Determining the drivers of suspended sediment dynamics in tidal marsh-influenced
estuaries using high-resolution ocean color remote sensing
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1.1 Introduction

Shallow bays surrounded by salt marshes are a buffer zone between the land and the ocean.
These bays protect biodiversity, enhance water quality, mitigate river floods, protect from
storms and sequester carbon (Fagherazzi et al. 2012; Fagherazzi et al. 2013b; Kirwan et
al. 2016). Salt marshes are nourished with sediment by tides and maintain their elevation
with respect to sea level if sediment inputs are adequate (Fagherazzi et al. 2013a; Ganju
etal. 2017; Kirwan and Murray. 2007). Sediment deficiency in coastal waters has become
widespread in the last century because of sediment trapping in upstream dams and soil
conservation practices (Dai et al. 2016; Syvitski et al. 2009; Walling 2006; Yang et al.
2011). Variations in riverine sediment inputs and associated suspended sediment
concentration (SSC) could exert a pronounced influence on the morphological stability
of the intertidal landscape and its ecosystems. SSC are associated with lower oxygen
concentration especially in the estuarine turbidity maxima zone, and affects the spatial

distribution of algal blooms by inhibiting algae growth (Carr et al. 2016; Hudson et al.



2017; De Swart et al. 2009). Reduced riverine sediment inputs could starve shorelines
leading to wetlands loss (Blum and Roberts 2009; Fagherazzi et al. 2015). SSC data are
also instrumental for the reliable calculation of sediment budgets in coastal systems
(Ganju et al. 2015). It is therefore imperative to accurately measure SSC in marsh-

influenced estuaries (Lawson et al. 2007).

The dynamics of estuarine suspended sediment transport has been extensively studied
using in-situ measurements (Dyer et al. 2004, Li and Zhang 1998, Fagherazzi et al. 2017),
lab flume experiments (Widdows et al. 1998), and numerical modeling (Fagherazzi et al.
2012; van der Wegen. 2013). Recent studies have characterized the effect of density
driven flows (Traykovski et al. 2000), tidal asymmetry (van der Wegen. 2013), wind-
induced waves (Mariotti et al. 2010), stratification and flocculation (Winterwerp. 2002)
on sediment dynamics. However, these processes are difficult to study due to limited
spatial resolution of field observations and sparse bottom data available for numerical
modelling (Staneva et al. 2009, Wiberg et al. 2020). Remote sensing data can bridge this
data gap. For example, remote sensing can trace the spatio-temporal variations of
turbidity maxima and frontal eddies in estuaries (Hudson et al. 2017; Jay et al. 2015;
Ribbe et al. 2018; Everett et al. 2012). In addition, spatial distributions of SSC obtained
from remote sensing can be set as initial conditions or used for validation, improving

accuracy of numerical modeling (Staneva et al. 2009).

High-quality radiometry from the Landsat-8 OLI and Sentinel-2 MSI now offer the

possibility to derive high-spatial-resolution maps of SSC with reasonable accuracy in



nearshore regions. Moderate resolution optical remote sensing (spatial resolution > 300
m) has been extensively used to study suspended sediment dynamics in coastal
environments around the world (D'Sa et al. 2007; Miller and McKee 2004 ; Mao et al.
2012; Cao et al. 2017; Hudson et al. 2017; Fettweis and Nechad 2010; Eleveld et al.
2014), but has very limited applicability in nearshore coastal areas, and particularly in
enclosed bays and estuaries. However, the improved radiometric and spatial resolution of
new sensors like the Landsat-8 OLI (30-m spatial resolution) of Sentinel-2 MSI (10-m
spatial resolution) can now facilitate the study of suspended sediments dynamics in such
nearshore environments. For instance, Gernez et al. (2015) used such data to explore the
influence of river topography and tidal shoals geometry on the distribution of SSC in the
Gironde and Loire estuaries. Vanhellemenont and Ruddick (2014) also used remote
sensing to showcase the effects of wind turbines on sediment resuspension in the English
Channel, and Snyder et al. (2017) employed similar methods to facilitate the selection of
sites for oyster aquaculture. Using airborne imaging spectroscopy (2.5-m spatial
resolution), Fichot et al. (2016) illustrated the importance of very-high-spatial-resolution
images to study the drivers of turbidity and SSC in wetland channels and bays. None of
these studies have directly used remote sensing to quantitatively assess the roles of tides,
wind, and river discharge in driving SSC dynamics, particularly in marsh-influenced
estuaries. Eleveld et al. (2014) derived SSC maps from 84 full-resolution MERIS data
(300-m) over the Westerschelde estuary (Netherlands), but only classified them based on

flood-ebb tidal stages and seasons.



Here, we leverage the existing record of high-spatial-resolution data from the Landsat-8
OLI and Sentinel-2 MSI to evaluate whether these images can provide a realistic
representation of SSC dynamics in tidal marsh-influenced estuaries, despite the long
revisit-time of these sensors. Using the Plum Island Estuary (PIE; Massachusetts, USA)
as a representative example, we assess whether this remote-sensing record can provide
sufficient spatio-temporal information in such dynamic and heterogeneous coastal
systems. In situ measurements are used to develop and validate local and sensor-specific
empirical algorithms applicable to OLI and MSI imagery of the Plum Island Estuary. The
algorithms are implemented on every clear image obtained between May 2013 and
August 2018, and the derived SSC maps were used to quantitatively evaluate the role of
river discharge, wind speed and direction, flood-ebb tidal stage, and episodic events of
river floods and storms in regulating the SSC distribution along the thalweg of the Plum
Island Estuary. A simple model to predict the SSC along the estuary from these physical

drivers is also developed and presented.

1.2 Study site
Plum Island Estuary is a tidally-dominated and marsh-influenced estuary that represents
the largest saline wetland in New England (Fig. 1.1). Located in Massachusetts (USA),
the estuary covers an area of 59.8 km?, 60% of which are salt marshes dominated by
Spartina alterniflora and Spartina patens. The estuary includes a primary sound that is
about 1500 m wide at the inlet. Three distinct rivers discharge into the sound: the Parker,
Rowley and Ipswich Rivers. The mouths of these rivers are approximately 500 m wide

for the Parker River, and 300 m wide for Rowley and Ipswich Rivers.



Tidal range changes from 2.2 m to 3.6 m during neap-spring tidal modulation, with a
mean tidal range of 2.9 m (LTER [Long Term Ecological Research] Tidal Station A in
Fig. 1.1). The averaged depth of the sound is 3.0 m, with extensive shallow tidal flats
exposed at low tide (Zhang et al. 2019). The freshwater discharge of the rivers displays
strong seasonal variability. For example, the monthly mean discharge of the Parker River
peaks at 2.41 m>/s in March and drops to less than 0.18 m®/s in August. Similarly, the
Ipswich River discharge ranges from 12.86 m’/s to 1.19 m%s (Fig. 1.2). The river
discharge of the Rowley River is approximately 1/5 of the Parker River based on the ratio
of watershed areas (Zhao et al. 2010, Hopkinson et al. 2018). The combined monthly
freshwater discharge from the three rivers typically ranges from 1.40 m%/s to 15.40 m?/s
but is generally negligible compared to the tidal prism (Fagherazzi et al. 2014). The tidal
phase delay from the inlet to the upper bay near the mouth of the Parker River is

approximately 30 minutes (Zhao et al. 2010).

Wind-wave induced bottom shear stresses act mainly on shallow tidal shoals, and are one
order of magnitude smaller than the stresses triggered by tidal currents flowing in the
deep channels of the sound. Analysis of bed samples shows that the fraction of silt and
clay is 5.2 % in the sound and reaches 20% with finer mean grain sizes of 142 pm in the
rivers (Fagherazzi et al. 2014). Sea level is rising at about 2.8 mm yr'!' in this region
(Claessens et al. 2006; Hopkinson et al. 2018). Hundreds of small dams present in the
rivers watersheds reduce the sediment load, alter river flow dynamics, and influence both

suspended matter and wetland stability in the Plum Island Estuary (Hein et al. 2012).
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Figure 1.1 (A) Location of the Plum Island Estuary in Massachusetts, USA and 40
sampling sites. (B) Locations of the Parker, Rowley and Ipswich Rivers. Numbers of 0-
11 km (red triangles) indicate distances along the thalweg of the sound (green line) from
the mouth of the Parker River to the Ocean. Yellow dots indicate 26 sites sampled in 2018.
The long-term observation station A is at the Ipswich Bay Yacht Club pier and belongs
to PIE-LTER.
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Figure 1.2 (A) Parker River monthly discharge recorded at USGS station 01101000. (B)
Ipswich River monthly discharge recorded at USGS station 01102000.

1.3 Materials and methods

1.3.1 In situ measurements

A total of 40 stations were sampled in the Plum Island Estuary and in Massachusetts Bay
during October and November 2017 and from May to July 2018 (Fig. 1.1, Table 1.2).

Most of the samples were collected in the Plum Island Estuary and the few samples (7)



collected in Massachusetts Bay were used as ocean end-members to help improve the

performance of the algorithm at low suspended sediment concentrations.

Suspended Sediment Concentration (SSC): Surface water samples (0.5 m depth) were
collected using a 4-L horizontal Van Dorn sampler. The entire sample was drained in a
4-L amber high-density-polypropylene (HDPE) bottle and kept on ice in a cooler or at
4°C until analysis, usually within a few hours of sampling. Samples were analyzed for
suspended sediment concentration in the laboratory following the protocol of
Neukermans et al. (2012). A volume ranging 0.5 L to 2 L of sample water (depending on
in situ measured turbidity) was filtered on pre-weighed GF/F glass microfiber filters with
a pore size of 0.7 um, rinsed with at least 250-mL of high-purity water (Milli-Q), and
dried at 75°C for 24 h. Weights of the filter were measured using a Sartorius Cubis

MSE3.6P000DM Microbalance.

Turbidity: A YSI ProDSS Multiparameter Water Quality Meter with sensors for
temperature, conductivity, depth, dissolved oxygen, chlorophyll-a fluorescence, and
turbidity (infrared detector, 90°, Formazin Nephelometric Unit (FNU)) was deployed at
each station in the Plum Island Estuary during the May-July 2018 time period (not
available for 2017 sampling). Turbidity measurements were collected with a sampling
rate of 1 Hz for 1-2 min at each station, and the average was calculated after removal of
outliers (any data above 2 times the standard deviation). The YSI ProDSS was also

equipped with a GPS, and in some cases the YSI ProDSS was used to make underway



measurements just below the surface (0.1 - 0.2 m depth) from the bow of the boat and

away from bubbles produced during the boat’s movement.

Spectral remote-sensing reflectance (Rrs(1)): The spectral remote-sensing reflectance of
the water, Rrs(4), was measured wherever water samples for SSC were collected.
Measurements were only made when water was deeper than 3 m or was attenuating
enough than the bottom evidently had minimal influence on the Rrs(4). Two different
approaches were used (Fig. 1.3). For a total of 14 stations, Rrs(4) was determined from
vertical optical profiles of upwelling radiance and downwelling irradiance acquired with
a Biospherical® Compact Optical Profiling System (C-OPS) (Morrow, 2010). The C-
OPS was deployed off the side of a zodiac (Plum Island Estuary stations) or from the
stern of the research vessel R/V Auk (Massachusetts Bay stations, and the optical profiles
were always performed at least 20 m from the boat and on the sunny side in order to avoid
the boat’s shadow). The optical profiles were then used to derive Rrs(A) just above the
surface and at 19 wavelengths from 305 nm to 780 nm (including red bands at 625 and
665 nm) using well-established protocols described in Antoine et al.( 2013) and Hooker
et al. (2013). At least three profiles were done at each station, and the average Rrs(4) for
the three profiles was used. For the other 26 samples (all in Plum Island Estuary), Rrs(1)
was determined at 1 nm spectral resolution from 350-1000 m using an ASD® Handheld-
2-Pro spectrometer and following the recommended procedure described in Mobley
(1999). Briefly, the handheld spectrometer was used to measure radiance (here in digital

counts) from three targets at each station: 1) reflected sunlight from a Spectralon® plate



(average of ~10 measurements), 2) skylight measured at 40° from the zenith and at 135°
from the Sun’s azimuthal plane (average of ~10 measurements), 3) water radiance
measured at an angle of 40° from Nadir and at 135° from the Sun’s azimuthal plane
(average of ~10 measurements). All measurements of the three targets were made within
5 mins while illumination conditions were stable (e.g., no variable cloud conditions).
Note all ASD measurements were made during relatively clear-sky conditions, with
occasionally some high cirrus clouds. Remote-sensing reflectance was estimated as in

equation

RI’S(/I) = (Lwater - ,O*Lsky)/(TC*Lspectralon /0) (1 . 1)

where Lwater 18 the measured radiance of the water, Lsky is the measured skylight radiance,
and p is the fraction of skylight reflected at the air-water interface at 40° incidence angle
and with dependence on wind-speed. Lspectralon 18 the measured radiance of the Spectralon
plate, m is a factor to convert radiance to irradiance assuming the Spectralon plate is a
Lambertian surface, and ois the reflectance of the Spectralon plate (typically > 99%, but
with some spectral dependence). In order to provide a more accurate value for p, wind

speeds were also recorded and averaged over 1 min using a handheld vane anemometer

(Mobley, 1999).
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Table 1.1 Parameters of different sensors

Sensor Band Center Wavelength [nm]  Bandwidth [nm]  Spatial resolution
(m)
Operational Land 4 654.59 37.47 30
Imager (OLI)
Sentinel-2A/2B 4 665 30 10
o —e—0.39 mg/L
_ .39 mg
AICORS) —&—0.51mg/L
8r 0.70 mg/L
0.76 mg/L
—0.92 mg/L

—&—0.95 mg/L
—&—1.26 mg/L
1.36 mg/L
—&—1.86 mg/L
—e—2.13 mg/L
—e—2.72 mg/L
—e—3.73 mg/L
—e—15.92 mg/L
—&—28.94 mg/L

Remote-sensing Reflectance Rrs (10 sr)

400 450 500 550 600 650 700

——1.29 mg/L
—1.36 mg/L
1.94 mg/L
2.24 mg/L
3.40 mg/L
~——3.95 mg/L
———4.48 mg/L
~———6.10 mg/L
6.26 mg/L
—6.90 mg/L
—8.25 mg/L
—8.44 mg/L
———8.59 mg/L
—9.28 mglL
—9.88 mg/L
—9.93 mg/L
—11.59 mg/L
—21.71 mg/L

Remote-sensing Reflectance Rrs (107 sr”)
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Wavelength (nm)

Figure 1.3 Remote-sensing Reflectance (Rrs) spectra of water samples for different SSC,

measured by (A) Compact Optical Profiling System (C-OPS) and (B) ASD® Handheld-

11



2-Pro spectrometer. Note (A) shows all the 14 samples, (B) only show 18 samples instead

of 26 samples for ease of visualization.

Table 1.2 Locations, date, SSC and Rrs (A) measurement methods of all 40 water samples.
C-OPS: Compact Optical Profiling System, is used to derive Rrs (A) at 19 wavelengths
from 305 nm to 780 nm (including red bands at 625 and 665 nm). ASD: ASD® Handheld-

2-Pro spectrometer, is used to derive Rrs(A) at 1 nm spectral resolution from 350-1000 m.

Num Name Date Time Latitude Longitude SSC  Rrs(}»)
(mg/L) Method
1 PIE 01 11/4/2017 11:43 42.7289  -70.8457 592 C-OPS
2 PIE 02 11/4/2017 12:19 42.7314  -70.8345 2.13  C-OPS
3 PIE 03 11/4/2017 12:47 42.7266  -70.8156 1.26  C-OPS
4 PIE 04 11/4/2017 13:08 42.7142  -70.8145 1.86  C-OPS
5 PIE 05 11/4/2017 13:36 42.7078  -70.7939 2.72  C-OPS
6 PIE 06 11/4/2017 14:06 42.6973  -70.7866 3.73  C-OPS
7 PIE 07 11/4/2017 15:06 42.7248  -70.8553 2894 C-OPS
8 NIO1 10/16/2017 11:00 42.1678  -70.7039 092  C-OPS
9 NI02 10/16/2017 12:15 42.1601  -70.6946 1.36  C-OPS
10 NIO3 10/16/2017 13:20 42.1366  -70.6719 095 C-OPS
11 SSBO1 10/18/2017 14:30 42.1902  -70.2651 0.76  C-OPS
12 SSB02 10/18/2017 13:19 42.1563  -70.2062 039 C-OPS
13 SSB03 10/18/2017 11:51 42.1378  -70.3383 0.51  C-OPS
14 SSB04 10/18/2017 10:30 42.1395  -70.4058 0.70  C-OPS
15 PIE 061218 SO1  6/12/2018 9:26-9:32  42.7619 -70.83772 21.71 ASD
16 PIE 061218 S02  6/12/2018  10:01-10:05 42.7585 -70.82822  9.88  ASD
17 PIE 061218 S03  6/12/2018  10:40 -10:44 42.7467 -70.82003  4.48 ASD
18 PIE 061218 S04  6/12/2018  11:11-11:15 42.7376  -70.802 1.94 ASD
19 PIE 061218 S05  6/12/2018  11:38-11:43  42.7337 -70.80152 1.02  ASD
20 PIE 062118 SO1  6/21/2018 9:51-9:56  42.6921 -70.76372 1.36 ASD
21 PIE 062118 S02  6/21/2018  10:25-10:38  42.694 -70.781 1.29 ASD
22 PIE 062118 S03  6/21/2018  10:58-11:10  42.7095 -70.79384 224  ASD
23 PIE 062118 S04  6/21/2018  11:28-11:42 42.7114  -70.8085 395 ASD

12



24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

PIE_062118_S05
PIE_062718_S01
PIE_062718_S02
PIE_062718_S03
PIE_070318_S01
PIE_070318_S02
PIE_070318_S03
PIE_070318_S04
PIE_070318_S05
PIE_070318_S06
PIE 071118 S01
PIE 071118 S03
PIE 071118 S04
MR _071918_S01
MR _071918_S02
MR_071918_S03
MR_071918_S04

6/21/2018
6/27/2018
6/27/2018
6/27/2018
7/3/2018
7/3/2018
7/3/2018
7/3/2018
7/3/2018
7/3/2018
7/11/2018
7/11/2018
7/11/2018
7/19/2018
7/19/2018
7/19/2018
7/19/2018

12:08-12:17
15:12-15:55
15:45-15:55
16:11-16:21
8:15-8:19
8:37-8:39
8:51-8:54
9:16-9:18
9:53-9:55
10:11-10:14
9:22-9:23
10:26-10:27
10:53-10:55
10:51-10:54
11:09-11:11
11:31-11:33
11:57-11:59

42.72
42.7282
42.7315
42.7252
42.7249

42.729
42.7319
42.727

42.75

42.7417
42.682
42.7252
42.7629
42.8127
42.8135
42.817
42.8095

-70.813
-70.80443
-70.83808
-70.85494
-70.85501
-70.84537
-70.83803
-70.80878
-70.82147
-70.81526
-70.83028
-70.85492
-70.84653
-70.85472
-70.86009
-70.84015
-70.82726

6.90
6.10
6.26
8.59
8.44
8.25
9.93
3.40
11.59
9.28
7.33
6.77
11.90
7.65
7.67
7.37
8.11

ASD
ASD
ASD
ASD
ASD
ASD
ASD
ASD
ASD
ASD
ASD
ASD
ASD
ASD
ASD
ASD
ASD

The paired in situ measurements of SSC and Rrs(4) described above were used to derive
simple empirical algorithms that can be implemented on OLI and MSI imagery. It is well
established that the Rrs in the red or near-infrared region can be used as a sensitive
predictor of SSC in waters where suspended sediments are important drivers of optical
variability (Nechad et al.2010, Giardino et al. 2010, Vanhellemont et al. 2014, Fichot et
al. 2016, Constantin et al. 2018). Not surprisingly, Rrs in the red region was also strongly
and non-linearly related to SSC in this system (Fig. 1.4). In order to develop algorithms

specifically applicable to the Landsat-8 OLI and the Sentinel-2A/B MSI, the relative

1.3.2 Development of local empirical algorithms for the retrieval of SSC from
OLI and MSI
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spectral responses of the OLI and MSI red bands were used to calculate spectrally
weighed remote-sensing reflectance from the hyperspectral in situ Rrs(4) measured with
the ASD. As described in Pahlevan et al. (2017a), the spectrally weighed remote-sensing
reflectance over the center wavelength Ac = 655 nm (OLI) and Ac = 665 nm (MSI) was

calculated as in equation (1.2):

o ZnRrs(Ai)RSR(Ai)
Rys(A) == Y Rys(A) (1.2)

where R,(1,) is the remote-sensing reflectance spectrally weighed over the OLI/MSI
broad red band, R,;(4;) is the hyperspectral remote-sensing reflectance (1-nm spectral
resolution) measured in sifu using the ASD. RSR(4;) is relative spectral response of the
OLI/MSI over the broad red band, with n = 67 for 1-nm resolution data over the range
625-691 nm (OLI), n =39 over the range 646-684 nm ( Sentinel-2A MSI), and n=40 over
the range 646-685 nm (Sentinel-2B MSI) . This spectral weighing procedure was applied
to the 26 measurements made with the ASD, but it could not be applied to the 14 samples
measured with the C-OPS considering the instrument only provides measurements at 19
wavelengths. In this case, the Rrs(665) measured directly from the C-OPS was used as
an estimate of the MSI red-band Rrs, and the Rrs(655) estimated from linear interpolation
of Rrs(625) and Rrs(665) measured directly with the C-OPS used as an estimate of the
red-band OLI Rrs. However, a simple comparison of Rrs at discrete wavelength and
spectrally weighed Rrs using the ASD data revealed that this limitation only introduced
a +/- 4.06% uncertainty in the C-OPS derived MSI and OLI red-band Rrs and had very

limited impact on the parameterization of the algorithms (Fig. 1.5 and Table 1.2).
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Figure 1.4 Measured SSC as a function of measured Remote-sensing reflectance
(combined 14 discrete remote-sensing reflectance and 26 spectrally weighed Remote-
sensing reflectance) at 655 nm (Rrsori(red)) for Landsat-8 OLI (a), 665 nm (Rrss-2a (red))
for Sentinel-2A MSI (b) sensors based on 40 water samples (Fig. 1.1). RMSE represents

Rrsqy(red) (10'Zsr'1)

Rrsg.sa(red) (10°sr™)

root mean square error and MAPE mean absolute percentage error (Eq.1.6).

Spectrally weighed Rrs (10'3sr'1)

(o]

~

»
T

w

L]

Landsat8-OLI
Sentinel-2A
Sentinel-2B

2 3 4 5 6
Rrs at discrete wavelength (10'35r'1)

15




Figure 1.5 Difference between Remote-sensing Reflectance Rrs, at a discrete wavelength
corresponding to the center of the red band of the OLI (655 nm) and MSI (665 nm), and
the Rrs spectrally weighed over the corresponding broad red band of these sensors. The
difference highlights an average difference of + 4.06%. Data were simulated here using

the 26 samples collected with the ASD Handheld-2 Pro spectrometer.

A combination of 26 spectrally-weighed Rrs and 14 discrete Rrs were thus used to
develop the three sensor-specific algorithms based on exponential fits of the measured

SSC on the measured red-band Rrs (Fig. 1.4) and shown in Egs. 1.3 to 1.5:
SSCorr=1.2158 * exp(453.87 * Rrsori(red)) - 0.5159 (1.3)

R?=0.931, p-value <<0.001, RMSE = 1.55, Mean Absolute Percentage Error (MAPE)

= (+5.16%)

SSCust.s24 = 1.9318 * exp(401.15 * Rrssoa(red)) - 1.4729 (1.4)
R’=0.927, p-value <<0.001, RMSE = 1.59, MAPE = (+ 5.61%)

SSChst.s2 = 2.0107 * exp(396.04 * Rrsszs(red)) - 1.5804 (1.5)
R?=0.927, p-value <<0.001, RMSE = 1.59, MAPE = (+5.63%)

The indicator of MAPE is calculated as:

1
MAPE = £3N|

LR, ] (16)

Vi
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Where y; and y; indicate measured and modelled SSC respectively, and N is total

number of observations.

S55Co1i, SSCsza and SSCszp are the suspended sediment concentrations to be derived from
the remote-sensing reflectance over the broad red band of the Landsat-8 OLI (RrsoLi
(red)), Sentinel-2A MSI (Rrss2a(red)) and Sentinel-2B MSI (Rrss2s(red)) sensors
respectively. These simple algorithms show that the red-band Rrs explains 93% of the
variance in SSC across a range of 1 to 30 mg L', which is representative of the range of
SSC typically measured over the past 15-years (Hopkinson et al., 2018). The algorithms
facilitate the retrieval of SSC within + 5.47% of the measured values. The observed
scatter in the relationships between red-band Rrs and SSC can be caused by several
factors: 1) uncertainties in the measurements of SSC and Rrs, 2) differences in particle
size, shape, and type which can influence the specific inherent optical properties of the
suspended particles (e.g., volume scattering phase function, and mass-specific absorption
coefficient), 3) influence of bottom reflectance in some of the shallower waters sampled
(e.g., during low tide), and to a lesser extent 4) independent variations in chromophoric

dissolved organic matter which can contribute to some variability in Rrs even in the red.

1.3.3 Processing of OLI and MSI imagery and implementation of the algorithms

Level-1 data from Landsat-8 OLI, Sentinel-2A MSI, and Sentinel-2B MSI were obtained

from the USGS Earth Explorer website (https://earthexplorer.usgs.gov) and were

atmospherically corrected using the NASA SeaDAS v.7.5.1 comprehensive software
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package for the processing, display, analysis, and quality control of ocean color data.
Briefly, the /2gen processor was used to generate Level-2 mapped rasters of the red-band
Rrs from the Level-1 top-of-atmosphere calibrated radiances using the standard multi-
scattering and iterative near infrared (NIR) model of Bailey et al., (2010) and the vicarious
gains of Pahlevan et al. (2017b). A total of 46 mostly-clear scenes of red-band Rrs were
thus generated, including 24 scenes from Landsat-8 at 30-m spatial resolution, 14 from
Sentinel-2A at 10-m spatial resolution, and 8 from Sentinel-2B also at 10-m spatial
resolution. The sensor-specific algorithms displayed in Egs. 1.3-1.5 were then applied to

their corresponding scenes to produce SSC maps.

Large portions of the Plum Island Estuary consists of shallow areas. In order to avoid
significant contamination by bottom reflectance, only remotely sensed data collected over
the center of the main channel were used in this study. Bottom depth along the transect
increased progressively from a minimum of 2.5 m in the more turbid upstream reaches of
the estuary (from marker 0 to 1-km) to more than 10-m near the mouth of the estuary (Fig.
1.6). A simple quantitative analysis was done to assess the potential influence of bottom
reflectance on the remotely sensed Rrs(665) . It revealed that bottom reflectance unlikely
affected the observed remotely sensed Rrs(665) along the transect, with the exception of
a short and shallow section of the transect located between the 8.25 and 8.75-km markers,
where a combination of clearer waters and a bottom depth of < 5 m likely led to a
significant contribution of bottom reflectance. However, a simple comparison indicated

that the apparent increase in Rrs(665) due to bottom reflectance observed between the
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8.25 and 8.75-km markers only caused an average increase of 0.5% in the transect-

averaged SSC and was therefore not considered an issue for the purpose of this study.

__70.87°W 70.80°'W 70.73'W

42.80°N
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o

Elevation (m
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42.73'N

Elevation NAVD88 (m) “ %
<45 1

42.67°N

Figure 1.6 Elevation (NAVDS8S8) of the Plum Island Estuary: (a) Map derived from a
combination of LIDAR and GPS bathymetry measurements provided by LTER-PIE

(https://pie-lter.ecosystems.mbl.edu/data), (b) elevation along the thalweg of the sound

(red line) from the mouth of the Parker River (Marker 0 km) to the mouth of the esuatry
(Marker 11.3 km).

1.3.4 Potential influence of bottom reflectance on the remotely sensed Rrs(6635)

A simple quantitative analysis was done to estimate the approximate potential

contribution of bottom reflectance on the average remotely-sensed Rrs along the thalweg
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transect. In this analysis, the Rrs®(665) contributed by the bottom reflectance of
incident irradiance was estimated using Eq. 1.7

LwB(665)

where the Ly, ® (665) is the water-leaving radiance at 665 nm contributed by the bottom
reflectance of the irradiance incident above the air-water interface at 665 nm,

E;(0%,665). Here, L,,®(665) can be approximated using Eq. (1.8)

Ly, 5 (665) = (l) * 0.96 * E;(0%,665) * exp(K;(665) * z) * exp(K,,(665) * z) * Rg *

T

0.54 (1.8)

where K4 (665) is the diffuse attenuation of downward irradiance at 665 nm, K,(665) is
the diffuse attenuation of upwelling irradiance at 665 nm, z is the bottom depth (negative
value), Rp is the bottom irradiance reflectance, the 1/ factor is used to convert water-
leaving reflectance to remote-sensing reflectance assuming an isotropic upward light field,
and the 0.54 and 0.96 factors account for reflection of upwelling radiance and
downwelling irradiance, respectively, at the air-water interface. In most cases, K; and K,
are very close in value (Howard and Morel, 2012), such that Eq. (1.8) can be simplified

to:

L, (665) = (l) % 0.96 * E; (0%, 665) * exp(K,(665) * 2+ 2) * Ry x 0.54  (1.9)

[
Inserting Eq. (1.9) into Eq. (1.7) yields Equation (1.10):
RrsB(665) = (%) % 0.96 * exp(K,(665) * 7 * 2) * Ry * 0.54 (1.10)

Here, Rrs?(665) was calculated along the transect (Fig.1.7) using Eq. (1.10) and the

following data:

1) Bottom depth z along the transect (Fig. 1.7A), extracted from the bathymetry data (see
Fig. 1.6).
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2)

3)

A linear increase of bottom irradiance reflectance Rg(665) ranging from 0.1 in the
muddy sediment upstream to 0.5 in for the more sandy sediments near the mouth of
the estuary (Fig. 1.7B), based on reported data (Volpe, 2011) and reflecting the
general gradient of bottom sediment type along the transect (Fagherazzi et al., 2014).
Values of K4(665) measured across a representative range of water types in the Plum
Island Estuary using a Biopherical C-OPS (See Methods) ranged from ~0.55 - 2 m™!
and were found to be strongly linearly correlated (R*> > 0.90, n = 45) with SSC
measured on samples acquired coincidently in situ. This strong relationship is not
surprising considering that backscattering by particles is the main factor influencing
K4 at 665 nm besides the constant absorption by water. This relationship, Ki«(665) =
0.0845*SSC + 0.4934, was thus used to estimate an average K4 (665) transect from
the average of all remotely sensed SSC transects used in this study (Fig. 1.7C).

— Observed from satellite sensor
—==Estimated contribution from bottom reflectance

Distance along thalweg (km)
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Figure 1.7 Potential contribution of bottom reflectance to the average Rrs(665) observed
along the thalweg of the main channel of the Plum Island Estuary, along with the variables
used to calculate it. (A) Bottom depth z from bathymetry. (B) Assumed bottom irradiance
reflectance (C) K4(665) estimated from the average distribution of SSC along the transect.
(D) Average remotely sensed Rrs(665) from all scenes, and potential contribution from

bottom reflectance.

The lack of correspondence between the transect of remotely sensed Rrs(665) and the
calculated contribution from bottom reflectance (Fig.1.7D) indicates that the bottom
reflectance contributed minimally to the observed patterns of Rrs(665) variability, except
for a shallow 0.5-km section of the transect located between markers 8.25 and 8.75 km,
where clearer waters (lower K4(665) values) and shallow bottom likely contributed to an

apparent increase in remotely sensed Rrs(665).

1.3.5 Hydrodynamic and meteorological analysis

Water level, wind conditions, and river discharge data were collected at the same instant
of each satellite image. The LTER-PIE services a fixed meteorological station at the
Ipswich Bay Yacht Club pier (see location A in Fig. 1.1), recording water level, wind
speed, and direction every 15 minutes. Daily river discharge data for the Parker River and
Rowley River are available at the USGS stations 0110100 and 01102000 respectively.
Tidal discharge is an important parameter for sediment dynamics. In fact when the tidal
discharge is maximum, usually near mean sea level for mudflats, water velocities at the
bottom are high, leading to high bottom shear stresses and sediment resuspension, thus
increasing SSC. An estimate of the temporal variations in tidal discharge in a system is

quite complex (see Kearney et al. 2017), and usually requires a high resolution numerical
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model (e.g. Zhang et al. 2019) or intensive field measurements (Fagherazzi and Priestas
2010). Here we use the temporal variation in water level dh/dt as a proxy for tidal
discharge, with positive values indicating flood direction. This approximation is based on
the tub model of Boon (1975), who showed that for continuity in a tidal system a change
in water level requires an input/output of a volume of water in the system. To a first

approximation, we can write (Boon 1975):

dh
Q=4 (1.11)

Where Q is the tidal discharge entering the system, A4 is the flooded area of the bay, which
can be considered constant to a first-order approximation, and dh/dt the variation in

water level triggered by the tide.

This model does not account for the variability in flooded area due, for example, to
wetting and drying of marshes or the propagation of the tide in the system, which causes
a spatially-variable dh/dt in the bay (Fagherazzi et al. 2008). However, this simple
approximation correctly captures the low flow at slack water, the discharge peak near
MSL, and neap/spring modulations in tidal discharge. More importantly, temporal
variations in water level dh/dt can be readily computed from a tidal gauge without the

need of bathymetric data, and it is therefore ideal ancillary data for remote sensing images.

The 46 scenes used in this manuscript cover the entire tidal cycle of flood and ebb tides

and high and low water levels. In Figure 1.8 we plot the average sediment concentration
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as a function of water level and rate of water level change, dh/dt. The rate of water level
change is a proxy for tidal flow, and it is positive during flood and negative during ebb
(Fagherazzi et al. 2008). Our measurements span low and high tide as well as low and
high flow, although there was a slight bias towards high flow conditions during flood
(high rates of water-level change) when the water level is around zero (Fig. 1.8). The
wind speed ranges from 0.97 to 11.81 m/s, and river discharge of Parker River ranges
from 0.01 to 6.17 m3/s (Table 1.4). These 46 scenes cover entire tidal cycle, normal wind
conditions (Fagherazzi et al. 2014) and a typical range of river discharge (Fig. 1.2), thus
providing a representative database to capture the main drivers contributing to variations

of SSC in the study area.
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Figure 1.8 Relationship between in-situ measured water level, temporal variations in

water level dh/dt at Ipswich Bay Yacht Club pier (see location A in Fig. 1.1) and transect
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averaged SSC (n=46). dh/dt is a proxy for tidal flow and positive values indicate flood

tide. The data highlight that the remote-sensing data cover a representative range of tidal

conditions typically encountered at the Plum Island Estuary.

1.4 Results

1.4.1 Distribution of SSC as a function of river discharge, wind and tides

Table 1.3 Hydrodynamic and meteorological parameters of representative SSC maps

shown in Fig. 1.9, 1.10.

Figure Date Water LTER Wind Wind Parker SSC Dominated
level dh/dt speed direction discharge (mg/L) factor
(m)  (mh) (@ms) () (m3/s)
1.9a,1.10a 10/12/2014 -0.35 0.66 3.19  331.80 0.01 2.20 High tidal
flow
1.9b,1.10a 10/5/2017 139  0.14 3.11 290.40 0.24 0.51 Low tidal
flow
1.9¢,1.10b  10/20/2017 1.12  0.57 6.58  303.10 0.01 0.97 Flood tide
1.9d,1.10b 12/1/2017 098  -0.58 6.98  308.40 0.42 0.52 Ebb tide
1.9¢,1.10c  4/3/2014 -0.45  0.68 3.07 5750 6.17 9.87 High
discharge
1.9f,1.10c  3/18/2014 0.46  0.64 249  62.50 1.83 1.72 Low
discharge
1.9¢g,1.10d 3/11/2017 139  -0.05 9.93  272.00 1.14 0.40 High wind
speed
1.9h,1.10d  7/5/2013 0.78 -0.30 2.05 312.10 3.20 0.77 Low wind
speed
1.91,1.10e  3/26/2018 -0.53 -0.57 7.33  26.73 1.64 4.08 Northeast
wind
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1.95,1.10e  2/6/2017 -0.53 -0.62 7.10 313.20 1.16 1.82 Northwest
wind

Possible hydrodynamic and meteorological controls on water surface SSC include tidal
currents, river discharge, and wind-generated waves. To qualitatively illustrate these
different controls, we selected pairs of images in which only one hydrodynamic or
meteorological variable significantly varies (Table 1.3). The sole influence of tidal
current magnitude on SSC, under similar conditions of river discharge, wind speed, and
wind direction was showed in the SSC maps derived from the OLI and MSI (Fig. 1.9a,
b). The sole influence of tidal current direction (Fig. 1.9¢c, d), river discharge (Fig. 1.9¢,
f), wind speed (Fig. 1.9¢g, h) and wind direction (Fig. 1.91, j) were also illustrated in these

high-resolution maps.
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Figure 1.9 Spatial distribution of SSC as a function of different hydrodynamic and
meteorological factors: tidal current magnitude (a, b); tidal current direction (c, d); river

discharge (e, f); wind speed (g, h) and wind direction (i, j).
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The SSC in the upper bay increased by an order of magnitude when the water-level rate
of change (dh/dt) increased from 0.14 m/h (October 5, 2017) to 0.66 m/h (October 12,
2014) (Fig. 1.9a, b and Fig. 1.10a). This is because a fast increase in water level led to
higher tidal velocities in the bay, resuspending bottom sediments and increasing SSC
(Fagherazzi et al. 2012). SSC was 1-2 times larger during flood than ebb although winds
and freshwater discharges were slightly stronger during ebb (Fig. 1.10b). An extreme
river flood of the Parker River and associated sediment plume was detected on April 3,
2014, with a river discharge of 6.17 m%/s (Fig. 1.9¢,f). The river flood caused a SSC 4-5
times larger than the average along the entire bay (Fig. 1.10c). Values of SSC in March
11, 2017 with a wind speed of 9.93 m/s are slightly lower than values of SSC in July 5,
2013 with a wind speed of 2.05 m/s (Fig. 1.10d). This result indicates that wind speed
might have a weak control on suspended sediments; we therefore suggest that variations
in water level and river discharge are more important for SSC dynamics. A Nor’easter
storm in March 26, 2018 (Fig. 1.91, j) was also captured in our analysis, with wind speed
of 7.33 m/s and wind direction of 26°. We compared this event with an image taken on
February 6, 2017 with similar wind speed of 7.31 m/s but approximately reversed wind
direction of 313°. Strong wind waves caused by the Nor’easter storm contributed to more
sediment resuspension especially in the shallower upper bay and along the shoreline (Fig.

1.91, j and Fig. 1.10e).

We calculated averaged SSC along the thalweg of all scenes in different seasons and

grouped them by flood and ebb directions. SSC generally decreased seaward and was
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significantly larger during flood than during ebb in the upper bay (Fig. 1.11a). The SSC
presented seasonal differences, with the spring season featuring the largest SSC (Fig.
1.11b) because of higher river discharge (see Fig. 1.2 and Table 1.4). Higher SSC
occurred during flood in both spring and fall seasons (Fig. 1.11b, d), while in summer
and winter the magnitude of SSC in flood was comparable to that in ebb (Fig. 1.11c, e).
We conclude that SSC during flood tide was generally higher than during ebb tide, and

the reasons will be examined in following sections.
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Figure 1.10 Distribution of SSC along the main channel thalweg (see thalweg location in
Fig. 1.1) showcasing, in each case, the dominant effect of a single factor: (a) tidal current
magnitude; (b) tidal current direction; (c) river discharge; (d) wind speed; and (e) wind

direction.
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Table 1.4 Hydrodynamic and meteorological conditions of 46 scenes used.

Scene Date Sensors Water dh/dt Wind Wind Parker Ipswich SSC
Num level (m/h speed directio  discharg discharg  (mg/L
m ) (s n()  eml) em)y) )
1 4/4/2013 OLI -1.05  -0.56 570  313.20 1.47 8.38 2.84
2 7/5/2013 OLI 0.78 -0.30 2.05 312.10 3.20 11.33 0.77
3 8/22/2013 OLI 0.93 0.76  2.11  266.90 0.04 0.84 0.29
4 9/7/2013 OLI 0.62 0.67 242  260.10 0.02 0.50 0.95
5 9/23/2013 OLI -0.17  0.62 6.15 310.50 0.09 0.54 2.53
6 3/18/2014 OLI 0.46 0.64 249 62.50 1.83 9.85 1.72
7 4/3/2014 OLI -045 068 3.07 5750 6.17 37.66 9.87
8 8/9/2014 OLI 1.24 -0.29 143 21.10 0.04 1.04 0.62
9 9/26/2014 OLI 0.51 0.62 341 21.40 0.01 0.18 1.68
10 10/12/2014  OLI -0.35  0.66 3.19  331.80 0.01 0.36 2.20
11 1/16/2015 OLI -0.03 -0.58 2.11  232.80 0.91 4.53 1.32
12 8/28/2015 OLI 1.20 -0.28 226  53.60 0.11 0.46 0.79
13 4/24/2016 OLI 0.22 0.64 3.12 76.70 0.77 3.85 2.10
14 5/10/2016 OLI -0.82 075 291  310.60 0.78 5.15 7.48
15 11/2/2016 OLI 0.47 0.62 3.08 296.40 0.01 1.89 1.18
16 11/18/2016  OLI -0.15  0.73 547  338.60 0.08 2.15 5.52
17 2/6/2017 OLI -0.53  -0.62 7.10 313.20 1.16 3.77 1.82
18 3/11/2017 S2A 1.39 -0.05 9.93  272.00 1.14 5.13 0.40
19 8/1/2017 OLI -0.51  -041 224 2640 0.08 1.95 0.52
20 9/27/2017 S2A -0.90 0.11 206 155.80 0.02 0.16 0.78
21 10/4/2017 OLI 1.21 -0.13 226  260.80 0.01 0.14 0.93
22 10/5/2017 S2B 1.39 0.14 3.11  290.40 0.24 0.14 0.51
23 10/10/2017  S2A -0.69 0.65 697 297.60 0.08 0.19 2.18
24 10/12/2017 S2B -1.20  -0.04 5.77  32.00 0.02 0.13 2.02
25 10/17/2017  S2A 1.20 -0.40 097  23.30 0.01 0.11 0.55
26 10/20/2017  OLI 1.12 0.57 6.58  303.10 0.01 0.09 0.97
27 12/1/2017 S2B 0.98 -0.58 6.98  308.40 0.42 2.12 0.52
28 12/7/2017 OLI -0.38  0.71 421  265.70 0.46 1.63 4.49
29 12/11/2017 S2B -0.83  -042 193 273.80 0.63 1.77 1.40
30 12/16/2017  S2A 1.15 -0.20 4.13  288.70 0.42 1.94 0.59
31 12/21/2017 S2B 0.13 0.62 639 292.60 0.33 1.55 1.01
32 1/18/2018 S2A 0.93 0.65 2.83 287.40 2.04 7.39 1.53
33 1/25/2018 S2A -1.30  -0.38 11.81 282.60 1.22 5.32 4.33
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34 2/17/2018 S2A 0.61 0.70 237 5848 1.75 10.51 1.16

35 2/27/2018 S2A 0.92 -0.58 6.96 29540 1.80 9.00 1.01
36 3/1/2018 S2B 1.84  0.11 3.14 41.42 1.57 8.50 0.89
37 3/19/2018 S2A 0.42 0.63 10.37 290.90 1.98 12.37 9.64
38 3/26/2018 S2A -0.53  -0.57 733  26.73 1.64 9.03 4.08
39 3/31/2018 S2B 1.42 045 429 303.80 1.82 8.92 2.66
40 4/5/2018 S2A -1.27 044 638 30240 2.10 9.68 4.25
41 4/23/2018 S2B -1.36  -043 237 108.40 2.44 14.55 1.28
42 4/28/2018 S2A 1.53 0.07 2.72  347.20 2.92 12.94 0.55
43 5/5/2018 S2A -1.23 039 857  289.20 1.89 9.12 2.49
44 6/17/2018 OLI -0.79 082 245 51.48 0.03 1.15 8.78
45 7/3/2018 OLI -096 039 229 24440 0.30 3.43 1.78
46 7/19/2018 OLI -1.47  -0.19 264 69.16 0.02 1.57 3.05

1.4.2 Dominant drivers of SSC

Regressions between transect-averaged SSC and tidal parameters, wind speed, and river
discharge were carried out in order to quantify the influence of each factor. Generally,
SSC increased when the Parker River discharged more sediment into the bay (Fig. 1.12).
River discharge explained only 19% of SSC variance, thereby indicating that other factors
also controlled the distribution of SSC when the river discharge is low. Note also that
only a few data points had high river discharge data (> 3 m?¥/s), which might have

contributed to the lower R? of the regression.

Wind transfers energy to the water surface, generating waves whose shear stresses
combined with tidal currents are responsible for sediment resuspension in shallow bays
(Fagherazzi and Wiberg 2009). There was no clear relationship (R’ < 0.1) between
averaged SSC and wind speed (Fig. 1.13). However, removing three outliers with high

SSC dominated either by extremely high river discharge (April 03, 2014) or very fast
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water level variations dh/dt (April 03,2014, May 10, 2016, June 17, 2018) would increase
the R? to 0.40. In accordance with local wind climate (Fagherazzi et al. 2014), our study
area was dominated by northeast and northwest winds (Fig. 1.14), but there was no

obvious relationship between SSC and wind direction.

101 L -
)
Is)
£
8 y=1.67*exp(0.26*x)
) ® g R?=0.19, p<0.05
@ t 19, PaU.
s [ e
2 10° e ]
o © .
(9]
=
< o $ d Ebb
®  Flood
0 1 2 3 4 5 6 7 8 9
Parker River discharge (m3/s)
ot} B
iy
s)
E
2 % y=1.73%exp(0.04*x)
105] T 2_
2 i R?=0.23, p<0.05
> 100 g &® :
= ®
[}
>
z . ¢ d Ebb
o $  Flood

0 5 10 15 20 25 30 35 40
Ipswich River discharge (m3/s)

Figure 1.12 (A) Relationship between transect-averaged SSC and discharge of the Parker

River; (B) between transect-averaged SSC and discharge of the Ipswich River.
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A stronger correlation existed between transect-averaged SSC and water level variations
dh/dt during tidal flood (Fig.1.15a), highlighting the control that tidal discharge played
on SSC. Water level variations dh/dt explained approximately 19% of the overall variance
of SSC. Furthermore, dh/dt explained 49% of the variance when only low water levels
were considered (Fig. 1.15b). During ebb, the variation in water level dh/dt cannot explain
variations in SSC at either low or high water levels (Fig. 1.15b,¢). Generally, higher SSC
occurred at low water levels (Fig. 1.16a). Water level 4 explained approximately 60% of
the overall variance of SSC during ebb (Fig. 1.16b) and only 29% during flood (Fig.

1.16c).
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Figure 1.15 (a) Transect-averaged SSC as a function of variation in water level dh/dt in

flood and ebb; (b) only during low water level (2 <0 m), and (c) only during high water

level (h >0 m).
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Figure 1.16 (a) Transect-averaged SSC as a function of water level 4; (b) only during ebb
tide (dh/dt <0), and (c) only during flood tide (dh/dt >0).

These results indicate that tidal flow (through its proxy dh/dt), wind speed, river discharge,
and water level all contributed significantly to the observed dynamics of SSC along the
entire transect. To spatially evaluate the contribution of each factor along the sound, we

calculated the correlation coefficients between SSC and river discharge, dh/dt, wind
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speed and water level along the transect (Fig. 1.17a). River discharge, variation of tidal
water level dh/dt and water level dominated SSC, followed by wind speed. The river
influence was stronger in the upper bay, while the variation in water level dh/dt, a proxy
for tidal flow, had more influence in the middle of the sound. Finally, the effect of water

level 4 increased moving offshore toward the inlet.
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Figure 1.17 Correlation coefficients between SSC and river discharge (Q), variation of
tidal water level (dh/dt), wind speed (U) and water level (#) along the main channel
thalweg. (a) Correlation coefficients between SSC and SSC predicted using models of
Eqgs.1.14-1.16 at each location (also considering only flood and ebb) along the main

channel thalweg. Shaded area around the lines indicate the 95% confidence interval.
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1.4.3 Comparison of local algorithm developed in this study to SSA-L algorithm

Semi-analytical algorithms (SSA-L) for low concentrations (Rrs < 0.03 sr'') from Han
et al. (2016) and Nechad et al. (2010) for Landsat8 OLI and Sentinel-2 MSI sensors.

SSCoLi=346.353*n*Rrsors (red)/(1- n*Rrsorr (red)/0.5) (1.12)
SSCwumsi=396.005** Rrsusr (red)/(1- w*Rrsusr (red)/0.5) (1.13)
A. Landsat8 OLI B. Sentinel-2A MSI
30 30
—— Eqgs.(3) — Egs.(4)
----- SSA-L algorithm ----- SSA-L algorithm
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Figure 1.18 Comparison of our local empirical algorithms (Egs. 1.3, 1.4) with the global
semi-analytical algorithm SSA-L (Egs. 1.12, 1.13) from Han et al. (2016) and Nechad et
al. (2010) for both the Landsat-8 OLI (A) and the Sentinel-2A MSI (B).
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1.4.4 Predicting SSC in the main channel thalweg

Since the combined effects of several factors control the distribution of SSC, we used

three multivariate nonlinear regression models. One using all data:
In(§SC) = 0.03Q + 0.58% —0.51h + 0.07U — 0.08 (1.14)

R’=0.60, p-value <<0.001, n=46

One using only flood data:

In(SSC) = 0.04Q + 1.50% —0.43h + 0.10U — 0.78 (1.15)

R*=0.56, p-value <<0.001, n=27
And one using only ebb data:
In(SSC) = —0.57h + 0.22 (1.16)
R*=0.64, p-value <<0.001, n=19

Where Q is total river discharge of Parker and Ipswich Rivers (m?/s), dh/dt is the water
level variation (m/h), U is wind speed (m/s), and / is water level (m). Note all the

variables in regression models are statistically significant (p-value <0.05).

Using all hydrodynamic and meteorological parameters, we computed the correlation
coefficient between SSC and SSC predicted using models of Egs. (1.14-1.16) at each

location along the thalweg, as well as only during flood tide and only during ebb tide (Fig.
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1.17b). Generally, the regression model showed a correlation coefficient larger than 0.7
in the middle and upper bay and a higher coefficient during ebb than during flood tide.
The correlation coefficient became lower near the inlet (after 10 km), indicating that other

processes were acting here, as for instance the supply of sediment from the ocean.

The regression model can be used to predict SSC along the bay for a given set of
hydrodynamic and meteorological parameters. To evaluate the performance of the model,
we show a validation of both transect averaged SSC for all images (Fig. 1.19a), and SSC
at each location along the thalweg for three representative scenes covering the range of
SSC values (Fig. 1.19b). Both analyses show more outliers at high values of SSC partly
due to lack of training data for high SSC. These validation results demonstrate that high-
resolution remote sensing imagery can be used to monitor and predict SSC in shallow
coastal bays, facilitating the assessment of sediment budgets of these optically complex

systems.
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Figure 1.19 (a) Relationship between the remotely sensed SSC averaged along the main

channel thalweg (n=46) and the corresponding values predicted from the model for all 46

remote-sensing scenes used in this study (Eq. 1.14), (b) discrete SSC along the main

channel thalweg and corresponding predicted values from the models (Eqgs. 1.14-1.16)

for three representative scenes (n=187 for each scene).

1.5 Discussion

SSC maps derived from remote sensing images allow a quantitative assessment of

sediment dynamics in shallow bay systems. For coastal bays with narrow channels (~ 1
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km), only remote sensing imagery with high spatial resolution and a revisit time of hours
could fully capture tidal and wave dynamics and the distribution of SSC in surface waters.
Sentinel-2 and Landsat-8 haves a high resolution of 10 m and 30 m respectively, however
the relatively long revisit time compared to tidal cycles has limited their application in
studies of tidal flow and SSC dynamics. Therefore, most studies based on remote sensing
of SSC in coastal areas focus on the retrieving method itself, with the goal of producing
the most accurate SSC map. We compiled all the SSC maps from Landsat-8 and Sentinel-
2 remote sensing imagery collected between 2013 and 2018, matched water level, tidal
flow, and wind conditions to each image, and built the relationship between SSC and
these physical drivers. Our study is one of few that quantitatively assesses the
contributions of different hydrodynamic and meteorological drivers to SSC, and predicts
spatial distribution of SSC under different conditions (see also Eleveld et al. 2014,

Hudson et al., 2017).

Based on 631 samples with SSC ranging from 0.15 to 2600 mg/L collected in various
coastal areas, Han et al. (2016) put forward a generic semi-analytical algorithm (SSA) for
sediment concentration in global coastal waters and derived coefficients for different
ocean color sensors including the Landsat-8 OLI and Sentinel-2 MSI (Nechad et al. 2010).
Compared to our local empirical algorithms (Eqs.1.3, 1.4), their semi-analytical
algorithms (Eqs.1.12, 1.13) underestimated SSC for large values (see Fig. 1.18). This
discrepancy may due to the difference in the range of data used, as the maximum value

of SSC in our study is only 28.94 mg/L. Moreover, the semi-analytical algorithm derived
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with a large range of SSC may not capture well variations of SSC lower than 30 mg/L, as

those occurring in the Plum Island Estuary.

Two possible processes explain the general decreasing trend in SSC seaward (Fig. 1.10,
1.11): riverine discharge and sediments resuspension in the upper bay. Fagherazzi et al.
(2014) showed that the upper bay is characterized by tidal flats with fine grain sediments
(mud and silt), that are more easily resuspended. Despite the freshwater discharge of the
Parker River is relatively small compared to the tidal prism, the sediment load from the
Parker river is significant, accounting for about 10% of total sediment sources in the
system (Hopkinson et al. 2018). Flood dominance pushes sediments toward the upper part
of the bay, trapping the sediment discharged from the Parker River. Estuarine turbidity
maxima, common in estuaries, can also lead to an increase in SSC at the interplay zone
of fresh and ocean waters (Dyer et al. 2004). In the Plum Island estuary, the turbidity
maximum is located at the mouth of the Parker River (Hopkinson et al. 2018). Significant
seasonal variations in SSC are present, with higher SSC occurring in spring due to river
freshets triggered by snowmelt. In the Westerschelde estuary, Eleveld et al. (2014) found
instead that the highest SSC occurs in winter due to stronger wind waves. In our mesotidal
sound with limited fetch, the role of waves seems minor. The 46 images analyzed here
capture a river flood in April 3, 2014 and a Nor’easter storm in March 26, 2018, shedding

light on the role of extreme events (Fig. 1.9e, 1).

The transect-averaged SSC is controlled by river discharge, tidal flow, wind, and water

level. Water level and tidal flow (here represented by the variations in water level dh/dr)
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are the two dominant factors controlling SSC at each point along the transect, followed
by river discharge and wind speed. Our results are consistent with Hudson et al. (2017),
who showed that waves only affect turbidity at the mouth of the Columbia River Estuary,
but are less important than river discharge and tidal flow. River discharge dominates
turbidity in the Columbia River Estuary, while in Plum Island Estuary tidal flow and
water level are more important, since the rivers are small (see Fig. 1.12, 1.15,1.16). We
also propose a multivariable regression model that predicts spatial SSC using simple
hydrodynamic and meteorological parameters (Eq. 1.14-1.16 and Fig. 1.19). For tidally
mixed shallow bay systems, such a model provides a potential way to evaluate sediment

budgets and SSC dynamics even during extreme weather conditions.

A significant increase in SSC along the entire bay caused by a river flood is showed in
Fig. 1.10c. This result highlights the role of infrequent hydrological events on sediment
dynamics. High SSC triggered by the Nor’easter of March 26, 2018 (Fig. 1.10e) indicate
that strong winds can also trigger sediment resuspension, but more along the shoreline
rather than in the sound. Wave induced shear stresses could suspend bottom sediments,
and enhance the exchange of sediments between tidal flats and channels. Castagno et al.
(2018) modeled the influence of storms on sediment budgets at the Virginia Coast
Reserve, USA, and found that intense storms resuspend and funnel fine-grained materials
from the nearshore to the interior of the back-barrier tidal basins. In Plum Island Estuary,
waves-induced sediment resuspension seems of secondary importance compared to tidal

flows, water level, and sediment discharge from rivers.
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Our results also show that the distribution of SSC is different between flood and ebb, with
SSC higher during flood. As a result, the sound is importing and trapping sediments,
which explains why the marsh accretion is keeping pace with SLR (Hopkinson et al.
2018). During ebb water levels become very important, exerting a very strong control on
SSC (Fig. 1.16b). We ascribe this result to three possible factors: i) The peak velocity in
salt marsh creeks is delayed during ebb, occurring at low water levels and mobilizing
sediment on banks or stored at the bottom of the channels. In fact, water moves slowly
on the vegetated marsh surface, so that the channels are still draining the marsh platform
hours after high slack water (Fagherazzi et al. 2008). As a result, the stage-velocity
relationship is very asymmetric (Bayliss-Smith et al. 1979). ii) Seepage from marsh banks
during ebb can lead to local sediment piping and sapping, increasing the turbidity of the
water exiting the marshes (Howes and Goehringer 1994). iii) Very shallow flows (up to
Scm depth) can mobilize soft sediments stored in mudflats along large tidal channels or
at the bottom of small creeks dissecting the marsh (Fagherazzi and Mariotti 2012). During
the late phase of salt marsh drainage, very shallow flows can be very fast, sometimes
reaching supercritical conditions, because they are driven by bottom slope and not by
tidal propagation. A similar phenomenon was observed in mudflats in Willapa Bay,
Washington State, USA, where a turbid tidal edge carried sediment at very low water
depths (Fagherazzi and Mariotti 2012). All the sediments mobilized by these three
processes during marsh drainage will eventually reach the sound contributing to the
turbidity of the water at low tide. However, the overall sediment flux is low, because the

discharge is small when the water depth is limited. As a result, the sediment concentration
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during ebb does not spike, and remains lower than during flood (Fig. 1.11a). The
influence of water depth increases downstream along the sound, probably because more

turbid water from the marshes is collected (Fig. 1.17a).

SSC depends more on tidal current amplitudes and their variations in time during flood
(Fig. 1.15). This result indicates that during flood tidal flow and related shear stresses
mobilize bottom sediments, and carry them toward the upper bay. In the flood period
from slack water to marsh inundation, variations of water level can explain 49% of SSC
(e.g. Fagherazzi et al. 2013b). However, when the marsh is flooded, there is no
relationship between water level variations and SSC (Fig. 1.15c¢). This highlights the
complexity of tidal hydrodynamics and sediment transport pathways caused by the
presence of salt marshes. This complexity prevents the establishment of a linear
relationship between velocity and turbidity, as detected by remote sensing data in the

lakes in the Peace-Athabasca Delta (Pavelsky and Smith, 2009).

Resuspension triggered by tidal flow seems peaking in the middle sound, where the
correlation coefficient between dh/dt and SSC is maximum. The influence of dh/dt on
sediment dynamics decreases near the inlet, where oceanic inputs of sediment are likely
important (Fig. 1.17a). Note that herein we do not address sedimentary processes acting
on the inner continental shelf, and therefore the predictive ability of our regression model

decreases near the inlet (low » in Fig. 1.17).

Fagherazzi et al. (2013a) and Ganju et al. (2015) emphasized how a positive sediment

budget is critical for the stability of salt marshes and coastal bays facing SLR (see also
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Hopkinson et al. 2018). In fact, intertidal systems must trap sediment and accrete in order
to counteract SLR. Ganju et al. (2015) suggested the use of flood/ebb SSC differential in
marsh creeks to assess the vulnerability of salt marsh complexes. The same parameter
can be scaled up to the entire Plum Island Estuary. Figure 1.11a shows that flood/ebb
SSC differential is positive in the middle and upper section of the sound, indicating that
the system is importing sediment and therefore partly mitigating the effect of SLR. Our
methodology based on remote sensing images can therefore be used to quickly assess
vulnerability of marshes and shallow bays to SLR. The data analyzed here span only 5

years and cannot capture in detail the interannual variability in SSC.

Herein we have used variations in water surface elevation as a coarse proxy for tidal flow,
following the simple tub model of Boon (1975). However, tidal propagation and the
presence of salt marshes give rise to tidal asymmetries that affect tidal discharge, velocity,
and ultimately sediment advection and resuspension (Fagherazzi et al. 2008; Friedrichs
and Aubrey 1988). Remote sensing images are not able to capture temporal dynamics of
SSC such as sediment settling and advection. For example, sediment in suspension can
take hours to settle, so that the sediment concentration measured at one instant might have
originated from hydrodynamic conditions that occurred in the past. This is particularly
true for waves and wind fields that can change in hours. Advection can also transport
sediment away from the location where it was first resuspended. In this situation, simply
attributing the increase in SSC in the channel to waves and strong tidal flows at the instant
of the remote sensing image collection might introduce an error. This error likely affects

the correlation between SSC and different drivers, especially wind waves. Water level is
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also an important driver of SSC in the tidally dominated systems especially during ebb.
Further research is deemed necessary to determine the importance of tidal asymmetry on

the evaluation of sediment budgets from remote sensing images.

SSC of our 40 water samples ranges from 0 mg/L to 30 mg/L, covering the range of
values measured in-situ in the last 13 years (Hopkinson et al. 2018). The empirical
algorithm constructed captured a representative range of SSC concentrations for the entire
bay, with the exception of very extreme events. During large river floods and energetic
storms, SSC could fall outside the range covered in the study. This might cause
uncertainty when our empirical relationship is used, although it would be very
challenging to conduct in situ measurements during those conditions. It is also important
to recognize that SSC retrieved from remote sensing can be affected by errors from the

atmospheric correction (Warren et al., 2019).

1.6 Conclusions
In this paper, we demonstrated that the existing record of high-resolution imagery from
Landsat-8 and Sentinel-2 can be used to quantitatively assess of the relative roles of
hydrodynamical and meteorological drivers on the variability of suspended sediments in
a marsh-influenced estuary. High-resolution images from these sensors provided
snapshots of SSC distribution that are difficult to capture with in situ instruments in such
dynamic and heterogenous systems. These data are crucial to decipher the relative role of

different physical processes in driving suspended sediment dynamics. Here, the analysis
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of high-resolution imagery revealed several important pieces of information about SSC

dynamics in the Plum Island Estuary:

(1) SSC generally decreases seaward in the sound, and is higher in the spring season
because of increased river discharge caused by snowmelt.

(2) Extreme events such as river floods and storms increased SSC by 5-to-10-fold,
greatly altering the SSC distribution in the system. Wind direction was also found
to be more important to sediment resuspension than wind speed.

(3) Higher SSC occurs during tidal flood rather than ebb, especially during the spring
and fall seasons. This tidal asymmetry possibly favors sediment retention in the
bay, increasing the resilience of the marsh to sea level rise.

(4) Water level, tidal flow and river discharge are generally the most important factors
dominating SSC along the sound, followed by wind speed.

The Plum Island Estuary in Massachusetts was used herein as a prime example of a mid-
latitude, tidally-driven estuary influenced by large fluctuations in river discharge and
regularly impacted by storms. However, this general approach is applicable to other
estuaries around the world in order to determine the dominant drivers of SSC dynamics.
This methodology can be useful to help quantify sediment budgets and assess the fate and
sustainability of marshes. The Plum Island Estuary was particularly challenging because
bottom reflectance prohibited the use of remote sensing over much of the estuary besides
the main channel. Marsh-influenced systems with higher sediment loads (e.g., coastal
Georgia and Louisiana, USA) would not be influenced as much by bottom reflectance

and are therefore even more suitable for this analysis.
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Despite the long revisit-time of current high-resolution sensors onboard Landsat-8 and
Sentinel-2, our study showed that the record of high-resolution imagery available since
the beginning of Landsat-8 operations (May 2013) was sufficient to capture a
representative range of tidal conditions, river floods and storms. This is true even
considering that Sentinel-2A and -2B MSI (in operation since 2015 and 2017,
respectively) contributed to only part of the 5-year record used in this study. With these
three satellite sensors now operating, new sensors launching soon (e.g., Landsat-9), and
constantly improving atmospheric correction procedures (Warren et al., 2019), the record
of usable high-resolution imagery is bound to be rapidly expanding and to provide an
even more representative depiction of suspended dynamics in these important coastal

systems.
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