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Abstract
The  detection  of  GW170817,  the  first  neutron  star-neutron  star  merger 
observed by Advanced LIGO and Virgo, and its following analyses represent 
the  first  contributions  of  gravitational  wave  data  to  understanding  dense 
matter.  Parameterizing  the  high  density  section  of  the  equation  of  state  of 
both  neutron  stars  through  spectral  decomposition,  and  imposing  a  lower 
limit on the maximum mass value, led to an estimate of the stars’ radii of 
R1 = 11.9+1.4

−1.4  km and R2 = 11.9+1.4
−1.4  km (Abbott et al 2018 Phys. Rev. Lett. 

121 161101). These values do not, however, take into account any uncertainty 
owed  to  the  choice  of  the  crust  low-density  equation  of  state,  which  was 
fixed  to  reproduce  the  SLy  equation  of  state  model  (Douchin  and  Haensel 
2001 Astron. Astrophys. 380 151). We here re-analyze GW170817 data and 
establish that different crust models do not strongly impact the mass or tidal 
deformability of a neutron star—it is impossible to distinguish between low-
density models with gravitational wave analysis. However, the crust does have 
an effect on inferred radius. We predict the systematic error due to this effect 
using neutron star structure equations, and compare the prediction to results 
from  full  parameter  estimation  runs.  For  GW170817,  this  systematic  error 
affects the radius estimate by 0.3 km, approximately 3% of the neutron stars’ 
radii.

Original content from this work may be used under the terms of the Creative 
Commons Attribution 3.0 licence. Any further distribution of this work must maintain 
attribution to the author(s) and the title of the work, journal citation and DOI.
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1.  Introduction

The composition and structure of neutron stars (NSs) is a longstanding question for discus-
sion in the scientific community. Knowing the properties of these very dense objects would 
contribute to the understanding of matter under extreme conditions, with implications for both 
astrophysics and nuclear physics, as reviewed in e.g. [3–6].

In August 2017, the first observation of a NS–NS merger, GW170817 [7], was made by 
the Advanced LIGO [8] and Virgo [9] instruments. Its subsequent analysis represents the first 
contribution of gravitational-wave (GW) data to understanding dense matter and the NS radius 
R [1, 7, 10–15]. Rapid detection and localization of the signal [16–19] enabled multimessen-
ger followups [20–26], which themselves suggest various scenarios that may also limit the 
properties of cold dense matter, e.g. [27–30]. We here focus on what GW data alone implies.

Comparing GW data to solutions of the relativistic two-body problem provides a measure-
ment of the two stars’ masses M1 and M2 and dimensionless tidal deformabilities Λ1 and Λ2, 
which describe the ratio of the body’s tidally induced quadrupolar deformation to the tidal 
potential caused by its companion, through the mass-weighted sum Λ̃. The tidal parameters 
depend on the compactness of the star C  =  R/M, both explicitly and through the relativistic 
tidal Love number k2 [31–38].

When determining R from GW analysis, an added level of uncertainty comes from the choice 
of the crust structure model. The outer low-density layers of the star contain a small fraction 
of the mass (for a M  =  1.4 M  NS with a SLy [2] equation of state, Mcrust/M ≈ 1%  below 
ρcrust ≈ 1.4 × 1014 g cm−3), but contribute to a larger portion of the radius (Rcrust/R ≈ 6% ). 
For this reason, since different crust choices are also not anticipated to strongly affect the 
determination of the tidal deformability parameters Λ, it is not expected to be able to distin-
guish between different low-density models through GW analysis alone. This, in turn, may 
de-facto induce a ‘systematic error’ on the obtained measurements of the NSs radii. Notably, 
one implication of the low sensitivity of tidal parameters to the crust densities would be that 
GW measurements give more direct information on higher densities, and that therefore in this 
region the constraints obtained from analyses are independent of uncertainties in crust.

The aim of this paper is to quantify the effect of the choice of the crust equation of state 
(EOS)  on  parameter  estimation  (PE)  for  GW170817,  especially  on  the  radius  estimate  of 
[1].  In  order  to  do  so,  we  re-analyse  the  GW  data  with LALInference  [39],  following 
the parameterized EOS method of [40], but modifying the low-density region. In the LIGO-
Virgo analysis [1], densities below ρ ≈ 1014 g cm−3 were fixed to the SLy description of [2]. 
We replace the fixed region with crust EOSs described in [41], which were obtained through 
the combination of Compressible Liquid Drop Model (CLDM) [42] and Baym, Pethick and 
Sunderland (BPS) models [43], while continuing to parameterize the higher-density core with 
a spectral decomposition following [44]. In parallel, we try to predict the effect of this change 
without full reanalysis: by gluing different crusts to core EOSs recovered in [1], we obtain a 
quantitative prediction of the impact of the crust on the radii recovered for the NSs involved in 
the GW170817 coalescence. We find that varying the crust has negligible impact on the Λ and 
M distributions, but can shift the implied radius up by ≈ 0.3 km in the full PE.
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The paper is organized as follows: section 2 is dedicated to the NSs’ EOS, focusing on its 
parametrization in the core of the star and on choosing appropriate crust models with respect 
to the existing bounds on symmetry energy and its slope, two important nuclear parameters 
whose meaning will be briefly presented; section 3 describes the methods used to estimate and 
predict the stellar parameters’ values; finally, in sections 4 and 5 the estimate of the systematic 
error entailed by ignoring crust variations is computed and discussed.

2.  Equation of state

Statements on the behaviour of NS matter quantitatively translate into imposing constraints on 
its energy density—pressure relationship, the EOS, which then lead to limits on stellar param-
eters such as maximum mass and radius. In this section we first give a quick overview of the 
crust composition and of the model EOS chosen to describe it. We then introduce the spectral 
decomposition parametrization of the high-density EOS adopted in our LALInference run.

2.1.  Crust equation of state

NSs are objects so dense that it is possible for them to develop a sturdy crust made of very 
neutron-rich nuclei even at the incredibly high temperatures of their surface (T ≈ 10 5–106 K) 
[45]. Qualitatively, one could imagine that when moving farther away from the core of the 
star—as the temperature and density decrease—the Coulomb interactions between particles 
become more and more important with respect to their thermal and quantum energy. At one 
point,  this  translates  into  the  formation  of  neutron-rich  nuclei,  their  locking  from  nucleon 
plasma into a lattice and the creation of a solid layer. In the innermost part of this solid crust, 
still very close to the core, the extreme density conditions may cause the lattice nuclei to 
change shape: no longer spherical, the minimum-energy structures could vaguely resemble 
pasta  forms. At  lower  densities  the  nuclei  go  back  to  their  spherical  form,  but  are  still  so 
neutron-rich that some neutrons ‘drip out’ of them and, if the temperature is below a criti-
cal value, form a superfluid neutron vapour. Approaching the exterior of the crust, the drip 
phenomenon stops; this transition divides the inner from the outer crust, which is character-
ized by the presence of a heavy nuclei lattice immersed in an electron gas. To quantitatively 
describe this complex behaviour, a number of models have been developed for both the inner 
(Thomas–Fermi, CLDM) and outer crust (BPS) [42, 43, 45, 46].

In general, whatever the combination of models chosen to describe the complete low-den-
sity section is, it can be characterized by two parameters defined at nuclear saturation density 
n0: the symmetry energy S0, which encodes the energy cost of making NS matter more neu-
tron-rich, and its slope L. Following common notations and defining the fraction of neutrons 
to all baryonic matter as x and the isospin asymmetry as δ = 1 − 2x , through a Taylor expan-
sion around x  =  1/2 of the energy density per nucleon E one finds:

E(n, x) = E0(n, 1/2) + S(n, 1/2)δ2 + . . . (1)

with

S(n, 1/2) = S0 + L(n − n 0)/3n 0 + . . . . (2)
The  slope  parameter  L  plays  an  exceptionally  important  role  in  NS  structure,  as  it  is 
closely related to the pressure of purely neutron matter at sub-saturation densities through 
p(n, 1) = n2/(3n 0)(L + . . . ).

R Gamba et alClass. Quantum Grav. 37 (2020) 025008
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From [41] we retrieve a set of crust EOSs computed through a CLDM+ BPS model, which 
reach up to approximately ρcrust = 1014 g cm−3 and cover a wide region of the S0  −  L plane. 
Both S0 and L have been studied and constrained by a number of independent terrestrial exper-
iments, which performed measurements of giant dipole resonances and dipole polarizabilities, 
nuclear masses, flows in heavy-ion collisions and neutron-skin thicknesses [47–49]. Taking 
into account all constraints, S0 should range from 30 to 32 MeV and L from 40 to 60 MeV 
[50]. Since, however, the acceptable ranges of S0 and L are still uncertain, we focus on the 
larger intervals 30 to 34 MeV for S0 and 30 to 70 MeV for L [51]. We then select the upper and 
lower limits EOS curves, whose parameters are respectively S0  =  34 MeV, L  =  35 MeV and 
S0  =  30 MeV, L  =  65 MeV. These should give the largest impact on neutron star structure (see 
figure 1). We note that, although we use variation of S0 and L to establish a realistic range of 
crusts, we do not enforce an extrapolation to higher densities that is consistent with the chosen 
parameters, but allow the core EOS to vary independently of the chosen crust.

2.2.  Parametrization model

There are two necessary conditions that a NS EOS has to satisfy to be physically consistent: 
sound has to propagate through the star slower than light in vacuum (causality) and pressure 
p  must be a monotonically increasing function of energy density e. When parametrizing an 
EOS, it would then be particularly convenient to choose a model that automatically fulfils 
at least the second condition. Such a parametrisation could be obtained through piece-wise 
polytropes [52, 53] or by applying a spectral decomposition [44] on a basis of differentiable 
functions. When  fitting  a  known  EOS,  spectral  fits  frequently  have  smaller  residuals  than 
piecewise-polytrope  fits,  even  when  they  are  performed  employing  fewer  parameters  than 
piecewise-polytrope fits. Therefore, we choose employ this parameterization in our PE runs.

The basic idea behind the spectral decomposition of [44] is that of expressing the adiabatic 
index Γ( p) = [(e + p)/p]dp/de , unique up to an integration constant for each EOS, as the 
exponential of the sum of some smooth basis functions—f i = [ln( p/p 0)] i , i ∈ N in our spe-
cific case—multiplied by some coefficients γi :

Figure 1.  The EOSs for realistic crust models with nuclear parameters S0 ∈ [30 − 34] 
MeV and L ∈ [30 − 70] MeV. SLy is characterized by (S0  =  32 , L  =  46) MeV. The 
(34,35) MeV and the (30,65) MeV EOSs are the upper and lower limits.

R Gamba et alClass. Quantum Grav. 37 (2020) 025008
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Γ( p) = exp
∞

i=0

γi f
i( p) . (3)

Obtaining the expression of the energy density as a function of pressure requires then a 
simple integration:

e( p) =
e0

µ( p)
+

1
µ( p)

p

p0

µ( p )
Γ( p )

dp (4)

in which e0, p 0 is the starting point of the decomposition in the energy density-pressure plane 
and

µ( p) = exp −
p

p0

dp
p Γ( p )

. (5)

3.  Parameter estimation

Running PE on the real data of GW170817 using spectral decomposition means that every 
spectral  coefficient γi , i ∈ [0, 3]  is  sampled,  in  place  of  the  tidal  deformabilities Λ1  and 
Λ2,  by  stochastically  walking  through  the  parameter  space  [40].  In  order  to  cover  a  wide 
range  of  candidate  EOSs,  we  sample γ0 ∈ [0.2, 2], γ1 ∈ [−1.6, 1.7], γ2 ∈ [−0.6, 0.6]  and 
γ3 ∈ [−0.02, 0.02]. We additionally impose that the adiabatic index Γ( p) ∈ [0.6, 4.5], as done 
in [1]. Each set {γ 0, . . . , γ3} i can be mapped through (4) in an EOS p i(e), i = 1, . . . , Nsamples. 
The pressure-density credible levels can be obtained by choosing a list of N  energy density 
values ej , j = 1, . . . , N, creating a pressure histogram for each value on the list by evaluating 
pi (ej) ∀i, and finally finding the chosen percentiles from every histogram. To then go from an 
EOS of the form e( p) to the determination of the stellar parameters M, R and Λ, one has to 
integrate TOV equations and solve the inner-outer matching problem related to the relativistic 
Love number k2. We used the publicly available code of LALSimulation [39] for such 
operations. By additionally imposing a lower limit of 1.97 solar masses on the maximum mass 
value supported by the EOS, and fixing the low-density section of the EOS to reproduce the 
SLy model, the radii of the two NSs involved in the binary coalescence of GW170817 were 
estimated to be R1 = 11.9+1.4

−1.4  km and R2 = 11.9+1.4
−1.4  km. In our LALInference Markov 

chain Monte Carlo (MCMC) run, the hard-coded SLy crust was switched to the S0  =  30 MeV 
L  =  65 MeV EOS (figure 1), and the crust-core transition point et, pt  changed accordingly. 
The approximant used, IMRPhenomPv2NRTidal [54–57] (see the references contained in [1] 
for more detail), and the choice of the other priors match the settings outlined in [1]. The radii 
found then are R1 = 11.7+1.4

−1.4  km, R2 = 11.7+1.3
−1.4  km. Pressure-density credible levels have 

been computed, and are shown in figure 2.
While full MCMC runs can paint a precise picture of what happens when changing the 

low-density EOS, they also are very computationally-expensive and time demanding. For this 
reason, it is worth trying to make some rough—but fast—predictions, which would also allow 
one to check on the possible impact of some future variations, with a better idea of how well 
it will reflect the full analysis. Indeed, working under the assumption that both the masses and 
the core EOS are weakly affected by the choice of the crust, we can use the mass and spectral 
coefficients posteriors from [1] to predict the posterior distributions of the stellar parameters 
R and Λ that we would get with our new crust. We replace the SLy EOS with the (S0  =  30, 

R Gamba et alClass. Quantum Grav. 37 (2020) 025008
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L  =  65) MeV or the (S0  =  34, L  =  35) MeV crust and glue the final points of the new EOS 
to the final point of the original SLy crust table (em, pm). Then, for pressures p  and energy 
densities e higher than p m and em we compute e( p) through (4), using as {γ i}  those obtained 
from the posterior distribution of the previous analysis. Coupling these relations to the mass 
posteriors, we can compute the predicted distributions of the radii Rpr of the NSs and of their 
tidal deformabilities Λ (figures 3(a) and (b)). The radii values found are R(30,65) pr

1 = 11.7+1.4
−1.3  

km and R(30,65) pr
2 = 11.7+1.4

−1.3  km; R(34,35) pr
1 = 12.0+1.5

−1.4  km and R(34,35) pr
2 = 12.0+1.5

−1.4  km.
We again note that at densities from approximately 1014 g cm−3 and up the EOS curves 

obtained through spectral decomposition do not necessarily have the characteristics at satur-
ation density (ρ0 = 2.8 × 1014 g cm−3) implied by the lower-density crust. Our aim, instead, 
is to compare directly with the results of [1], and estimate the effect that changing only the 
previous hard-coded outer crust has on PE. If we were to impose consistency on S0 and L when 
sampling the spectral coefficients, or if we extended the fixed EOS region from crust through 
to ρ0 with the same S0 and L, we expect that we would find increased correlation between crust 
and radius results as was seen in [58]. Such correlations would come through S0 and L choices 
rather than from the crust densities themselves.

4.  Systematic error estimate

In figure 3(a) we plot the marginalized two-dimensional posterior distributions of Λ1 versus 
Λ2, obtained through LALInference runs and through the predictions we made. They are 
all almost perfectly superimposed: this confirms that we are not able to distinguish between 
different low-density models through GW analysis alone. The choice of the crust does, how-
ever, impact the radii of the neutron stars involved in the coalescence. To get an estimate of the 
variation of the radii due to the choice of the crust alone, we compute the M versus R marginal-
ized two-dimensional distributions from the posteriors, as described in section 3 (figure 3(b)). 
Our prediction of the median of the radii distribution Rm for the 30–65 crust is slightly shifted 
with respect to the median obtained with the original SLy crust, and in excellent agreement 
with the actual MCMC result (table 1). We then estimate the systematic error due to the crust 

Figure  2.  90%  pressure-density  credible  levels.  They  are  perfectly  superimposed, 
except for the point where they are matched to the crust: credible levels on the high 
density section of the EOS are independent on the choice of the crust.

R Gamba et alClass. Quantum Grav. 37 (2020) 025008
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as ∆R− = Rm
SLy − Rm

(30,65) and ∆R + = Rm
(34,35)

− Rm
SLy. We find ∆R +

1 = 0.1 km, ∆R−
1 = 0.2 

km and ∆R +
2 = 0.1 km, ∆R−

2 = 0.2 km. The radii of the NSs of GW170817 then become 
R1 = (11.9+1.4+0.1

−1.4−0.2 ) km and R2 = (11.9+1.4+0.1
−1.4−0.2 ) km.

More physical insight can be obtained by mapping the 90% pressure-density credible levels 
curves, appropriately glued to the selected crusts, into M(R) and Λ(R) curves (figures 4(a) and 
(b)). Λ(M)  curves are indistinguishable, as expected, and once a mass value M has been fixed 
we can retrieve from the M(R) relations an estimate of the uncertainty on radius ∆R . After 
defining RX

Y(M)  as the R(M) relation obtained by inverting the X  =  5th or X  =  95th M(R) 
percentile curve computed using the Y crust, we have that ∆R = ∆R 0 + ∆R + + ∆R − , where 
∆R0 = R95

SLy − R5
SLy is the original uncertainty, obtained when considering the SLy crust only, 

and ∆R + = R95
(34,35)

− R95
SLy, ∆R − = R5

SLy − R5
(30,65) are the corrections which account for the 

Figure 3.  The marginalized two-dimensional posterior distributions of Λ1 versus Λ2 (a) 
and mass versus radius (b). The continuous and dashed curves represent, respectively, 
the 90% and 50% credible limits. While the Λ distributions are all indistinguishable—
and  the  ‘prediction’  curves  perfectly  superimposed—the  radii  distributions  obtained 
with  the  (30,65)  and  (34,35)  crusts  are  systematically  shifted  with  respect  to  each 
other and to the one resulting from the SLy low-density model. This shift measures 
the  additional  uncertainty,  in  radius  only,  due  to  the  unknown  crust  EOS.  The  GW 
constraints on tidal deformation are insensitive to the crust.

Table  1.  Left:  Table  containing  the  radii  values  obtained  from  the  2D  M  versus  R 
distributions  (figure  3(b)).  Right:  Table  containing  the RX

i   radii  values,  obtained  by 
matching different crusts to the X  =  5th or X  =  95th pressure-density percentile curves, 
inverting the implied M(R) relation and fixing M to M1 = 1.57M  or M2 = 1.20M  
(figure 4(b)).

R1 (km) R2 (km) R5
1 (km) R95

1  (km) R5
2 (km) R95

2  (km)

SLy (32,46) run 11.9+1.4
−1.4 11.9+1.4

−1.4
10.5 13.5 10.5 13.5

(30,65) run 11.7+1.4
−1.4 11.7+1.4

−1.3
10.4 13.3 10.4 13.2

(30,65) prediction 11.7+1.4
−1.3 11.7+1.4

−1.3
10.4 13.3 10.4 13.2

(34,35) prediction 12.0+1.5
−1.4 12.0+1.5

−1.4
10.5 13.7 10.7 13.7

R Gamba et alClass. Quantum Grav. 37 (2020) 025008
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different crusts. For M1 = 1.57M  and M2 = 1.20M  we find ∆R +
1 = 0.2  km, ∆R −

1 = 0.1 
km and ∆R+

2 = 0.2  km, ∆R −
2 = 0.1 km. This estimate, while not very different from the one 

obtained earlier, gives a less complete picture of the situation as pressure-density credible 
levels (CLs) do not map directly into mass-radius CLs. Nonetheless, it does a reasonable job 
in the mass range of the binary components, and suggests that the corrections become larger 
as the mass becomes smaller. This behaviour can be easily explained: the less massive the star, 
the higher the contribution of the crust to the total mass, and the bigger the radii differences 
owed exclusively to the arbitrary choice of the outer layers.

5.  Conclusions

After considering a range of realistic crust EOSs, whose parameters S0 and L at saturation 
density span the intervals [30  −  34] MeV and [30  −  70] MeV respectively, we selected the 
S0  =  30 MeV and L  =  65 MeV crust model and re-analyzed the data of GW170817. In paral-
lel, we successfully predicted the outcome of the re-analysis, i.e. the NS radii values. Such 
values were then used to compute the systematic error to be added to the radii estimates of 
GW170817, which amounts to a total of 0.3 km, approximately 3% of R. The simple methods 
implemented to make predictions will likely be useful to quickly quantify the impact of the 
crust EOS on future radius estimates obtained through GW analyses. Finally, we confirm our 
expectation of low sensitivity of tidal parameters to the EOS at lower crust densities. GW 
measurements give direct information on the high density EOS, independent of uncertainties 
in the crust.
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