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Abstract

Large-scale systems-on-a-chips (SoCs) have stringent
power requirements to ensure adequate supply of power to
on-die devices and prevent catastrophic timing violations.
Heterogeneous voltage regulation (HVR) leveraging a
combination of on-chip and off-chip voltage regulators has
been advocated for ensuring power integrity with maximum
efficiency. However, unavoidable process and temperature
variations have not been considered in prior HVR work. In
this paper, we present an in-depth evaluation of the impacts
of process and temperature variations on HVR. Furthermore,
we propose a systemic solution to incorporate variation
awareness into the HVR system control policy to add a further
improvement of up to 4.28% in system power efficiency with
minimal hardware overhead.
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1. Introduction

With the growing size of systems-on-a-chips (SoCs),
power delivery is becoming an increasingly complex
problem. The two main metrics for power delivery are power
integrity and efficiency; in other words, it is important to
ensure that the supply voltage does not fall below a certain
specified level to avoid catastrophic timing delays in digital
circuits and other failures while minimizing the losses
incurred in the power delivery network (PDN).

Power delivery often entails voltage regulation and as
such voltage regulators (VRs) can significantly impact power
integrity and the overall efficiency of a PDN. It shall be noted
that various types of voltage regulators that have been
employed in practice possess distinct and complementary
characteristics. The bulk of the voltage down-conversion
from the system supply (battery voltage for example) to the
on-chip supply voltage is usually carried out using a
switching VR for its superior efficiency. Typically, single-
stage voltage regulation with off-chip switching converters is
employed, which may suffer from poor power integrity
because of long response time and high board/package
parasitics. Introducing on-chip switching converters with
faster response time and small footprint as the second stage
of regulation could address this problem [1]. However,
switching converters require bulky and costly passive
elements like inductors. Compared with switching converters,
the linear VRs such as low-dropout voltage regulators
(LDOs) have high area-efficiency and sub-ns response
time. This comes with the benefit to deploy LDOs across the

chip and close to power hotspots to supress the voltage noise.
As a good example, IBM POWERS processor employs 1,764
on-chip distributed linear VRs [2].

Recently, a holistic architecture combining the advantages
of both switching and linear VRs into a system called
heterogeneous voltage regulation (HVR) was proposed [3].
This system consists of a cascade of three types of VRs (see
Figure 1) : off-chip and on-chip switching VRs and on-chip
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Figure 1: Proposed variation-aware HVR architecture.

VRs. Switching voltage converters convert the supply voltage
with high efficiency, while the distributed LDOs suppress the
voltage noise in the PDN. A workload-aware management
policy was proposed to adjust the system for optimal system
power efficiency while providing a guaranteed power
integrity.

The system in [3] captures the system workload through
distributed voltage and power sensors. To obtain the best
system performance, the controller uses an offline trained
machine learning (ML) model and efficiency characteristics
of switching converters stored in on-chip lookup tables
(LUTs). So far, the offline trained ML model and efficiency
LUTs are obtained based on the nominal system and no work
has studied how the inevitable process variations and
temperature drifts affect the HVR system, which is expected
to perform sub-optimally when the circuit parameters drift
from their nominal values used to train the ML model.

In this work, we study the effect of such variations on the
HVR system and propose on-chip measurement circuits
tracking parameter variations with minimal hardware
overhead, thereby creating a variation-aware HVR system as
shown in Figure 1. The main contributions of this work
consist of demonstrating the interesting fact that the nominal
model has a certain degree of robustness to variations and that
implementing our proposed variation-aware architecture can
add an improvement of up to 4.28% in overall efficiency
while guaranteeing power integrity.



2. Variation-Aware HVR Architecture Description
Figure 2 shows a detailed view of the proposed
architecture outlining how different VRs are distributed
around the PDN as well as how a controller is used to tune the
system. The nominal system control flow and proposed
variation-aware control flow are detailed below.
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Figure 2: Detailed view of the proposed system architecture.

2.1 Basic system

The proposed system architecture uses three-stage voltage
regulation as has been proposed in [3] to capitalize on both
the superior efficiency of buck converters and the excellent
regulation performance of LDOs. The off-chip buck
converter cluster in the first stage is driven by the system
power supply and powers the on-chip buck converter clusters
in the second stage. The on-chip PDN is divided into multiple
power domains, each of which contains one on-chip buck
converter cluster and powers one core (Figure 2 shows one
power domain). The second-stage-regulated voltage powers a
cluster of distributed LDOs that are all connected to the
system's PDN that drives the load circuits.

The power loss of an LDO is approximately proportional
to its dropout voltage [3], so a low LDO input voltage
provides a high regulation efficiency. However, dynamic and
non-uniformly distributed workloads may introduce voltage
noise in the PDN unless a higher LDO input voltage is used.
Therefore, an offline-trained Sparse Relevance Kernel
Machine (SRKM) model is used to learn the workload
distribution and predict the LDO input voltage (V,u on) online
to improve the LDO regulation efficiency without
jeopardizing the power integrity.

The intermediate voltage between the off-chip and on-
chip buck converters (Vou of) also needs to be tuned as it
determines the conversion ratios of the first two stages and
consequently affects the system efficiency. In addition to the
conversion ratio, the load current can also affect buck
converter efficiency. Since multiple converters are used in the
first two stages, the number of active on- and off-chip buck
converters (Nos, Nop) can be controlled to adjust the load
current for each converter so that they can achieve the best
efficiency given the input and output voltage.

To sum up, Vou ofp Vour on, Nog and N,, are defined as
system control variables and are tuned by the controller
online. The controller searches for the configuration with the
highest efficiency according to the system workload and
adjusts these control variables. To evaluate the system
efficiency, lookup tables (LUTs) are used to store the
efficiency characteristics of on-chip and off-chip buck
converters, and power and voltage sensors are used to capture
workload information. First, the optimal load currents for
given input and output voltages are stored and indexed by
input and output voltages. N,, and N,y can be obtained by

dividing the estimated total load current by the optimal load
current for each converter. The conversion efficiencies are
also stored and indexed by input and output voltage and load
current so that the overall efficiency may be evaluated. The
SRKM model takes readouts of a series of voltage sensors
distributed throughout the PDN (not depicted in Figure 2 for
clarity) to capture the workload distribution and predict the
LDO input voltage. Core-level load currents (/) can be
estimated using power sensors [4] at the end of each on-chip
buck converter cluster.

The response time of on-chip and off-chip buck converters
can differ by several orders of magnitudes, thus two different
control cycle times, 7,, and T, are applied to adjust them
separately. Each T,y cycle is split into multiple 7, cycles.
This is shown in Figure 3.

During the 7,4 cycle, the control variables related to off-
chip buck converters, Vou o and Ny are determined by
sweeping Vou o In each step, Vou on is estimated using the
workload currents in the previous control cycle and the linear
dropout voltage model [3]. After the voltages are determined,
the optimal load current for each on-chip and off-chip buck
converter can be found in the LUTs and N,, and N,y are
determined using the estimated load current (/;). With all
control variables set, the efficiency of the buck converters can
be found in the LUTs while the LDO efficiency can be
calculated using the dropout voltage and load current [3] . As
a result, the system efficiency can be evaluated. When the
sweeping is done, the configuration with the highest
efficiency is selected.
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Figure 3: Control flow of HVR and variation tracking
mechanisms.
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During the T, cycle, the control variables for the on-chip
converters are set. First, the SRKM model predicts the LDO
input voltage (Vou on). With their input voltage determined in
the T,y cycle and output voltage (same as the LDO input
voltage) determined in the 7, cycle, the optimal load current



for the on-chip buck converters can be found using the LUTs,
and N,, is determined.

2.2 Variation-aware controller

To ensure that the control policy continues to perform
correctly in the presence of variations, a variation-aware
control flow is proposed and shown in Figure 3. The
controller gathers information about the system through a
series of voltage sensors distributed throughout the PDN,
low-power temperature sensors and variation-tracking
circuits that are used to measure the varying -circuit
parameters in situ as detailed in the next section.

The efficiency LUTs of the on-chip buck converters are
measured at -40°C and 125°C during the setup stage. The
efficiency values used for system efficiency evaluation are
interpolated from these two LUTs using the measured
temperature from the temperature sensor.

To maintain power integrity in the presence of varying
load currents and LDO process variations and mismatch, the
on-chip SRKM model is modified with the average loop gain
and loop bandwidth of LDOs as two extra features. The
SRKM module is trained offline using Monte Carlo
simulation data at -40°C, 27°C and 125°C with 200 different
process variation samples accounting for process and
temperature variations. Thus, the SRKM model can predict
the correct LDO input voltage during the system's operation.

3. Tracking Variations in Regulator Circuits

This section explains the main performance parameters of
interest for both types of VRs and describes the circuits
proposed to track their variations.

3.1 Buck converters

In terms of regulation performance, the regulation speed
of a buck converter is governed by the loop's dynamics
captured by its crossover frequency f, and its phase margin
¢ while the settling error is decided by the loop's low-
frequency gain. Note that this work ignores the buck
converter's output voltage ripple since the HVR architecture
includes LDO regulators to clean this ripple.

A technique for adapting buck converter loop dynamics to
process variations has been proposed in [5], using low-cost
digital logic circuits to ensure fixed values for f. and ¢,,
regardless of load current or process variations. Thus, the
regulation performance of the buck converters is assumed to
be unaffected by process variations. That being said, the
modular nature of the proposed solution allows it to be
extended to account for these variations if necessary.

The characteristics of the MOS switches and the inductor
are the main factors that affect power efficiency. Since these
characteristics exhibit process and temperature variations, so
does the power efficiency of the buck converters. This work
proposes a simple circuit to measure these characteristics
during a startup setup stage and store them in the LUTs used
by the controller as explained in section 2.

Figure 4 shows the proposed measurement circuit for the
efficiency characteristics. The digital logic module sweeps
the input and reference voltages. It also sweeps the load
current by selecting different values for the load resistance

from a resistor bank. As the different parameters are swept,
the voltage drops across R; and R,ense are measured using the
voltage sensors, digitized using the analog-to-digital
converter (ADC) and fed back to the logic module which uses
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Figure 4: Proposed on-chip circuit to measure buck converter
efficiency.

them to estimate the converter efficiency. Note that, as Ry is
changed, R,.nse must be changed as well in order to ensure that
the voltage drop across it remains large enough to be captured
by the sensors. Of all the components required for these
measurements, only the ADC is bulky and expensive but,
since ADCs are essential components of large SoCs, the
measurement can reuse ADC circuits found on the chip
thereby requiring no additional hardware cost.

Knowing the sensor voltages and resistor values, the
digital logic can compute an estimate for the efficiency at
these operating conditions. Using this setup, an LUT can be
constructed for each buck converter thereby accounting for
process variations and mismatches.

3.2 LDO regulators
In the case of LDOs, auto-tuning to compensate for
variation effects on regulation is impractical. Since the LDOs
are the last stage in the power management architecture, the
requirements on their regulation performance are quite
stringent, requiring them to react quickly to disturbances.
This means that LDO control loops tend to have quite high
crossover frequencies that are prohibitively expensive to
monitor. In contrast, the loop's 3dB bandwidth may be
measured more easily (the approach used in this work).

LDO power efficiency is mainly dominated by the
difference between the input and output voltage since this
difference dictates the power dissipated in the output power
device. This means that LDO power efficiency can be
controlled by controlling the input voltage so that setting the
LDO input voltage sets its efficiency regardless of process
and/or temperature variations.

Figure 5 shows the proposed circuit to track the
parameters of interest for an LDO. The voltage v; is used to
estimate the loop gain by sweeping v; and measuring v,.

This technique is inspired by Middlebrook's technique [6],
which allows accurate loop gain measurements in a limited
bandwidth. It is equivalent to injecting a voltage between the
output of the resistive divider and the input of the error
amplifier. The loop gain L can be calculated as

Ry ! (s) _

Ry + R, v,(s)

L(s) = D
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Figure 5: Proposed on-chip circuit to measure LDO parameters.

Using a sinusoidal test signal with varying frequency,
v;i(jw), the value of L(jw) can be measured for different
frequencies by measuring v, (jw) and calculating L(jw) from
(1). Using this procedure, the loop's -3 dB bandwidth (BW)
and low-frequency gain (4,) can be estimated. The
parameters BW and A, -correlate with process and
temperature variations of the LDO circuit and can therefore
be used to predict the LDO regulation performance. Thus, the
values of BW and A, are averaged over all LDOs and the
resulting two numbers are added as features to the SRKM
model in order to account for the effect of variations on the
optimal LDO input voltage.

Adjusting the LDO input voltage to optimize efficiency
and guarantee power integrity requires an estimate of the
LDO dropout voltage V,, (as explained in [3]). V,, varies
with process and temperature variations, so the variation-
tracking circuits should monitor it as well. Simulations show
that V,, is a linear function of load current and may be
modeled as V,;, = al,. To measure a, v; is set to 0, then V;,
and load current (R;) are swept. Hardware overhead is
minimized by sharing the resistors and reusing the existing
on-chip ADC.

3.3 Temperature variations

In addition to capturing process information, it is
important to measure the temperature as well, so that
parameter variations due to temperature drifts do not affect
the system efficiency and power integrity.

For the buck converters, the variation of efficiency
characteristics with temperature is quite linear and therefore
a two-point measurement is sufficient. Thus, temperature
information can be incorporated during the initial setup phase
when the LUTs are being constructed. It is sufficient to
characterize the LUTs at two temperature extremes (-40°C
and 125°C), During normal operation, an ultra-low-power
temperature sensor such as the one reported in [7] is placed
near each buck converter as shown in Figure 2 to estimate the
temperature and linearly interpolate between the temperature
data in the LUT.

As for LDOs, temperature variations are reflected in
changing values for the parameters a, BW and A,. These
parameters, therefore, should be measured periodically to
account for the change in temperature. This can be
accomplished by measuring a replica LDO or performing
periodic measurement on the real LDOs and does not

constitute a significant overhead as temperature drifts very
slowly in comparison to processor speed so the measurements
will be repeated with a low frequency.

4. Experimental Setup

This section describes the setup used to model process
variations in the different VRs and evaluate their effects on
the overall system efficiency.

4.1 Circuit simulations

Since the buck converter output is further regulated by the
LDOs, an accurate model for its output voltage ripple is not
critical to capture the system behavior. For this reason, the
off-chip buck converters were modeled as ideal voltage
sources while the on-chip buck converters were implemented
with a behavioral model in order to speed up simulation. The
behavioral model uses ideal switches and passives and a
Verilog-A loop controller.

To model process variations using Monte Carlo
simulations, real transistors in a standard 90nm CMOS
technology were simulated and exhibited a standard deviation
of about 2.5% in their on-state resistance. For the passive
devices, a standard deviation of 20% was assumed as their
characteristics tend to have a large variance [8]. Using these
values and the Verilog-A model, Monte Carlo sampling was
used to generate multiple instances of buck converters
representing different samples of process variations.

To capture the LDO behavior accurately, an LDO
implementation [9] in a standard 90nm CMOS technology
was used for simulations. and Monte Carlo simulations
sampling random variations were used to generate multiple
training cases for the ML model. The ML model was trained
with 3000 training points collected from circuit simulation of
200 process variation samples at temperatures of 27°C, 125°C
and -40°C. It achieved a normalized mean square error
(NMSE) of 0.0343. The model can then be mapped to a
hardware accelerator for run-time prediction [3].

4.2 Evaluation setup

We use the full-system architecture simulator GEMS5 [10]
to run the PARSEC [11] benchmark and generate run-time
statistics of the processor, which are then fed to McPAT [12]
to generate current traces of the processor. The processor in
Table 1 with 4 cores is modeled in the simulator. Each core is
divided to 11 function blocks, and the current workload for
each block is assumed to be distributed evenly in the
corresponding area.

Table 1: Processor Configuration

# Cores 4 Frequency 1.8 GHz
vdd 1V Inax (per core) 25 A

Core Area | 404 mm?> | ALUMUL/FPU | 6/2/6

L1 Cache 32 KB L2 Cache Shared 2MB

5. Results and Discussion
In this section, the robustness of the nominal control
policy in [3] is assessed and the power integrity and the



system efficiency of the nominal and the proposed variation-
aware control policies are evaluated and compared.

In modern processors, multiple factors like workload
variations and clock gating can cause voltage noise in the
PDN. When the voltage in the PDN drops below a particular
level (0.9V in this study), a voltage emergency (VE) is said
to occur. The power integrity of the PDN is examined by
running a time-domain circuit simulation and counting the
occurrences of VEs.

Designing the PDN based on the worst case VE to
guarantee the power integrity will degrade the system
efficiency significantly. Therefore, rare occurrences of VEs
are tolerated in exchange for a better system efficiency. It is
assumed that the processor is equipped with fail-safe
mechanisms such as the rolling-back recovery [13] or
adaptive frequency tuning [14] for such rare emergencies. To
account for the ML model errors which may cause VEs in the
PDN, a small voltage guardband is added to the prediction
value. This guardband was adjusted for the nominal control
policy and the proposed variation-aware policy such that they
have the same level of power integrity measured by the
number of VEs for a fair comparison. With the same level of
power integrity, the system efficiencies for the nominal and
variation-aware control policies are evaluated and compared.

5.1 Nominal control policy robustness

First, the effect of on-chip buck converter variations on
the nominal control policy is investigated. The LDO input
voltage is set to 1.05V and remains unchanged and the
workload current is set to 10A for each core in this part. The
system temperature is assumed to be 27°C. As circuit
variations are not considered by the nominal control policy, it
will make identical decisions for a given workload even as
temperature and process parameters are varied. The red solid
curve in Figure 6 shows a sweep of off-chip converter output
voltage (Vour o) and the corresponding system efficiency
evaluated using the nominal efficiency LUT. The V. o with
the best system efficiency is 1.3V, which is then chosen by
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Figure 7: Overall system efficiency as a function of off-chip
converter output voltage. The solid curve corresponds to the nominal
model and the dashed curves represent 5 variation samples.

the nominal control policy regardless of circuit variations.
However, the true efficiency curves in the presence of
variations would deviate from the red solid curve. The dashed
curves in Figure 6 are efficiency curves evaluated using
variation-aware LUTs for 5 process variation samples.

For 2 out of the 5 samples, the control policy using the
nominal LUTs will fail to select the best output voltage for
the off-chip converters. However, the variations only shift the
optimal solution by 200mV, resulting in an efficiency

degradation of < 1%. For the other 3 samples, the optimal
solution is at the same output voltage as the nominal control
policy so that, even though the system will estimate efficiency
incorrectly, it will still manage to find the optimal control
point. Thus, the system exhibits some robustness to variations
but, since the system can perform sub-optimally in some
cases, it is to be expected that adding variation awareness to
the controller should improve efficiency.

Next, the effect of LDO variations on the nominal control
policy is considered. The nominal and variation-aware ML
models were simulated with the same workload segment from
the Blackscholes benchmark. The simulation waveforms are
shown in Figure 7. Both models were simulated with the same
LDO network and simulation temperature (125°C). The
guardbands for both models were adjusted to provide the
same level of power integrity.

—— Load Current
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Figure 6: Predictions of the nominal and variation-aware ML
models.

At 23us, a current surge occurs, leading to the output
voltage drop in both waveforms. In this case, the ML models
should raise the LDO input voltage in the cycle between 24us
and 25us. As shown in Figure 7, both ML models react this
way. Another current surge occurs after 24us, which drives
both models to increase the LDO input voltage further in the
cycle between 25us and 26us.

These waveforms indicate that the nominal ML model can
correctly function in the presence of variations; i.e., it can
react to low voltage sensor readouts and raise the LDO supply
voltage to prevent further VEs. However, the increment
applied to the LDO input voltage might not be optimal due to
the variations. As shown in Figure 7, the variation-aware ML
model could predict lower voltages with the same power
integrity level, thus increasing the system efficiency.

5.2 Efficiency improvement with the variation-
aware controller

After ensuring both control policies are adjusted for the
same power integrity (as explained above), the power
efficiencies of four different optimization schemes are
evaluated in the presence of variations. The 1% scheme is the
nominal control policy proposed in [3], denoted by
“Nominal”. The LUTs and the ML model for the nominal
case are used in the control policy. In the 2" and 3™ schemes,
the control policy is augmented with either the variation-
aware LUTs (“LUT_OPT”) or the variation-aware ML model
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(“ML_OPT”). In the 4™ scheme, both optimizations are
applied (“LUT_ML_OPT”).

To compare these schemes, the system efficiency using
each scheme is evaluated for 4 different process variation
samples at temperatures of 27°C, 125°C and -40°C. Figure 8
shows the average efficiency for each scheme over all 12
evaluation cases. The error bars represent the maximum and
minimum efficiency for each scheme. As shown in the figure,
the proposed control policy outperforms the nominal one in
every benchmark. The average efficiency improvement has a
maximum of 4.28% and an average of 1.13%.

Furthermore, the efficiency of the nominal control policy
applied to the nominal system (no process variations) is
evaluated (shown as “Nominal System” in Figure 8). Thus,
Figure 8 shows that, on average, the actual efficiency in a
system with variations is lower than the efficiency in the
nominal system. Note also that the effect of variations on
system efficiency is limited, with the maximum efficiency
deviation from the nominal system being 3.28%, This is
further proof of the nominal control policy robustness
described in section 5.1.

6. Conclusion

A detailed study of the effects of process and temperature
variation on an HVR power distribution system was
presented, wherein it was found that the system has some
degree of robustness to variations. Two circuits were
proposed to enable the tracking of process and temperature
variation effects on the different VRs found in the HVR
system with minimal hardware overhead. Using the proposed
circuits, a scheme was developed and implemented to add
variation awareness to the HVR system controller, which
resulted in an efficiency increase of up to 4.28% and 1.13%
on average with the same level of power integrity.
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