each region during each time interval. Built’s gain targets Cultivated
intensively in each region during each interval. Built’s targeting explains most of the transition
from Cultivated to Built in the Inland region, while Cultivated’s size explains most of the transition
from Cultivated to Built in the Coastal region. If the data are sufficiently accurate, then these
results strengthen the concern for the transition from Cultivated to Built, as the loss of Cultivated
land threatens food security in China. Scientists can apply Intensity Analysis by using free
software available at www.clarku.edu/~rpontius.
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1 Introduction

The transition matrix is the foundation for many metrics
that analyze temporal change within a set of categories.
The matrix is a table of numbers where the rows show
the categories at the start of the time interval while the
columns show the same sequence of categories at the
end of the time interval. In the matrix, each diagonal
entry shows the size of persistence of a category, while
each off-diagonal entry shows the size of transition
from one category to a different category. If an applica-
tion has two time points, then one transition matrix
summarizes the changes during the time interval.
Scientists frequently need to compare regions during
several time intervals (Pontius Jr et al. 2017b). In such
cases, several transition matrices can form a wall of

numbers that is daunting to interpret. Intensity
Analysis is an accounting framework to structure inter-
pretation by communicating mathematically and gra-
phically the information in transition matrices (Aldwaik
and Pontius Jr 2012, 2013). Intensity Analysis distin-
guishes between size and intensity. Size is area in the
context of landscapes. Intensity is a ratio, where the
numerator is a change’s size and the denominator is
the size of the extent where the change could have
possibly occurred. Intensity Analysis explains a change’s
size as a product of two factors: the size of the spatial
extent and the intensity of the change. A category’s net
change is its gain minus its loss. If a category loses in
some places while it gains in other places, then its net
change is less than its gross change, because
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a category’s gross change is its gain plus its loss.
Pontius Jr and Santacruz (2014) established concepts
that distinguish between net change and gross change
by specifying three components: quantity, exchange,
and shift. The quantity component is the absolute
value of net change. The exchange component occurs
when some places experience a transition from one
category to another category, while different places
experience the opposite transition between the two
categories, thus contributing zero net change for both
categories. The shift component is the total change
minus the quantity and exchange components. Shift is
a type of allocation difference where a category X loses
to a second category while X gains from a third cate-
gory. Components of difference were not part of
Intensity Analysis’ original version, which considered
one region during time intervals that have various
durations. Our article presents modified equations for
various regions in a time series where each interval has
the same duration. The modified equations are more
elaborate concerning space because they account for
various regions. The modified equations are simpler
concerning time because they do not need to account
for variation in duration of the time intervals. The pur-
pose of our manuscript is to modify Intensity Analysis
to integrate components of difference and compare
regions during time intervals that have the same
duration.

This manuscript’s modifications to Intensity Analysis
continue to organize the patterns of change in
a hierarchical structure, identical to the original version.
The hierarchy has three levels: interval, category, and
transition. The interval level compares time intervals in
terms of gross change. The category level compares the
categories’ losses and gains during each time interval.
The transition level compares how each category gains
from other categories during each time interval.
Intensity Analysis evolved from earlier methods for
a single time interval (Pontius Jr, Shusas, and Menzie
2004). Those earlier methods have become popular
(Ouedraogo et al. 2016; Shoyama and Braimoh 2011);
however, Intensity Analysis is easier to understand
because of its hierarchical organization, graphical com-
munication and clearer interpretation concerning the
reasons for temporal change. For example, there are
two reasons why a transition from category X to cate-
gory Y might be larger than transitions from other
categories to category Y. First, if the size of X at the
start time were larger than the other categories, then
category X would have more land available than other
categories for the transition to Y. Thus, even if Y were to
gain with uniform intensity from the categories at the
start time, then Y would gain the most from X. Second,

Y might gain from X more intensively than from the
other categories at the start time. In some cases, both
reasons might exist. Intensity Analysis quantifies these
possible reasons. Intensity Analysis gives insights to the
patterns of change so that subsequent analysis can
focus on the relevant processes of change. Scientists
must understand the patterns in order to research the
processes. Planners must understand the processes in
order to manage the landscape. Modelers must under-
stand the patterns and processes in order to simulate
an extrapolation of recent trends. Our Discussion sec-
tion shows how the concepts of Intensity Analysis relate
to the simulation of future scenarios.

A literature review shows that Intensity Analysis is
useful to understand change, while researchers could
benefit even more from our modifications that include
components of difference and comparison of regions
during several time intervals. Authors have used the
original version of Intensity Analysis to analyze land
change where the spatial extent is a single region
(Minaei, Shafizadeh-Moghadam, and Tayyebi 2018;
Yang et al. 2017). Our modifications to Intensity
Analysis would have been helpful to scientists who
compare regions of various sizes (Rafiqul, Giashuddin
Miah, and Inoue 2016; Liu et al. 2014). Some scientists
measure net change by category, which can miss the
majority of gross change (Jokar Arsanjani 2018).
Difference components reveal the portion of gross
change that net change constitutes (Shafizadeh-
Moghadam et al. 2019). Many scientists express transi-
tions among categories in the form of Markov matrices
(Awotwi et al. 2018; Berlanga-Robles and Ruiz-Luna
2011). Markov matrices show ratios that express the
same concept as Intensity Analysis’ transition intensi-
ties. However, Markov matrices do not show the sizes of
the transitions; thus, Markov matrices alone do not
explain the transitions as Intensity Analysis does.
Pattern metrics are popular to characterize the spatial
configuration of the categories (Olsen, Washington-
Allen, and Dale 2005). Intensity Analysis reveals infor-
mation that gives context to interpret the temporal
changes in pattern metrics. For example, scientists
should consider how a category’s loss and gain influ-
ence its composition when interpreting the temporal
change concerning the category’s configuration. The
goal of some research is to use a model to simulate
future land change (Omrani, Tayyebi, and Pijanowski
2017; Shafizadeh-Moghadam et al. 2017). Modelers
must consider whether patterns and processes are sta-
tionary across time and space (Estoque and Murayama
2014; Feng and Tong 2018). Intensity Analysis quantifies
stationarity at various levels of detail, which offers
insight concerning the simulation of future change
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(Varga et al. 2019). Quan et al. (2018) applied the mod-
ified Intensity Analysis to Changsha, China, while our
new article explains how to interpret results from
Intensity Analysis in a deeper manner.

Our article adds difference components to Intensity
Analysis, customizes the equations to compare regions
during intervals that have the same duration, and then
illustrates the principles with an application to
Quanzhou City, Southeast Fujian, China. Quanzhou has
ranked first in economic development within Fujian
Province for more than a decade. In 2009, the Chinese
government announced plans to accelerate the devel-
opment of the Western Taiwan Straits Economic Zone
and to upgrade the economy of Southeastern Fujian
Province. Fujian Province has attracted attention
because of substantial transitions from arable to urban
land (Xu, Wang, and Xiao 2000). Our application
expands on previous research where authors have
found intensive transitions from Cropland to Built near
Quanzhou Bay (F. Huang et al. 2018). This is a concern
for China, where the loss of cropland threatens food
security and ecosystem services (Liu et al. 2015; Wang
et al. 2018).

2 Methods

2.1 Materials

This study uses raster GIS data that show six land cover
categories at 1995, 2000, 2005, and 2010. The cate-
gories are: Built, Cultivated, Forest, Garden, Unused,
and Water. Built consists of urban, industrial, mining,
road, port, salt flat, and rural built-up. Cultivated con-
sists of paddy and dry fields. Forest includes shrub and
woodland. Garden includes orchard and tea plantation.
Unused includes abandoned land. Water includes river,
reservoir, and tidal flat. Quan et al. (2015) describe how
they used eCognition software to classify the maps
from Landsat TM images. They report that the overall
errors are 11%, 8%, 5%, and 4% of the spatial extent for
each of the respective years 1995, 2000, 2005, and 2010.
These errors are smaller than the difference between
each pair of maps that form each of the three 5-year
time intervals.

Figure 1 shows Quanzhou stratified into two regions:
Inland and Coastal. Inland consists of Luojiang District,
Nan’an City, Dehua County, Yongchun County, and Anxi
County. Coastal consists of Quangang District, Licheng
District, Fengze District, Jinjiang City, Shishi City, Hui’an
County, and Jinmen County. A map overlay of each pair
of consecutive time points generates a transition matrix
for each region. Table 1 gives the six transition matrices
that derive from the two regions and three time

intervals. The six matrices are the inputs to Intensity
Analysis.

2.2 Intensity Analysis

2.2.1 Interval level
Table 2 presents the mathematical notation to analyze
the transition matrices. Subscript r denotes the two
regions of Quanzhou thus r = 1, 2. Subscript t denotes
the time interval thus t = 1, 2, 3. Subscripts i and
j denote the categories. The number of categories is J,
which is six for Quanzhou. Each entry Crtij within
a transition matrix is the size in region r that transitions
during interval t from category i to category j. If i = j,
then both Crtii and Crtjj are the size in region r that
persists during interval t as the category. For example
in Table 1, C1166 = 61, C1234 = 220, C1354 = 13, C2133 =
397, C2253 = 19, and C2311 = 568.

Intensity Analysis’ interval level compares the time
intervals in terms of size and intensity of gross change
in each region. Equation 1 defines the size of gross
change in region r during interval t. Equations 2–4
separate the gross change in region r during interval
t into three components: quantity, exchange, and shift
(Pontius Jr 2019). Equation 2 defines the quantity com-
ponent, which measures the absolute net change in the
sizes of the categories. Each change involves two cate-
gories: a losing category and a gaining category. Thus,
the numerator of equation 2 is double the absolute net
change, which is why equation 2 divides by two. The
quantity component is less than the gross change when
any category experiences simultaneous loss and gain
during a time interval. Equation 3 defines the exchange
component. Exchange occurs when category
i transitions to category j in some places while category
j transitions to category i in other places within a region
during a time interval. Equation 4 defines the shift
component. Shift for category i occurs when both Crtij <
Crtji and Crtik > Crtki for at least one combination of
categories j and k. Equation 4 reflects the fact that
gross change is the sum of its three components.
Equations 5–8 define the intensity of gross change
and its components as a percentage of region
r during interval t.

Changert ¼
XJ

i¼1

XJ

j¼1
Crtij

� �
� Crtii

h i
(1)

Quantityrt ¼
XJ

i¼1

XJ

j¼1
Crtij � Crtji
� ����

���
h i

=2 (2)

Exchangert ¼
XJ

i¼1

XJ

j¼1
MINIMUM Crtij; Crtji

� �h i
� Crtii

n o

(3)
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Shiftrt ¼ Changert � Quantityrt � Exchangert (4)

Drt ¼ Changert100%
size of region r

¼ Changert100%PJ
i¼1

PJ
j¼1 Crtij

� � (5)

Qrt ¼ Quantityrt100%
size of region r

¼ Quantityrt100%PJ
i¼1

PJ
j¼1 Crtij

� � (6)

Ert ¼ Exchangert100%
size of region r

¼ Exchangert100%PJ
i¼1

PJ
j¼1 Crtij

� � (7)

Figure 1. Maps of Quanzhou City, Fujian, China.
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Srt ¼ Shiftrt100%
size of region r

¼ Shiftrt100%PJ
i¼1

PJ
j¼1 Crtij

� � (8)

2.2.2 Category level
Intensity Analysis’ category level compares the cate-
gories in terms of size and intensity of loss and gain
in each region during each time interval (Pontius Jr
et al. 2013). Equation 9 defines Lrti as the loss inten-
sity from category i, which is the percentage of the
start size of category i that loses during the time
interval. Equation 10 defines Grtj as the gain intensity
to category j, which is the percentage of the end
size of category j that gained during the time inter-
val. The intensity of a uniform change in region
r during interval t is Drt. If Lrti<Drt or Grtj<Drt then
we say the respective loss from category i or gain to
category j in region r during interval t is dormant. If
Lrti>Drt or Grtj>Drt then we say the respective loss
from category i or gain to category j in region

r during interval t is active. If Lrti= Drt or Grtj= Drt

then we say the respective loss from category i or
gain to category j in region r during interval t is
uniform.

Lrti ¼ loss of i in region r during interval t½ �100%
size of i in region r at start of interval t

¼
PJ

j¼1 Crtij
� �

� Crtii
h i

100%
PJ

j¼1 Crtij
(9)

Grtj ¼ gain of j in region r during interval t½ �100%
size of j in region r at end of interval t

¼
PJ

i¼1 Crtij
� �

� Crtjj
h i

100%
PJ

i¼1 Crtij
(10)

2.2.3 Transition level
Intensity Analysis’ transition level compares the transi-
tions in terms of size and intensity in each region dur-
ing each time interval. Equation 11 defines Rrtij as the

Table 1. Transition matrices for two regions during three time intervals in square kilometers where Start indicates the start year of
each 5-year time interval t.

To To To To To To

Start From Built Cultivated Forest Garden Unused Water

Inland r = 1

1995 Built 239 16 14 5 0 1
1995 Cultivated 104 696 134 138 3 2
1995 Forest 79 277 5699 125 164 10
1995 Garden 22 91 168 489 2 1
1995 Unused 5 8 195 4 196 0
1995 Water 2 2 6 1 0 61
2000 Built 222 86 99 30 8 6
2000 Cultivated 107 507 311 115 40 9
2000 Forest 71 353 5384 220 157 30
2000 Garden 38 174 214 309 22 5
2000 Unused 3 23 168 13 158 1
2000 Water 3 8 13 1 1 51
2005 Built 324 55 42 15 3 5
2005 Cultivated 107 638 240 127 27 12
2005 Forest 77 245 5633 126 86 23
2005 Garden 31 91 180 374 9 3
2005 Unused 10 26 65 13 269 2
2005 Water 5 9 16 2 1 70

Coastal r = 2

1995 Built 301 14 4 1 0 2
1995 Cultivated 124 824 120 2 4 5
1995 Forest 13 49 397 18 8 3
1995 Garden 4 12 4 52 0 0
1995 Unused 4 3 6 3 72 2
1995 Water 8 6 2 1 2 34
2000 Built 353 53 39 4 3 2
2000 Cultivated 230 548 94 7 18 11
2000 Forest 56 47 416 4 7 2
2000 Garden 18 8 12 27 11 0
2000 Unused 9 14 19 2 42 3
2000 Water 8 6 4 1 0 25
2005 Built 568 69 24 4 5 3
2005 Cultivated 129 476 46 10 11 6
2005 Forest 67 63 421 15 17 3
2005 Garden 11 4 3 25 0 0
2005 Unused 9 11 5 1 54 0
2005 Water 4 5 2 0 3 29

GISCIENCE & REMOTE SENSING 5



transition intensity from category i to category j where
i≠ j. Equation 12 defines Wrtj as the uniform transition
intensity to category j. If Rrtij<Wrtj then we say the gain
of j avoids i in region r during interval t. If Rrtij>Wrtj then
we say the gain of j targets i in region r during interval t.
If Rrtij= Wrtj then we say the gain of j is uniform with
respect to i in region r during interval t (Pontius Jr et al.
2013).

Rrtij ¼ transition from i to j in region r during interval tð Þ100%
size of i in region r at start of interval t

¼ Crtij
� �

100%PJ
j¼1 Crtij

(11)

Wrtj ¼ gain of j in region r during interval t½ �100%
size of not j in region r at start of interval t

¼
PJ

i¼1 Crtij
� �

� Crtjj
h i

100%
PJ

i¼1

PJ
j¼1 Crtij

� �
� Crtji

h i (12)

3 Results

3.1 Interval level and components

Figure 2 shows the size of each land category at four
time points for Quanzhou, where the Inland region is
4.3 times larger than the Coastal region. The Inland
region is mostly Forest at all time points. In the
Coastal region, the largest category is Cultivated at
1995, 2000, and 2005, then Built at 2010. Figure 2 is
important for the interpretation of Intensity Analysis
because Figure 2 shows the sizes of the various
denominators in equations 5–12. Figure 2 reflects each
category’s net changes. During 1995–2010, Forest
experiences net loss while Built experiences net gain,
both equivalent to 2% of the Inland region. Meanwhile,
Cultivated experiences net loss while Built experiences
net gain, both equivalent to approximately 22% of the
Coastal region.

Figure 2. Area of each land category in Quanzhou’s two regions at four time points.

Table 2. Mathematical notation.
Symbol Meaning

Crtii Size of region r that persists during interval t as category i
Crtij Size of region r that transitions during interval t from category

i to category j
Crtji Size of region r that transitions during interval t from category

j to category i
Crtjj Size of region r that persists during interval t as category j
Drt Change intensity as percentage of region r during interval t
Ert Exchange component of change intensity as percentage of

region r during interval t
Grtj Gain intensity in region r during interval t for category j relative

to size of category j at end of interval t
i Index for a category where i = 1, 2, …, J
j Index for a category where j = 1, 2, …, J
J Number of categories, which is six for Quanzhou
Lrti Loss intensity in region r during interval t for category i relative

to size of category i at start of interval t
Qrt Quantity component of change intensity as percentage of

region r during interval t
r Index for a region where r = 1, 2 for Quanzhou
Rrtij Transition intensity in region r during interval t from category

i to category j relative to size of category i at start of interval t
Srt Shift component of change intensity as percentage of region

r during interval t
t Index for a time interval where t = 1, 2, 3 for Quanzhou
Wrtj Uniform transition intensity in region r during interval t for gain

of category j relative to the size of region r that is not j at
start of interval t

6 B. QUAN ET AL.



Figure 3a shows that change in the Inland region is
larger than change in the Coastal region. Figure 3b
shows that change as a percentage of the Inland region
is less than change as a percentage of the Coastal region
during each respective time interval. Thus, change is
larger in the Inland region because the Inland region
occupies a larger spatial extent and in spite of the fact
that change is more intensive in the Coastal region.
Figure 3 shows also that change in both regions is fastest
during themiddle time interval. Figure 3 shows the gross
change during each interval separated into its three
components: quantity, exchange, and shift. The quantity

component accounts for less than half of the change in
both regions during all intervals. This implies that most
of the change is loss of a category accompanied by gain
of the same category within a region. Exchange is the
largest component in both regions during all intervals, as
transitions from i to j occur simultaneously with transi-
tions from j to i.

3.2 Category level

Figure 4a shows the size of the loss and gain of each
category in terms of area, thus indicates whether each

Figure 3. Interval level change components in terms of (a) size and (b) intensity.
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category’s net change is negative, zero or positive. One
must focus on the categories that have the largest
losses and gains to develop insight concerning most
of the change. In the Inland region, Forest and
Cultivated have the largest losses and gains during all
intervals. In the Coastal region, Cultivated has the lar-
gest loss while Built has the largest gain during each
interval. There are two reasons why a category could
experience a large loss. First, a uniform change intensity
would cause categories that are larger at the start time
to experience larger losses. Second, a category’s loss
could be more intensive than uniform. One must con-
sider a category’s loss intensity relative to the uniform

change intensity to see whether each of the reasons
apply.

Figure 4b shows the uniform change intensity as
a black line for each region during each time interval,
which is equivalent to each respective intensity in
Figure 3b. The bars in Figure 4b show each category’s
intensity of loss and gain in terms of change per area of
the category. If a bar stops before the uniform line, then
the change is dormant. If a bar extends beyond the
uniform line, then the change is active. In the Inland
region, Forest is the only category that is dormant for
both loss and gain during all time intervals. Forest’s
large size in the denominator of its intensity causes

Figure 4. Category level losses and gains in terms of (a) size and (b) intensity.
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Forest’s intensity to be dormant. Therefore, Forest’s
large size is the single reason for its large losses in the
Inland region. For both regions during all intervals,
Cultivated loses actively, meaning more intensively
than uniform. Thus, two reasons explain Cultivated’s
large losses. The first reason is Cultivated’s relatively
large size and the second reason is Cultivated’s inten-
sively active loss. The proportion of the bar that extends
beyond the uniform line is the proportion of the loss
that the second reason explains. In the Inland region,
more than half of the bar for Cultivated’s loss extends
beyond the uniform line during each time interval,
which indicates that active intensity is more important
than start size to explain the size of Cultivated’s loss. In
the Coastal region, less than half of each bar for
Cultivated’s loss extends beyond the uniform line dur-
ing each time interval, which indicates that active

intensity is less important than start size to explain
the size of Cultivated’s loss. The gain intensity for
a category is the percentage of a category’s end size
that derives from gain during the time interval. Built,
Garden, and Water are the categories that have active
gains in both regions during all intervals.

Gains to Built, Cultivated, and Forest account for
between 70% and 90% of the change in each region
during each time interval. Therefore, the transition level
analyzes transitions to those three categories.

3.3 Transition level

Figure 5 shows results for transition level analysis. For
transitions to Built, Figure 5a shows sizes while Figure
5b shows intensities, similar in logic to parts a and b in

Figure 5. Transitions to built in (a) size and (b) intensity, transitions to cultivated in (c) size and (d) intensity, and transitions to forest
in (e) size and (f) intensity.

GISCIENCE & REMOTE SENSING 9



Figures 3–4. Built gains most from Cultivated in both
regions during all intervals because of two reasons.
First, Cultivated is larger than most categories; thus,
a uniform gain of Built would cause the transition
from Cultivated to be larger than from most
categories. Second, the gain of Built targets Cultivated,
meaning the transition intensity is greater than the
uniform transition intensity. In the Inland region, more
than half of the bar for Cultivated extends beyond the
uniform line, which indicates that Culitvated’s transition
intensity is more important than Cultivated’s start size
to explain the size of the transition. In the Coastal
region, less than half of each transition intensity bar
for Cultivated extends beyond the uniform line, which
indicates that Cultivated’s transition intensity is less
important than Cultivated’s start size to explain the
size of the transition. Built gains second-most from
Forest, while Figure 5b shows that the gain of Built
avoids Forest in both regions during all intervals.
Therefore, Forest’s relatively large start size is the only
reason for the large transitions from Forest to Built.

Figure 5c-d shows transitions to Cultivated. Most of
the largest transitions are from Forest in terms of size.
Transition intensities reveal that gain of Cultivated
avoids Forest in most cases. Thus, Forest’s relatively
large size is the main reason that Cultivated gains
more from Forest than from the other categories.

Figure 5e-f shows transitions to Forest. Most of the
largest transitions are from Cultivated in terms of size.
Cultivated is the largest non-Forest category at the start
of each time interval in both regions. Transition inten-
sities reveal that the gain of Forest avoids Cultivated
during three of the six intervals. Thus, Cultivated’s large
start size explains the large transitions from Cultivated
to Forest during those three intervals. Forest gains the
most from Unused in the Inland region during
1995–2000, in spite of Unused’s small size at 1995.
Forest’s targeting intensity explains most of the transi-
tion from Unused to Forest in the Inland region during
1995–2000.

Comparison across the clusters of bars in Figure 5
reveals how a particular losing category transitions to
other categories in each region during each time inter-
val. For example, Unused loses more to Forest than to
Built or Cultivated in the Inland region during
1995–2000 because of two reasons. First, the variation
among the uniform transition intensity lines shows that
Forest gains more aggressively than Built or Cultivated
in the Inland region. So, even if the transition intensity
bars were equal to their respective uniform line, then
the categories would lose more to Forest than to Built
or Cultivated in the Inland region. Second, Forest’s gain
targets Unused while the gains of both Built and

Cultivated avoid Unused in the Inland region during
1995–2000.

4 Discussion

4.1 Data quality

Intensity Analysis is helpful because it reveals clearly
the sizes and intensities of the transitions, which helps
readers to consider the possible reasons for the appar-
ent transitions. For example, Figure 5c shows large
transitions from Built to Cultivated, while Figure 5d
shows that Cultivated’s gain sometimes targets Built.
China’s land consolidation project has converted some
land from Built to Cultivated (Yu et al. 2018). However,
we suspect data error might account for some of the
apparent transition from Built to Cultivated. We have
seen this same transition in other datasets, specifically
in GlobeLand30 (Shafizadeh-Moghadam et al. 2019).
Perhaps it is difficult for classifiers of remotely sensed
images to differentiate between Built and Cultivated,
especially when the two categories exist in close proxi-
mity to each other, as they frequently do in Asia.
Counter-intuitive transitions should guide the research
agenda because the most important next step might be
to consider data errors in more depth than
overall percent correct conveys. In some cases, a large
exchange component signals data errors (Pontius Jr
2019). The transition from Built to Cultivated paired
with the transition from Cultivated to Built contributes
to the exchange component in Figure 3, which warrants
investigation concerning possible data error in
Quanzhou. Data errors are likely to influence the analy-
sis’ details, thus researchers should focus on the largest
and more intensive signals of change, which Intensity
Analysis distinguishes from the smaller and less inten-
sive signals of change. A next step is to quantify the
errors that could account for the deviations between
observed intensities and uniform intensities by using
the methods of (Aldwaik and Pontius Jr 2013).

4.2 Pattern and process

Scientists frequently want to link land change patterns
with processes (De Alban et al. 2019; Pontius Jr 2006;
Václavík and Rogan 2009; Cunningham et al. 2015).
Intensity Analysis is a helpful step to account for land
change patterns before scientists try to use additional
variables to link patterns with processes. If scientists do
not understand the patterns, then scientists might
search for processes that do not exist. For example,
Figure 5a shows that the largest transitions to Built
derive from Cultivated and Forest. However, Cultivated
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differs from Forest concerning the reasons for their
transitions to Built. Figure 5b shows that Built’s gain
targets Cultivated and avoids Forest. Thus, the transi-
tion from Forest to Built is large because of Forest’s
large start size and in spite of the fact that Built’s gain
avoids Forest. The transition from Cultivated to Built is
large for two reasons. First, Cultivated’s start size is
larger than most categories. Second, Built’s gain targets
Cultivated. Consequently, a resulting question is “What
processes drive builders to target Cultivated and to
avoid Forest?” Figure 5b shows also that more than
half of Cultivated’s intensity bar is to the right of the
uniform line in the Inland region, which means that
Built’s targeting of Cultivated explains most of the tran-
sition from Cultivated to Built in the Inland region.
Meanwhile, more than half of Cultivated’s intensity bar
is to the left of the uniform line in the Coastal region,
which means that Cultivated’s size explains most of the
transition from Cultivated to Built in the Coastal region.
Thus, another question for future research is “For the
transition from Cultivated to Built, why does the target-
ing intensity explain more than half of the transition in
the Inland region and less than half of the transition in
the Coastal region?”

Intensity Analysis addresses a particular question
concerning the comparison of transitions across
a matrix’s row, which gives a category’s losses. The
question is “Is one transition larger than another transi-
tion within a losing category’s row because one cate-
gory gains more aggressively than another category
gains in general, or because one gaining category tar-
gets the specific losing category more intensively than
another gaining category targets the specific losing
category?” A careful reading of Figure 5 answers this
question. The black lines in Figure 5 show the uniform
transition intensity for each region for each time inter-
val for three gaining categories: Built, Cultivated, and
Forest. A gaining category’s uniform transition intensity
indicates how aggressively the category gains across
the extent that was not the gaining category at the
start time. One must compare the uniform transition
intensities among gaining categories within a particular
region and time interval. For example, consider
Garden’s loss from the Inland region during
2000–2005 in Figure 5. Garden loses to Built the least
and to Forest the most in terms of size. The three uni-
form intensity lines for transitions to Built, Cultivated,
and Forest show that Built gains the least aggressively
and Forest gains the most aggressively in general. Thus,
the size of the transition from Garden to Built is smallest
because Built gains the least aggressively in general as
Built’s uniform transition line indicates, and in spite of
the fact that Built’s gain targets Garden. The size of the

transition from Garden to Forest is largest because
Forest gains the most aggressively in general as
Forest’s uniform transition line indicates, and in spite
of the fact that Forest’s gain avoids Garden. Our pre-
vious publications concerning Intensity Analysis did not
give this insight concerning interpretation. Our pre-
vious literature might have led readers to misinterpret
the gain intensity of equation 10. All categories are
equally aggressive in their gains when their uniform
transition intensity lines are identical, not necessarily
when the gain intensities at the category level are
identical. The gain intensity is not appropriate to
address the question at the beginning of this
paragraph.

Equation 10 defines a category’s gain intensity where
the denominator is the category’s size at the end of the
time interval, which assures that it makes sense to com-
pare the gain intensity to the time interval’s uniform
change intensity in equation 5. A category’s gain inten-
sity is the percentage of its end size that derives from its
gain during the time interval. A category’s end size is its
start size plus its gain size minus its loss size. Readers
must not interpret the gain intensity in equation 10 as
the percent gain from interval’s start time. Some other
literature expresses a category’s change as a ratio with
net change in the numerator and the category’s start size
in the denominator (Liu et al. 2018; Quan et al. 2015),
which is not the same as the gain intensity of Intensity
Analysis. If the denominator of equation 10 were the
category’s start size, then two potential problems
would occur. First, the result could be greater than
100%, thus comparison to the interval’s uniform inten-
sity would not make sense. Second, if the category’s start
size were zero, then the gain intensity would be unde-
fined, even when the category exists at the end time.

If the goal is to compare the sizes of transitions that
share neither a row nor a column within a matrix, then
Intensity Analysis shows how it is helpful to account for
three factors. The first factor is the losing category’s
start size, which is the sum across the losing category’s
row. The second factor is the gaining category’s uni-
form transition intensity, which indicates the aggres-
siveness of the gain within the gaining category’s
column. The third factor is the deviation between the
uniform transition intensity and the specific transition
intensity, which determines whether the gain within
the column category avoids or targets the row
category.

4.3 Relationship to previous literature

Our article’s equations are different from the original
version of Intensity Analysis in two respects. First, this
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article’s equations have notation for three components
and multiple regions, whereas the original version of
Intensity Analysis did not. Second, this article’s equa-
tions exclude the mathematics to convert change into
annual rates, because each time interval is the same
duration in this article. Our modifications do not influ-
ence Intensity Analysis with respect to the interpreta-
tion of dormant, active, avoid, and target. The insights
that this Discussion section gives concerning interpre-
tation apply also to the original version of Intensity
Analysis.

The original version of Intensity Analysis had two
additional equations to analyze intensities of transitions
from a losing category as percentages of the sizes of
the categories at the end of the time interval, specifi-
cally equations 7–8 in Aldwaik and Pontius Jr (2012). We
now realize that those transition intensities do not have
a straightforward interpretation when analyzing tem-
poral change, because transitions during the time inter-
val influence the categories’ end sizes (Pontius Jr et al.
2013). Therefore, we use the transition intensities in our
equations 11–12 and not the concepts of equations 7–8
in Aldwaik and Pontius Jr (2012). Furthermore, we do
not include equations 7–8 from Aldwaik and Pontius Jr
(2012) in the Intensity Analysis package in the language
R (Khallaghi and Pontius Jr 2019). Consequently, we do
not use the definition of “systematic” in previous litera-
ture (Alo and Pontius Jr 2008). However, those two
transition intensities that we exclude are relevant
when the sum in each column is independent of the
entries in the table, such as in a confusion matrix that
shows classification errors where the columns are the
ground information, which exists independently of the
classification (Christman et al. 2015). For such
a confusion matrix, the sum of each row depends on
the entries in the table; therefore, equations 11–12 in
our paper would not be relevant. Further explanation
exists in Pontius Jr (2020).

The original version of Intensity Analysis divides the
metrics by the duration of the time interval because the
original method analyzes time intervals that have var-
ious durations. Our equations do not divide by the
duration because each time interval has the same dura-
tion. Therefore, readers avoid the possible confusion
concerning the meaning of annual change rate,
because there are various ways to express an annual
change rate. If we were to have divided by the duration,
then equation 5 would express annual change percen-
tage in a manner identical to the original intention of
the comprehensive land use dynamic degree (CLUDD).
CLUDD is popular particularly in China (B. Huang et al.
2018). The mathematical notation in much of the litera-
ture that uses CLUDD is confusing to the point that

authors have computed CLUDD in various ways that do
not reflect the original intention of CLUDD. For exam-
ple, two recent articles in the same journal report
CLUDD as equations that are not equivalent to each
other (Wei et al. 2018; Zhang et al. 2015). This inspired
recommendations for rules to write mathematics clearly
(Pontius Jr et al. 2017a). Our article uses the recommen-
dations to express equations in both words and math-
ematical notation.

If literature reports clearly the computation of annual
change percentage, then readers can compare across
various case studies (Akinyemi, Pontius Jr, and Braimoh
2017; F. Huang et al. 2018; Huang et al. 2012; Teixeira,
Marques, and Pontius Jr 2016; Villamor, Pontius Jr, and
van Noordwijk 2014; Zhou et al. 2014; Estoque and
Murayama 2015; Shafizadeh-Moghadam et al. 2019).
Scientists must consider scales of space, time, and cate-
gory when comparing cases (Aldwaik, Onsted, and
Pontius Jr 2015). It is clearer to compare cases when
the scales of the cases are more similar. For example,
Intensity Analysis served as the framework to compare
three time intervals of land change outside versus
inside the coastal zone of Longhai, China (B. Huang
et al. 2018). That research shows patterns in Longhai
similar to patterns in Quanzhou, where change is more
intensive closer to the coast while change is fastest
during the middle time interval. This temporal non-
stationarity is inconsistent with the assumptions of
simulation models that extrapolate business-as-usual
scenarios (Pontius Jr et al. 2018). Intensity Analysis is
helpful to test whether the historic data indicate that
business has been usual, i.e., has been stationary.

4.4 Implications for extrapolation

It is important to distinguish between a transition’s size
versus its intensity when using a model that simulates
the future gain of a particular category. The Land
Change Modeler in the software TerrSet endorses evi-
dence likelihoods, which TerrSet sometimes calls
empirical likelihoods. In contrast, the Geomod model
uses a different concept called empirical probabilities
(Eastman 2014; Eastman, Van Fossen, and Solorzanó
2005; Pontius Jr, Cornell, and Hall 2001). If the map of
land categories serves as an independent variable to
explain a particular category’s gain, then a transition’s
evidence likelihood is a proportion computed as the
size of the transition divided by the size of the particu-
lar category’s gain. In contrast, a transition’s empirical
probability is a proportion computed as the size of the
transition divided by the size of the losing category at
the start time, which is identical to our article’s transi-
tion intensity in equation 11. Figure 5 illustrates how
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evidence likelihoods differ from empirical probabilities
for the Inland region. Figure 5c shows that Cultivated
gains most from Forest, thus Cultivated’s evidence like-
lihood is greatest from Forest. Figure 5d shows that
Cultivated gains most intensively from Garden, thus
Cultivated’s empirical probability is greatest from
Garden. Cultivated’s transition size is largest from
Forest, simply because Forest is the largest category at
the start time. Intensity Analysis reveals that
Culitvated’s gain avoids Forest and targets Garden. If
a simulation were to use evidence likelihood to create
a transition potential map, then the simulation would
allocate Cultivated’s future gain from Forest, in spite of
the fact that Cultivated’s gain avoids Forest according
to the historic pattern. If a simulation were to use
empirical probabilities to create a transition potential
map, then the simulation would allocate Cultivated’s
future gain from Garden in a manner that extrapolates
the historic pattern concerning how Cultivated’s gain
targets Garden. The debate between evidence likeli-
hood and empirical probabilities applies also to when
scientists explain the gain of a category with respect to
other independent variables, such as topographic slope,
political units, proximity to roads, etc. (Chen and
Pontius Jr 2010).

5 Conclusion

This article presents developments in methodology and
insights concerning interpretation for Intensity Analysis.
This article’s equations are more elaborate than the
original version of Intensity Analysis with respect to
difference components and regions but are simpler
with respect to time because each time interval has
the same duration in this article. This article’s insights
concerning interpretation apply also to the original
version of Intensity Analysis. The first new insight
expresses the proportion of a change that is attributa-
ble to the losing category’s start size versus the devia-
tion from a uniform intensity. The second insight warns
of possible misinterpretation of gain intensity and
instead shows how each category’s uniform transition
intensity indicates the aggressiveness of each cate-
gory’s gain.

The methodology compares Quanzhou’s Inland
region to its Coastal region at three levels: interval,
category, and transition. The interval level shows that
Coastal change is more intensive than Inland change as
a percentage of each region. In both regions, the over-
all change is not stationary through time, as change is
fastest during the middle of the three time intervals.
Exchange is the largest component of change in both
regions during all intervals, which might signal data

error. The category level shows that during all time
intervals, the Inland region has net loss of Forest and
Garden, while the Coastal region has net loss of
Cultivated and net gain of Built. Actively intense
changes include losses from Cultivated & Garden and
gains to Built in both regions during all intervals. The
transition level indicates that Built’s gain targets
Cultivated and avoids Forest in both regions during all
intervals. Built’s targeting of Cultivated accounts for
most of the transition from Cultivated to Built in the
Inland region, while Cultivated’s size accounts for most
of the transition from Cultivated to Built in the Coastal
region. Much of Cultivated’s gain derives from Forest,
which is attributable to Forest’s large size. The largest
transitions to Forest tend to derive from Cultivated, as
Cultivated’s size is the largest among the non-Forest
categories in both regions at the start of all time inter-
vals. It is not yet clear how errors in the data could
influence these results. Nevertheless, these results are
consistent with other reports from China, where policy-
makers are concerned with loss of agricultural land.

Readers can apply Intensity Analysis to their own
data by using packages in the language R to compute
components and intensities (Khallaghi and Pontius Jr
2019; Pontius Jr and Santacruz 2015). Readers can also
use the spreadsheets called PontiusMatrix.xlsx and
IntensityAnalysis03.xlsm, which are available for free at
www.clarku.edu/~rpontius.
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