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We study how the shape of a periodic magnetic field affects the presence of Majorana bound states (MBS) in
a nanowire-superconductor system. Motivated by the field configurations that can be produced by an array of
nanomagnets, we consider spiral fields with an elliptic cross section and fields with two sinusoidal components.
We show that MBS are robust to imperfect helical magnetic fields. In particular, if the amplitude of one
component is tuned to the value determined by the superconducting order parameter in the wire, the MBS can
exist even if the second component has a much smaller amplitude. We also explore the effect of the chemical
potential on the phase diagram. Our analysis is both numerical and analytical, with good agreement between the
two methods.
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I. INTRODUCTION

Majorana bound states (MBS) have been of great inter-
est for quantum computing over the past two decades due
to their non-Abelian statistics and robustness against local
perturbations [1,2]. Different models for creation of MBS
have been suggested and studied [1–30]. One of the models,
which has attracted much attention because of its potential
experimental feasibility, is a nanowire-superconductor hybrid
system [11,12]. It is constructed from a nanowire with strong
spin-orbit interactions in a uniform magnetic field on a su-
perconducting substrate, which induces superconductivity in
the nanowire due to the proximity effect. The Hamiltonian for
the semiconducting part of this device, i.e., the nanowire with
spin orbit interaction and a uniform magnetic field, is related
by a unitary transformation to a Hamiltonian for a nanowire
with a helical magnetic field and no spin orbit interaction [31].
The presence of MBS in nanowires and carbon nanotubes
with helical magnetic fields was studied in Refs. [16,32]. It
was also suggested to create a similar setup with a helical-
shaped effective magnetic field via magnetic atoms on top
of a superconductor [25,33–43]. Nonuniform magnetic fields,
created by an array of nanomagnets, can be used to create
MBS in a nanowire-superconductor hybrid system [17,18].
The formation and braiding of MBS via a nanomagnet pattern
on a 2D substrate was discussed in Refs. [44,45]. There are
other suggestions for devices with various magnetic field
shapes and origins which may host MBS, e.g., Refs. [46–50].

Recent work in Ref. [51] presented detailed modeling of
the magnetic field due to an array of nanomagnets acting on
a nanowire in a Si heterostructure. As Si is widely used in
modern technology, and therefore a material convenient for
potential applications, it can be useful for an experimental
realization of MBS to study whether certain Si structures can
host MBS. Here, we consider a Si nanowire with supercon-
ductivity induced by the proximity effect and with nearby
nanomagnets that can be made out of Co or SmCo [51].

In this work, we investigate when a topological super-
conducting phase in lithographically defined Si nanowires
exists. Using parameters that are reasonable for lithographi-
cally defined silicon nanowires and magnets (see Sec. II A),
we consider 25-nm-wide wires with a superconducting gap
∼5 μeV and with the magnetic field produced by nanomag-
nets with strength about 100 mT, see Fig. 1. These conditions
are sufficient for a perfect helical magnetic field to produce the
topologically nontrivial superconducting phase that supports
an MBS with localization length of about 1 μm [16,31,32].
Since an ideal helix is difficult to achieve using micromagnets,
we study how different shapes of the magnetic field would
affect the presence of an MBS in a Si-based setup. In partic-
ular, we consider a spiral magnetic field with an elliptic cross
section. For both ideal and nonideal helical fields, a partial
gap opens in the presence of a magnetic field. However in
the nonideal case, a second gap opens that is proportional
to the difference between the major and minor axes of the
spiral [51]. If the chemical potential is tuned such that it is
inside both gaps, the superconductivity and the MBS are both
suppressed.

We investigate the phase boundary of the topological su-
perconducting phase as a function of the major and minor
axes of the spiral elliptic magnetic field. The boundary be-
tween topological and nontopological phases is marked by
the vanishing of the superconducting gap around the chemical
potential. In the nontopological phase, there are no states
below the gap, while in the topological phase two additional
states, the MBS localized at the wire edges, develop. The
localization length of the MBS decreases quickly as the super-
conducting gap recovers away from the phase boundary. Thus,
we use the existence of two states with eigenenergies below
the superconducting gap, together with their localization near
edges, as a criterion for the topological phase. We demonstrate
that the eigenenergies of the topological state are exponen-
tially suppressed for long enough wires, yielding effective
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FIG. 1. (a) A schematic representation of the system geometry.
Here, the nanowire (dark-gray rectangle) is in proximity with a su-
perconductor (gray rectangle). Nanomagnets with alternating magne-
tization are arranged nearby (blue-red rectangles), in the same plane
as the wire. Alternatively, the nanomagnets can be positioned higher
than the nanowire, which could improve the shape of the magnetic
field for our purposes [51]. (b) Components of the spiral magnetic
field, Bx = Bx0 cos(2πr/�) (solid line) and By = By0 sin(2πr/�)
(dashed line) in the nanowire, with period�, as a function of position
along the wire, r. For an ideal helical field, we have By0 = Bx0. Here,
we show the case of an elliptic helical field, with By0 = 0.62Bx0.

zero-energy modes that are associated with the topological
superconducting phase.

MBS develop in the presence of a perfect helical magnetic
field when the field magnitude exceeds a threshold value equal
to the superconducting order parameter in the wire [16,31,32].
A small deformation of the perfect helix is not expected to
immediately destroy the MBS. Our analysis demonstrates the
robustness of the MBS to relatively strong deformation of the
helical field. As we demonstrate below, when one amplitude
of the oscillating magnetic field is tuned so that it is about
twice the value of the superconducting order parameter in the
wire, the MBS develop even when the second component of
the field is much smaller; thus, when the magnitude of one
of the field components is tuned appropriately, the MBS can
survive even very strong ellipticity of the helical magnetic
field. We also show that the analytic solution of a continuum
model with a linearized energy dispersion provides a good
guide for understanding the numerical results obtained for
finite, discretized wires.

The paper is organized as follows. In Sec. II we discuss
the experimental constraints on the model parameters for an
example system of a nanowire in which the superconductivity
is induced by the proximity effect and magnets are patterned
lithographically. We then present the Hamiltonian that we
analyze in the succeeding sections, II B and II C. We present
an analytical derivation of the MBS wave function and the
spectrum for a spiral magnetic field with an elliptic cross
section in Sec. III. Section IVA presents numerical results for

the phase diagrams for the different shapes of the magnetic
field. Our conclusions follow in Sec. V.

II. MODEL OF SUPERCONDUCTING NANOWIRE
IN PERIODIC MAGNETIC FIELD

A. Estimations of experimental parameters

While the focus of this work is theoretical, it is important
to note that the physical regimes are realistic. An example
physical system is a silicon nanowire, whose width we esti-
mate below, with superconductivity induced by the proximity
effect, either from metals [52] or from the superconductivity
in a nearby, very highly doped semiconductor region [53].
Lithographically defined Co and SmCo nanomagnets [51,54]
deposited nearby give rise to appropriate helical field varia-
tions, as shown in Fig. 1.

We now estimate the transverse width of the nanowire and
its associated Fermi wavelength. Because the experimental
parameters of interest (e.g., the threshold density) are better
characterized in two-dimensional (2D) systems than in wires,
we will refer to 2D experiments as a starting point. The
sixfold valley degeneracy of the conduction band in bulk
silicon is lifted by tensile strain or by narrow confinement,
leaving just two low-energy valleys to form a quantum device
[55]. The remaining degeneracy is lifted by wave function
overlap with sharp interfaces, with a valley energy splitting
of δv . Assuming a parabolic dispersion relation for the two-
dimensional electron gas (2DEG), the lower (l) and upper (u)
valley band energies are given by εl (p) = p2/2m and εu(p) =
p2/2m + δv , where p is a two-dimensional quasimomentum
and m = 1.73 × 10−31 kg is the transverse effective electron
mass. Here, we choose δv � 100 μeV as the valley splitting
of a typical 2DEG [56], although there is some evidence of
larger valley splittings in wire geometries, depending on the
confinement [57].

The Fermi energy EF should be large enough to allow the
nanowire to conduct, where EF is measured from the bottom
of the lower valley in the 2DEG dispersion. Normally the
threshold electron density needed for a 2DEG to conduct
is smaller than for a wire, since any disorder disrupts the
current flow in the one-dimensional case. For a nanowire, we
therefore assume an electron density ne for which the Fermi
energy is higher than the maximum value of the disorder
potential. The Fermi energy and the electron density are then
related by

ne = 2m(2EF − δv )

2π h̄2
, (1)

assuming spin degeneracy.
To determine the size of the nanowire, we assume a har-

monic confinement potential in the transverse direction with a
root-mean-square width of the wave function σw, correspond-
ing to an energy level splitting of

h̄ω0 = h̄2

mσ 2
w

. (2)

Since the valley degree of freedom represents an unwanted
quantum variable, we can suppress the filling of the upper
valley band by adjusting the ground-state energy h̄ω0/2 such
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that it lies between the highest filled state and the lowest
unfilled state:

EF − δv <
h̄ω0

2
< EF . (3)

To satisfy this constraint, we adopt σw = 25 nm, yielding
an upper limit of ne = 5.9 × 1010 cm−2 for the electron
density, which as desired is significantly higher than the
threshold electron density of a conducting 2DEG, ne,th = 2 ×
1010 cm−2, as reported in Ref. [58] for a 100 nm deep Si/SiGe
quantum well.

The chemical potential in the wire is counted from the
bottom of the one-dimensional conduction channel, such that

μ = EF − h̄2

2mσ 2
w

,

with a corresponding Fermi wave vector of kF =
√
2mμ/h̄2.

Here we choose μ � 50 μeV, so that the occupation of the
higher valley is well suppressed.

Finally, we estimate the values of the magnetic field B and
the proximity-induced superconducting gap in the nanowire
� that support an MBS. For a perfectly helical magnetic
field, the presence of an MBS requires fields with gμBB >√

�2 + δμ2 [16,17], where the Landé g-factor g ≈ 2 for Si,
μB is the Bohr magneton, and δμ = μ − h̄2Q2/2m is the
detuning of the chemical potential away from the center of the
energy gap (h̄2Q2/2m), caused by a magnetic superlattice with
period � (see Fig. 1) and wave vector Q = 2π/�. (Hence-
forth, we adopt energy units for B by absorbing gμB into its
definition.) Because it is difficult to achieve Zeeman splittings
in excess of 20 μeV using nanomagnets, we take � = 5 μeV
here. This choice also satisfies the condition μ � �, which is
necessary for achieving a proximitized superconducting gap
in the wire.

B. Magnetic superlattice

In the following two sections, we present the Hamiltonian
studied in this work. First, we introduce a periodic magnetic
field in the absence of superconductivity. In Sec. II C, we then
include the effects of superconductivity.

We consider the Hamiltonian for a single electron in the
wire with parabolic energy dispersion in the presence of
a magnetic field B(r) = {Bx(r),By(r),Bz(r)} that oscillates
periodically as a function of the coordinate r along the wire:

HZ = εl (p) + B(r) · σ − μ, (4)

where σ = {σx, σy, σz} are Pauli matrices.
The actual magnetic field configuration produced by nano-

magnets is complex. Field configurations produced by arrays
of bar-shaped nanomagnets as well as electron spectra are
calculated in Ref. [51]. It was also shown that a special con-
figuration of magnetic fields may improve conditions for the
MBS to develop. While the semiconducting part of the device
was studied in Ref. [51], we include superconductor pairing
term to the Hamiltonian and consider the full setup necessary
to obtain MBS. The goal of this paper is to investigate how de-
viations from the perfect helical magnetic field may affect the
topologically nontrivial superconducting phase. For example,
the random filed orientations was considered in Ref. [33], and

the topological region is different from the one presented in
Refs. [11,12]. As we focus on the field generated by an array
of nanomagnets, we use a helical magnetic field with elliptical
cross section, which is very close to the field shape obtained
in Ref. [51]:

Bx = Bx0 cosQr, By = By0 sinQr, Bz = 0, (5)

where Q = 2π/� is the vector of the reciprocal 1D Brave lat-
tice of the magnetic superlattice with period � and Bx0,Bz0 �
0. We note that due to the absence of the spin-orbit interaction
in this system, the direction of the wire and magnetic field
orientation are completely decoupled. For example, the sys-
tem properties remain the same regardless of the choice of the
magnetic components x, y relative to the wire direction.

For the magnetic field given by Eq. (5), the matrix elements
of the magnetic periodic potential are nonzero only for two
reciprocal vectors ±Q:

W±Q = 1

2

(
0 Bx0 ± By0

Bx0 ∓ By0 0

)
. (6)

The spectral equation for electron states in the magnetic
superlattice has the form(

h̄2(k − nQ)2

2m
− E (k)

)
ck−nQ +

∑
±

W±Qck−(n±1)Q = 0, (7)

where n = 0,±1,±2 . . . and the spinor coefficients ck−nQ de-
fine the electron wave function ψk (r) = ∑

n ck−nQ exp(i(k −
nQ)r) [51,59]. For noncircular helical field, both off-diagonal
terms in matrix W±Q do not vanish, therefore we have to
take into account all n here. This situation is different from
the case of perfect helix, studied in Ref. [31]; in the latter
case only one off-diagonal element is nonzero and only two
spinor coefficients are coupled, which permits us to perform
the gauge transformation as presented in Ref. [31].

Using Eq. (7), we can determine that there are energy
gaps at the edges of the Brillouin zone with magnitudes
|Bx0 ± By0|. For an ideal helical field with Bx0 = By0, one
branch has a large gap Bx0 + By0, while the other branch is
gapless. However, when Bx0 �= By0, both gaps are nonzero,
and there are no states within the energy window |Bx0 − By0|
around ε = h̄2Q2/8m.

We solve Eq. (7) for the magnetic field period � = 200 nm
in Si nanowire. The energy bands are shown in Fig. 2(a) for
Bx0 = By0 = 10 μeV, in Fig. 2(b) for Bx0 = 2By0 = 10 μeV,
and in Fig. 2(c) for Bx0 = 10 μeV, By0 = 0. For the last
case, the magnetic field is nonchiral, the two spin helicities
have identical band structures, and no topologically nontrivial
phase is supported.

Using parameters from Sec. II A, we find that � = 200 nm
is an acceptable scale for nanofabrication and at the same time
allows the lifting of the valley degeneracy of the conducting
channel in the wire. Indeed, the magnetic structure would
require fabrication of pairs of 50 nm wide nanomagnets with
opposite magnetizations, see Fig. 1.

We would like to point out that if the magnetic field shape
is not exactly elliptic, higher harmonics will be present. How-
ever as we will consider the regions close to the gap around
k = Q/2, the other harmonics do not change the structure of
the phase diagram for MBS.
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FIG. 2. The band structure (energy versus normalized wave vec-
tor k/Q) of an electron in the presence of the periodic, helical
magnetic field, defined in Eq. (5), with period � = 2π/Q = 200 nm.
(a) An ideal helical magnetic field Bx0 = By0 = 10 μeV. (b) An ellip-
tical magnetic field Bx0 = 10 μeV and By0 = 5 μeV. (c) A nonchiral
magnetic field Bx0 = 10 μeV and By0 = 0. States with the two spin
chiralities with energies below the gap are denoted in orange and
blue, while states with the two spin chiralities with energies above
the gap are denoted in red and green. For the ideal helical field (a), a
gap opens for one spin chirality but not the other, so there are states
in at least one band for all values of the chemical potential. When
the field is nonchiral (c), the energy dispersions of the different spin
helicities are the same, and there is no chemical potential for which
one band is gapped and the other is not. (The blue and green curves
are not visible on the plot because they are identical to the orange
and red curves.) When the field is chiral but not an ideal helix (b),
the gaps of the two helicities are different, and there are values of
the chemical potential that are in the gap for one chirality but not the
other.

C. Hamiltonian for superconducting wire

We now add to the Hamiltonian the superconductivity
terms that pair electrons with energies above the chemical
potential with holes below the chemical potential. This cou-
pling is conveniently represented by the electron creation
and annihilation operators in the Nambu space defined by
the vector � = {ψ↑, ψ↓, ψ

†
↑, ψ

†
↓}T . The Hamiltonian of the

system can be written as

H =
∫

�†(r)H�(r)dr, (8a)

where the Hamiltonian matrix in the Nambu space is

H =
(

HZ i�σy

−i�σy −H∗
Z

)
, (8b)

where r is the position along the wire, � is the superconduct-
ing gap, and the single-electron Hamiltonian HZ is given by
Eq. (4).

This Hamiltonian has eigenvectors that are solutions to the
Bogolyubov-De Gennes (BdG) equation [60]

H� = E�. (9)

Below we will investigate the eigenenergies and eigenstates
of this Hamiltonian by finding solutions of the BdG equation
numerically.

The electron wave functions can be rewritten in the
Majorana basis instead of the Nambu basis by introducing a
unitary transformation of the vector �, where the transforma-

tion matrix is given by

� = UM�, UM = 1√
2

⎛
⎜⎝
1 0 1 0
0 1 0 1
i 0 −i 0
0 i 0 −i

⎞
⎟⎠. (10)

The MBS in this basis is represented by a real function with
eigenenergy E0 → 0.

III. ANALYTICAL CHARACTERIZATION
OF THE PHASE DIAGRAM

To provide analytic insight into when a magnetic field
that does not have an ideal helical form induces MBS, we
generalize the procedure described in Ref. [61] to apply
to the case of a field with an elliptical cross section. We
consider perfect matching between the Fermi momentum of
1D electrons in the wire and the periodicity of the magnetic
superlattice by setting the chemical potential μ = h̄2Q2/8m.
We choose Bx0 > 0 and By0 > 0; this restriction is inessential
because different signs of these components correspond to
different chiralities of the magnetic field. The continuum and
long-length limits examined here are expected to be applicable
when the period of the magnetic field oscillations is much less
than the length of the wire and when Bx0,By0,� 
 μ.

We represent the electron wave functions as a superposition
of left and right movers

ψσ = Rσ e
iQr/2 + Lσ e

−iQr/2, (11)

where σ = {↑,↓}, and we linearize the energy dispersion in
the kinetic energy term:

Hkin = −ih̄vF (R
†
↑∂rR↑ − L†

↑∂rL↑ + R†
↓∂rR↓ − L†

↓∂rL↓),
(12)

where the Fermi velocity is vF = h̄Q/2m. The hole part of
the Hamiltonian can be obtained from the anticommutation
relations of the fermion operators and we do not explicitly
show it here. We neglect all fast-oscillating terms, assuming
that the localization length of the R and L functions is much
larger than 2π/Q. Later we show that this condition indeed
holds for our results. The Zeeman term due to the magnetic
field is

Hmag = 1
2 [(Bx0 − By0)(R

†
↑L↓ + L†

↓R↑)

+ (Bx0 + By0)(L
†
↑R↓ + R†

↓L↑)], (13)

and the superconductivity term

Hsc = �(R↓L↑ + L↓R↑ − R↑L↓ − L↑R↓ + H.c.). (14)

The Hamiltonian can be decoupled into two nonin-
teracting subspaces χ− = {R↑,L↓,R†

↑,L†
↓}T and χ+ =

{L↑,R↓,L†
↑,R†

↓}T . In these subspaces, the Hamiltonian has
the form

H± = ±ih̄vF∂rσz − δμτz + B±σxτz − �σyτy, (15)

where B± = (Bx0 ± By0)/2 and δμ = μ − h̄2Q2/8m is the
mismatch between the chemical potential and the center of
energy gap of electron bands of the magnetic superlattice.
The energies of quasiparticle excitations of Hθ with θ = ±
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FIG. 3. Contour plot of E0, the energy of the state of lowest pos-
itive energy in the system, versus the magnetic field amplitudes Bx0

and By0. Parameter values used are: superconducting order parameter
� = 5 μeV, magnetic field wave vector Q = 2π/�, � = 200 nm,
chemical potential μ = h̄2Q2/8m = 49.6 μeV, and wire length L =
20 μ. The uncolored region where E0 > 0.5 μeV corresponds to
the gapped nontopological superconducting phase, the dark purple
color denotes the region in which E0 < 10−2 μeV, and the crossover
region over which the zero energy state develops in this wire with
finite length is evident in the transitions between colors in the color
plot for the region of E0 < 0.5 μeV. The solid straight lines show the
analytical predictions for the phase boundary given by Eq. (21).

for perfect matching of the chemical potential, δμ = 0, are
given by

E±
θ =

√
h̄2v2

F δk2 + [Bθ ± �]2, (16)

where δk = k ± Q/2 denotes momenta counted from Fermi
points ±Q/2 and we consider only non-negative energies. We
note that the two subspaces, θ = ±, describe two chiralities of
electrons in the spiral magnetic field. Without the proximity
effect, � = 0, Eqs. (16) correspond to two branches with
smaller and larger magnetic gaps at the boundary of the
Brillouin zone of the magnetic superlattice, see Sec. II B and
Fig. 2.

We observe that the excitation energy vanishes for δk = 0
when

either B+ = � or B− = � . (17)

These lines, which define the boundaries between topolog-
ically trivial and nontrivial superconducting phases in an
infinitely long wire, are shown as solid straight lines in Fig. 3.
Our next step is to demonstrate that the internal region in the
phase diagram indeed supports the MBS.

Away from the lines defined by Eq. (17), there is no zero-
energy eigenstate for real δk. However, the purely imaginary
values of

δk±
α,θ = ±i

αBθ + �

h̄vF
(18)

might describe zero-energy solutions that exponentially de-
crease or grow along the nanowire. The ± sign in Eq. (18)
defines the solutions that decrease or increase as a function
of coordinate r along the wire and would correspond to two

states localized at each of the ends of the nanowire, and α = ±
identifies the sign choice in Eq. (16). Here we focus on the
solution that is localized near r = 0. In this case, we identify
only one pair of δ±

α,θ=+ and δ±
α,θ=− that satisfy the boundary

condition �(r = 0) = 0. The general solution can be written
as a linear combination of eight terms

χ(r) =
∑
θ=±

∑
α=±

∑
σ=±

βσ
α,θc

σ
α,θ exp

(
irδkσ

α,θ

)
(19)

of four linearly independent four-component vectors

c+
−,− = c−

−,+ =

⎛
⎜⎝

1
i
1

−i

⎞
⎟⎠, c+

+,− = c−
+,+ =

⎛
⎜⎝

1
−i
−1
−i

⎞
⎟⎠,

c−
−,− = c+

−,+ =

⎛
⎜⎝

1
−i
1
i

⎞
⎟⎠, c−

+,− = c+
+,+ =

⎛
⎜⎝

1
i

−1
i

⎞
⎟⎠. (20)

The proper solution (19) vanishes at r = 0, so it must
contain a pair of terms formed by one of the vectors of Eq. (20)
and multiplied by the exponential functions exp(irδkσ

α,θ ) with
different top index σ in δkσ

α,θ . At the same time, each term in
the pair must decrease as a function of r, i.e., Im{δkσ

α,θ } >

0. We find that the first pair, c+
−,− = c−

−,+, satisfies these
conditions, provided that

Bx0 < 2� + By0, Bx0 + By0 > 2�. (21a)

However, an additional requirement to the above inequalities
is

By0 < 2� + Bx0. (21b)

Otherwise, another solution with zero energy develops near
r = 0, formed by the pair c−

+,− = c+
+,+ in Eq. (20). Overall, a

nondegenerate solution of Eq. (15) with eigenenergy E = 0
and localized near r = 0 can exist within the rectangular
region shown by bold solid lines in Fig. 3. Since the energy
gap vanishes on these lines, we identify the region inside
as the topologically nontrivial superconducting phase that
supports the MBS. The outside region is the topologically
trivial superconducting phase.

We comment on the localization length of the MBS.
The length is determined by max{1/|δkσ

α,θ |}. The localization
length diverges near the phase boundaries but then saturates
to h̄vF/� in the center of the topological superconducting
phase at Bx0 = By0. The predictions yielded by this continuum
theory for the dependence of the localization length on model
parameters will be compared with numerical results in the
next section.

IV. PHASE DIAGRAM: NUMERICAL RESULTS

A. Discretized Hamiltonian

We now show the results of numerical calculations
in which the approximations that enable the analytical
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calculations in Sec. III are not made, obtaining results similar
to those of the analytic model, as shown in Fig. 3. We now
consider a finite-length wire. We calculate the eigenvalues and
eigenstates of a discretized version of Eq. (8a) to determine
the energy gap and identify the MBS. We rewrite the Hamilto-
nian representing the second derivative as a finite difference of
the wave function �n = �(nδr) for a set of n points separated
by a discretization distance δr along the wire; the total number
of sites along the wire is N = L/δr. The full Hamiltonian is

given by the 4N × 4N matrix

H̃ =

⎛
⎜⎜⎜⎜⎜⎝

. . .

T̂ K̂n−1 T̂ 0̂ 0̂

. . . 0̂ T̂ K̂n T̂ 0̂ . . .

0̂ 0̂ T̂ K̂n+1 T̂
. . .

⎞
⎟⎟⎟⎟⎟⎠

, (22)

where the diagonal blocks are

K̂n =

⎛
⎜⎜⎜⎝
2T̃ − μ + Bn

z Bn
x − iBn

y 0 �

Bn
x + iBn

y 2T̃ − μ − Bn
z −� 0

0 −� −2T̃ + μ − Bn
z −Bn

x − iBn
y

� 0 −Bn
x + iBn

y −2T̃ + μ + Bn
z

⎞
⎟⎟⎟⎠, (23)

and the off-diagonal blocks are

T̂ =

⎛
⎜⎜⎝

−T̃ 0 0 0
0 −T̃ 0 0
0 0 T̃ 0
0 0 0 T̃

⎞
⎟⎟⎠. (24)

The T̃ terms are given by

T̃ = h̄2

2mδr2
(25)

and originate from the discretized kinetic energy

− h̄2

2m

∂2�(r)

∂r2
→ −T̃ (�n+1 − 2�n + �n−1). (26)

The Bn
x,y,z terms in Eq. (23) are components of the magnetic

field Bn = B(nδr) at site n. To be specific, we assume that
the wire length L is a multiple of the magnetic period �. We
implement the boundary conditions �(r = 0) = �(r = L) =
0.

We diagonalize the discretized Hamiltonian and obtain the
energy eigenvalues and eigenstates. The MBS, if present in
the superconducting nanowire, is a nondegenerate state with
energy in the middle of the superconducting gap that is zero
in the limit of an infinite length wire and that is spatially
localized at the ends of the nanowire. We use these conditions
to build phase diagrams for our setup for different amplitudes
of the magnetic field components. The eigenstates of the
discretized Hamiltonian Eq. (22) are 4N vectors, where four
elements in each of N blocks represent the four components
of the electron wave function in the Nambu space. We discuss
the precise criteria for how we define zero energy and the
gap energy in the numerical calculation for a finite system
and the definition of the localization length in the following
subsections of this section.

B. Energy gap and zero-energy excitations

Using the numerical method described above, we analyze
the low energy eigenstates of the Hamiltonian Eq. (8a). For the
results shown, the discretization length used in the numerical
calculations is δr = 20 nm unless stated otherwise. This value
of δr satisfies δr 
 � and δr 
 h̄vF/�, and we have checked

that changing the value of δr does not change the numerical
results significantly.

To identify the phase transition and the development of
the MBS, it is sufficient to focus only on the behavior of
the lowest energy excitations. To illustrate how MBS are
manifest in the numerical results, we compare the lowest
energy excitations for the ideal helical field with Bx0 = By0

(where it is known that MBS are supported [61]) to the lowest
energy excitations when one of the field components is zero
(when there is no field chirality and the phase is topologically
trivial for all magnitudes of the nonzero component).

To explore the phase diagram in the Bx0 − By0 plane, we
construct a color contour plot for E0 for the wire of length
L = 20 μm, shown in Fig. 3. In the uncolored regions of the
plot, the lowest energy E0 is above 0.1� = 0.5 μeV, which
we identify as the gapped nontopological superconducting
phase. In wires of finite length, the zero energy state develops
over finite crossover region shown as transition colors when
E0 < 0.5 μeV, where E0 quickly drops below 10−2 μeV. This
region can be identified as the topological superconducting
phase with a superconducting gap in the density of states
and a low-energy state inside the gap, corresponding to the
MBS. We note that the crossover region is well described by
the analytical expressions for the phase boundary evaluated
in the previous section, see solid thick lines in Fig. 3 and
Eqs. (17).

To illustrate the actual dependence of lower energies on
the magnetic field, we show the two lowest energies E0,1 as
a function of the magnetic field strength Bx0 = By0 = B0 in
Fig. 4(a); this field configuration corresponds to a perfect
helix studied earlier [31,32,61]. When B0 = 0, the values of
both energies are just above the superconducting gap �. As
B0 is increased from zero, the effective superconducting gap
|B0 − �| as well as all three eigenenergies decrease. As B0

is increased beyond �, the lowest energy E0 continues to
decrease monotonically towards zero, while the energy of the
higher eigenstate goes through its minimum at B0 � � and
then increases until it reaches an asymptotic value equal to
the superconducting gap �. Here, there is a topologically
nontrivial phase when Bx0 = By0 > 2�, and the lowest energy
E0 approaches zero while the higher energies increase as
strength of the field Bx0 = By0 is increased past 2�.
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FIG. 4. Comparison of two lowest-energy excitation energies E0 and E1 in nontopological and topological phases as a function of magnetic
field magnitude. (a) Energies E0 and E1 versus the magnetic field amplitude Bx0 = By0 in wires evaluated for different wire lengths, solid lines:
L = 40 μm and δr = 20 nm; dashed lines: L = 80 μm and δr = 40 nm. In the topologically nontrivial phase, E0 approaches zero for when
Bx0 = By0 is large. The second excitation energy E1 reaches its minimum at the phase transition, where the gap in the density of states
closes in the infinitely long wire and then increases as the magnetic field is increased further. (b) Energies of the lowest two excitations as a
function of one component of the field, Bx0 = B (solid lines) or By0 = B (dashed lines), while the other component is strictly zero, By0 = 0
or Bx0 = 0, respectively. When one field component is zero, the magnetic field has no helicity and no topologically protected state can form.
All the excitation energies show minima at B � 2� = 10 μeV and then all energies increase as B is increased further. When Bx0 = 0 and the
magnetic field is zero at the ends of the wire, E0 = E1, but the energies E0 and E1 are split near Bx0 = 2� when the field at the ends is not zero
(By0 = 0 case). (c) Energies of the lowest energy excitations as a function of one component of the magnetic field when the other component
is fixed at twice the superconducting gap �, either Bx0 = B, By0 = 2� or By0 = B, Bx0 = 2�. For both cases, the energy of the lowest-energy
state monotonically decreases towards zero as B increases, while all other excitation energies increase as the superconducting gap opens,
consistent with a topologically nontrivial phase. For all these plots, the proximity-induced superconducting order parameter � = 5 μeV, and
the chemical potential μ = h̄2Q2/8m = 49.6 μeV is matched to the middle of the magnetic superlattice gap. For panels (b) and (c), the wire
length is L = 40 μm.

The form of the phase diagram shown in Fig. 3 makes it
clear that the robustness of the MBS to eccentricity of the
magnetic field helicity depends strongly on the magnitude
of the larger field component; in fact, the topological phase
could be reached even when one of the magnetic field compo-
nents is much smaller than the other, provided that the larger
component is near 2�. To explore this region of the phase
diagram in more detail, we plot the two lowest energy states,
E0 and E1 as a function of one component of the magnetic
field, Bx0 or By0, while keeping the other component equal
to zero, see Fig. 4(b). We observe that the lowest energy
E0 reaches its minimum when the nonzero component is
≈2� and then increases as the field component is increased
further. We note that in these plots, for which one compo-
nent of the field is zero, there is no topologically protected
phase.

Figure 4(c) shows the energies of the two lowest-energy
excitations E0,1 as a function of the magnetic field strength
of one component, while the other is fixed at 2�. We notice
that for both Bx0 = 2� (solid lines) or By0 = 2� (dashed
lines), the lowest energy excitation vanishes quickly as the
magnitude of the other field component is increased.

While the actual orientation of magnetic field components
Bx0 and By0 is arbitrary with respect to the direction of the
wire, the dependence of the energies on the two components
are not identical since the field magnitude at the ends of the
wire is determined by the value of Bx0, while the By field
always vanishes at the wire ends, see Eq. (5). This distinction
between components explains a weak asymmetry of the phase
diagram with respect to line Bx0 = By0 in Fig. 3, especially
near the corners of the MBS phase; compare the regions near

Bx0 = 0, By0 = 2� and Bx0 = 2�, By0 = 0. The distinction is
even more pronounced in the energy plots shown in Figs. 4(b)
and 4(c). When Bx0 = 0 and By0 �= 0, the low energy levels,
such as E0,1, are doubly degenerate. In the opposite case,
Bx0 �= 0 and By0 = 0, this double degeneracy is split, pushing
the lowest energy closer to zero, see the lowest solid line in
Fig. 4(b). The double degeneracy is always split by Bx0 �= 0,
as shown by the lower two dashed lines in Fig. 4(c).

Overall, the above analysis demonstrates that the topologi-
cal phase with MBS is possible when the dominant magnetic
field has magnitude about 2� and the minor component is
strong enough to open the gap in the energy spectrum and
push the energy of the MBS to zero. MBS are enhanced
further when the dominant field component is at its maximum
value at the wire ends.

C. Localization length

The coherence length is an important energy scale of a
superconductor and is inversely proportional to the supercon-
ducting energy gap:

ξ = h̄vF
E1

. (27)

Equation (27) takes into account that in the topological su-
perconducting phase, the lowest energy state corresponds to
the MBS and the superconducting gap is determined by the
next positive energy E1. In this subsection we argue that
the localization length ζ of the MBS near the wire ends is
consistent with the correlation length determined by Eq. (27),
ζ � ξ . We also show that the lowest positive energy E0
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FIG. 5. (a) Numerically obtained value of the lowest positive energy E0 as a function of the magnetic field amplitude Bx0 = By0 in wires
of length L = 20 μm (solid line) and L = 40 μm (dashed line) obtained using δr = 20 nm and L = 80 μm obtained using δr = 40 nm. The
onset of exponential decrease of E0 with increasing Bx0 = By0 above � indicates the transition to the topologically nontrivial superconducting
phase, with the stronger dependence in longer wires arising because the overlap between MBS decreases exponentially with wire length.
Thin red lines show E ∝ exp(−L/ξ ), where ξ is given by Eq. (27). (b) Numerically obtained value of the lowest positive energy E0 in wires
of length L = 40 μm as a function of the magnetic field amplitude By0 (solid line) or Bx0 (dashed line) fixed with Bx0 = 2� or By0 = 2�,
respectively. The similarity of the behavior to that seen in (a) demonstrates the robustness of the topologically nontrivial phase to ellipticity in
the helical magnetic field. Energy E0 decreases exponentially as L/ξ is increased, as demonstrated by a thin red line for ∝ exp(−L/ξ ), where
ξ is computed from Eq. (27) using E1(By0) at Bx0 = 2�, see red solid line in Fig. 4(c). (c) Numerically obtained localization length of the
lowest-energy state ζ , obtained using Eq. (28) versus the strength of the magnetic field for a perfect helix, Bx0 = By0, in wires of length L = 20
(solid line), 40 μm (dashed line). Also shown as the thin red line is the localization length ξ , Eq. (27), obtained using values of E1 for a wire
of length L = 40 μm, see red solid line in Fig. 4(a). (d) Numerically obtained localization lengths of the lowest-energy state, obtained using
Eq. (28) versus the magnitude of Bx0 (dashed line) or By0 (solid line) with By0 = 2� or Bx0 = 2�, respectively, in wires of length L = 40 μm.
Also shown as the thin red line is the localization length ξ obtained from Eq. (27) using E1(Bx0 = 2�,By0 = B) as a function of B, see solid
red line in Fig. 4(b). The similarity to (c) demonstrates the robustness of the topological phase to ellipticity in the helical magnetic field. In all
panels, superconducting gap parameter � = 5 μeV and chemical potential μ = h̄2Q2/8m = 49.6 μeV, which is matched to the middle of the
magnetic superlattice gap.

agrees well with the exponential dependence on wire length
L as E0 ∝ exp(−L/ξ ). The behavior of the localization length
for helical fields with elliptical cross section is qualitatively
similar to that found for purely helical fields.

Figure 5(a) shows on a semilog scale the lowest energy
as a function of Bx0 = By0, corresponding to a perfectly
helical field [61]. For Bx0 = By0 = B0 > � the lowest exci-
tation eigenenergy E0 > 0 decreases exponentially with B0,
as demonstrated in Fig. 5(a). To demonstrate the dependence
on wire length, we show the energy versus B0 for wires
with length L = 20 (solid line), L = 40 (dashed line), and
L = 80 μm (dash-dotted line) and compare the result with ex-
ponential fit ∝ exp(−L/ξ ), where ξ is evaluated from Eq. (27)
with numerical values of E1 (E1 is presented in Fig. 4(a) for
L = 40 and 80 μm.)

Figure 5(b) examines the case of an elliptical helical field;
it is a semilog plot of the three lowest excitation energies as a

function of one field component (either Bx0 or By0) as the other
is held fixed at 2�. As the variable magnetic field component
is increased from zero, the lowest energy E0 decreases towards
zero. The lowest energy E0 again decreases exponentially with
the wire length L as ∝ exp(−L/ξ ) with ξ evaluated from
Eq. (27) with E1 shown in Fig. 4(c) by a dashed line for
Bx0 = 2� and variable By0.

We also calculate the localization length by examining the
wave function of the lowest energy excitation (the eigenvector
with energy eigenvalue E0). To characterize the localization
length, we define the following integral expression that ef-
fectively evaluates the distance of the ‘center-of-mass’ of the
MBS wave function from the wire ends:

ζ = 2δr

⎛
⎝N/2∑

n=0

nPn +
N∑

n=N/2

(N − n)Pn

⎞
⎠, (28)
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where Pn is the probability density for the MBS at site n:

Pn = �†
n�n, �n = �(nδr), (29)

and �(r) is obtained from the state �(r) corresponding to the
lowest positive eigenenergy of Eq. (9) via transformation (10).

The dependence of the localization length ζ on the mag-
netic field is shown in Fig. 5(c) a perfect helical field as
a function of field magnitude and in Fig. 5(d) for the case
where one field component is fixed at 2� and the magnitude
of the other component is varied. We calculate the localiza-
tion length using Eq. (28) for several values of the nano-
wire length. At Bx0 = By0 < �, evaluated values of the
localization length ζ is comparable to the length of the wire.
At larger fields, ζ decreases rapidly and reaches the value ζ �
ξ/2, where ξsc = h̄2Q/(2m�) � 1.26 μm the superconduct-
ing coherence length that determines |�n|2 ∝ exp(−2nδr/ξ ).
Figures 5(c) and 5(d) also show that the estimate of the
localization length using the dependence of the coherence
length ξ on E1 agrees well with the estimate of the MBS
localization length done using Eq. (28).

D. Dependence of the phase diagram on chemical potential

We now investigate the phase diagram when the chemical
potential μ is not located in the middle of energy spectrum
gap of magnetic superlattice, so that μ = h̄2Q2/8m + δμ with
δμ �= 0. It is straightforward to extend the analytic theory
developed in Sec. III to the case in which δμ �= 0. The
excitation energies of Hamiltonian (15) are

E±
θ =

√
B2

θ + �2 + δμ2 + v2
F δk2 ± 2D , (30)

with

D =
√
B2

θ (�
2 + δμ2) + δμ2v2

F δk2. (31)

The lowest energy for real δk is achieved for δk = 0 and is
given by

E−
θ = |Bθ −

√
�2 + δμ2|, (32)

and the gap closes for Bθ =
√

�2 + δμ2. This expression is
similar to the condition for the point of the phase transition in
perfect helical magnetic field [31,32]. For fixed � and δμ, the
gap closes when

B+ = (Bx0 + By0)/2 >
√

�2 + δμ2. (33a)

This condition specifies the magnitude of the magnetic field
necessary to develop the topologically nontrivial supercon-
ducting phase [11,12,16]. The second condition for the topo-
logical phase is determined by ellipticity of the spiral mag-
netic field that limits the relative mismatch between Bx0 and
By0 components. At nonzero δμ, the corresponding condition
is

|B−| <
√

�2 + δμ2 , (33b)

with B− = (Bx0 − By0)/2. We notice that Eq. (33b) implies
that nonzero δμ makes the system more robust to imperfect
helical magnetic fields, but at the same time, Eq. (33a) implies
that stronger fields are needed to reach the topologically non-
trivial phase. The conditions for the existence of the MBS at

B
y
0
(μ
eV

)

Bx0 (μeV)

E
0
(μ
eV

)

FIG. 6. Contour plot of the lowest positive energy E0 of the
system in the plane of magnetic field amplitudes Bx0 and By0 for
the chemical potential μ = h̄2Q2/8m + δμ with δμ = 4 μeV. Here,
the superconducting pairing energy � = 5 μeV, and the wire length
L = 20 μm. The region with energy E0 above 0.5 μeV corresponds
to the gapped nontopological superconducting phase and is shown as
unfilled parts of the Bx0–By0 plane. The solid straight lines represent
the analytical expressions (33) for the phase boundaries derived for
linearized bands and an infinite length wire. In wires of finite length,
the zero energy state develops over a finite crossover region shown
as transition colors in the color plot for the region of E0 < 0.5 μeV,
the dark purple color shows area where E0 drops below 10−2 μeV.

δμ = 0 can be interpreted as requiring that one out of the two
electron bands has a gap in the energy interval h̄2Q2/8m ± �

while the other does not. When δμ �= 0, we find that a similar
condition applies. If at the Fermi momentum one of the
bands is gapped while the other is not, then a topologically
nontrivial phase can be supported. The mismatch of the Fermi
momentum with the points of 1D Brillouin zone correspond
to the superconducting excitation with energy h̄2Q2/8m ±√

�2 + δμ2, and the MBS exists if these energies cross one
and only one band of electrons in the magnetic superlattice,
see Fig. 2.

We also performed numerical investigations of systems
with δμ �= 0 for wires of finite length. Figure 6 shows the
results for a phase diagram obtained for a wire with length
L = 20 μm by showing the energy of the lowest-energy state
as a function of the magnitudes of the magnetic field compo-
nents. We define the regions of field in which the system is
in a topologically nontrivial phase and MBS are supported to
be those where the lowest-energy state has energy that is much
less than that of the superconducting gap. A comparison of the
results in Fig. 6 with those in Fig. 3 demonstrate that tuning
the chemical potential of the nanowire can play an important
role in optimizing the robustness of MBS.

V. CONCLUSIONS

Motivated by the possibility of introducing strong artificial
spin-orbit coupling in nanowires fabricated in silicon, we have
considered a nanowire-superconductor hybrid structure with
a nonuniform magnetic field and studied the conditions for
which the superconductivity is topologically nontrivial and
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MBS appear. We have investigated both analytically and nu-
merically the case of a spiral magnetic field with an elliptical
cross section, which becomes helical for a round cross sec-
tion. This spatial dependence is similar to the magnetic field
configurations obtained in Ref. [51], which were achieved
using nanomagnet arrays compatible with current lithographic
techniques. Here, we have shown that this system can support
MBS even when the magnitudes of the two components of the
helical field are substantially different.

The robustness of topological superconductivity to ellip-
ticity of the helical magnetic field depends strongly on the
magnitude of the dominant field component. If the magnitude
of this component is optimized, by making its value twice
the superconducting pairing energy �, then a topological
phase appears, even when the other magnetic field component
is small. Analytic theory for an infinite length wire with a
linearized electronic spectrum provides an excellent guide
for interpreting results obtained numerically for a discretized
model using finite-length wires.

We have also investigated the localization length of the
MBS. The dependence of the energy on wire length, for the
lowest energy excitation, is consistent with a simple picture
in which the energy is proportional to the overlap of two
exponentially localized states at the ends of the wire.

It was shown theoretically that electron interactions can
influence significantly the spectrum of the system and
even close the gap [62–64]. However as was shown in
Refs. [62,63], depending on the parameters, the gap can
be reduced, but still open, with a longer MBS localization
length. In such a case, the nanowire must be longer than for
the noninteracting case, in order to prevent the MBS from

interacting with each other. As the helical magnetic field
can be unitarily transformed into spin orbit interaction and
uniform magnetic field [31], we believe that our system will
also have such regime. Our understanding is further supported
by the results of Ref. [65], where the effects of electron
interactions were studied in a system with spatially varying
spin orbit interaction, which has a similar form to our rotating
magnetic field.

Our results provide evidence that using lithographi-
cally patterned micromagnets is a viable method for creat-
ing spatially-dependent magnetic fields that, together with
proximity-induced superconductivity, can be used to generate
MBS. Because intrinsic spin-orbit coupling is not required,
many materials systems could also be suitable hosts for MBS,
in addition to the silicon wires considered here.

ACKNOWLEDGMENTS

We thank Anton Akhmerov, Ryan Foote, Alex Levchenko,
Constantin Schrade, Brandur Thorgrimsson, and Hongyi Xie
for helpful discussions. This work was supported by the
Vannevar Bush Faculty Fellowship program sponsored by the
Basic Research Office of the Assistant Secretary of Defense
for Research and Engineering and funded by the Office of
Naval Research through Grant No. N00014-15-1-0029, by
NSF EAGER Grant No. DMR-1743986, by the Army Re-
search Office, Laboratories for Physical Sciences Grant No.
W911NF-18-1-0115. The views and conclusions contained
here are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the Office of Naval Research or the U.S. Government.

[1] C. Nayak, S. H. Simon, A. Stern, M. Freedman, S. Das Sarma,
Rev. Mod. Phys. 80, 1083 (2008).

[2] J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).
[3] A. Y. Kitaev, Phys. Usp. 44, 131 (2001).
[4] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
[5] Y. Tanaka, T. Yokoyama, and N. Nagaosa, Phys. Rev. Lett. 103,

107002 (2009).
[6] F. Wilczek, Nat. Phys. 5, 614 (2009).
[7] A. R. Akhmerov, J. Nilsson, and C. W. J. Beenakker, Phys. Rev.

Lett. 102, 216404 (2009).
[8] M. Franz, Physics 3, 24 (2010).
[9] A. Stern, Nature (London) 464, 187 (2010).
[10] J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys.

Rev. Lett. 104, 040502 (2010).
[11] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett.

105, 077001 (2010).
[12] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105,

177002 (2010).
[13] J. Alicea, Phys. Rev. B 81, 125318 (2010).
[14] K. Flensberg, Phys. Rev. B 82, 180516(R) (2010).
[15] M. Duckheim and P. W. Brouwer, Phys. Rev. B 83, 054513

(2011).
[16] J. Klinovaja, P. Stano, and D. Loss, Phys. Rev. Lett. 109, 236801

(2012).
[17] M. Kjaergaard, K. Wölms, and K. Flensberg, Phys. Rev. B 85,

020503(R) (2012).

[18] S. Turcotte, S. Boutin, J. C. Lemyre, I. Garate, and M. Pioro-
Ladrière, arXiv:1904.06275.

[19] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E.
P. A. M. Bakkers, and L. P. Kouwenhoven, Science 336, 1003
(2012).

[20] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and
H. Q. Xu, Nano Lett. 12, 6414 (2012).

[21] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H.
Shtrikman, Nat. Phys. 8, 887 (2012).

[22] L. P. Rokhinson, X. Liu, and J. K. Furdyna, Nat. Phys. 8, 795
(2012).

[23] A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, K. Jung,
and X. Li, Phys. Rev. Lett. 110, 126406 (2013).

[24] H. O. H. Churchill, V. Fatemi, K. Grove-Rasmussen, M. T.
Deng, P. Caroff, H. Q. Xu, and C. M. Marcus, Phys. Rev. B
87, 241401(R) (2013).

[25] S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo,
A. H. MacDonald, B. A. Bernevig, and A. Yazdani, Science
346, 602 (2014).

[26] A. P. Higginbotham, S. M. Albrecht, G. Kiršanskas, W.
Chang, F. Kuemmeth, P. Krogstrup, T. S. Jespersen, J. Nygård,
K. Flensberg, and C. M. Marcus, Nat. Phys. 11, 1017
(2015).

[27] S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuemmeth,
T. S. Jespersen, J. Nygård, P. Krogstrup, and C. M. Marcus,
Nature (London) 531, 206 (2016).

125414-10

https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.103.107002
https://doi.org/10.1103/PhysRevLett.103.107002
https://doi.org/10.1103/PhysRevLett.103.107002
https://doi.org/10.1103/PhysRevLett.103.107002
https://doi.org/10.1038/nphys1380
https://doi.org/10.1038/nphys1380
https://doi.org/10.1038/nphys1380
https://doi.org/10.1038/nphys1380
https://doi.org/10.1103/PhysRevLett.102.216404
https://doi.org/10.1103/PhysRevLett.102.216404
https://doi.org/10.1103/PhysRevLett.102.216404
https://doi.org/10.1103/PhysRevLett.102.216404
https://doi.org/10.1103/Physics.3.24
https://doi.org/10.1103/Physics.3.24
https://doi.org/10.1103/Physics.3.24
https://doi.org/10.1103/Physics.3.24
https://doi.org/10.1038/nature08915
https://doi.org/10.1038/nature08915
https://doi.org/10.1038/nature08915
https://doi.org/10.1038/nature08915
https://doi.org/10.1103/PhysRevLett.104.040502
https://doi.org/10.1103/PhysRevLett.104.040502
https://doi.org/10.1103/PhysRevLett.104.040502
https://doi.org/10.1103/PhysRevLett.104.040502
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevB.81.125318
https://doi.org/10.1103/PhysRevB.81.125318
https://doi.org/10.1103/PhysRevB.81.125318
https://doi.org/10.1103/PhysRevB.81.125318
https://doi.org/10.1103/PhysRevB.82.180516
https://doi.org/10.1103/PhysRevB.82.180516
https://doi.org/10.1103/PhysRevB.82.180516
https://doi.org/10.1103/PhysRevB.82.180516
https://doi.org/10.1103/PhysRevB.83.054513
https://doi.org/10.1103/PhysRevB.83.054513
https://doi.org/10.1103/PhysRevB.83.054513
https://doi.org/10.1103/PhysRevB.83.054513
https://doi.org/10.1103/PhysRevLett.109.236801
https://doi.org/10.1103/PhysRevLett.109.236801
https://doi.org/10.1103/PhysRevLett.109.236801
https://doi.org/10.1103/PhysRevLett.109.236801
https://doi.org/10.1103/PhysRevB.85.020503
https://doi.org/10.1103/PhysRevB.85.020503
https://doi.org/10.1103/PhysRevB.85.020503
https://doi.org/10.1103/PhysRevB.85.020503
http://arxiv.org/abs/arXiv:1904.06275
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2429
https://doi.org/10.1103/PhysRevLett.110.126406
https://doi.org/10.1103/PhysRevLett.110.126406
https://doi.org/10.1103/PhysRevLett.110.126406
https://doi.org/10.1103/PhysRevLett.110.126406
https://doi.org/10.1103/PhysRevB.87.241401
https://doi.org/10.1103/PhysRevB.87.241401
https://doi.org/10.1103/PhysRevB.87.241401
https://doi.org/10.1103/PhysRevB.87.241401
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1038/nphys3461
https://doi.org/10.1038/nphys3461
https://doi.org/10.1038/nphys3461
https://doi.org/10.1038/nphys3461
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nature17162


MAJORANA BOUND STATES IN … PHYSICAL REVIEW B 101, 125414 (2020)

[28] M. T. Deng, S. Vaitiekėnas, E. B. Hansen, J. Danon, M. Leijnse,
K. Flensberg, J. Nygård, P. Krogstrup, and C. M. Marcus,
Science 354, 1557 (2016).

[29] H. Zhang, Ö. Gül, S. Conesa-Boj, M. P. Nowak, M.Wimmer, K.
Zuo, V. Mourik, F. K. de Vries, J. van Veen, M. W. A. de Moor,
J. D. S. Bommer, D. J. van Woerkom, D. Car, S. R. Plissard,
E. P. A. M. Bakkers, M. Quintero-Pérez, M. C. Cassidy, S.
Koelling, S. Goswami, K. Watanabe, T. Taniguchi, and L. P.
Kouwenhoven, Nat. Commun. 8, 16025 (2017).

[30] H. Zhang, C.-X. Liu, S. Gazibegovic, D. Xu, J. A. Logan, G.
Wang, N. van Loo, J. D. S. Bommer, M. W. A. de Moor, D.
Car, R. L. M. Op het Veld, P. J. van Veldhoven, S. Koelling,
M. A. Verheijen, M. Pendharkar, D. J. Pennachio, B. Shojaei,
J. S. Lee, C. J. Palmstrøm, E. P. A. M. Bakkers, S. Das Sarma,
and L. P. Kouwenhoven, Nature (London) 556, 74 (2018).

[31] B. Braunecker, G. I. Japaridze, J. Klinovaja, and D. Loss, Phys.
Rev. B 82, 045127 (2010).

[32] R. Egger and K. Flensberg, Phys. Rev. B 85, 235462 (2012).
[33] T.-P. Choy, J. M. Edge, A. R. Akhmerov, and C. W. J.

Beenakker, Phys. Rev. B 84, 195442 (2011).
[34] M. M. Vazifeh and M. Franz, Phys. Rev. Lett. 111, 206802

(2013).
[35] B. Braunecker and P. Simon, Phys. Rev. Lett. 111, 147202

(2013).
[36] S. Nadj-Perge, I. K. Drozdov, B. A. Bernevig, and A. Yazdani,

Phys. Rev. B 88, 020407(R) (2013).
[37] F. Pientka, L. I. Glazman, and F. von Oppen, Phys. Rev. B 88,

155420 (2013).
[38] J. Klinovaja, P. Stano, A. Yazdani, and D. Loss, Phys. Rev. Lett.

111, 186805 (2013).
[39] M. Ruby, F. Pientka, Y. Peng, F. von Oppen, B. W. Heinrich,

and K. J. Franke, Phys. Rev. Lett. 115, 197204 (2015).
[40] M. Schecter, M. S. Rudner, and K. Flensberg, Phys. Rev. Lett.

114, 247205 (2015).
[41] W. Hu, R. T. Scalettar, and R. R. P. Singh, Phys. Rev. B 92,

115133 (2015).
[42] B. Braunecker and P. Simon, Phys. Rev. B 92, 241410(R)

(2015).
[43] R. Pawlak, M. Kisiel, J. Klinovaja, T. Meier, S. Kawai, T.

Glatzel, D. Loss, and E. Meyer, npj Quant. Info. 2, 16035
(2016).

[44] G. L. Fatin, A. Matos-Abiague, B. Scharf, and I. Žutić, Phys.
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