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Abstract 
Large-scale systems-on-a-chips (SoCs) have stringent 

power requirements to ensure adequate supply of power to 
on-die devices and prevent catastrophic timing violations. 
Heterogeneous voltage regulation (HVR) leveraging a 
combination of on-chip and off-chip voltage regulators has 
been advocated for ensuring power integrity with maximum 
efficiency. However, unavoidable process and temperature 
variations have not been considered in prior HVR work. In 
this paper, we present an in-depth evaluation of the impacts 
of process and temperature variations on HVR. Furthermore, 
we propose a systemic solution to incorporate variation 
awareness into the HVR system control policy to add a further 
improvement of up to 4.28% in system power efficiency with 
minimal hardware overhead. 
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1. Introduction 
With the growing size of systems-on-a-chips (SoCs), 

power delivery is becoming an increasingly complex 
problem. The two main metrics for power delivery are power 
integrity and efficiency; in other words, it is important to 
ensure that the supply voltage does not fall below a certain 
specified level to avoid catastrophic timing delays in digital 
circuits and other failures while minimizing the losses 
incurred in the power delivery network (PDN). 

Power delivery often entails voltage regulation and as 
such voltage regulators (VRs) can significantly impact power 
integrity and the overall efficiency of a PDN. It shall be noted 
that various types of voltage regulators that have been 
employed in practice possess distinct and complementary 
characteristics. The bulk of the voltage down-conversion 
from the system supply (battery voltage for example) to the 
on-chip supply voltage is usually carried out using a 
switching VR for its superior efficiency. Typically, single-
stage voltage regulation with off-chip switching converters is 
employed, which may suffer from poor power integrity 
because of long response time and high board/package 
parasitics. Introducing on-chip switching converters with 
faster response time and small footprint as the second stage 
of regulation could address this problem [1]. However, 
switching converters require bulky and costly passive 
elements like inductors. Compared with switching converters, 
the linear VRs such as low-dropout voltage regulators 
(LDOs) have high area-efficiency and sub-ns     response 
time. This comes with the benefit to deploy LDOs across the 

chip and close to power hotspots to supress the voltage noise. 
As a good example, IBM POWER8 processor employs 1,764 
on-chip distributed linear VRs [2]. 

Recently, a holistic architecture combining the advantages 
of both switching and linear VRs into a system called 
heterogeneous voltage regulation (HVR) was proposed [3]. 
This system consists of a cascade of three types of VRs (see 
Figure 1) : off-chip and on-chip switching VRs and on-chip 

linear 
(LDO) 

VRs. Switching voltage converters convert the supply voltage 
with high efficiency, while the distributed LDOs suppress the 
voltage noise in the PDN. A workload-aware management 
policy was proposed to adjust the system for optimal system 
power efficiency while providing a guaranteed power 
integrity. 

The system in [3]  captures the system workload through 
distributed voltage and power sensors. To obtain the best 
system performance, the controller uses an offline trained 
machine learning (ML) model and efficiency characteristics 
of switching converters stored in on-chip lookup tables 
(LUTs). So far, the offline trained ML model and efficiency 
LUTs are obtained based on the nominal system and no work 
has studied how the inevitable process variations and 
temperature drifts affect the HVR system, which is expected 
to perform sub-optimally when the circuit parameters drift 
from their nominal values used to train the ML model. 

In this work, we study the effect of such variations on the 
HVR system and propose on-chip measurement circuits 
tracking parameter variations with minimal hardware 
overhead, thereby creating a variation-aware HVR system as 
shown in Figure 1. The main contributions of this work 
consist of demonstrating the interesting fact that the nominal 
model has a certain degree of robustness to variations and that 
implementing our proposed variation-aware architecture can 
add an improvement of up to 4.28% in overall efficiency 
while guaranteeing power integrity. 

 

Figure 1: Proposed variation-aware HVR architecture. 



2. Variation-Aware HVR Architecture Description  
Figure 2 shows a detailed view of the proposed 

architecture outlining how different VRs are distributed 
around the PDN as well as how a controller is used to tune the 
system. The nominal system control flow and proposed 
variation-aware control flow are detailed below. 

2.1 Basic system 
The proposed system architecture uses three-stage voltage 

regulation as has been proposed in [3] to capitalize on both 
the superior efficiency of buck converters and the excellent 
regulation performance of LDOs. The off-chip buck 
converter cluster in the first stage is driven by the system 
power supply and powers the on-chip buck converter clusters 
in the second stage. The on-chip PDN is divided into multiple 
power domains, each of which contains one on-chip buck 
converter cluster and powers one core (Figure 2 shows one 
power domain). The second-stage-regulated voltage powers a 
cluster of distributed LDOs that are all connected to the 
system's PDN that drives the load circuits.  

The power loss of an LDO is approximately proportional 
to its dropout voltage [3], so a low LDO input voltage 
provides a high regulation efficiency. However, dynamic and 
non-uniformly distributed workloads may introduce voltage 
noise in the PDN unless a higher LDO input voltage is used. 
Therefore, an offline-trained Sparse Relevance Kernel 
Machine (SRKM) model is used to learn the workload 
distribution and predict the LDO input voltage (Vout_on) online 
to improve the LDO regulation efficiency without 
jeopardizing the power integrity. 

The intermediate voltage between the off-chip and on-
chip buck converters (Vout_off) also needs to be tuned as it 
determines the conversion ratios of the first two stages and 
consequently affects the system efficiency. In addition to the 
conversion ratio, the load current can also affect buck 
converter efficiency. Since multiple converters are used in the 
first two stages, the number of active on- and off-chip buck 
converters (Non, Noff) can be controlled to adjust the load 
current for each converter so that they can achieve the best 
efficiency given the input and output voltage. 

To sum up, Vout_off, Vout_on, Noff and Non are defined as 
system control variables and are tuned by the controller 
online. The controller searches for the configuration with the 
highest efficiency according to the system workload and 
adjusts these control variables. To evaluate the system 
efficiency, lookup tables (LUTs) are used to store the 
efficiency characteristics of on-chip and off-chip buck 
converters, and power and voltage sensors are used to capture 
workload information. First, the optimal load currents for 
given input and output voltages are stored and indexed by 
input and output voltages. Non and Noff can be obtained by 

dividing the estimated total load current by the optimal load 
current for each converter. The conversion efficiencies are 
also stored and indexed by input and output voltage and load 
current so that the overall efficiency may be evaluated. The 
SRKM model takes readouts of a series of voltage sensors 
distributed throughout the PDN (not depicted in Figure 2 for 
clarity) to capture the workload distribution and predict the 
LDO input voltage. Core-level load currents (IL) can be 
estimated using power sensors [4] at the end of each on-chip 
buck converter cluster. 

The response time of on-chip and off-chip buck converters 
can differ by several orders of magnitudes, thus two different 
control cycle times, Ton and Toff, are applied to adjust them 
separately. Each Toff cycle is split into multiple Ton cycles. 
This is shown in Figure 3. 

During the Toff cycle, the control variables related to off-
chip buck converters, Vout_off and Noff, are determined by 
sweeping Vout_off. In each step, Vout_on is estimated using the 
workload currents in the previous control cycle and the linear 
dropout voltage model [3]. After the voltages are determined, 
the optimal load current for each on-chip and off-chip buck 
converter can be found in the LUTs and Non and Noff are 
determined using the estimated load current (IL). With all 
control variables set, the efficiency of the buck converters can 
be found in the LUTs while the LDO efficiency can be 
calculated using the dropout voltage and load current [3] . As 
a result, the system efficiency can be evaluated. When the 
sweeping is done, the configuration with the highest 
efficiency is selected. 

During the Ton cycle, the control variables for the on-chip 
converters are set. First, the SRKM model predicts the LDO 
input voltage (Vout_on). With their input voltage determined in 
the Toff cycle and output voltage (same as the LDO input 
voltage) determined in the Ton cycle, the optimal load current 

Figure 2: Detailed view of the proposed system architecture. 

Figure 3: Control flow of HVR and variation tracking 
mechanisms. 



for the on-chip buck converters can be found using the LUTs, 
and Non is determined.  

 

2.2 Variation-aware controller 
To ensure that the control policy continues to perform 

correctly in the presence of variations, a variation-aware 
control flow is proposed and shown in Figure 3. The 
controller gathers information about the system through a 
series of voltage sensors distributed throughout the PDN, 
low-power temperature sensors and variation-tracking 
circuits that are used to measure the varying circuit 
parameters in situ as detailed in the next section. 

The efficiency LUTs of the on-chip buck converters are 
measured at -40oC and 125oC during the setup stage. The 
efficiency values used for system efficiency evaluation are 
interpolated from these two LUTs using the measured 
temperature from the temperature sensor.  

To maintain power integrity in the presence of varying 
load currents and LDO process variations and mismatch, the 
on-chip SRKM model is modified with the average loop gain 
and loop bandwidth of LDOs as two extra features. The 
SRKM module is trained offline using Monte Carlo 
simulation data at -40oC, 27oC and 125oC with 200 different 
process variation samples accounting for process and 
temperature variations. Thus, the SRKM model can predict 
the correct LDO input voltage during the system's operation.  

3. Tracking Variations in Regulator Circuits 
This section explains the main performance parameters of 

interest for both types of VRs and describes the circuits 
proposed to track their variations. 

3.1 Buck converters 
In terms of regulation performance, the regulation speed 

of a buck converter is governed by the loop's dynamics 
captured by its crossover frequency 𝑓𝑓𝑐𝑐 and its phase margin 
𝜙𝜙𝑚𝑚 while the settling error is decided by the loop's low-
frequency gain. Note that this work ignores the buck 
converter's output voltage ripple since the HVR architecture 
includes LDO regulators to clean this ripple. 

A technique for adapting buck converter loop dynamics to 
process variations has been proposed in [5], using low-cost 
digital logic circuits to ensure fixed values for 𝑓𝑓𝑐𝑐 and  𝜙𝜙𝑚𝑚 
regardless of load current or process variations. Thus, the 
regulation performance of the buck converters is assumed to 
be unaffected by process variations. That being said, the 
modular nature of the proposed solution allows it to be 
extended to account for these variations if necessary. 

The characteristics of the MOS switches and the inductor 
are the main factors that affect power efficiency. Since these 
characteristics exhibit process and temperature variations, so 
does the power efficiency of the buck converters. This work 
proposes a simple circuit to measure these characteristics 
during a startup setup stage and store them in the LUTs used 
by the controller as explained in section 2. 

Figure 4 shows the proposed measurement circuit for the 
efficiency characteristics. The digital logic module sweeps 
the input and reference voltages. It also sweeps the load 
current by selecting different values for the load resistance 

from a resistor bank. As the different parameters are swept, 
the voltage drops across RL and Rsense are measured using the 
voltage sensors, digitized using the analog-to-digital 
converter (ADC) and fed back to the logic module which uses 

them to estimate the converter efficiency. Note that, as RL is 
changed, Rsense must be changed as well in order to ensure that 
the voltage drop across it remains large enough to be captured 
by the sensors. Of all the components required for these 
measurements, only the ADC is bulky and expensive but, 
since ADCs are essential components of large SoCs, the 
measurement can reuse ADC circuits found on the chip 
thereby requiring no additional hardware cost. 

Knowing the sensor voltages and resistor values, the 
digital logic can compute an estimate for the efficiency at 
these operating conditions. Using this setup, an LUT can be 
constructed for each buck converter thereby accounting for 
process variations and mismatches. 

3.2 LDO regulators 
In the case of LDOs, auto-tuning to compensate for 

variation effects on regulation is impractical. Since the LDOs 
are the last stage in the power management architecture, the 
requirements on their regulation performance are quite 
stringent, requiring them to react quickly to disturbances. 
This means that LDO control loops tend to have quite high 
crossover frequencies that are prohibitively expensive to 
monitor. In contrast, the loop's 3dB bandwidth may be 
measured more easily (the approach used in this work). 

LDO power efficiency is mainly dominated by the 
difference between the input and output voltage since this 
difference dictates the power dissipated in the output power 
device. This means that LDO power efficiency can be 
controlled by controlling the input voltage so that setting the 
LDO input voltage sets its efficiency regardless of process 
and/or temperature variations. 

Figure 5 shows the proposed circuit to track the 
parameters of interest for an LDO. The voltage 𝑣𝑣𝑖𝑖 is used to 
estimate the loop gain by sweeping 𝑣𝑣𝑖𝑖  and measuring 𝑣𝑣𝑥𝑥.  

This technique is inspired by Middlebrook's technique [6], 
which allows accurate loop gain measurements in a limited 
bandwidth. It is equivalent to injecting a voltage between the 
output of the resistive divider and the input of the error 
amplifier. The loop gain 𝐿𝐿 can be calculated as 

𝐿𝐿(𝑠𝑠) =  
𝑅𝑅1

𝑅𝑅1 + 𝑅𝑅2
⋅  
𝑣𝑣𝑖𝑖(𝑠𝑠)
𝑣𝑣𝑥𝑥(𝑠𝑠) − 1 (1) 

Figure 4: Proposed on-chip circuit to measure buck converter 
efficiency. 



Using a sinusoidal test signal with varying frequency, 
𝑣𝑣𝑖𝑖(𝑗𝑗𝑗𝑗), the value of 𝐿𝐿(𝑗𝑗𝑗𝑗) can be measured for different 
frequencies by measuring 𝑣𝑣𝑥𝑥(𝑗𝑗𝑗𝑗) and calculating 𝐿𝐿(𝑗𝑗𝑗𝑗) from 
(1). Using this procedure, the loop's -3 dB bandwidth (BW) 
and low-frequency gain (𝐴𝐴0) can be estimated. The 
parameters BW and 𝐴𝐴0 correlate with process and 
temperature variations of the LDO circuit and can therefore 
be used to predict the LDO regulation performance. Thus, the 
values of BW and 𝐴𝐴0 are averaged over all LDOs and the 
resulting two numbers are added as features to the SRKM 
model in order to account for the effect of variations on the 
optimal LDO input voltage. 

Adjusting the LDO input voltage to optimize efficiency 
and guarantee power integrity requires an estimate of the 
LDO dropout voltage 𝑉𝑉𝑑𝑑𝑑𝑑 (as explained in [3]). 𝑉𝑉𝑑𝑑𝑑𝑑 varies 
with process and temperature variations, so the variation-
tracking circuits should monitor it as well. Simulations show 
that 𝑉𝑉𝑑𝑑𝑑𝑑 is a linear function of load current and may be 
modeled as 𝑉𝑉𝑑𝑑𝑑𝑑 ≃ 𝛼𝛼𝐼𝐼𝐿𝐿. To measure 𝛼𝛼, 𝑣𝑣𝑖𝑖 is set to 0, then 𝑉𝑉𝑖𝑖𝑖𝑖 
and load current (𝑅𝑅𝐿𝐿) are swept. Hardware overhead is 
minimized by sharing the resistors and reusing the existing 
on-chip ADC. 

3.3 Temperature variations 
In addition to capturing process information, it is 

important to measure the temperature as well, so that 
parameter variations due to temperature drifts do not affect 
the system efficiency and power integrity. 

For the buck converters, the variation of efficiency 
characteristics with temperature is quite linear and therefore 
a two-point measurement is sufficient. Thus, temperature 
information can be incorporated during the initial setup phase 
when the LUTs are being constructed. It is sufficient to 
characterize the LUTs at two temperature extremes (-40oC 
and 125oC), During normal operation, an ultra-low-power 
temperature sensor such as the one reported in [7] is placed 
near each buck converter as shown in Figure 2 to estimate the 
temperature and linearly interpolate between the temperature 
data in the LUT. 

As for LDOs, temperature variations are reflected in 
changing values for the parameters 𝛼𝛼, BW and 𝐴𝐴0. These 
parameters, therefore, should be measured periodically to 
account for the change in temperature. This can be 
accomplished by measuring a replica LDO or performing 
periodic measurement on the real LDOs and does not 

constitute a significant overhead as temperature drifts very 
slowly in comparison to processor speed so the measurements 
will be repeated with a low frequency. 

4. Experimental Setup 
This section describes the setup used to model process 
variations in the different VRs and evaluate their effects on 
the overall system efficiency. 

4.1 Circuit simulations 
Since the buck converter output is further regulated by the 

LDOs, an accurate model for its output voltage ripple is not 
critical to capture the system behavior. For this reason, the 
off-chip buck converters were modeled as ideal voltage 
sources while the on-chip buck converters were implemented 
with a behavioral model in order to speed up simulation. The 
behavioral model uses ideal switches and passives and a 
Verilog-A loop controller. 

To model process variations using Monte Carlo 
simulations, real transistors in a standard 90nm CMOS 
technology were simulated and exhibited a standard deviation 
of about 2.5% in their on-state resistance. For the passive 
devices, a standard deviation of 20% was assumed as their 
characteristics tend to have a large variance [8]. Using these 
values and the Verilog-A model, Monte Carlo sampling was 
used to generate multiple instances of buck converters 
representing different samples of process variations. 

To capture the LDO behavior accurately, an LDO 
implementation [9] in a standard 90nm CMOS technology 
was used for simulations. and Monte Carlo simulations 
sampling random variations were used to generate multiple 
training cases for the ML model. The ML model was trained 
with 3000 training points collected from circuit simulation of 
200 process variation samples at temperatures of 27oC, 125oC 
and -40oC. It achieved a normalized mean square error 
(NMSE) of 0.0343. The model can then be mapped to a 
hardware accelerator for run-time prediction [3]. 

4.2 Evaluation setup 
We use the full-system architecture simulator GEM5 [10] 

to run the PARSEC [11] benchmark and generate run-time 
statistics of the processor, which are then fed to McPAT [12] 
to generate current traces of the processor. The processor in 
Table 1 with 4 cores is modeled in the simulator. Each core is 
divided to 11 function blocks, and the current workload for 
each block is assumed to be distributed evenly in the 
corresponding area. 

 
Table 1: Processor Configuration 

# Cores 4 Frequency 1.8 GHz 
Vdd 1 V Imax (per core) 25 A 
Core Area 40.4 mm2 ALU/MUL/FPU 6/2/6 
L1 Cache 32 KB L2 Cache Shared 2MB 

 

5. Results and Discussion 
In this section, the robustness of the nominal control 

policy in [3] is assessed and the power integrity and the 

Figure 5: Proposed on-chip circuit to measure LDO parameters.  



system efficiency of the nominal and the proposed variation-
aware control policies are evaluated and compared. 

In modern processors, multiple factors like workload 
variations and clock gating can cause voltage noise in the 
PDN. When the voltage in the PDN drops below a particular 
level (0.9V in this study), a voltage emergency (VE) is said 
to occur. The power integrity of the PDN is examined by 
running a time-domain circuit simulation and counting the 
occurrences of VEs. 

Designing the PDN based on the worst case VE to 
guarantee the power integrity will degrade the system 
efficiency significantly. Therefore, rare occurrences of VEs 
are tolerated in exchange for a better system efficiency. It is 
assumed that the processor is equipped with fail-safe 
mechanisms such as the rolling-back recovery [13] or 
adaptive frequency tuning [14] for such rare emergencies. To 
account for the ML model errors which may cause VEs in the 
PDN, a small voltage guardband is added to the prediction 
value. This guardband was adjusted for the nominal control 
policy and the proposed variation-aware policy such that they 
have the same level of power integrity measured by the 
number of VEs for a fair comparison. With the same level of 
power integrity, the system efficiencies for the nominal and 
variation-aware control policies are evaluated and compared. 

5.1 Nominal control policy robustness 
First, the effect of on-chip buck converter variations on 

the nominal control policy is investigated. The LDO input 
voltage is set to 1.05V and remains unchanged and the 
workload current is set to 10A for each core in this part. The 
system temperature is assumed to be 27oC. As circuit 
variations are not considered by the nominal control policy, it 
will make identical decisions for a given workload even as 
temperature and process parameters are varied. The red solid 
curve in Figure 6 shows a sweep of off-chip converter output 
voltage (Vout_off) and the corresponding system efficiency 
evaluated using the nominal efficiency LUT. The Vout_off with 
the best system efficiency is 1.3V, which is then chosen by 

the nominal control policy regardless of circuit variations. 
However, the true efficiency curves in the presence of 
variations would deviate from the red solid curve. The dashed 
curves in Figure 6 are efficiency curves evaluated using 
variation-aware LUTs for 5 process variation samples.  

For 2 out of the 5 samples, the control policy using the 
nominal LUTs will fail to select the best output voltage for 
the off-chip converters. However, the variations only shift the 
optimal solution by 200mV, resulting in an efficiency 

degradation of < 1%. For the other 3 samples, the optimal 
solution is at the same output voltage as the nominal control 
policy so that, even though the system will estimate efficiency 
incorrectly, it will still manage to find the optimal control 
point. Thus, the system exhibits some robustness to variations 
but, since the system can perform sub-optimally in some 
cases, it is to be expected that adding variation awareness to 
the controller should improve efficiency. 

Next, the effect of LDO variations on the nominal control 
policy is considered. The nominal and variation-aware ML 
models were simulated with the same workload segment from 
the Blackscholes benchmark. The simulation waveforms are 
shown in Figure 7. Both models were simulated with the same 
LDO network and simulation temperature (125oC). The 
guardbands for both models were adjusted to provide the 
same level of power integrity.  

At 23𝜇𝜇s, a current surge occurs, leading to the output 
voltage drop in both waveforms. In this case, the ML models 
should raise the LDO input voltage in the cycle between 24𝜇𝜇s 
and 25𝜇𝜇s.  As shown in Figure 7, both ML models react this 
way. Another current surge occurs after 24𝜇𝜇s, which drives 
both models to increase the LDO input voltage further in the 
cycle between 25𝜇𝜇s and 26𝜇𝜇s.  

These waveforms indicate that the nominal ML model can 
correctly function in the presence of variations; i.e., it can 
react to low voltage sensor readouts and raise the LDO supply 
voltage to prevent further VEs. However, the increment 
applied to the LDO input voltage might not be optimal due to 
the variations. As shown in Figure 7, the variation-aware ML 
model could predict lower voltages with the same power 
integrity level, thus increasing the system efficiency.  

 5.2 Efficiency improvement with the variation-
aware controller 

After ensuring both control policies are adjusted for the 
same power integrity (as explained above), the power 
efficiencies of four different optimization schemes are 
evaluated in the presence of variations. The 1st scheme is the 
nominal control policy proposed in [3], denoted by 
“Nominal”. The LUTs and the ML model for the nominal 
case are used in the control policy. In the 2nd and 3rd schemes, 
the control policy is augmented with either the variation-
aware LUTs (“LUT_OPT”) or the variation-aware ML model 

Figure 6: Predictions of the nominal and variation-aware ML 
models. 

Figure 7: Overall system efficiency as a function of off-chip 
converter output voltage. The solid curve corresponds to the nominal 
model and the dashed curves represent 5 variation samples. 



(“ML_OPT”). In the 4th scheme, both optimizations are 
applied (“LUT_ML_OPT”).  

To compare these schemes, the system efficiency using 
each scheme is evaluated for 4 different process variation 
samples at temperatures of 27oC, 125oC and -40oC.  Figure 8 
shows the average efficiency for each scheme over all 12 
evaluation cases. The error bars represent the maximum and 
minimum efficiency for each scheme. As shown in the figure, 
the proposed control policy outperforms the nominal one in 
every benchmark. The average efficiency improvement has a 
maximum of 4.28% and an average of 1.13%.  

Furthermore, the efficiency of the nominal control policy 
applied to the nominal system (no process variations) is 
evaluated (shown as “Nominal System” in Figure 8). Thus, 
Figure 8 shows that, on average, the actual efficiency in a 
system with variations is lower than the efficiency in the 
nominal system. Note also that the effect of variations on 
system efficiency is limited, with the maximum efficiency 
deviation from the nominal system being 3.28%, This is 
further proof of the nominal control policy robustness 
described in section 5.1. 

6. Conclusion 
A detailed study of the effects of process and temperature 

variation on an HVR power distribution system was 
presented, wherein it was found that the system has some 
degree of robustness to variations. Two circuits were 
proposed to enable the tracking of process and temperature 
variation effects on the different VRs found in the HVR 
system with minimal hardware overhead. Using the proposed 
circuits, a scheme was developed and implemented to add 
variation awareness to the HVR system controller, which 
resulted in an efficiency increase of up to 4.28% and 1.13% 
on average with the same level of power integrity. 
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