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Determining the drivers of suspended sediment dynamics in tidal marsh-influenced 
estuaries using high-resolution ocean color remote sensing 

The content of this chapter was published in 2020 in Remote Sensing of Environment. 

This paper was co-authored by Cédric G. Fichot, Carly Baracco, Sergio Fagherazzi 

(Department of Earth and Environment, Boston University), Neil Ganju (Woods Hole 

Coastal and Marine Science Center, USGS), Ruizhe Guo, Sydney Neugebauer, Zachary 

Bengtsson (NASA DEVELOP National Program). 

1.1 Introduction 

 

Shallow bays surrounded by salt marshes are a buffer zone between the land and the ocean. 

These bays protect biodiversity, enhance water quality, mitigate river floods, protect from 

storms and sequester carbon (Fagherazzi et al. 2012; Fagherazzi et al. 2013b; Kirwan et 

al. 2016). Salt marshes are nourished with sediment by tides and maintain their elevation 

with respect to sea level if sediment inputs are adequate (Fagherazzi et al. 2013a; Ganju 

et al. 2017; Kirwan and Murray. 2007). Sediment deficiency in coastal waters has become 

widespread in the last century because of sediment trapping in upstream dams and soil 

conservation practices (Dai et al. 2016; Syvitski et al. 2009; Walling 2006; Yang et al. 

2011). Variations in riverine sediment inputs and associated suspended sediment 

concentration (SSC) could exert a pronounced influence on the morphological stability 

of the intertidal landscape and its ecosystems. SSC are associated with lower oxygen 

concentration especially in the estuarine turbidity maxima zone, and affects the spatial 

distribution of algal blooms by inhibiting algae growth (Carr et al. 2016; Hudson et al. 
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2017; De Swart et al. 2009). Reduced riverine sediment inputs could starve shorelines 

leading to wetlands loss (Blum and Roberts 2009; Fagherazzi et al. 2015). SSC data are 

also instrumental for the reliable calculation of sediment budgets in coastal systems 

(Ganju et al. 2015). It is therefore imperative to accurately measure SSC in marsh-

influenced estuaries (Lawson et al. 2007).  

The dynamics of estuarine suspended sediment transport has been extensively studied 

using in-situ measurements (Dyer et al. 2004, Li and Zhang 1998, Fagherazzi et al. 2017), 

lab flume experiments (Widdows et al. 1998), and numerical modeling (Fagherazzi et al. 

2012; van der Wegen. 2013). Recent studies have characterized the effect of density 

driven flows (Traykovski et al. 2000), tidal asymmetry (van der Wegen. 2013), wind-

induced waves (Mariotti et al. 2010), stratification and flocculation (Winterwerp. 2002) 

on sediment dynamics. However, these processes are difficult to study due to limited 

spatial resolution of field observations and sparse bottom data available for numerical 

modelling (Staneva et al. 2009, Wiberg et al. 2020).  Remote sensing data can bridge this 

data gap. For example, remote sensing can trace the spatio-temporal variations of 

turbidity maxima and frontal eddies in estuaries (Hudson et al. 2017; Jay et al. 2015; 

Ribbe et al. 2018; Everett et al. 2012). In addition, spatial distributions of SSC obtained 

from remote sensing can be set as initial conditions or used for validation, improving 

accuracy of numerical modeling (Staneva et al. 2009). 

High-quality radiometry from the Landsat-8 OLI and Sentinel-2 MSI now offer the 

possibility to derive high-spatial-resolution maps of SSC with reasonable accuracy in 



3 
 

nearshore regions. Moderate resolution optical remote sensing (spatial resolution > 300 

m) has been extensively used to study suspended sediment dynamics in coastal 

environments around the world (D'Sa et al. 2007; Miller and McKee 2004 ; Mao et al. 

2012; Cao et al. 2017; Hudson et al. 2017;  Fettweis and Nechad 2010; Eleveld et al. 

2014), but has very limited applicability in nearshore coastal areas, and particularly in 

enclosed bays and estuaries. However, the improved radiometric and spatial resolution of 

new sensors like the Landsat-8 OLI (30-m spatial resolution) of Sentinel-2 MSI (10-m 

spatial resolution) can now facilitate the study of suspended sediments dynamics in such 

nearshore environments. For instance, Gernez et al. (2015) used such data to explore the 

influence of river topography and tidal shoals geometry on the distribution of SSC in the 

Gironde and Loire estuaries. Vanhellemenont and Ruddick (2014) also used remote 

sensing to showcase the effects of wind turbines on sediment resuspension in the English 

Channel, and Snyder et al. (2017) employed similar methods to facilitate the selection of 

sites for oyster aquaculture. Using airborne imaging spectroscopy (2.5-m spatial 

resolution), Fichot et al. (2016) illustrated the importance of very-high-spatial-resolution 

images to study the drivers of turbidity and SSC in wetland channels and bays. None of 

these studies have directly used remote sensing to quantitatively assess the roles of tides, 

wind, and river discharge in driving SSC dynamics, particularly in marsh-influenced 

estuaries. Eleveld et al. (2014) derived SSC maps from 84 full-resolution MERIS data 

(300-m) over the Westerschelde estuary (Netherlands), but only classified them based on 

flood-ebb tidal stages and seasons.  
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Here, we leverage the existing record of high-spatial-resolution data from the Landsat-8 

OLI and Sentinel-2 MSI to evaluate whether these images can provide a realistic 

representation of SSC dynamics in tidal marsh-influenced estuaries, despite the long 

revisit-time of these sensors. Using the Plum Island Estuary (PIE; Massachusetts, USA) 

as a representative example, we assess whether this remote-sensing record can provide 

sufficient spatio-temporal information in such dynamic and heterogeneous coastal 

systems. In situ measurements are used to develop and validate local and sensor-specific 

empirical algorithms applicable to OLI and MSI imagery of the Plum Island Estuary. The 

algorithms are implemented on every clear image obtained between May 2013 and 

August 2018, and the derived SSC maps were used to quantitatively evaluate the role of 

river discharge, wind speed and direction, flood-ebb tidal stage, and episodic events of 

river floods and storms in regulating the SSC distribution along the thalweg of the Plum 

Island Estuary. A simple model to predict the SSC along the estuary from these physical 

drivers is also developed and presented. 

1.2 Study site 

Plum Island Estuary is a tidally-dominated and marsh-influenced estuary that represents 

the largest saline wetland in New England (Fig. 1.1). Located in Massachusetts (USA), 

the estuary covers an area of 59.8 km2, 60% of which are salt marshes dominated by 

Spartina alterniflora and Spartina patens. The estuary includes a primary sound that is 

about 1500 m wide at the inlet. Three distinct rivers discharge into the sound: the Parker, 

Rowley and Ipswich Rivers. The mouths of these rivers are approximately 500 m wide 

for the Parker River, and 300 m wide for Rowley and Ipswich Rivers. 
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Tidal range changes from 2.2 m to 3.6 m during neap-spring tidal modulation, with a 

mean tidal range of 2.9 m (LTER [Long Term Ecological Research] Tidal Station A in 

Fig. 1.1). The averaged depth of the sound is 3.0 m, with extensive shallow tidal flats 

exposed at low tide (Zhang et al. 2019). The freshwater discharge of the rivers displays 

strong seasonal variability. For example, the monthly mean discharge of the Parker River 

peaks at 2.41 m3/s in March and drops to less than 0.18 m3/s in August. Similarly, the 

Ipswich River discharge ranges from 12.86 m3/s to 1.19 m3/s (Fig. 1.2). The river 

discharge of the Rowley River is approximately 1/5 of the Parker River based on the ratio 

of watershed areas (Zhao et al. 2010, Hopkinson et al. 2018). The combined monthly 

freshwater discharge from the three rivers typically ranges from 1.40 m3/s to 15.40 m3/s 

but is generally negligible compared to the tidal prism (Fagherazzi et al. 2014). The tidal 

phase delay from the inlet to the upper bay near the mouth of the Parker River is 

approximately 30 minutes (Zhao et al. 2010). 

Wind-wave induced bottom shear stresses act mainly on shallow tidal shoals, and are one 

order of magnitude smaller than the stresses triggered by tidal currents flowing in the 

deep channels of the sound. Analysis of bed samples shows that the fraction of silt and 

clay is 5.2 % in the sound and reaches 20% with finer mean grain sizes of 142 µm in the 

rivers (Fagherazzi et al. 2014). Sea level is rising at about 2.8 mm yr-1 in this region 

(Claessens et al. 2006; Hopkinson et al. 2018). Hundreds of small dams present in the 

rivers watersheds reduce the sediment load, alter river flow dynamics, and influence both 

suspended matter and wetland stability in the Plum Island Estuary (Hein et al. 2012). 
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Figure 1.1 (A) Location of the Plum Island Estuary in Massachusetts, USA and 40 

sampling sites. (B) Locations of the Parker, Rowley and Ipswich Rivers. Numbers of 0-

11 km (red triangles) indicate distances along the thalweg of the sound (green line) from 

the mouth of the Parker River to the Ocean. Yellow dots indicate 26 sites sampled in 2018. 

The long-term observation station A is at the Ipswich Bay Yacht Club pier and belongs 

to PIE-LTER.  
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Figure 1.2 (A) Parker River monthly discharge recorded at USGS station 01101000. (B) 

Ipswich River monthly discharge recorded at USGS station 01102000. 

 

1.3 Materials and methods 

1.3.1 In situ measurements 
 

A total of 40 stations were sampled in the Plum Island Estuary and in Massachusetts Bay 

during October and November 2017 and from May to July 2018 (Fig. 1.1, Table 1.2). 

Most  of the samples were collected in the Plum Island Estuary and the few samples (7) 
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collected in Massachusetts Bay were used as ocean end-members to help improve the 

performance of the algorithm at low suspended sediment concentrations.  

Suspended Sediment Concentration (SSC): Surface water samples (0.5 m depth) were 

collected using a 4-L horizontal Van Dorn sampler. The entire sample was drained in a 

4-L amber high-density-polypropylene (HDPE) bottle and kept on ice in a cooler or at 

4oC until analysis, usually within a few hours of sampling. Samples were analyzed for 

suspended sediment concentration in the laboratory following the protocol of 

Neukermans et al. (2012). A volume ranging 0.5 L to 2 L of sample water (depending on 

in situ measured turbidity) was filtered on pre-weighed GF/F glass microfiber filters with 

a pore size of 0.7 µm, rinsed with at least 250-mL of high-purity water (Milli-Q), and 

dried at 75oC for 24 h. Weights of the filter were measured using a Sartorius Cubis 

MSE3.6P000DM Microbalance.  

Turbidity: A YSI ProDSS Multiparameter Water Quality Meter with sensors for 

temperature, conductivity, depth, dissolved oxygen, chlorophyll-a fluorescence, and 

turbidity (infrared detector, 90o, Formazin Nephelometric Unit (FNU)) was deployed at 

each station in the Plum Island Estuary during the May-July 2018 time period (not 

available for 2017 sampling). Turbidity measurements were collected with a sampling 

rate of 1 Hz for 1-2 min at each station, and the average was calculated after removal of 

outliers (any data above 2 times the standard deviation). The YSI ProDSS was also 

equipped with a GPS, and in some cases the YSI ProDSS was used to make underway 
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measurements just below the surface (0.1 - 0.2 m depth) from the bow of the boat and 

away from bubbles produced during the boat’s movement. 

Spectral remote-sensing reflectance (Rrs(λ)): The spectral remote-sensing reflectance of 

the water, Rrs(λ), was measured wherever water samples for SSC were collected. 

Measurements were only made when water was deeper than 3 m or was attenuating 

enough than the bottom evidently had minimal influence on the Rrs(λ). Two different 

approaches were used (Fig. 1.3). For a total of 14 stations, Rrs(λ) was determined from 

vertical optical profiles of upwelling radiance and downwelling irradiance acquired with 

a Biospherical® Compact Optical Profiling System (C-OPS) (Morrow, 2010). The C-

OPS was deployed off the side of a zodiac (Plum Island Estuary stations) or from the 

stern of the research vessel R/V Auk (Massachusetts Bay stations, and the optical profiles 

were always performed at least 20 m from the boat and on the sunny side in order to avoid 

the boat’s shadow). The optical profiles were then used to derive Rrs(λ) just above the 

surface and at 19 wavelengths from 305 nm to 780 nm (including red bands at 625 and 

665 nm) using well-established protocols described in Antoine et al.( 2013) and Hooker 

et al. (2013). At least three profiles were done at each station, and the average Rrs(λ) for 

the three profiles was used. For the other 26 samples (all in Plum Island Estuary), Rrs(λ) 

was determined at 1 nm spectral resolution from 350-1000 m using an ASD® Handheld-

2-Pro spectrometer and following the recommended procedure described in Mobley 

(1999). Briefly, the handheld spectrometer was used to measure radiance (here in digital 

counts) from three targets at each station: 1) reflected sunlight from a Spectralon® plate 
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(average of ~10 measurements), 2) skylight measured at 40o from the zenith and at 135o 

from the Sun’s azimuthal plane (average of ~10 measurements), 3) water radiance 

measured at an angle of 40o from Nadir and at 135o from the Sun’s azimuthal plane 

(average of ~10 measurements). All measurements of the three targets were made within 

5 mins while illumination conditions were stable (e.g., no variable cloud conditions). 

Note all ASD measurements were made during relatively clear-sky conditions, with 

occasionally some high cirrus clouds. Remote-sensing reflectance was estimated as in 

equation  

             Rrs(λ) = (Lwater – ρ*Lsky)/(π*Lspectralon /σ)                             (1.1) 

where Lwater is the measured radiance of the water,  Lsky is the measured skylight radiance, 

and ρ is the fraction of skylight reflected at the air-water interface at 40o incidence angle 

and with dependence on wind-speed. Lspectralon is the measured radiance of the Spectralon 

plate, π is a factor to convert radiance to irradiance assuming the Spectralon plate is a 

Lambertian surface, and σ is the reflectance of the Spectralon plate (typically > 99%, but 

with some spectral dependence). In order to provide a more accurate value for ρ, wind 

speeds were also recorded and averaged over 1 min using a handheld vane anemometer 

(Mobley, 1999). 
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Table 1.1 Parameters of different sensors  

Sensor Band Center Wavelength [nm] Bandwidth [nm] Spatial resolution 
(m) 

Operational Land 
Imager (OLI) 

4 654.59 37.47 30 

Sentinel-2A/2B 4 665 30 10 

 

 

Figure 1.3 Remote-sensing Reflectance (Rrs) spectra of water samples for different SSC, 

measured by (A) Compact Optical Profiling System (C-OPS) and (B) ASD® Handheld-
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2-Pro spectrometer. Note (A) shows all the 14 samples, (B) only show 18 samples instead 

of 26 samples for ease of visualization. 

 

Table 1.2 Locations, date, SSC and Rrs (λ) measurement methods of all 40 water samples. 

C-OPS: Compact Optical Profiling System, is used to derive Rrs (λ) at 19 wavelengths 

from 305 nm to 780 nm (including red bands at 625 and 665 nm). ASD: ASD® Handheld-

2-Pro spectrometer, is used to derive Rrs(λ) at 1 nm spectral resolution from 350-1000 m. 

Num Name Date Time Latitude Longitude SSC 
(mg/L) 

Rrs (λ) 
Method 

1 PIE_01 11/4/2017 11:43 42.7289 -70.8457 5.92 C-OPS  

2 PIE_02 11/4/2017 12:19 42.7314 -70.8345 2.13 C-OPS  

3 PIE_03 11/4/2017 12:47 42.7266 -70.8156 1.26 C-OPS  

4 PIE_04 11/4/2017 13:08 42.7142 -70.8145 1.86 C-OPS  

5 PIE_05 11/4/2017 13:36 42.7078 -70.7939 2.72 C-OPS  

6 PIE_06 11/4/2017 14:06 42.6973 -70.7866 3.73 C-OPS  

7 PIE_07 11/4/2017 15:06 42.7248 -70.8553 28.94 C-OPS  

8 NI01 10/16/2017 11:00 42.1678 -70.7039 0.92 C-OPS  

9 NI02 10/16/2017 12:15 42.1601 -70.6946 1.36 C-OPS  

10 NI03 10/16/2017 13:20 42.1366 -70.6719 0.95 C-OPS  

11 SSB01 10/18/2017 14:30 42.1902 -70.2651 0.76 C-OPS  

12 SSB02 10/18/2017 13:19 42.1563 -70.2062 0.39 C-OPS  

13 SSB03 10/18/2017 11:51 42.1378 -70.3383 0.51 C-OPS  

14 SSB04 10/18/2017 10:30 42.1395 -70.4058 0.70 C-OPS  

15 PIE_061218_S01 6/12/2018 9:26-9:32 42.7619 -70.83772 21.71 ASD 

16 PIE_061218_S02 6/12/2018 10:01-10:05 42.7585 -70.82822 9.88 ASD 

17 PIE_061218_S03 6/12/2018 10:40 -10:44 42.7467 -70.82003 4.48 ASD 

18 PIE_061218_S04 6/12/2018 11:11-11:15 42.7376 -70.802 1.94 ASD 

19 PIE_061218_S05 6/12/2018 11:38-11:43 42.7337 -70.80152 1.02 ASD 

20 PIE_062118_S01 6/21/2018 9:51-9:56 42.6921 -70.76372 1.36 ASD 

21 PIE_062118_S02 6/21/2018 10:25-10:38 42.694 -70.781 1.29 ASD 

22 PIE_062118_S03 6/21/2018 10:58-11:10 42.7095 -70.79384 2.24 ASD 

23 PIE_062118_S04 6/21/2018 11:28-11:42 42.7114 -70.8085 3.95 ASD 
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24 PIE_062118_S05 6/21/2018 12:08-12:17 42.72 -70.813 6.90 ASD 

25 PIE_062718_S01 6/27/2018 15:12-15:55 42.7282 -70.80443 6.10 ASD 

26 PIE_062718_S02 6/27/2018 15:45-15:55 42.7315 -70.83808 6.26 ASD 

27 PIE_062718_S03 6/27/2018 16:11-16:21 42.7252 -70.85494 8.59 ASD 

28 PIE_070318_S01 7/3/2018 8:15-8:19 42.7249 -70.85501 8.44 ASD 

29 PIE_070318_S02 7/3/2018 8:37-8:39 42.729 -70.84537 8.25 ASD 

30 PIE_070318_S03 7/3/2018 8:51-8:54 42.7319 -70.83803 9.93 ASD 

31 PIE_070318_S04 7/3/2018 9:16-9:18 42.727 -70.80878 3.40 ASD 

32 PIE_070318_S05 7/3/2018 9:53-9:55 42.75 -70.82147 11.59 ASD 

33 PIE_070318_S06 7/3/2018 10:11-10:14 42.7417 -70.81526 9.28 ASD 

34 PIE_071118_S01 7/11/2018 9:22-9:23 42.682 -70.83028 7.33 ASD 

35 PIE_071118_S03 7/11/2018 10:26-10:27 42.7252 -70.85492 6.77 ASD 

36 PIE_071118_S04 7/11/2018 10:53-10:55 42.7629 -70.84653 11.90 ASD 

37 MR_071918_S01 7/19/2018 10:51-10:54 42.8127 -70.85472 7.65 ASD 

38 MR_071918_S02 7/19/2018 11:09-11:11 42.8135 -70.86009 7.67 ASD 

39 MR_071918_S03 7/19/2018 11:31-11:33 42.817 -70.84015 7.37 ASD 

40 MR_071918_S04 7/19/2018 11:57-11:59 42.8095 -70.82726 8.11 ASD 

 

1.3.2 Development of local empirical algorithms for the retrieval of SSC from 
OLI and MSI 

 

The paired in situ measurements of SSC and Rrs(λ) described above were used to derive 

simple empirical algorithms that can be implemented on OLI and MSI imagery. It is well 

established that the Rrs in the red or near-infrared region can be used as a sensitive 

predictor of SSC in waters where suspended sediments are important drivers of optical 

variability (Nechad et al.2010, Giardino et al. 2010, Vanhellemont et al. 2014, Fichot et 

al. 2016, Constantin et al. 2018). Not surprisingly, Rrs in the red region was also strongly 

and non-linearly related to SSC in this system (Fig. 1.4). In order to develop algorithms 

specifically applicable to the Landsat-8 OLI and the Sentinel-2A/B MSI, the relative 
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spectral responses of the OLI and MSI red bands were used to calculate spectrally 

weighed remote-sensing reflectance from the hyperspectral in situ Rrs(λ) measured with 

the ASD. As described in Pahlevan et al. (2017a), the spectrally weighed remote-sensing 

reflectance over the center wavelength λc = 655 nm (OLI) and λc = 665 nm (MSI) was 

calculated as in equation (1.2): 

𝑅𝑅𝑟𝑟𝑟𝑟(𝜆𝜆𝑐𝑐) = ∑ 𝑅𝑅𝑟𝑟𝑟𝑟(𝜆𝜆𝑖𝑖)𝑅𝑅𝑅𝑅𝑅𝑅(𝜆𝜆𝑖𝑖)𝑛𝑛
1
∑ 𝑅𝑅𝑟𝑟𝑟𝑟(𝜆𝜆𝑖𝑖)𝑛𝑛
1

                                                   (1.2) 

where 𝑅𝑅𝑟𝑟𝑟𝑟(𝜆𝜆𝑐𝑐) is the remote-sensing reflectance spectrally weighed over the OLI/MSI 

broad red band,  𝑅𝑅𝑟𝑟𝑟𝑟(𝜆𝜆𝑖𝑖) is the hyperspectral remote-sensing reflectance (1-nm spectral 

resolution) measured in situ using the ASD. 𝑅𝑅𝑅𝑅𝑅𝑅(𝜆𝜆𝑖𝑖) is relative spectral response of the 

OLI/MSI over the broad red band, with n = 67 for 1-nm resolution data over the range 

625-691 nm (OLI), n = 39 over the range 646-684 nm ( Sentinel-2A MSI), and n=40 over 

the range 646-685 nm (Sentinel-2B MSI) . This spectral weighing procedure was applied 

to the 26 measurements made with the ASD, but it could not be applied to the 14 samples 

measured with the C-OPS considering the instrument only provides measurements at 19 

wavelengths. In this case, the Rrs(665) measured directly from the C-OPS was used as 

an estimate of the MSI red-band Rrs, and the Rrs(655) estimated from linear interpolation 

of Rrs(625) and Rrs(665) measured directly with the C-OPS used as an estimate of the 

red-band OLI Rrs. However, a simple comparison of Rrs at discrete wavelength and 

spectrally weighed Rrs using the ASD data revealed that this limitation only introduced 

a +/- 4.06% uncertainty in the C-OPS derived MSI and OLI red-band Rrs and had very 

limited impact on the parameterization of the algorithms (Fig. 1.5 and Table 1.2).  
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Figure 1.4 Measured SSC as a function of measured Remote-sensing reflectance 

(combined 14 discrete remote-sensing reflectance and 26 spectrally weighed Remote-

sensing reflectance) at 655 nm (RrsOLI (red)) for Landsat-8 OLI (a), 665 nm (RrsS-2A (red)) 

for Sentinel-2A MSI (b) sensors based on 40 water samples (Fig. 1.1). RMSE represents 

root mean square error and MAPE mean absolute percentage error (Eq.1.6).  
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Figure 1.5 Difference between Remote-sensing Reflectance Rrs, at a discrete wavelength 

corresponding to the center of the red band of the OLI (655 nm) and MSI (665 nm), and 

the Rrs spectrally weighed over the corresponding broad red band of these sensors. The 

difference highlights an average difference of ± 4.06%. Data were simulated here using 

the 26 samples collected with the ASD Handheld-2 Pro spectrometer. 

 

A combination of 26 spectrally-weighed Rrs and 14 discrete Rrs were thus used to 

develop the three sensor-specific algorithms based on exponential fits of the measured 

SSC on the measured red-band Rrs (Fig. 1.4) and shown in Eqs. 1.3 to 1.5:  

SSCOLI = 1.2158 * exp(453.87 * RrsOLI(red)) - 0.5159               (1.3) 

R2 = 0.931, p-value <<0.001, RMSE = 1.55, Mean Absolute Percentage Error (MAPE) 

= (±5.16%) 

SSCMSI-S2A = 1.9318 * exp(401.15 * RrsS2A(red)) - 1.4729                 (1.4)  

R2 = 0.927, p-value <<0.001, RMSE = 1.59, MAPE = (± 5.61%) 

SSCMSI-S2B = 2.0107 * exp(396.04 * RrsS2B(red)) - 1.5804     (1.5) 

R2 = 0.927, p-value <<0.001, RMSE = 1.59, MAPE = (±5.63%) 

The indicator of MAPE is calculated as: 

               𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  ± 1
𝑁𝑁
∑ �𝑦𝑦𝑖𝑖− 𝑦𝑦𝑖𝑖

′

𝑦𝑦𝑖𝑖
�𝑁𝑁

𝑖𝑖=1                                                         (1.6) 
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Where yi  and yi′  indicate measured and modelled SSC respectively, and N is total 

number of observations. 

SSCOLI, SSCS2A and SSCS2B are the suspended sediment concentrations to be derived from 

the remote-sensing reflectance over the broad red band of the Landsat-8 OLI (RrsOLI 

(red)), Sentinel-2A MSI (RrsS-2A(red)) and Sentinel-2B MSI (RrsS-2B(red)) sensors 

respectively. These simple algorithms show that the red-band Rrs explains 93% of the 

variance in SSC across a range of 1 to 30 mg L-1, which is representative of the range of 

SSC typically measured over the past 15-years (Hopkinson et al., 2018). The algorithms 

facilitate the retrieval of SSC within ± 5.47% of the measured values. The observed 

scatter in the relationships between red-band Rrs and SSC can be caused by several 

factors: 1) uncertainties in the measurements of SSC and Rrs, 2) differences in particle 

size, shape, and type which can influence the specific inherent optical properties of the 

suspended particles (e.g., volume scattering phase function, and mass-specific absorption 

coefficient), 3) influence of bottom reflectance in some of the shallower waters sampled 

(e.g., during low tide), and to a lesser extent 4) independent variations in chromophoric 

dissolved organic matter which can contribute to some variability in Rrs even in the red.  

 

1.3.3 Processing of OLI and MSI imagery and implementation of the algorithms 
 

Level-1 data from Landsat-8 OLI, Sentinel-2A MSI, and Sentinel-2B MSI were obtained 

from the USGS Earth Explorer website (https://earthexplorer.usgs.gov) and were 

atmospherically corrected using the NASA SeaDAS v.7.5.1 comprehensive software 

https://earthexplorer.usgs.gov/
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package for the processing, display, analysis, and quality control of ocean color data. 

Briefly, the l2gen processor was used to generate Level-2 mapped rasters of the red-band 

Rrs from the Level-1 top-of-atmosphere calibrated radiances using the standard multi-

scattering and iterative near infrared (NIR) model of Bailey et al., (2010) and the vicarious 

gains of Pahlevan et al. (2017b). A total of 46 mostly-clear scenes of red-band Rrs were 

thus generated, including 24 scenes from Landsat-8 at 30-m spatial resolution, 14 from 

Sentinel-2A at 10-m spatial resolution, and 8 from Sentinel-2B also at 10-m spatial 

resolution. The sensor-specific algorithms displayed in Eqs. 1.3-1.5 were then applied to 

their corresponding scenes to produce SSC maps. 

Large portions of the Plum Island Estuary consists of shallow areas. In order to avoid 

significant contamination by bottom reflectance, only remotely sensed data collected over 

the center of the main channel were used in this study. Bottom depth along the transect 

increased progressively from a minimum of 2.5 m in the more turbid upstream reaches of 

the estuary (from marker 0 to 1-km) to more than 10-m near the mouth of the estuary (Fig. 

1.6). A simple quantitative analysis was done to assess the potential influence of bottom 

reflectance on the remotely sensed Rrs(665) . It revealed that bottom reflectance unlikely 

affected the observed remotely sensed Rrs(665) along the transect, with the exception of 

a short and shallow section of the transect located between the 8.25 and 8.75-km markers, 

where a combination of clearer waters and a bottom depth of < 5 m likely led to a 

significant contribution of bottom reflectance. However, a simple comparison indicated 

that the apparent increase in Rrs(665) due to bottom reflectance observed between the 
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8.25 and 8.75-km markers only caused an average increase of 0.5% in the transect-

averaged SSC and was therefore not considered an issue for the purpose of this study. 

 

Figure 1.6 Elevation (NAVD88) of the Plum Island Estuary: (a) Map derived from a 

combination of LIDAR and GPS bathymetry measurements provided by LTER-PIE 

(https://pie-lter.ecosystems.mbl.edu/data), (b) elevation along the thalweg of the sound 

(red line) from the mouth of the Parker River (Marker 0 km) to the mouth of the esuatry 

(Marker 11.3 km). 

 

1.3.4 Potential influence of bottom reflectance on the remotely sensed Rrs(665) 
 

A simple quantitative analysis was done to estimate the approximate potential 

contribution of bottom reflectance on the average remotely-sensed Rrs along the thalweg 

https://pie-lter.ecosystems.mbl.edu/data
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transect. In this analysis, the 𝑅𝑅𝑅𝑅𝑅𝑅𝐵𝐵(665)  contributed by the bottom reflectance of 

incident irradiance was estimated using Eq. 1.7 

𝑅𝑅𝑅𝑅𝑅𝑅𝐵𝐵(665) ≅ 𝐿𝐿𝑊𝑊𝐵𝐵(665)
𝐸𝐸𝑑𝑑(0+,665)      (1.7) 

where the 𝐿𝐿𝑊𝑊𝐵𝐵(665) is the water-leaving radiance at 665 nm contributed by the bottom 

reflectance of the irradiance incident above the air-water interface at 665 nm, 

𝐸𝐸𝑑𝑑(0+, 665). Here, 𝐿𝐿𝑊𝑊𝐵𝐵(665) can be approximated using Eq. (1.8) 

𝐿𝐿𝑊𝑊𝐵𝐵(665) ≅ �1
𝜋𝜋
� ∗ 0.96 ∗ 𝐸𝐸𝑑𝑑(0+, 665) ∗ exp(𝐾𝐾𝑑𝑑(665) ∗ 𝑧𝑧) ∗ exp(𝐾𝐾𝑢𝑢(665) ∗ 𝑧𝑧) ∗ 𝑅𝑅𝐵𝐵 ∗

0.54                                                                                                                           (1.8) 

where Kd (665) is the diffuse attenuation of downward irradiance at 665 nm, Ku(665) is 

the diffuse attenuation of upwelling irradiance at 665 nm, z is the bottom depth (negative 

value), RB is the bottom irradiance reflectance, the 1/π factor is used to convert water-

leaving reflectance to remote-sensing reflectance assuming an isotropic upward light field, 

and the 0.54 and 0.96 factors account for reflection of upwelling radiance and 

downwelling irradiance, respectively, at the air-water interface. In most cases, 𝐾𝐾𝑑𝑑 and 𝐾𝐾𝑢𝑢 

are very close in value (Howard and Morel, 2012), such that Eq. (1.8) can be simplified 

to: 

𝐿𝐿𝑊𝑊𝐵𝐵(665) ≅ �1
𝜋𝜋
� ∗ 0.96 ∗ 𝐸𝐸𝑑𝑑(0+, 665) ∗ exp(𝐾𝐾𝑑𝑑(665) ∗ 𝑧𝑧 ∗ 2) ∗ 𝑅𝑅𝐵𝐵 ∗ 0.54  (1.9) 

Inserting Eq. (1.9) into Eq. (1.7) yields Equation (1.10): 

𝑅𝑅𝑅𝑅𝑅𝑅𝐵𝐵(665) ≅ �1
𝜋𝜋
� ∗ 0.96 ∗ exp(𝐾𝐾𝑑𝑑(665) ∗ 𝑧𝑧 ∗ 2) ∗ 𝑅𝑅𝐵𝐵 ∗ 0.54  (1.10) 

Here, 𝑅𝑅𝑅𝑅𝑅𝑅𝐵𝐵(665) was calculated along the transect (Fig.1.7) using Eq. (1.10) and the 

following data:  

1) Bottom depth z along the transect (Fig. 1.7A), extracted from the bathymetry data (see 

Fig. 1.6). 
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2) A linear increase of bottom irradiance reflectance 𝑅𝑅𝐵𝐵(665) ranging from 0.1 in the 

muddy sediment upstream to 0.5 in for the more sandy sediments near the mouth of 

the estuary (Fig. 1.7B), based on reported data (Volpe, 2011) and reflecting the 

general gradient of bottom sediment type along the transect (Fagherazzi et al., 2014).  

3) Values of Kd(665) measured across a representative range of water types in the Plum 

Island Estuary using a Biopherical C-OPS (See Methods) ranged from ~0.55 - 2 m-1 

and were found to be strongly linearly correlated (R2 > 0.90, n = 45) with SSC 

measured on samples acquired coincidently in situ. This strong relationship is not 

surprising considering that backscattering by particles is the main factor influencing 

Kd at 665 nm besides the constant absorption by water. This relationship, Kd(665) = 

0.0845*SSC + 0.4934, was thus used to estimate an average Kd(665) transect from 

the average of all remotely sensed SSC transects used in this study (Fig. 1.7C).  
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Figure 1.7 Potential contribution of bottom reflectance to the average Rrs(665) observed 

along the thalweg of the main channel of the Plum Island Estuary, along with the variables 

used to calculate it. (A) Bottom depth z from bathymetry. (B) Assumed bottom irradiance 

reflectance (C) Kd(665) estimated from the average distribution of SSC along the transect. 

(D) Average remotely sensed Rrs(665) from all scenes, and potential contribution from 

bottom reflectance.  

The lack of correspondence between the transect of remotely sensed Rrs(665) and the 

calculated contribution from bottom reflectance (Fig.1.7D) indicates that the bottom 

reflectance contributed minimally to the observed patterns of Rrs(665) variability, except 

for a shallow 0.5-km section of the transect located between markers 8.25 and 8.75 km, 

where clearer waters (lower Kd(665) values) and shallow bottom likely contributed to an 

apparent increase in remotely sensed Rrs(665). 

 

1.3.5 Hydrodynamic and meteorological analysis 
 

Water level, wind conditions, and river discharge data were collected at the same instant 

of each satellite image. The LTER-PIE services a fixed meteorological station at the 

Ipswich Bay Yacht Club pier (see location A in Fig. 1.1), recording water level, wind 

speed, and direction every 15 minutes. Daily river discharge data for the Parker River and 

Rowley River are available at the USGS stations 0110100 and 01102000 respectively. 

Tidal discharge is an important parameter for sediment dynamics. In fact when the tidal 

discharge is maximum, usually near mean sea level for mudflats, water velocities at the 

bottom are high, leading to high bottom shear stresses and sediment resuspension, thus 

increasing SSC. An estimate of the temporal variations in tidal discharge in a system is 

quite complex (see Kearney et al. 2017), and usually requires a high resolution numerical 
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model (e.g. Zhang et al. 2019) or intensive field measurements (Fagherazzi and Priestas 

2010). Here we use the temporal variation in water level 𝑑𝑑ℎ/𝑑𝑑𝑑𝑑  as a proxy for tidal 

discharge, with positive values indicating flood direction. This approximation is based on 

the tub model of Boon (1975), who showed that for continuity in a tidal system a change 

in water level requires an input/output of a volume of water in the system. To a first 

approximation, we can write (Boon 1975):  

     

   𝑄𝑄 = 𝐴𝐴 𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

                                        (1.11)  

Where Q is the tidal discharge entering the system, A is the flooded area of the bay, which 

can be considered constant to a first-order approximation, and 𝑑𝑑ℎ/𝑑𝑑𝑑𝑑 the variation in 

water level triggered by the tide. 

This model does not account for the variability in flooded area due, for example, to 

wetting and drying of marshes or the propagation of the tide in the system, which causes 

a spatially-variable dh/dt in the bay (Fagherazzi et al. 2008). However, this simple 

approximation correctly captures the low flow at slack water, the discharge peak near 

MSL, and neap/spring modulations in tidal discharge. More importantly, temporal 

variations in water level 𝑑𝑑ℎ/𝑑𝑑𝑑𝑑 can be readily computed from a tidal gauge without the 

need of bathymetric data, and it is therefore ideal ancillary data for remote sensing images.     

 The 46 scenes used in this manuscript cover the entire tidal cycle of flood and ebb tides 

and high and low water levels. In Figure 1.8 we plot the average sediment concentration 
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as a function of water level and rate of water level change, dh/dt. The rate of water level 

change is a proxy for tidal flow, and it is positive during flood and negative during ebb 

(Fagherazzi et al. 2008). Our measurements span low and high tide as well as low and 

high flow, although there was a slight bias towards high flow conditions during flood 

(high rates of water-level change) when the water level is around zero (Fig. 1.8). The 

wind speed ranges from 0.97 to 11.81 m/s, and river discharge of Parker River ranges 

from 0.01 to 6.17 m3/s (Table 1.4). These 46 scenes cover entire tidal cycle, normal wind 

conditions (Fagherazzi et al. 2014) and a typical range of river discharge (Fig. 1.2), thus 

providing a representative database to capture the main drivers contributing to variations 

of SSC in the study area. 

 

Figure 1.8 Relationship between in-situ measured water level, temporal variations in 

water level dh/dt at Ipswich Bay Yacht Club pier (see location A in Fig. 1.1) and transect 
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averaged SSC (n=46). dh/dt is a proxy for tidal flow and positive values indicate flood 

tide. The data highlight that the remote-sensing data cover a representative range of tidal 

conditions typically encountered at the Plum Island Estuary. 

 

1.4 Results 

1.4.1 Distribution of SSC as a function of river discharge, wind and tides 
 

Table 1.3 Hydrodynamic and meteorological parameters of representative SSC maps 

shown in Fig. 1.9, 1.10.  

Figure Date Water 
level 
(m) 

LTER 
dh/dt 
(m/h) 

Wind 
speed 
(m/s) 

Wind 
direction 
(˚) 

Parker 
discharge 
(m3/s) 

SSC 
(mg/L) 

Dominated 
factor 

1.9a,1.10a 10/12/2014 -0.35 0.66 3.19 331.80 0.01 2.20 High tidal 
flow 

1.9b,1.10a 10/5/2017 1.39 0.14 3.11 290.40 0.24 0.51 Low tidal 
flow 

1.9c,1.10b 10/20/2017 1.12 0.57 6.58 303.10 0.01 0.97 Flood tide 

1.9d,1.10b 12/1/2017 0.98 -0.58 6.98 308.40 0.42 0.52 Ebb tide 

1.9e,1.10c 4/3/2014 -0.45 0.68 3.07 57.50 6.17 9.87 High 
discharge 

1.9f,1.10c 3/18/2014 0.46 0.64 2.49 62.50 1.83 1.72 Low 
discharge 

1.9g,1.10d 3/11/2017 1.39 -0.05 9.93 272.00 1.14 0.40 High wind 
speed 

1.9h,1.10d 7/5/2013 0.78 -0.30 2.05 312.10 3.20 0.77 Low wind 
speed 

1.9i,1.10e 3/26/2018 -0.53 -0.57 7.33 26.73 1.64 4.08 Northeast 
wind 
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1.9j,1.10e 2/6/2017 -0.53 -0.62 7.10 313.20 1.16 1.82 Northwest 
wind 

 

Possible hydrodynamic and meteorological controls on water surface SSC include tidal 

currents, river discharge, and wind-generated waves. To qualitatively illustrate these 

different controls, we selected pairs of images in which only one hydrodynamic or 

meteorological variable significantly varies (Table 1.3). The sole influence of tidal 

current magnitude on SSC, under similar conditions of river discharge, wind speed, and 

wind direction was showed in the SSC maps derived from the OLI and MSI (Fig. 1.9a, 

b). The sole influence of tidal current direction (Fig. 1.9c, d), river discharge (Fig. 1.9e, 

f), wind speed (Fig. 1.9g, h) and wind direction (Fig. 1.9i, j) were also illustrated in these 

high-resolution maps. 
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Figure 1.9 Spatial distribution of SSC as a function of different hydrodynamic and 

meteorological factors: tidal current magnitude (a, b); tidal current direction (c, d); river 

discharge (e, f); wind speed (g, h) and wind direction (i, j).   
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The SSC in the upper bay increased by an order of magnitude when the water-level rate 

of change (𝑑𝑑ℎ/𝑑𝑑𝑑𝑑) increased from 0.14 m/h (October 5, 2017) to 0.66 m/h (October 12, 

2014) (Fig. 1.9a, b and Fig. 1.10a). This is because a fast increase in water level led to 

higher tidal velocities in the bay, resuspending bottom sediments and increasing SSC 

(Fagherazzi et al. 2012). SSC was 1-2 times larger during flood than ebb although winds 

and freshwater discharges were slightly stronger during ebb (Fig. 1.10b). An extreme 

river flood of the Parker River and associated sediment plume was detected on April 3, 

2014, with a river discharge of 6.17 m3/s (Fig. 1.9e,f). The river flood caused a SSC 4-5 

times larger than the average along the entire bay (Fig. 1.10c). Values of SSC in March 

11, 2017 with a wind speed of 9.93 m/s are slightly lower than values of SSC in July 5, 

2013 with a wind speed of 2.05 m/s (Fig. 1.10d). This result indicates that wind speed 

might have a weak control on suspended sediments; we therefore suggest that variations 

in water level and river discharge are more important for SSC dynamics. A Nor’easter 

storm in March 26, 2018 (Fig. 1.9i, j) was also captured in our analysis, with wind speed 

of 7.33 m/s and wind direction of 26˚. We compared this event with an image taken on 

February 6, 2017 with similar wind speed of 7.31 m/s but approximately reversed wind 

direction of 313˚. Strong wind waves caused by the Nor’easter storm contributed to more 

sediment resuspension especially in the shallower upper bay and along the shoreline (Fig. 

1.9i,  j and Fig. 1.10e).  

We calculated averaged SSC along the thalweg of all scenes in different seasons and 

grouped them by flood and ebb directions. SSC generally decreased seaward and was 
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significantly larger during flood than during ebb in the upper bay (Fig. 1.11a). The SSC 

presented seasonal differences, with the spring season featuring the largest SSC (Fig. 

1.11b) because of higher river discharge (see Fig. 1.2 and Table 1.4). Higher SSC 

occurred during flood in both spring and fall seasons (Fig. 1.11b, d), while in summer 

and winter the magnitude of SSC in flood was comparable to that in ebb (Fig. 1.11c, e). 

We conclude that SSC during flood tide was generally higher than during ebb tide, and 

the reasons will be examined in following sections. 
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Figure 1.10 Distribution of SSC along the main channel thalweg (see thalweg location in 

Fig. 1.1) showcasing, in each case, the dominant effect of a single factor: (a) tidal current 

magnitude; (b) tidal current direction;  (c) river discharge; (d) wind speed; and (e) wind 

direction. 
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Figure 1.11 Seasonal averaged SSC along the main channel thalweg in spring (a), summer 

(b), autumn (c), and winter (d) grouped by flood and ebb directions. Shaded area around 

the lines indicate the 95% confidence interval. The yellow colored bar at the bottom of 

(a) indicates where the SSC values in flood are significantly higher than SSC values in 

ebb (p-value<0.05 in analysis of variance ANOVA). 
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Table 1.4 Hydrodynamic and meteorological conditions of 46 scenes used.   

Scene 
Num 

Date Sensors Water 
 level  
(m) 

dh/dt 
(m/h
) 

Wind 
speed 
(m/s) 

Wind 
directio
n (˚) 

Parker 
discharg
e (m3/s) 

Ipswich 
discharg
e (m3/s) 

SSC 
(mg/L
) 

1 4/4/2013 OLI -1.05 -0.56 5.70 313.20 1.47 8.38 2.84 
2 7/5/2013 OLI 0.78 -0.30 2.05 312.10 3.20 11.33 0.77 
3 8/22/2013 OLI 0.93 0.76 2.11 266.90 0.04 0.84 0.29 
4 9/7/2013 OLI 0.62 0.67 2.42 260.10 0.02 0.50 0.95 
5 9/23/2013 OLI -0.17 0.62 6.15 310.50 0.09 0.54 2.53 
6 3/18/2014 OLI 0.46 0.64 2.49 62.50 1.83 9.85 1.72 
7 4/3/2014 OLI -0.45 0.68 3.07 57.50 6.17 37.66 9.87 
8 8/9/2014 OLI 1.24 -0.29 1.43 21.10 0.04 1.04 0.62 
9 9/26/2014 OLI 0.51 0.62 3.41 21.40 0.01 0.18 1.68 
10 10/12/2014 OLI -0.35 0.66 3.19 331.80 0.01 0.36 2.20 
11 1/16/2015 OLI -0.03 -0.58 2.11 232.80 0.91 4.53 1.32 
12 8/28/2015 OLI 1.20 -0.28 2.26 53.60 0.11 0.46 0.79 
13 4/24/2016 OLI 0.22 0.64 3.12 76.70 0.77 3.85 2.10 
14 5/10/2016 OLI -0.82 0.75 2.91 310.60 0.78 5.15 7.48 
15 11/2/2016 OLI 0.47 0.62 3.08 296.40 0.01 1.89 1.18 
16 11/18/2016 OLI -0.15 0.73 5.47 338.60 0.08 2.15 5.52 
17 2/6/2017 OLI -0.53 -0.62 7.10 313.20 1.16 3.77 1.82 
18 3/11/2017 S2A 1.39 -0.05 9.93 272.00 1.14 5.13 0.40 
19 8/1/2017 OLI -0.51 -0.41 2.24 26.40 0.08 1.95 0.52 
20 9/27/2017 S2A -0.90 0.11 2.06 155.80 0.02 0.16 0.78 
21 10/4/2017 OLI 1.21 -0.13 2.26 260.80 0.01 0.14 0.93 
22 10/5/2017 S2B 1.39 0.14 3.11 290.40 0.24 0.14 0.51 
23 10/10/2017 S2A -0.69 0.65 6.97 297.60 0.08 0.19 2.18 
24 10/12/2017 S2B -1.20 -0.04 5.77 32.00 0.02 0.13 2.02 
25 10/17/2017 S2A 1.20 -0.40 0.97 23.30 0.01 0.11 0.55 
26 10/20/2017 OLI 1.12 0.57 6.58 303.10 0.01 0.09 0.97 
27 12/1/2017 S2B 0.98 -0.58 6.98 308.40 0.42 2.12 0.52 
28 12/7/2017 OLI -0.38 0.71 4.21 265.70 0.46 1.63 4.49 
29 12/11/2017 S2B -0.83 -0.42 1.93 273.80 0.63 1.77 1.40 
30 12/16/2017 S2A 1.15 -0.20 4.13 288.70 0.42 1.94 0.59 
31 12/21/2017 S2B 0.13 0.62 6.39 292.60 0.33 1.55 1.01 
32 1/18/2018 S2A 0.93 0.65 2.83 287.40 2.04 7.39 1.53 
33 1/25/2018 S2A -1.30 -0.38 11.81 282.60 1.22 5.32 4.33 
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34 2/17/2018 S2A 0.61 0.70 2.37 58.48 1.75 10.51 1.16 
35 2/27/2018 S2A 0.92 -0.58 6.96 295.40 1.80 9.00 1.01 
36 3/1/2018 S2B 1.84 0.11 3.14 41.42 1.57 8.50 0.89 
37 3/19/2018 S2A 0.42 0.63 10.37 290.90 1.98 12.37 9.64 
38 3/26/2018 S2A -0.53 -0.57 7.33 26.73 1.64 9.03 4.08 
39 3/31/2018 S2B 1.42 0.45 4.29 303.80 1.82 8.92 2.66 
40 4/5/2018 S2A -1.27 0.44 6.38 302.40 2.10 9.68 4.25 
41 4/23/2018 S2B -1.36 -0.43 2.37 108.40 2.44 14.55 1.28 
42 4/28/2018 S2A 1.53 0.07 2.72 347.20 2.92 12.94 0.55 
43 5/5/2018 S2A -1.23 0.39 8.57 289.20 1.89 9.12 2.49 
44 6/17/2018 OLI -0.79 0.82 2.45 51.48 0.03 1.15 8.78 
45 7/3/2018 OLI -0.96 0.39 2.29 244.40 0.30 3.43 1.78 
46 7/19/2018 OLI -1.47 -0.19 2.64 69.16 0.02 1.57 3.05 

 

1.4.2 Dominant drivers of SSC 
 

Regressions between transect-averaged SSC and tidal parameters, wind speed, and river 

discharge were carried out in order to quantify the influence of each factor. Generally, 

SSC increased when the Parker River discharged more sediment into the bay (Fig. 1.12). 

River discharge explained only 19% of SSC variance, thereby indicating that other factors 

also controlled the distribution of SSC when the river discharge is low. Note also that 

only a few data points had high river discharge data (> 3 m3/s), which might have 

contributed to the lower 𝑅𝑅2 of the regression. 

Wind transfers energy to the water surface, generating waves whose shear stresses 

combined with tidal currents are responsible for sediment resuspension in shallow bays 

(Fagherazzi and Wiberg 2009). There was no clear relationship (R2 < 0.1) between 

averaged SSC and wind speed (Fig. 1.13). However, removing three outliers with high 

SSC dominated either by extremely high river discharge (April 03, 2014) or very fast 
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water level variations dh/dt (April 03, 2014, May 10, 2016, June 17, 2018) would increase 

the R2 to 0.40. In accordance with local wind climate (Fagherazzi et al. 2014), our study 

area was dominated by northeast and northwest winds (Fig. 1.14), but there was no 

obvious relationship between SSC and wind direction.  

 

Figure 1.12 (A) Relationship between transect-averaged SSC and discharge of the Parker 

River; (B) between transect-averaged SSC and discharge of the Ipswich River. 
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Figure 1.13 Relationship between transect-averaged SSC and wind speed; labeled number 

is the order of 46 scenes showed in Table 1.4. 

 

Figure 1.14 Relationship between transect-averaged SSC and wind direction; labeled 

number is the order of 46 scenes showed in Table 1.4. 
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A stronger correlation existed between transect-averaged SSC and water level variations 

dh/dt during tidal flood (Fig.1.15a), highlighting the control that tidal discharge played 

on SSC. Water level variations dh/dt explained approximately 19% of the overall variance 

of SSC. Furthermore, dh/dt explained 49% of the variance when only low water levels 

were considered (Fig. 1.15b). During ebb, the variation in water level dh/dt cannot explain 

variations in SSC at either low or high water levels (Fig. 1.15b,c). Generally, higher SSC 

occurred at low water levels (Fig. 1.16a). Water level h explained approximately 60% of 

the overall variance of SSC during ebb (Fig. 1.16b) and only 29% during flood (Fig. 

1.16c).  
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Figure 1.15 (a) Transect-averaged SSC as a function of variation in water level dh/dt in 

flood and ebb; (b) only during low water level (h < 0 m), and (c) only during high water 

level (h >0 m).  
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Figure 1.16 (a) Transect-averaged SSC as a function of water level h; (b) only during ebb 

tide (dh/dt <0), and (c) only during flood tide (dh/dt >0).  

These results indicate that tidal flow (through its proxy dh/dt), wind speed, river discharge, 

and water level all contributed significantly to the observed dynamics of SSC along the 

entire transect. To spatially evaluate the contribution of each factor along the sound, we 

calculated the correlation coefficients between SSC and river discharge, dh/dt, wind 
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speed and water level along the transect (Fig. 1.17a). River discharge, variation of tidal 

water level dh/dt and water level dominated SSC, followed by wind speed. The river 

influence was stronger in the upper bay, while the variation in water level dh/dt, a proxy 

for tidal flow, had more influence in the middle of the sound. Finally, the effect of water 

level h increased moving offshore toward the inlet. 

 

Figure 1.17 Correlation coefficients between SSC and river discharge (Q), variation of 

tidal water level (dh/dt), wind speed (U) and water level (h) along the main channel 

thalweg. (a) Correlation coefficients between SSC and SSC predicted using models of 

Eqs.1.14-1.16 at each location (also considering only flood and ebb) along the main 

channel thalweg. Shaded area around the lines indicate the 95% confidence interval. 
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1.4.3 Comparison of local algorithm developed in this study to SSA-L algorithm 
 

Semi-analytical algorithms (SSA-L) for low concentrations (Rrs ≤ 0.03 sr-1) from Han 
et al. (2016) and Nechad et al. (2010) for Landsat8 OLI and Sentinel-2 MSI sensors.  

 

SSCOLI=346.353*π*RrsOLI (red)/(1- π*RrsOLI (red)/0.5)                                           (1.12) 

SSCMSI=396.005*π*RrsMSI (red)/(1- π*RrsMSI (red)/0.5)                                           (1.13) 

 

 

 

Figure 1.18 Comparison of our local empirical algorithms (Eqs. 1.3, 1.4) with the global 

semi-analytical algorithm SSA-L (Eqs. 1.12, 1.13) from Han et al. (2016) and Nechad et 

al. (2010) for both the Landsat-8 OLI (A) and the Sentinel-2A MSI (B). 
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1.4.4 Predicting SSC in the main channel thalweg 
 

Since the combined effects of several factors control the distribution of SSC, we used 

three multivariate nonlinear regression models. One using all data:   

𝑙𝑙𝑙𝑙(𝑆𝑆𝑆𝑆𝑆𝑆) =  0.03𝑄𝑄 + 0.58 𝑑𝑑ℎ
𝑑𝑑𝑑𝑑
− 0.51ℎ + 0.07𝑈𝑈 − 0.08              (1.14) 

R2=0.60, p-value <<0.001, n=46 

One using only flood data:                                                                                   

  

 𝑙𝑙𝑙𝑙(𝑆𝑆𝑆𝑆𝑆𝑆) = 0.04𝑄𝑄 + 1.50 𝑑𝑑ℎ
𝑑𝑑𝑑𝑑
− 0.43ℎ + 0.10𝑈𝑈 − 0.78     (1.15) 

R2=0.56, p-value <<0.001, n=27                                                                                            

And one using only ebb data: 

 𝑙𝑙𝑙𝑙(𝑆𝑆𝑆𝑆𝑆𝑆) = −0.57ℎ + 0.22                                 (1.16)                         

R2=0.64, p-value <<0.001, n=19                                                                                           

Where Q is total river discharge of Parker and Ipswich Rivers (m3/s), dh/dt is the water 

level variation (m/h), U is wind speed (m/s), and h is water level (m). Note all the 

variables in regression models are statistically significant (p-value <0.05). 

Using all hydrodynamic and meteorological parameters, we computed the correlation 

coefficient between SSC and SSC predicted using models of Eqs. (1.14-1.16) at each 

location along the thalweg, as well as only during flood tide and only during ebb tide (Fig. 
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1.17b). Generally, the regression model showed a correlation coefficient larger than 0.7 

in the middle and upper bay and a higher coefficient during ebb than during flood tide. 

The correlation coefficient became lower near the inlet (after 10 km), indicating that other 

processes were acting here, as for instance the supply of sediment from the ocean.  

The regression model can be used to predict SSC along the bay for a given set of 

hydrodynamic and meteorological parameters. To evaluate the performance of the model, 

we show a validation of both transect averaged SSC for all images (Fig. 1.19a), and SSC 

at each location along the thalweg for three representative scenes covering the range of 

SSC values (Fig. 1.19b). Both analyses show more outliers at high values of SSC partly 

due to lack of training data for high SSC. These validation results demonstrate that high-

resolution remote sensing imagery can be used to monitor and predict SSC in shallow 

coastal bays, facilitating the assessment of sediment budgets of these optically complex 

systems. 
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Figure 1.19 (a) Relationship between the remotely sensed SSC averaged along the main 

channel thalweg (n=46) and the corresponding values predicted from the model for all 46 

remote-sensing scenes used in this study (Eq. 1.14), (b) discrete SSC along the main 

channel thalweg and corresponding predicted values from the models (Eqs. 1.14-1.16) 

for three representative scenes (n=187 for each scene). 

 

1.5 Discussion 

SSC maps derived from remote sensing images allow a quantitative assessment of 

sediment dynamics in shallow bay systems. For coastal bays with narrow channels (~ 1 



44 
 

km), only remote sensing imagery with high spatial resolution and a revisit time of hours 

could fully capture tidal and wave dynamics and the distribution of SSC in surface waters. 

Sentinel-2 and Landsat-8 haves a high resolution of 10 m and 30 m respectively, however 

the relatively long revisit time compared to tidal cycles has limited their application in 

studies of tidal flow and SSC dynamics. Therefore, most studies based on remote sensing 

of SSC in coastal areas focus on the retrieving method itself, with the goal of producing 

the most accurate SSC map. We compiled all the SSC maps from Landsat-8 and Sentinel-

2 remote sensing imagery collected between 2013 and 2018, matched water level, tidal 

flow, and wind conditions to each image, and built the relationship between SSC and 

these physical drivers. Our study is one of few that quantitatively assesses the 

contributions of different hydrodynamic and meteorological drivers to SSC, and predicts 

spatial distribution of SSC under different conditions (see also Eleveld et al. 2014, 

Hudson et al., 2017). 

Based on 631 samples with SSC ranging from 0.15 to 2600 mg/L collected in various 

coastal areas, Han et al. (2016) put forward a generic semi-analytical algorithm (SSA) for 

sediment concentration in global coastal waters and derived coefficients for different 

ocean color sensors including the Landsat-8 OLI and Sentinel-2 MSI (Nechad et al. 2010). 

Compared to our local empirical algorithms (Eqs.1.3, 1.4), their semi-analytical 

algorithms (Eqs.1.12, 1.13) underestimated SSC for large values (see Fig. 1.18). This 

discrepancy may due to the difference in the range of data used, as the maximum value 

of SSC in our study is only 28.94 mg/L. Moreover, the semi-analytical algorithm derived 
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with a large range of SSC may not capture well variations of SSC lower than 30 mg/L, as 

those occurring in the Plum Island Estuary. 

Two possible processes explain the general decreasing trend in SSC seaward (Fig. 1.10, 

1.11): riverine discharge and sediments resuspension in the upper bay. Fagherazzi et al. 

(2014) showed that the upper bay is characterized by tidal flats with fine grain sediments 

(mud and silt), that are more easily resuspended. Despite the freshwater discharge of the 

Parker River is relatively small compared to the tidal prism, the sediment load from the 

Parker river is significant, accounting for about 10% of total sediment sources in the 

system (Hopkinson et al. 2018). Flood dominance pushes sediments toward the upper part 

of the bay, trapping the sediment discharged from the Parker River. Estuarine turbidity 

maxima, common in estuaries, can also lead to an increase in SSC at the interplay zone 

of fresh and ocean waters (Dyer et al. 2004). In the Plum Island estuary, the turbidity 

maximum is located at the mouth of the Parker River (Hopkinson et al. 2018).  Significant 

seasonal variations in SSC are present, with higher SSC occurring in spring due to river 

freshets triggered by snowmelt. In the Westerschelde estuary, Eleveld et al. (2014) found 

instead that the highest SSC occurs in winter due to stronger wind waves. In our mesotidal 

sound with limited fetch, the role of waves seems minor. The 46 images analyzed here 

capture a river flood in April 3, 2014 and a Nor’easter storm in March 26, 2018, shedding 

light on the role of extreme events (Fig. 1.9e, i).  

The transect-averaged SSC is controlled by river discharge, tidal flow, wind, and water 

level. Water level and tidal flow (here represented by the variations in water level dh/dt) 
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are the two dominant factors controlling SSC at each point along the transect, followed 

by river discharge and wind speed. Our results are consistent with Hudson et al. (2017), 

who showed that waves only affect turbidity at the mouth of the Columbia River Estuary, 

but are less important than river discharge and tidal flow. River discharge dominates 

turbidity in the Columbia River Estuary, while in Plum Island Estuary tidal flow and 

water level are more important, since the rivers are small (see Fig. 1.12, 1.15,1.16). We 

also propose a multivariable regression model that predicts spatial SSC using simple 

hydrodynamic and meteorological parameters (Eq. 1.14-1.16 and Fig. 1.19). For tidally 

mixed shallow bay systems, such a model provides a potential way to evaluate sediment 

budgets and SSC dynamics even during extreme weather conditions.  

A significant increase in SSC along the entire bay caused by a river flood is showed in 

Fig. 1.10c. This result highlights the role of infrequent hydrological events on sediment 

dynamics. High SSC triggered by the Nor’easter of March 26, 2018 (Fig. 1.10e) indicate 

that strong winds can also trigger sediment resuspension, but more along the shoreline 

rather than in the sound. Wave induced shear stresses could suspend bottom sediments, 

and enhance the exchange of sediments between tidal flats and channels. Castagno et al. 

(2018) modeled the influence of storms on sediment budgets at the Virginia Coast 

Reserve, USA, and found that intense storms resuspend and funnel fine-grained materials 

from the nearshore to the interior of the back-barrier tidal basins. In Plum Island Estuary, 

waves-induced sediment resuspension seems of secondary importance compared to tidal 

flows, water level, and sediment discharge from rivers. 
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Our results also show that the distribution of SSC is different between flood and ebb, with 

SSC higher during flood. As a result, the sound is importing and trapping sediments, 

which explains why the marsh accretion is keeping pace with SLR (Hopkinson et al. 

2018). During ebb water levels become very important, exerting a very strong control on 

SSC (Fig. 1.16b). We ascribe this result to three possible factors: i) The peak velocity in 

salt marsh creeks is delayed during ebb, occurring at low water levels and mobilizing 

sediment on banks or stored at the bottom of the channels. In fact, water moves slowly 

on the vegetated marsh surface, so that the channels are still draining the marsh platform 

hours after high slack water (Fagherazzi et al. 2008). As a result, the stage-velocity 

relationship is very asymmetric (Bayliss-Smith et al. 1979). ii) Seepage from marsh banks 

during ebb can lead to local sediment piping and sapping, increasing the turbidity of the 

water exiting the marshes (Howes and Goehringer 1994). iii) Very shallow flows (up to 

5cm depth) can mobilize soft sediments stored in mudflats along large tidal channels or 

at the bottom of small creeks dissecting the marsh (Fagherazzi and Mariotti 2012). During 

the late phase of salt marsh drainage, very shallow flows can be very fast, sometimes 

reaching supercritical conditions, because they are driven by bottom slope and not by 

tidal propagation. A similar phenomenon was observed in mudflats in Willapa Bay, 

Washington State, USA, where a turbid tidal edge carried sediment at very low water 

depths (Fagherazzi and Mariotti 2012). All the sediments mobilized by these three 

processes during marsh drainage will eventually reach the sound contributing to the 

turbidity of the water at low tide. However, the overall sediment flux is low, because the 

discharge is small when the water depth is limited. As a result, the sediment concentration 
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during ebb does not spike, and remains lower than during flood (Fig. 1.11a). The 

influence of water depth increases downstream along the sound, probably because more 

turbid water from the marshes is collected (Fig. 1.17a).      

SSC depends more on tidal current amplitudes and their variations in time during flood 

(Fig. 1.15). This result indicates that during flood tidal flow and related shear stresses 

mobilize bottom sediments, and carry them toward the upper bay. In the flood period 

from slack water to marsh inundation, variations of water level can explain 49% of SSC 

(e.g. Fagherazzi et al. 2013b). However, when the marsh is flooded, there is no 

relationship between water level variations and SSC (Fig. 1.15c). This highlights the 

complexity of tidal hydrodynamics and sediment transport pathways caused by the 

presence of salt marshes. This complexity prevents the establishment of a linear 

relationship between velocity and turbidity, as detected by remote sensing data in the 

lakes in the Peace-Athabasca Delta (Pavelsky and Smith, 2009). 

Resuspension triggered by tidal flow seems peaking in the middle sound, where the 

correlation coefficient between dh/dt and SSC is maximum. The influence of dh/dt on 

sediment dynamics decreases near the inlet, where oceanic inputs of sediment are likely 

important (Fig. 1.17a). Note that herein we do not address sedimentary processes acting 

on the inner continental shelf, and therefore the predictive ability of our regression model 

decreases near the inlet (low r in Fig. 1.17).          

Fagherazzi et al. (2013a) and Ganju et al. (2015) emphasized how a positive sediment 

budget is critical for the stability of salt marshes and coastal bays facing SLR (see also 
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Hopkinson et al. 2018).  In fact, intertidal systems must trap sediment and accrete in order 

to counteract SLR. Ganju et al. (2015) suggested the use of flood/ebb SSC differential in 

marsh creeks to assess the vulnerability of salt marsh complexes. The same parameter 

can be scaled up to the entire Plum Island Estuary. Figure 1.11a shows that flood/ebb 

SSC differential is positive in the middle and upper section of the sound, indicating that 

the system is importing sediment and therefore partly mitigating the effect of SLR. Our 

methodology based on remote sensing images can therefore be used to quickly assess 

vulnerability of marshes and shallow bays to SLR. The data analyzed here span only 5 

years and cannot capture in detail the interannual variability in SSC.   

Herein we have used variations in water surface elevation as a coarse proxy for tidal flow, 

following the simple tub model of Boon (1975). However, tidal propagation and the 

presence of salt marshes give rise to tidal asymmetries that affect tidal discharge, velocity, 

and ultimately sediment advection and resuspension (Fagherazzi et al. 2008; Friedrichs 

and Aubrey 1988). Remote sensing images are not able to capture temporal dynamics of 

SSC such as sediment settling and advection. For example, sediment in suspension can 

take hours to settle, so that the sediment concentration measured at one instant might have 

originated from hydrodynamic conditions that occurred in the past. This is particularly 

true for waves and wind fields that can change in hours. Advection can also transport 

sediment away from the location where it was first resuspended. In this situation, simply 

attributing the increase in SSC in the channel to waves and strong tidal flows at the instant 

of the remote sensing image collection might introduce an error. This error likely affects 

the correlation between SSC and different drivers, especially wind waves. Water level is 
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also an important driver of SSC in the tidally dominated systems especially during ebb. 

Further research is deemed necessary to determine the importance of tidal asymmetry on 

the evaluation of sediment budgets from remote sensing images. 

SSC of our 40 water samples ranges from 0 mg/L to 30 mg/L, covering the range of 

values measured in-situ in the last 13 years (Hopkinson et al. 2018). The empirical 

algorithm constructed captured a representative range of SSC concentrations for the entire 

bay, with the exception of very extreme events. During large river floods and energetic 

storms, SSC could fall outside the range covered in the study. This might cause 

uncertainty when our empirical relationship is used, although it would be very 

challenging to conduct in situ measurements during those conditions. It is also important 

to recognize that SSC retrieved from remote sensing can be affected by errors from the 

atmospheric correction (Warren et al., 2019). 

 

1.6 Conclusions 

In this paper, we demonstrated that the existing record of high-resolution imagery from 

Landsat-8 and Sentinel-2 can be used to quantitatively assess of the relative roles of 

hydrodynamical and meteorological drivers on the variability of suspended sediments in 

a marsh-influenced estuary. High-resolution images from these sensors provided 

snapshots of SSC distribution that are difficult to capture with in situ instruments in such 

dynamic and heterogenous systems. These data are crucial to decipher the relative role of 

different physical processes in driving suspended sediment dynamics. Here, the analysis 
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of high-resolution imagery revealed several important pieces of information about SSC 

dynamics in the Plum Island Estuary:  

(1) SSC generally decreases seaward in the sound, and is higher in the spring season 

because of increased river discharge caused by snowmelt. 

(2) Extreme events such as river floods and storms increased SSC by 5-to-10-fold, 

greatly altering the SSC distribution in the system. Wind direction was also found 

to be more important to sediment resuspension than wind speed. 

(3) Higher SSC occurs during tidal flood rather than ebb, especially during the spring 

and fall seasons. This tidal asymmetry possibly favors sediment retention in the 

bay, increasing the resilience of the marsh to sea level rise.  

(4) Water level, tidal flow and river discharge are generally the most important factors 

dominating SSC along the sound, followed by wind speed.  

The Plum Island Estuary in Massachusetts was used herein as a prime example of a mid-

latitude, tidally-driven estuary influenced by large fluctuations in river discharge and 

regularly impacted by storms. However, this general approach is applicable to other 

estuaries around the world in order to determine the dominant drivers of SSC dynamics. 

This methodology can be useful to help quantify sediment budgets and assess the fate and 

sustainability of marshes. The Plum Island Estuary was particularly challenging because 

bottom reflectance prohibited the use of remote sensing over much of the estuary besides 

the main channel. Marsh-influenced systems with higher sediment loads (e.g., coastal 

Georgia and Louisiana, USA) would not be influenced as much by bottom reflectance 

and are therefore even more suitable for this analysis.  
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Despite the long revisit-time of current high-resolution sensors onboard Landsat-8 and 

Sentinel-2, our study showed that the record of high-resolution imagery available since 

the beginning of Landsat-8 operations (May 2013) was sufficient to capture a 

representative range of tidal conditions, river floods and storms. This is true even 

considering that Sentinel-2A and -2B MSI (in operation since 2015 and 2017, 

respectively) contributed to only part of the 5-year record used in this study. With these 

three satellite sensors now operating, new sensors launching soon (e.g., Landsat-9), and 

constantly improving atmospheric correction procedures (Warren et al., 2019), the record 

of usable high-resolution imagery is bound to be rapidly expanding and to provide an 

even more representative depiction of suspended dynamics in these important coastal 

systems.  
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