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BAYESIAN FRACTIONAL POSTERIORS
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Texas A&M University∗ and University of Illinois at Urbana–Champaign†

We consider the fractional posterior distribution that is obtained by up-
dating a prior distribution via Bayes theorem with a fractional likelihood
function, a usual likelihood function raised to a fractional power. First, we
analyze the contraction property of the fractional posterior in a general mis-
specified framework. Our contraction results only require a prior mass con-
dition on certain Kullback–Leibler (KL) neighborhood of the true parameter
(or the KL divergence minimizer in the misspecified case), and obviate con-
structions of test functions and sieves commonly used in the literature for
analyzing the contraction property of a regular posterior. We show through
a counterexample that some condition controlling the complexity of the pa-
rameter space is necessary for the regular posterior to contract, rendering
additional flexibility on the choice of the prior for the fractional posterior.
Second, we derive a novel Bayesian oracle inequality based on a PAC-Bayes
inequality in misspecified models. Our derivation reveals several advantages
of averaging based Bayesian procedures over optimization based frequentist
procedures. As an application of the Bayesian oracle inequality, we derive a
sharp oracle inequality in multivariate convex regression problems. We also
illustrate the theory in Gaussian process regression and density estimation
problems.

1. Introduction and preliminaries. The usage of fractional likelihoods has
generated renewed attention in Bayesian statistics in recent years, where one raises
a likelihood function to a fractional power, and combines the resulting fractional
likelihood with a prior distribution via the usual Bayes formula to arrive at a power
posterior or fractional posterior distribution. Applications of fractional posteriors
have been diverse, ranging from fractional Bayes factors in objective Bayesian
model selection [48], data-dependent priors for sparse estimation [42, 43], to
marginal likelihood approximation [18] and posterior simulation [19]. The frac-
tional posteriors are a special instance of Gibbs posteriors [32] or quasi-posteriors
[14], where the negative exponent of a loss function targeted toward a specific pa-
rameter of interest is used as a surrogate for the likelihood function; see [10] for a
general framework for updating of prior beliefs using Gibbs posteriors.
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The recent surge of interest in fractional posteriors can be largely attributed to
its empirically demonstrated robustness to misspecification [25, 46]. For correctly
specified, or well-specified (non)parametric models, there is now a rich body of lit-
erature [22, 23, 54] guaranteeing concentration of the posterior distribution around
minimax neighborhoods of the true data generating distribution. However, suscep-
tibility to model misspecification poses a potent concern even for Bayesian non-
parametric models which aim to capture finer aspects of the data.

There is a comparatively smaller literature on large sample behavior of non-
parametric Bayesian procedures under misspecification [17, 33, 50], where the
general aim is to establish sufficient conditions under which the usual posterior
distribution concentrates around the nearest Kullback–Leibler (KL) point to the
truth inside the parameter space. However, these conditions are considerably more
stringent than those in case of well-specified models, so that verification can be
fairly nontrivial, along with comparatively limited scope of applicability. In fact,
[26] empirically demonstrate through a detailed simulation study that even con-
vergence to the nearest KL point may not take place in misspecified models. They
instead recommend using a fractional posterior, with a data-driven approach to
choose the fractional power; see also [25]. More recently, [46] proposed a coars-
ened posterior approach to combat model misspecification, where one conditions
on neighborhoods of the empirical distribution rather than on the observed data
while applying Bayes formula. When the neighborhood is defined based on the
KL divergence, the coarsened posterior essentially is a fractional posterior.

These observations compel us to systematically study the concentration prop-
erties of fractional posteriors. Walker and Hjort [61] established consistency of
power posteriors for well-specified models; see also [44] for rate results. Zhang
[62] arrived at similar conclusions from a minimum complexity density estimation
perspective. Jiang and Tanner [32] extended results of [62] to a Gibbs’ posterior
framework to deal with model misspecification in a high-dimensional classifica-
tion problem. One of the main contributions of this article beyond the existing
literature is a unified general treatment of misspecified and well-specified models
through the introduction of a novel divergence measure, and the statistical im-
plication of the theoretical results in terms of usage of heavy-tailed priors and
shape-constrained estimation.

Specifically, we derive rates of convergence for the fractional posterior for gen-
eral non-i.i.d. models in a misspecified model framework. The sufficient conditions
for the fractional posterior to concentrate at the nearest KL point turn out to be sub-
stantially simpler compared to the existing literature on misspecified models. We
state our concentration results for a novel class of Rényi-type divergence measures
in a nonasymptotic environment, which in particular, imply Hellinger concentra-
tion in properly specified settings. The effect of flattening the likelihood shows up
in the leading constant in the rate. The subexponential nature of the posterior tails
allow us to additionally derive posterior moment bounds.
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As one of our contributions, we show that the contraction rate of the frac-
tional posterior is entirely determined by the prior mass assigned to appropriate
KL neighborhoods of the true distribution, bypassing the construction of sieves3 in
the existing theory [3, 22, 33]. One practically important consequence is that con-
centration results can be established for the fractional posterior for a much broader
class of priors compared to the regular posterior. We provide several examples on
usage of heavy tailed hyperpriors in density estimation and regression, where the
fractional posterior provably concentrates at a (near) minimax rate, while the reg-
ular posterior has inconclusive behavior. Another novel application of our result
lies in shape constrained function estimation. Obtaining metric entropy estimates
in such problems pose a stiff technical challenge and constitutes an active area of
research [28]. The fractional posterior obviates the need to obtain such entropy
estimates en route to deriving concentration bounds.

As a second contribution, we develop oracle inequalities for the fractional pos-
terior based on a new PAC-Bayes inequality [11, 12, 15, 27, 45, 52] in a fully
general Bayesian model. Many previous results on PAC-Bayes type inequalities
are specifically tailored to classification (bounded loss, [11, 12, 52]) or regres-
sion (squared loss, [15, 27, 40, 52]) problems. Moreover, in the machine learn-
ing literature, a PAC-Bayes inequality is primarily used as a computational tool
for controlling the generalization error by optimizing its upper bound over a re-
stricted class of “posterior” distributions [11, 12]. There is a need to develop a
general PAC-Bayes inequality and an accompanied general theory for analyzing
the Bayesian risk that can be applied to a broader class of statistical problems. In
this paper, we derive an oracle-type inequality for Bayesian procedures, which will
be referred to as a Bayesian oracle inequality (BOI), based on a new PAC-Bayes
inequality. Similar to the local Rademacher complexity [4] or local Gaussian com-
plexity [5] in a frequenstist oracle inequality (FOI) for penalized empirical risk
minimization procedures [34, 35], a BOI also involves a penalty term, which we
refer to as local Bayesian complexity, that characterizes the local complexity of the
parameter space. Roughly speaking, the local Bayesian complexity is defined as
the inverse sample size times the negative logarithm of the prior mass assigned to
certain Kullback–Leibler neighborhood around the (pseudo) true parameter. In the
special case when the prior distribution is close to be “uniform” over the parame-
ter space, the local Bayesian complexity becomes the inverse sample size times a
local covering entropy, and our BOI recovers the convergence rates derived from
local covering conditions [39]. Moreover, our BOI naturally leads to sharp oracle
inequalities when the model is misspecified. For example, when applied to convex
regression, we derive a sharp oracle inequality with minimax-optimal (up to logn
factors) excess risk bound that extends the recent sharp oracle inequality obtained
in [7] from dimension one to general dimensions d ≥ 1 under suitable conditions.

3Compact subsets of the parameter space with a delicate balance between their size measured in
terms of metric entropy and the prior probability of their complement.
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Last but not the least, our analysis reveals several potential advantages of aver-
aging based Bayesian procedures over optimization based frequentist procedures.
First, due to the averaging nature of a Bayesian procedure, our averaging case
analysis leading to a BOI is significantly simpler than a common worst case anal-
ysis leading to a FOI. For example, a local average type excess risk bound from a
Bayesian procedure allows us to use simple probability tools, such as the Markov
inequality and Chebyshev’s inequality, to obtain a high probability bound for the
excess risk, since the expectation operation exchanges with the averaging (inte-
gration) operation. This is different from a local supremum-type excess risk from
a optimization procedure, where more sophisticated empirical process tools are
exploited to obtain a high probability bound for excess risk [4, 41, 57, 59], due
to the nonexchangeability between the expectation operation and the supremum
operation. For further details about the comparison between BOI and FOI, please
refer to Section 3.2. Second, a Bayesian procedure naturally leads to adaptation
to unknown hyperparameters or tuning parameters. We show that by placing a hy-
perprior that distributes proper weights to different levels of the hyperparameter,
a BOI adaptively leads to the optimal rate corresponding to the best choice of the
hyperparameter.

We begin by introducing notation, and then review Rényi divergences as our
key metric characterizing the contraction of fractional posteriors.

1.1. Notation. Let C[0,1]d and Cα[0,1]d denote the space of continuous
functions and the Hölder space of α-smooth functions f : [0,1]d → R, respec-
tively, endowed with the supremum norm ∥f ∥∞ = supt∈[0,1]d |f (t)|. For α > 0,
the Hölder space Cα[0,1]d consists of functions f ∈ C[0,1]d that have bounded
mixed partial derivatives up to order ⌊α⌋, with the partial derivatives of order ⌊α⌋
being Lipschitz continuous of order α − ⌊α⌋. Let ∥ · ∥1 and ∥ · ∥2, respectively,
denote the L1 and L2 norm on [0,1]d with respect to the Lebesgue measure (i.e.,
the uniform distribution). To distinguish the L2 norm with respect to the Lebesgue
measure on Rd , we use the notation ∥ · ∥2,d . Throughout, C,C′ denote positive
constants whose value may change from one line to the other. For a finite set A,
let |A| denote the cardinality of A. The set of natural numbers is denoted by N.
a ! b denotes a ≤ Cb for some constant C > 0. J (ε,A,ρ) denotes the ε-covering
number of the set A with respect to the metric ρ. The m-dimensional simplex is
denoted by $m−1. Ik stands for the k × k identity matrix. Nd(µ,%) denotes the
d-variate normal distribution with mean µ and covariance %, and Nd(z;m,%) its
density evaluated at z = (z1, . . . , zd)T.

1.2. Rényi divergences. Let P and Q be probability measures on a com-
mon probability space with a dominating measure µ, and let p = dP/dµ,q =
dQ/dµ. The Hellinger distance h2(p, q) = (1/2)

∫
(
√

p − √
q)2 dµ = 1 −

A(p,q), where A(p,q) = ∫ √
pq dµ denotes the Hellinger affinity. Let D(p,q) =
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∫
p log(p/q)dµ denote the Kullback–Leibler (KL) divergence between p and q .

For any α ∈ (0,1), let

Dα(p,q) = 1
α − 1

log
∫

pαq1−α dµ(1.1)

denote the Rényi divergence of order α. Let us also denote Aα(p,q) =∫
pαq1−α dµ = e−(1−α)Dα(p,q), which we shall refer to as the α-affinity. When

α = 1/2, the α-affinity equals the Hellinger affinity. We recall some important in-
equalities relating the above quantities; additional details and proofs can be found
in [58].

(R1) 0 ≤ Aα(p,q) ≤ 1 for any α ∈ (0,1), which in particular implies that
Dα(p,q) ≥ 0 for any α ∈ (0,1).

(R2) D1/2(p, q) = −2 logA(p,q) = −2 log{1 − h2(p, q)} ≥ 2h2(p, q) using
the inequality log(1 + t) < t for t > −1.

(R3) For fixed p,q , Dα(p,q) is increasing in the order α ∈ (0,1). Moreover,
the following two-sided inequality shows the equivalence of Dα and Dβ for 0 <
α ≤ β < 1:

α

β

1 − β

1 − α
Dβ ≤ Dα ≤ Dβ, 0 < α ≤ β < 1.

(R4) By an application of L’Hospital’s rule, limα→1− Dα(p,q) = D(p,q).
The rest of the paper is organized as follows. Section 2 sets up the statistical

background for the technical results. The main results of the paper are stated in
Section 3, with contraction results in Section 3.1, and the PAC-Bayesian inequal-
ity and Bayesian oracle inequality in Section 3.2. Applications to well-specified
and misspecified problems are discussed respectively in Section 4 and Section 5.
We conclude with a discussion in Section 6. All proofs are deferred to the Supple-
mentary Material [8].

2. Background. We will present our theory on the large sample properties of
fractional posteriors in its full generality by allowing the model to be misspecified
and the observations, denoted by X(n) = (X1,X2, . . . ,Xn), to be neither identi-
cally nor independently distributed (abbreviated as non-i.i.d.) [23]. Our result for
non-i.i.d. observations can be applied to models with nonindependent observations
such as Gaussian time series and Markov processes, or models with independent,
nonidentically distributed (i.n.i.d.) observations such as Gaussian regression and
density regression.

Specifically, we adopt the notation of [23] and let (X (n),A(n),P(n)
θ : θ ∈ ()

be a sequence of statistical experiments with observations X(n), where θ is the
parameter of interest in arbitrary parameter space (, and n is the sample size. For
each θ , let P(n)

θ admit a density p
(n)
θ relative to a σ -finite measure µ(n). Assume

that (x, θ) → p
(n)
θ (x) is jointly measurable relative to A(n) ⊗ B, where B is a
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σ -field on (. In Section 4 and Section 5, we consider examples where θ is a
regression function subject to smoothness or shape constraints, or the density of
the observations itself.

We place a prior distribution *n on θ ∈ (, and define the fractional likelihood
of order α ∈ (0,1) to be the usual likelihood raised to power α:

Ln,α(θ) = [
p

(n)
θ

(
X(n))]α.(2.1)

Let *n,α(·) denote the posterior distribution obtained by combining the fractional
likelihood Ln,α with the prior *n, that is, for any measurable set B ∈ B,

*n,α
(
B|X(n)) =

∫
B Ln,α(θ)*n(dθ)

∫
( Ln,α(θ)*n(dθ)

=
∫
B e−αrn(θ,θ†)*n(dθ)

∫
( e−αrn(θ,θ†)*n(dθ)

,(2.2)

where rn(θ, θ†) := log{p(n)

θ† (X(n))/p
(n)
θ (X(n))} is the negative log-likelihood ratio

between θ and any other fixed parameter value θ†. For example, we may choose
θ† as the parameter θ0 associated with the true data generating distribution, abbre-
viated as the true parameter. Clearly, *n,1 denotes the usual posterior distribution.

We allow the model to be misspecified by allowing θ0 to lie outside the param-
eter space (. In misspecified models, the point θ∗ in ( that minimizes the KL
divergence from P(n)

θ0
, that is,

θ∗ := argmin
θ∈(

D
(
p

(n)
θ0

,p
(n)
θ

)
,(2.3)

plays the role of θ0 in well-specified models [33]. When the parameter space ( is
convex,4 θ∗ (if exists) is automatically unique (up to redefinition on a null-set of
p

(n)
θ0

). In some cases, a sufficient condition for uniqueness is identifiability under

p
(n)
θ0

; refer to the example of estimating densities using kernel mixtures in Section 3
of [33]. When genuine multiple minimum KL points occurs, [33] extended their
theory of posterior contraction to a finite subset of these multiple points. Such
extensions are possible for our results along similar lines, and hence not discussed
further.

We introduce the divergence

D
(n)
θ0,α

(
θ, θ∗) := 1

α − 1
logA

(n)
θ0,α

(
θ, θ∗)

,(2.4)

referred to as the α-divergence with respect to P(n)
θ0

, or simply θ0, to measure the
closeness between any θ ∈ ( and θ∗, where

A
(n)
θ0,α

(
θ, θ∗) :=

∫ (
p

(n)
θ

p
(n)
θ∗

)α

p
(n)
θ0

dµ(n)

4In the sense of Lemma 2.1 below.
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is an α-affinity between θ and θ∗ with respect to θ0. To the best of our knowledge,
this divergence measure D

(n)
θ0,α

(θ, θ∗) has not been previously used in the posterior

concentration context, although the affinity A
(n)
θ0,α

(θ, θ∗) briefly appears in [33].

REMARK. In the well-specified case where θ∗ = θ0 ∈ (, A
(n)
θ0,α

reduces to the

usual α-affinity defined in Section 1.2, and D
(n)
θ0,α

becomes the Rényi divergence

of order α between p
(n)
θ and p

(n)
θ0

:

D(n)
α (θ, θ0) = Dα

(
p

(n)
θ ,p

(n)
θ0

) = 1
α − 1

log
∫ {

p
(n)
θ

}α{
p

(n)
θ0

}1−α
dµ(n).(2.5)

Note we drop θ0 from the subscript when θ∗ = θ0.

In general, D
(n)
θ0,α

continues to define a divergence measure that satisfies

D
(n)
θ0,α

(θ, θ∗) ≥ 0 for θ ∈ ( and D
(n)
θ0,α

(θ∗, θ∗) = 0 in a variety of statistical prob-
lems. For example, in the normal means problem Y ∼ Nn(θ, σ 2In) with θ ∈ Rn,
D

(n)
θ0,α

defines a divergence measure if the parameter space for the mean θ is a
closed convex set in Rn; see equation (5.2) in Sectio 5.1 and Section S1 of SD for
more details. The convexity condition is satisfied by a broad class of problems, in-
cluding isotonic regression, and convex regression [13]. In the density estimation
context, Lemma 2.1 below shows that D

(n)
θ0,α

defines a divergence measure if the
parameter space of densities is convex.

LEMMA 2.1 (Property of α-divergences). If {p(n)
θ : θ ∈ (} is convex5 or θ∗

is an interior point of (, then 0 < A
(n)
θ0,α

(θ, θ∗) ≤ 1 for any α ∈ (0,1). There-

fore, D
(n)
θ0,α

defines a divergence that satisfies D
(n)
θ0,α

(θ, θ∗) ≥ 0 for θ ∈ ( and

D
(n)
θ0,α

(θ∗, θ∗) = 0.

When α ∈ (0,1), the proof of the lemma implies that D
(n)
θ0,α

(θ, θ∗) = 0 if and

only if p
(n)
θ = p

(n)
θ∗ on the support of P(n)

θ0
, since xα is a strictly concave function

on [0,∞). A concrete application of Lemma 2.1 to show nonnegativity of the
divergence is provided in Section 5.2.

We will primarily focus on the following two cases in this paper.
Independent and identically distributed observations. When X1,X2, . . . ,Xn are

i.i.d. observations, P(n)
θ equals the n-fold product measure Pn

θ := ⊗n
i=1 Pθ , where

Pθ is the common distribution for the observations. A(n) also takes a product form

5Given any θ, θ ′ ∈ (, and ω ∈ (0,1), there exists θ̄ ∈ ( such that p
(n)

θ̄
= ωp

(n)
θ + (1 − ω)p

(n)
θ ′ .
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as An := ⊗n
i=1 A, with A the common σ -field. The fractional likelihood function

is

Ln,α(θ) =
n∏

i=1

{
pθ(Xi)

}α
,(2.6)

where pθ is the common density indexed by θ ∈ (. The negative log-likelihood
ratio rn(θ, θ†) = ∑n

i=1 log{pθ†(Xi)/pθ (Xi)} becomes the sum of individual
log density ratios. Moreover, the α-affinity and divergence can be simpli-
fied as A

(n)
θ0,α

(θ, θ∗) = {Aθ0,α(θ, θ∗)}n and D
(n)
θ0,α

(θ, θ∗) = nDθ0,α(θ, θ∗), where
Aθ0,α(θ, θ∗) and Dθ0,α(θ, θ∗), respectively, are the α-affinity and divergence for
n = 1.

Independent observations. In this case as well, X1,X2, . . . ,Xn are independent
observations. However, the ith observation Xi has an index-dependent distribution
Pθ,i , which possesses a density pθ,i relative to a σ -finite measure µi on (Xi ,Ai).
Thus, we take the measure P(n)

θ equal to the product measure
⊗n

i=1 Pθ,i on the
product measurable space

⊗n
i=1(Xi ,Ai). The fractional likelihood function takes

a product form as

Ln,α(θ) =
n∏

i=1

{
pθ,i(Xi)

}α
,(2.7)

and the negative log-likelihood ratio rn(θ, θ†) = ∑n
i=1 log{pθ†,i(Xi)/pθ,i(Xi)}.

The α-affinity and divergence can be decomposed, respectively, as A
(n)
θ0,α

(θ, θ∗) =
∏n

i=1 Aθ0,α,i(θ, θ∗) and D
(n)
θ0,α

(θ, θ∗) = ∑n
i=1 Dθ0,α,i(θ, θ∗), where Aθ0,α,i(θ, θ∗)

and Dθ0,α,i(θ, θ∗) are the α-affinity and divergence associated with the ith obser-
vation Xi .

3. Contraction and Bayesian oracle inequalities for fractional posteriors.
This section contains our main results. We discuss the contraction of fraction pos-
teriors in Section 3.1, and present novel Bayesian oracle inequalities based on
PAC-Bayes type bounds in Section 3.2.

3.1. General concentration bounds. In this subsection, we consider the
asymptotic behavior of fractional posterior distributions and corresponding Bayes
estimators based on non-i.i.d. observations under the general misspecified frame-
work. We give general results on the rate of contraction of the fractional posterior
measure towards the KL minimizer θ∗ relative to the α-divergence D

(n)
θ0,α

.
For any θ†, define a specific KL neighborhood of θ† with radius ε as

Bn
(
θ†, ε; θ0

) =
{
θ ∈ ( :

∫
p

(n)
θ0

log
(
p

(n)

θ† /p
(n)
θ

)
dµ(n) ≤ nε2,

(3.1) ∫
p

(n)
θ0

log2(
p

(n)

θ† /p
(n)
θ

)
dµ(n) ≤ nε2

}
.
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It is standard practice to make assumptions on the prior mass assigned to such
KL neighborhoods to obtain the rate of posterior concentration in misspecified
models [33].

REMARK. An alternative definition of Bn(θ
†, ε; θ0) is obtained by replacing

the second inequality in (3.1) by
∫

p
(n)
θ0

log2(
p

(n)

θ† /p
(n)
θ

)
dµ(n) −

[∫
p

(n)
θ0

log
(
p

(n)

θ† /p
(n)
θ

)
dµ(n)

]2
≤ nε2.

All subsequent theorems are valid with either definition of Bn.

With these notation, we present a nonasymptotic upper bound for the posterior
probability assigned to complements of α-divergence neighborhoods of θ∗ with
respect to θ0.

THEOREM 3.1 (Contraction of fractional posterior distributions). Fix α ∈
(0,1). Recall θ∗ from (2.3). Assume that εn satisfies nε2

n ≥ 2 and

*n
(
Bn

(
θ∗, εn; θ0

)) ≥ e−nε2
n .(3.2)

Then, for any D ≥ 2 and t > 0,

*n,α

(1
n
D

(n)
θ0,α

(
θ, θ∗) ≥ D + 3t

1 − α
ε2
n

∣∣∣X(n)
)

≤ e−tnε2
n

holds with P(n)
θ0

probability at least 1 − 2/{(D − 1 + t)2nε2
n}.

Condition (3.2) appears routinely in theoretical analysis of regular posterior dis-
tributions, with numerous verifications available in the literature for well-specified
models. For misspecified models, examples of verification of (3.2) in density esti-
mation and regression problems can be found in Theorems 3.2 and 4.1 of [33]. We
provide two new illustrations in Section 5.

Since the divergence D
(n)
θ0,α

(θ, θ∗) reduces to the usual Rényi divergence in the
well-specified case θ∗ = θ0, the contraction of the fractional posterior *n,α can be
established for the entire family of divergence measures 1

nD
(n)
θ0,β

(θ, θ0);β ∈ (0,1),
using the equivalence of the Rényi divergences in (R3), with only a change in the
leading constant multiplying the rate εn. This is true for all subsequent results in
the well-specified case, and hence not discussed individually afterwards.

Theorem 3.1 characterizes the contraction of the fractional posterior measure
where the posterior of D

(n)
θ0,α

(θ, θ∗) exhibits a subexponentially decaying tail. As
a direct consequence, we have the following corollary that characterizes the frac-
tional posterior moments of D

(n)
θ0,α

(θ, θ∗).
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COROLLARY 3.2 (Fractional posterior moments). Under the conditions of
Theorem 3.1 we have that, for any k ≥ 1,

∫ {1
n
D

(n)
θ0,α

(
θ, θ∗)}k

*n,α
(
dθ |X(n)) ≤ C1

(1 − α)k
ε2k
n ,

holds with P(n)
θ0

probability at least 1−C2/{nε2
n}, where (C1,C2) are some positive

constants depending on k.

Implications for well-specified models. While Theorem 3.1 and Corollary 3.2
apply generally to the misspecified setting, it is instructive to first consider their
implications in the well-specified setting, that is, when the data generating pa-
rameter θ0 ∈ (. Setting t = 1 in Theorem 3.1 implies that the fractional posterior
increasingly concentrates on εn-sized D

(n)
θ0,α

neighborhoods of the true parameter
θ0. In particular, given (R2) and (R3), Theorem 3.1 implies that for any α ∈ (0,1),
the rate of concentration of the fractional posterior *n,α in the Hellinger met-
ric is εn. Similar concentration results for the usual posterior distribution in the
Hellinger metric were established in [22, 54] for the i.i.d. case, and in [23] for the
non-i.i.d. case. Since the prior mass condition (3.2) appears as one of the sufficient
conditions there as well, the fractional posterior achieves the same rate of concen-
tration as the usual posterior (albeit up to constants) in all the examples considered
in these works, which is typically minimax up to a logarithmic term for appro-
priately chosen priors. In addition to the prior mass condition (3.2), the sufficient
conditions of [23] additionally require the construction of sieves Fn ⊂ ( whose
εn-entropy in the Hellinger metric is stipulated to grow in the order ! eCnε2

n , and
at the same time, the prior probability assigned to the complement of the sieve is
required to be exponentially small, that is, *n(Fc

n) ≤ e−C′nε2
n . The existence of

such sieves with suitable control over their metric entropy is a crucial ingredient
of their theory, as it guarantees existence of exponentially consistent test functions
[9, 38] to test the true density against complements of Hellinger neighborhoods of
the form {θ ∈ Fn : h2(p

(n)
θ ,p

(n)
θ0

) ≥ Mε2
n}.

An important distinction for the fractional posterior in Theorem 3.1 is that the
prior mass condition alone is sufficient to guarantee optimal concentration. This
is important for at least two distinct reasons. First, the condition of exponentially
decaying prior mass assigned to the complement of the sieve implies fairly strong
restrictions on the prior tails and essentially rules out heavy-tailed prior distribu-
tions on hyperparameters. On the other hand, a much broader class of prior choices
lead to provably optimal posterior behavior for the fractional posterior. Second,
obtaining tight bounds on the metric entropy in nonregular parameter spaces, for
example, in shape-constrained regression problems, can be a substantially non-
trivial exercise [28], which is entirely circumvented using the fractional posterior
approach. Specific examples of either kind are provided in Section 4.
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While it may be argued that the conditions on the entropy and complement
probability of the sieve are only sufficient conditions, a counterexample from [3]
suggests that some control on the complexity of the parameter space is also neces-
sary to ensure the consistency of a regular posterior when the model space is well
specified. Specifically, in their example, the posterior tends to put all its mass on

a set of distributions that are
√

2 −
√

2 away from the true data generating distri-
bution with respect to the Hellinger metric, even though the prior assigns positive
probability over any ε-KL ball around the true parameter. As an implication, the
fractional posterior can still achieve a certain rate of contraction for this problem
even though the regular posterior is not consistent. In fact, the rate of concentration
of the fractional posterior εn = (1 − α)−1n−1/3 for this problem, since their prior
satisfies *n(Bn(θ0, ε; θ0)) ≥ e−Cε−1

for some constant C > 0. Therefore, a com-
bination of Theorem 3.1 and the counterexample in [3] shows that the fractional
posterior has an annealing effect that can flatten the potential peculiar spikes in the
regular posterior that are far away from the true parameter. However, this additional
flexibility of the fractional posterior comes at a price—when the regular posterior
contracts, then the α-fractional posterior will sacrifice a factor of (1 − α)−1 in the
rate of contraction.

The following theorem shows that for fixed n, the fractional posterior will al-
most surely converge to the regular posterior (α = 1) as α → 1−.

THEOREM 3.3 (Regular posterior as a limit of fractional posteriors). For each
n, we have

P(n)
θ0

[
*n,1

(
B|X(n)) = lim

α→1−
*n,α

(
B|X(n)),∀B ∈ B

]
= 1.

This theorem implies that although for a fixed α ∈ (0,1), the fraction posterior
has the annealing effect of flattening the posterior, it will eventually convergence
to the regular posterior as α → 1− almost surely. This observation also justifies
the empirical observation [21] that parallel tempering can boost the convergence
of the posterior when the posterior contracts. However, when the posterior is ill-
behaved—does not have consistency or has multimodality, then we need a very
fine grid for the design of α as α → 1− in the parallel tempering algorithm, since
otherwise all factional posteriors will only exhibit the one big mode around θ∗ and
miss the rest.

Implications for misspecified models. A key reference for Bayesian asymptotics
in infinite-dimensional misspecified models is [33], where sufficient conditions
analogous to the well-specified case were provided for the posterior to concentrate
around θ∗. The primary technical difficulty in showing such a result compared
to the well-specified case is the construction of test functions, for which [33] pro-
posed a novel solution. Akin to the well-specified case for the regular posterior, the
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sufficient conditions of [33] constitute of a prior thickness condition as in Theo-
rem 3.1, and conditions on entropy numbers. However, the entropy number condi-
tions (equations (2.2) and (2.5) in [33]) for the misspecified case are substantially
harder to verify. In their Lemma 2.1, a simpler sufficient condition related their en-
tropy number condition to ordinary entropy numbers. Further, in their Lemma 2.3,
exploiting convexity of the parameter space, they established that the sufficient
conditions of their Lemma 2.1 are satisfied by a weighted Hellinger distance

h2
w

(
θ(n), θ∗(n)) = 1

4

∫ (√
p

(n)
θ∗ −

√
p

(n)
θ

)2 p
(n)
θ0

p
(n)
θ∗

dµ(n),

which then amounts to obtaining entropy numbers in the weighted Hellinger met-
ric. Such an exercise typically requires further assumptions on the behavior of
p

(n)
θ /p

(n)
θ∗ . For example, if supθ |p(n)

θ /p
(n)
θ∗ | is finite, the ordinary Hellinger metric

dominates the weighted Hellinger metric and it suffices to obtain covering numbers
with respect to the ordinary Hellinger metric. Under this assumption, the authors
proceeded to derive convergence rates for the regular posterior in a density esti-
mation problem using Dirichlet process mixture priors. However, this assumption
precludes the true density p

(n)
θ0

to have heavier tails than that prescribed by the
model. For example, if the true density is heavier that the class of densities spec-
ified by the model, the assumption sup |p(n)

θ /p
(n)
θ∗ | < ∞ is not satisfied. Typically,

in the misspecified case, controlling the prior mass (3.2) in Theorem 3.1 requires
certain tail conditions on p

(n)
θ0

. However, Theorem 3.1 obviates the need to ver-
ify any entropy conditions for the fractional posterior. It thus avoids the need to
assume sup |p(n)

θ /p
(n)
θ∗ | < ∞, unless required to verify the prior mass condition.

For α = 1/2, our divergence measure D1/2(θ, θ∗) dominates the weighted
Hellinger distance in which [33] derive their convergence rate for the density esti-
mation problem in Theorem 3.1. This can be readily seen from

4h2
w

(
θ, θ∗) = 1 +

∫
p

(n)
θ

p
(n)
θ∗

p
(n)
θ0

dµ(n) − 2
∫ (

p
(n)
θ

p
(n)
θ∗

)1/2
p

(n)
θ0

dµ(n)

≤ 2
[
1 −

∫ (
p

(n)
θ

p
(n)
θ∗

)1/2
p

(n)
θ0

dµ(n)
]

≤ D1/2
(
θ, θ∗)

,

where the last inequality follows from logx ≤ x −1 and the penultimate inequality
follows from Lemma 2.1.

3.2. PAC-Bayes bounds and Bayesian oracle inequalities. In many problems,
the performance of a (pseudo) Bayesian approach can be characterized via PAC-
Bayes type inequalities [27, 45, 52]. Throughout the rest of the paper, we use p.m.
as an abbreviation for probability measure. The form of PAC-Bayes inequality we
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consider in this article takes the form as
∫

R(θ, θ0)*n,α
(
dθ |X(n)) ≤

∫
Sn(θ, θ0)ρ(dθ) + 1

κn
D(ρ,*n)

+ Rem ∀ p.m. ρ ≪ *n,

where R is a statistical risk function, κn is a tuning parameter, Rem is a remainder
term and Sn is a function that measures the discrepancy between θ and θ0 on the
support of ρ. Typical PAC-Bayes inequalities [27, 45, 52] are slightly less general
in the sense Sn is usually an empirical estimate of the risk function R calculated
based on the training sample.

We present a PAC-Bayes inequality for the fractional posterior distribution,
where the risk function R is a multiple of the α-Rényi divergence D

(n)
α in (2.5),

and Sn(θ, θ0) a multiple of the negative log-likelihood ratio rn(θ, θ0).

THEOREM 3.4 (PAC-Bayes inequality relative to θ0). Fix α ∈ (0,1). Then, for
any ε ∈ (0,1),

∫ {1
n
D(n)

α (θ, θ0)

}
*n,α

(
dθ |X(n))

≤ α

n(1 − α)

∫
rn(θ, θ0)ρ(dθ) + 1

n(1 − α)
D(ρ,*n)(3.3)

+ 1
n(1 − α)

log(1/ε),

for all p.m. ρ ≪ *n, with P(n)
θ0

probability at least (1 − ε).

Theorem 3.4 immediately implies an oracle type inequality for the Bayes esti-
mator θ̂B := ∫

( θ*n,α(dθ |X(n)) whenever D
(n)
α (·, θ0) is a convex function, via an

application of Jensen’s inequality,

1
n
D(n)

α (θ̂B, θ0) ≤ α

n(1 − α)

∫
rn(θ, θ0)ρ(dθ) + 1

n(1 − α)
D(ρ,*n)

(3.4)
+ 1

n(1 − α)
log(1/ε),

for all probability measure ρ ≪ *n. We call this inequality a Bayesian oracle
inequality. The convexity condition is automatically satisfied in density estima-
tion problems where the parameter θ is the density itself, using convexity of the
Rényi divergence as a function of the density [58]. Another example is Gaussian
regression, p

(n)
θ ≡ N(θ, In), where θ ∈ Rn denotes the mean. In this case, a direct

calculation yields D
(n)
α (θ, θ0) = (α/2)∥θ − θ0∥2

2 and the conclusion follows from
the convexity of the squared Euclidean distance.



52 A. BHATTACHARYA, D. PATI AND Y. YANG

Let us compare the Bayesian oracle inequality (BOI) with frequentist oracle
inequalities (FOI) [34, 35]. For convenience, we assume that the observations are
i.i.d., and use Pn to represent the empirical measure 1

n

∑n
i=1 δXi . For a function

f : X → R, define

Pnf = 1
n

n∑

i=1

f (Xi) and Pθ0f = Eθ0f (X).(3.5)

Under this notation, a typical FOI takes a form as

Pθ0fθ̂ ≤ c inf
θ∈(

Pθ0fθ + .n(rn),(3.6)

for some leading constant c ≥ 1, where θ̂ is the estimator of θ , for example, ob-
tained by empirical risk minimization [6, 34]. Here, F = {fθ : X → R, θ ∈ (}
is a class of functions indexed by θ ∈ (, such as, a certain loss function ℓ(·,X)
evaluated at θ . The term infθ∈( Pθ0fθ will be referred to as the approximation er-
ror term, reflecting the smallest loss incurred by approximating fθ0 from F . The
second term .n(rn) in the display is an excess risk term that reflects certain lo-
cal complexity measure of F , such as the local Rademacher complexity [4] or
local Gaussian complexity [5]. .n(rn) typically serves as a high probability upper
bound to the supremum of the localized empirical process,

sup
θ∈(:Pnfθ≤rn

{Pnfθ − Pθ0fθ },(3.7)

up to some other remainder terms, where rn is a critical radius obtained as the
solution of an equation involving a certain function depending on .n.

Now let us look at the BOI (3.4), which can be rewritten as

1
n
D(n)

α (θ̂B, θ0)

≤ α

n(1 − α)
inf
θ∈(

Pθ0rθ + α

n(1 − α)

∫
{Pnrθ − Pθ0rθ }ρ(dθ)

(3.8)
+

{
α

n(1 − α)

∫ {
Pθ0rθ − inf

θ∈(
Pθ0rθ

}
ρ(dθ) + 1

n(1 − α)
D(ρ,*n)

+ 1
n(1 − α)

log(1/ε)

}
,

where rθ (X) = log{pθ0(X)/pθ (X)} is the log density ratio. We observe that the
first term on the right-hand side of (3.8) is the approximation error term, and the
rest serves as the excess risk term. However, the excess risk term in BOI has two
distinctions from that in FOI. First, different from the FOI that induces localization
via either an iterative procedure [36] or solving the solution of an equation involv-
ing a certain function [4], a BOI induces localization via picking a measure ρ con-
centrating around the best approximation argminθ∈( Pθ0rθ that balances between
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the average approximation error
∫ {Pθ0rθ − infθ∈( Pθ0rθ }ρ(dθ) and a penalty on

the size of localization D(ρ,*n). Second, in FOI the stochastic term characteriz-
ing the local complexity is based on a worse case analysis by taking the supremum
as in (3.7), while BOI bounds the stochastic term based on an average case analysis
via the average fluctuation

∫
{Pnrθ − Pθ0rθ }ρ(dθ).

Because we can exchange the expectation with integration, this local average form
allows us to use simple probability tools, such as Markov’s inequality and Cheby-
shev’s inequality, to obtain bounds for the excess risk. This is different from the
local supremum form (3.7), where expectation does not exchange with supremum,
and we need much more sophisticated empirical process tools such as chaining
and peeling techniques to bound the excess risk (see, e.g., [4, 41, 57, 59]).

As a simple illustration of applying Chebyshev’s inequality to BOI or inequal-
ity (3.3) in Theorem 3.4 to obtain an explicit risk bound for the Bayes estimator,
we present the following corollary. Recall the definition of the KL neighborhood
Bn(θ0, ε; θ0) defined in (3.1).

COROLLARY 3.5. Suppose ε ∈ (0,1) satisfies nε2 > 2 and D > 1. With P(n)
θ0

probability at least 1 − 2/{(D − 1)2nε2},
∫ {1

n
D(n)

α (θ, θ0)

}
*n,α

(
dθ |X(n))

(3.9)
≤ Dα

1 − α
ε2 +

{
− 1

n(1 − α)
log*n

(
Bn(θ0, ε; θ0)

)}
.

In particular, if we let εn to be the Bayesian critical radius that is the smallest ε
satisfies

− log*n(Bn(θ0, ε; θ0))

nε
≤ ε,

then with P(n)
θ0

probability at least 1 − 2/{(D − 1)2nε2
n},

∫ {1
n
D(n)

α (θ, θ0)

}
*n,α

(
dθ |X(n)) ≤ Dα + 1

1 − α
ε2
n.

The main idea of the proof is to choose the probability measure ρ as *n(· ∩
Bn(θ0, ε; θ0))/*n(Bn(θ0, ε; θ0)); the restriction of the prior *n to Bn(θ0, ε; θ0).
Under this choice, we have D(ρ,*n) = − log*n(Bn(θ0, ε; θ0)), and∫

rn(θ, θ0)ρ(dθ) can be bounded by applying Chebyshev’s inequality. If higher
moment constraints on the likelihood ratio rn(θ, θ0) is also included into the defi-
nition of Bn(θ0, ε; θ0) in (3.1), then the probability bound for (3.9) to hold can be
boosted (for details, see Section 2 in [24]).
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According to Corollary 3.5, the overall risk bound in (3.9) is a balance be-
tween two terms: an approximation error term ε2

n and a local complexity mea-
sure term − 1

n log*n(Bn(θ0, εn; θ0)). For this reason, we will refer to the sec-
ond term as the local Bayesian complexity. The local Bayesian complexity re-
flects the compatibility between the prior distribution and the parameter space:
if *n is close to a uniform distribution over (, then − log*n(Bn(θ0, εn; θ0)) =
log{1/*n(Bn(θ0, εn; θ0)} is roughly the logarithm of the number of εn-balls
needed to cover a neighborhood of θ0 and, therefore, is related to the local cov-
ering entropy. On the other hand, if some prior knowledge about θ0 is available,
then we can combine these knowledge to increase the prior mass around θ0, which
may significantly boost the rate of convergence of the Bayes estimator. This obser-
vation is consistent with our previous intuition that averaging based (average case
analysis) Bayesian approaches sometimes can be better than optimization based
(worst case analysis) frequentist approaches. For example, when certain hyper-
parameter or tuning parameter, such as the regularity of a function class or spar-
sity level of a regression model, is unknown, then a Bayesian procedure naturally
achieves adaptation to those unknown parameters by placing a prior on them that
distributes proper weights to different levels of the hyperparameter (see our ex-
amples in Section 4). In contrast, a common way to select a tuning parameter in
frequentist methods is via cross-validation or data-splitting. These approaches only
use some proportion of data to do estimation, after learning the tuning parameter
via the rest, which may not be the most efficient way to use data.

Although Theorem 3.4 is useful for obtaining a BOI, when transformed into
form (3.6) the resulting leading constant c of the approximation error term in the
BOI is typically strictly larger than 1, resulting in a nonsharp oracle inequality.
Here, we call an oracle inequality sharp if the leading constant c in (3.6) is 1; see,
for example, [16]. To solve this issue for the PAC-Bayes inequality in Theorem 3.4,
we consider a second class of PAC-Bayes inequalities that directly characterizes
the closeness between θ and the best approximation θ∗ of θ0 from (.

THEOREM 3.6 (PAC-Bayes inequality relative to θ∗). Fix α ∈ (0,1). Then,
for any ε ∈ (0,1),

∫ {1
n
D

(n)
θ0,α

(
θ, θ∗)}

*n,α
(
dθ |X(n))

≤ α

n(1 − α)

∫
rn

(
θ, θ∗)

ρ(dθ) + 1
n(1 − α)

D(ρ,*n)(3.10)

+ 1
n(1 − α)

log(1/ε),

for all p.m. ρ ≪ *n, with P(n)
θ0

probability at least (1 − ε).

Similar to Corollary 3.5 for a concrete Bayesian risk bound for characterizing
the closeness between θ and θ0, we have the following counterpart for θ and θ∗.
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COROLLARY 3.7. For any ε ∈ (0,1) satisfying nε2 > 2 and D > 1, with P(n)
θ0

probability at least 1 − 2/{(D − 1)2nε2},
∫ {1

n
D

(n)
θ0,α

(
θ, θ∗)}

*n,α
(
dθ |X(n))

(3.11)
≤ Dα

1 − α
ε2 +

{
− 1

n(1 − α)
log*n

(
Bn

(
θ∗, ε; θ0

))}
.

In particular, if we let εn to be the Bayesian critical radius that is the smallest ε
satisfies

− log*n(Bn(θ
∗, ε; θ0))

nε
≤ ε,

then with P(n)
θ0

probability at least 1 − 2/{(D − 1)2nε2
n},

∫ {1
n
D

(n)
θ0,α

(
θ, θ∗)}

*n,α
(
dθ |X(n)) ≤ Dα + 1

1 − α
ε2
n.

We now illustrate how Corollary 3.7 leads to a sharp oracle inequality in the
misspecified case (a concrete example is provided in Section 5.1). As noted previ-
ously, an oracle inequality is sharp in the misspecified case if the leading con-
stant in front of the model space approximation term is 1, that is, d(θ̂ , θ0) ≤
infθ∈( d(θ, θ0) + Cε2

n for some distance metric d(·, ·). In statistical learning the-
ory, the regret [49, 60] of an estimator is defined as d(θ̂ , θ0) − infθ∈( d(θ, θ0).
A benchmark to compare regrets for different estimators is the minimax regret de-
fined as minθ̂ maxθ0[Eθ0{d(θ̂ , θ0)}− infθ∈( d(θ, θ0)]. Regret bounds (misspecified
case) are substantially harder to obtain compared to minimax risk bounds (well-
specified case), and the rate of minimax regret can be different from the minimax
risk [49]. Our general technique to derive a sharp oracle inequality for the Bayes
estimator will imply that the Bayes estimator has minimax regret.

Suppose we are interested in certain metric dn defined on the parameter space
(, the square of which is weaker than the average α-divergence 1

nD
(n)
θ0,α

(θ, θ∗),
that is,

1
n
D

(n)
θ0,α

(
θ, θ∗) ≥ cαd2

n

(
θ, θ∗)

, θ ∈ (,

where cα is some positive constant that may depend on α. We assume that d2
n

is convex in its first argument. For simplicity, we also assume that θ∗ is also
the minimizer of dn(θ, θ0) over θ ∈ (. Under these assumptions, Corollary 3.7
along with the convexity assumption implies that with high probability, θ̂B satisfies
dn(θ̂B, θ∗) ≤ c′

αεn, where εn is the Bayesian critical radius. Now adding dn(θ
∗, θ0)

to both sides of this inequality and applying the triangle inequality, we obtain

dn(θ̂B, θ0) ≤ inf
θ∈(

dn(θ, θ0) + c′
αεn,

which is a sharp oracle inequality.



56 A. BHATTACHARYA, D. PATI AND Y. YANG

Sometimes, we may be interested in obtaining an oracle inequality for the
squared loss d2

n , when ( is a vector space and dn is induced by an inner prod-
uct, denoted by ⟨·, ·⟩n. This is a more intricate problem, as the trivial bound
d2
n(θ̂B, θ0) ≤ 2[d2

n(θ̂B, θ∗) + d2
n(θ∗, θ0)] renders the oracle inequality non-sharp.

However, it is usually true when ( is a convex set that
1
n
D

(n)
θ0,α

(
θ, θ∗) ≥ cα

(
d2
n

(
θ, θ∗) + 2

〈
θ − θ∗, θ∗ − θ0

〉
n

) ∀θ ∈ (.

For example, this inequality holds for regression with fixed design, where dn is
the L2 empirical norm (details can be found in Section 4.1). Again, by applying
Corollary 3.7 and adding d2

n(θ∗, θ0) to both sides of this inequality, we obtain

d2
n(θ̂B, θ0) = d2

n

(
θ̂B, θ∗) + 2

〈
θ̂B − θ∗, θ∗ − θ0

〉
n + d2

n

(
θ∗, θ0

)

≤ inf
θ∈(

d2
n(θ, θ0) + c′

αε2
n,

which is a sharp oracle inequality for the squared loss d2
n . As an illustration of this

technique, we derive a sharp oracle inequality for estimating a convex function in
Theorem 5.1 when the true regression function is not necessarily convex.

Comparisons with previous work. The most relevant PAC-Bayes type result to
ours, such as Theorem 3.4, is the Theorem 1 in [15], which focus on the regression
setting Yi = f (xi) + wi , where θ = f is the unknown regression function to be
estimated, xi ’s are the fixed design points and wi ’s are the i.i.d. zero mean noise,
corresponding to the i.n.i.d. observations. They propose to use the posterior mean
of the following quasi-likelihood function as the estimator:

Ln,β(f ) = exp

{

− 1
2β

n∑

i=1

(
Yi − f (xi)

)2
}

,

where according to their terms, β is a temperature parameter. In the special case
when wi ∼ N(0, σ 2) and β = σ 2, this function reduces to the likelihood function.
They establish a PAC-Bayes inequality

E(n)
θ0

[∥f̂ − f0∥2
n

] ≤
∫

∥f − f0∥2
nρ(df ) + β

n
D(ρ,*n) ∀ p.m. ρ ≪ *n,

when β ≥ 4σ 2, where f̂ is the corresponding posterior mean. Therefore, their
quasi-likelihood approach can be viewed as a special case under our fractional
posterior with α ≤ 1/4. Their proof is specialized to the empirical L2(Pn) loss and
requires the log-likelihood function to also take a sum of squares form. In con-
trast, our PAC-Bayes inequality generalizes the results in [15] to a more broader
class of models. Moreover, the posterior expectation in

∫
R(f,f0)*n,α(df |X(n))

in our PAC-Bayes inequality is taken outside the loss function R instead of
plugging in the estimator as R(f̂B, f0), which is always bounded above by∫

R(f,f0)*n,α(df |X(n)) when R(f,f0) is a convex function of f .
In the next two sections, we demonstrate the salient features of our theory

through a number of illustrative examples.
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4. Examples in the well-specified case. In this section, we focus on well-
specified models and the next section considers examples under model-
misspecification. We make use of Corollary 3.5 in this section and state the re-
sults in the form of PAC-Bayes bounds. We note that one could alternatively use
Theorem 3.1 to obtain similar conclusions. We discuss three examples in this sec-
tion, the first two in the context of Gaussian regression and the third in density
estimation. Our first example considers shape-constrained estimation where the
true function is assumed to be convex. We demonstrate the efficacy of the frac-
tional posterior approach in delivering optimal concentration, where we bypass
the need to compute the covering entropy of the convex function space. To best
of our knowledge, such a result is not available in the Bayesian literature. The
next two examples concern the classical Gaussian process regression and nonpara-
metric density estimation problems, where we show that the fractional posterior
optimally and adaptively concentrates at the true parameter value with substan-
tially relaxed assumptions on the prior compared to existing theory. These two
examples also theoretically justify the adaptive nature of Bayesian approaches.

4.1. Nonparametric regression. Consider the following nonparametric regres-
sion model with fixed design:

yi = µ(xi) + εi, εi ∼ N
(
0, σ 2)

, i = 1, . . . , n,(4.1)

where yi ∈ R is the response, xi ∈ [0,1]d is the ith fixed design point, µ :
[0,1]d → R is the unknown regression function to be estimated and σ is the noise
level. Given our general notation, the function µ plays the role of θ here, and
p

(n)
µ ≡ Nn(µ̃, σ 2In), where µ̃ = (µ(x1), . . . ,µ(xn))

T.
To estimate µ, we place a prior * over an appropriate function space F . An

examination of the fractional likelihood Ln,α(µ) and the corresponding posterior
*n,α(µ) under (4.1) yields

*n,α(µ) = {Nn(y; µ̃, σ 2In)}α*(µ)
∫ {Nn(y; µ̃, σ 2In)}α*(dµ)

= Nn(y; µ̃,ψ2In)*(µ)
∫

Nn(y; µ̃,ψ2In)*(dµ)
,

where y = (y1, . . . , yn)
T, and ψ = σ/

√
α. Hence the fractional posterior for (4.1)

is essentially a standard posterior with a different variance parameter in the likeli-
hood. For simplicity, we henceforth assume that σ is known, and without loss of
generality, equals one.

We use the notation ∥ · ∥2,n to denote the L2(Pn) norm relative to the empirical
measure Pn = n−1 ∑n

i=1 δxi , and use ⟨·, ·⟩n to denote the empirical inner product,
that is, ⟨f,g⟩n = n−1 ∑n

i=1 f (xi)g(xi) for two functions f and g. Let µ0 denote
the true regression function, which we assume to be inside F in this section. The
Rényi divergence between two multivariate Gaussian distributions with identity
covariance is given by

D(n)
α (µ,µ0) = nα

2
∥µ − µ0∥2

2,n,
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which is proportional to the squared empirical L2(Pn) norm between µ and µ0.
Hence, an application of Corollary 3.5 provides a risk bound for the L2(Pn) norm
in terms of the prior concentration log*n(Bn(θ0, ε; θ0)). We provide two distinct
examples below.

Convex regression. We first provide an illustration via convex regression, where
F is a function space of a large class of d-dimensional convex functions over
[0,1]d satisfying some minimal regularity conditions. Our fractional posterior
framework becomes especially attractive in such problems, since it obviates the
need to compute entropy numbers in restricted spaces, which can be a challenging
exercise in itself [28].

It is recent practice in the frequentist literature to avoid additional smoothness
assumptions on convex functions while studying rates of convergence [2, 29]. To
that end, let ∂µ(x) denote the sub-gradient of the function µ at the point x, that is,

∂µ(x) = {
s ∈ Rd : µ(z) ≥ µ(x) + sT(z − x), for all z ∈ [0,1]d}

.

As in [2], define the class of convex, sub-differentiable, uniformly Lipschitz func-
tions on [0,1]d as

CoL[0,1]d = {
µ : [0,1]d → R,µ is convex,

∥s∥ ≤ L for all s ∈ ∂µ(x), ∂µ(x) is non empty for all x
}
.

We model µ as a maximum of hyperplanes (which are always convex) [30], with
a prior distribution for the number of affine functions over which the maximum is
taken. Specifically, we let

µ(x)|k,
{
ak
j , b

k
j

} = max
j∈{1,...,k}

[(
ak
j

)T
x + bk

j

]
,

(4.2) {(
ak
j

)T
, bk

j

}T|k ∼ N
(
0, τ 2Id+1

)
, k ∼ πk.

The following theorem shows that in the well-specified case where µ0 ∈ F ≡
CoL[0,1]d , with no additional smoothness condition on µ0, we obtain a Bayes
risk bound of the order n−2/(4+d) up to logarithmic terms, which coincides with
the minimax risk under any d ≥ 1 [2, 29].

THEOREM 4.1 (Bayesian risk in convex regression, well-specified case). Con-
sider the model (4.1) with µ0 ∈ CoL[0,1]d , and the prior for µ satisfies (4.2) with
πk ≥ exp{−Ck logk} for some constant C > 0, then with P(n)

µ0 probability tending
to one,

∫
∥µ − µ0∥2

2,n d*n,α(µ) ≤ C

α(1 − α)
ε2
n,(4.3)

where εn = n−2/(4+d) logt n with t = 2/(4 + d), and C is some constant indepen-
dent of α.
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Nonparametric GP regression. Next, we consider the regression model (4.1)
with function space F = C[0,1]d . We assign to µ a Gaussian process prior with
mean function hµ : [0,1]d → R and covariance kernel c(x, x′), a positive defi-
nite function from [0,1]d × [0,1]d → R. We denote the prior by µ ∼ GP(hµ, c).
We assume hµ ≡ 0 and work with the squared exponential covariance kernel
ca(x, x′) = e−a2∥x−x′∥2

, with the prior for a satisfying

g(a) ≥ A1a
pe−B1a

d logq a.(4.4)

With this assumption, we show that the fractional posterior concentrates at the
minimax rate (up to logarithmic terms) adaptively over µ0 ∈ Cβ[0,1]d , where β
is the unknown smoothness level of µ0. To obtain the same result for the usual
posterior, [56] require the prior on a to additionally satisfy an upper bound of the
same order as the lower bound in (4.4), once again, ruling out heavy tailed priors.

THEOREM 4.2. Consider the model (4.1), with a conditional GP prior µ|a ∼
GP(0, ca) and suppose a ∼ g(·) satisfies (4.4). If the true function µ0 ∈ Cβ[0,1]d ,
then (4.3) is satisfied with εn = n−β/(2β+d)(logn)t , where t = {(1 + d) ∨ q}/(2 +
d/α).

Theorem 4.2 can be extended to other kernels in a straightforward manner.

4.2. Nonparametric density estimation. We assume X1, . . . ,Xn
i.i.d.∼ p and the

goal is to estimate the unknown density p, so that p plays the role of θ here and
p

(n)
θ (X(n)) ≡ ∏n

i=1 p(Xi). We model the density p via a mixture of finite mixtures
(MFM; [47]), which is a finite mixture model with a prior on the number of mix-
ture components. With some minor modifications, the results can be adapted to
infinite mixture models, such as Dirichlet process mixtures [37, 53]. Unlike ex-
isting literature [37, 53], our concentration results can accommodate heavy tailed
prior distributions on the component specific means. Due to space constraints, the
details are postponed to Section S3 of SD.

5. Examples in the misspecified case. We now present examples where the
true parameter θ0 lies outside (. We again state our results in the form of a PAC-
Bayes inequality, now based on applying Corollary 3.7. As discussed in Section 2,
we need to verify that D

(n)
θ0,α

(θ, θ∗) ≥ 0 as this quantity is not guaranteed to be
positive in general. In our first example, we revisit the convex regression problem
from the last section where the true function need no longer be convex. We show by
direct verification that D

(n)
θ0,α

defines a valid divergence measure in this context. We
then proceed to derive a sharp Bayesian oracle inequality that extends the recent
sharp oracle inequality for one-dimensional convex regression obtained in [7] to
general dimension d ≥ 1. Our second example concerns density estimation where
we apply Lemma 2.1 to guarantee positivity of the divergence and obtain rates of
convergence using Corollary 3.7.
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5.1. Misspecified convex regression. Due to space constraints, we have pro-
vided various details pertaining to this section in Section S1 of the SD.

Revisit the Gaussian regression model (4.1) with the parameter space F ≡
CoL[0,1]d for the mean function. We continue to use the prior (4.2) for µ. The
major difference of the analysis here from the previous section is that the true func-
tion µ0 is no longer assumed to be in F . Let K := {µ̃ = (µ(x1), . . . ,µ(xn))

T : µ ∈
F} ⊂ Rn denote the parameter space for the n-vector µ̃ created by evaluating the
function µ at the design points.

First, a simple calculation (see SD) yields

D
(
p(n)

µ0
,p(n)

µ

) = n

2
∥µ − µ0∥2

2,n,(5.1)

therefore, µ∗ ∈ F minimizing the KL divergence,

µ∗ := argmin
µ∈F

∥µ − µ0∥2
2,n,

is a projection of µ onto F under the L2(Pn) norm. Next, we show that the di-
vergence measure D

(n)
µ0,α(µ,µ∗) is valid. To that end, some calculation (see SD)

yields

D(n)
µ0,α

(
µ,µ∗) = nα

2(1 − α)

[∥µ − µ0∥2
2,n − ∥∥µ∗ − µ0

∥∥2
2,n − α

∥∥µ − µ∗∥∥2
2,n

]

= T α

2(1 − α)
,

where

T = [∥µ̃ − µ̃0∥2 − ∥∥µ̃∗ − µ̃0
∥∥2 − α

∥∥µ̃ − µ̃∗∥∥2]
.

Note that µ̃∗ = ProjK(µ̃0), the Euclidean projection of µ̃0 to the set K . Since K
is a closed convex set in Rn (see SD), it is a standard fact from convex geometry
(see, e.g., [51] and the SD) that the projection is uniquely defined and satisfies

〈
µ̃ − µ̃∗, µ̃∗ − µ̃0

〉 ≥ 0 ∀µ ∈ F .

With some algebra, T = (1−α)∥µ̃− µ̃∗∥2 +2⟨µ̃− µ̃∗, µ̃∗ − µ̃0⟩ ≥ 0 by the above
inequality. This establishes the validity of the divergence.

To apply the PAC-Bayes inequality in Corollary 3.7, we need a handle on
Bn(µ

∗, ε;µ0). Here, we use the version of Bn(µ
∗, ε;µ0) in the remark after equa-

tion (3.1). Some algebraic simplification (see SD) yields

Bn
(
µ∗, ε;µ0

) ⊃ {
µ ∈ F : ∥∥µ − µ∗∥∥2

2,n + 2
〈
µ − µ∗,µ∗ − µ0

〉
n ≤ ε2}

.(5.2)

With these ingredients, we obtain the following sharp Bayesian oracle inequality,
which generalizes the result of one-dimensional convex regression obtained in [7]
to general dimension d ≥ 1.
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THEOREM 5.1 (Bayesian risk for convex regression, misspecified case). Con-
sider the model (4.1) with µ0 ∈ C[0,1]d , and the prior for µ satisfying the con-
ditions in Theorem 4.1. Let K = nd/(4+d), and suppose there exist āj ∈ Rd and
b̄j ∈ R for j = 1, . . . ,K such that the function µ̄(x) := maxj∈{1,...,K}{āT

j x + b̄j }
satisfies

∥µ − µ̄∥2
2,n ≤ ∥∥µ − µ∗∥∥2

2,n + ε2
n/4

for any µ ∈ CoL[0,1]d , where εn is as in Theorem 4.1. Then with P(n)
µ0 probability

tending to one,
∫

∥µ − µ0∥2
2,n d*n,α(µ) ≤ inf

µ∈CoL[0,1]d
∥µ − µ0∥2

2,n + C

α(1 − α)
ε2
n,(5.3)

where C is some constant independent of α.

The assumption about µ̄ posits that the closest KL point µ∗ can be well approx-
imated by µ̄ in the model space which is a maxima of K ≍ nε2

n many hyperplanes.
This sharp oracle inequality implies some geometric structure of the fractional

posterior that cannot be obtained via a nonsharp one. Specifically, it can be shown
that with large fractional posterior probability, µ − µ∗ is almost perpendicular to
µ∗ − µ0; see SD for details.

5.2. Misspecified density estimation. Let q1, . . . , qK be densities supported on
a compact set X ⊂ R. Let $K−1 = {x ∈ RK−1 : xh ≥ 0 ∀h,

∑K−1
h=1 xi ≤ 1} be the

(K − 1)-dimensional probability simplex, and for ν = (ν1, . . . , νK−1) ∈ $K−1,
let νK = 1 − ∑K−1

h=1 νh. Given i.i.d. data X1, . . . ,Xn ∈ X , model the common un-
known density p as

p(x) := pν(x) =
K∑

h=1

νhqh(x), ν ∈ $K−1.

Examples of such a density model with fixed dictionary elements can be found
in [55], Supplement. The parameter space ( = {pν : ν ∈ $K−1}. We consider a
Dirichlet(α, . . . , α) prior on ν for some fixed α ≤ 1, and denote the induced prior
on p ≡ pν by *.

When the true density p0 /∈ (, the pseudo-true parameter p∗ = pν∗ , with

ν∗ := argmin
ν∈$K−1

D(p0,pν) = argmaxν∈$K−1

∫

X
p0(x) log

(
pν(x)

)
dx.

Since we are in an i.i.d. setup, 1
nD

(n)
p0,α(p,p∗) = Dp0,α(p,p∗). We show that

Dp0,α(·, ·) defines a valid divergence measure by showing that ( is convex
and hence Lemma 2.1 applies. To see this, suppose p1,p2 ∈ (. By definition,
these exist ν1, ν2 ∈ $K−1 such that p1 = pν1 and p2 = pν2 . For any ω ∈ (0,1),
(1 − ω)p1 + ωp2 = pν̄ , where ν̄ = (1 − ω)ν1 + ων2 ∈ $K−1, and hence pν̄ ∈ (.



62 A. BHATTACHARYA, D. PATI AND Y. YANG

Note that ν∗ may or may not be in the interior of (, and hence verifying the con-
vexity condition is crucial. We illustrate this through two examples; details are in
SD. First, consider K = 2, X = [0,1], q1(x) = c1(1 + x)1/2, q2(x) = c2(1 + x)3/2

for x ∈ [0,1], and p(x) = ν1q1(x) + ν2q2(x). Suppose the true density p0(x) =
c0(1 + x) for x ∈ [0,1]. Clearly, p0 /∈ (, and

∫

X
p0(x) log

(
pν(x)

)
dx = C + logν1 +

∫

X
log

(
1 + 1 − ν1

ν1

q2(x)

q1(x)

)
p0(x) dx,

where C = ∫
X p0(x)(logq1(x)) dx does not depend on ν. The integral can be ob-

tained in closed-form, and numerically maximizing the resulting expression pro-
duces a unique maxima at ν∗ = (0.4870,0.5130), which lies in the interior of the
simplex. Hence, either condition of Lemma 2.1 is satisfied.

As a second example, continue to assume K = 2, X = [0,1]. Suppose q1(x) =
c1e

−x and q2(x) = c2e
−10x for x ∈ [0,1]. If the true density p0(x) = c0e

−9x , the
integral above can again be obtained in closed-form and numerically maximizing
it leads to ν∗ = (0,1); see Figure S1 in SD. In this case, the (unique) minimizer lies
on the boundary, but since the parameter space is convex, Lemma 2.1 still applies.

We are now prepared to state the concentration theorem.

THEOREM 5.2. Suppose there exists constants a, b > 0 such that a ≤ qh(x) ≤
b for all x ∈ X , h = 1, . . . ,K . Suppose also that the true density p0 is bounded be-
tween a and b. Let εn = √

K log(n/K)/n and D > 1. Then, with p
(n)
0 probability

tending to one,
∫

Dp0,α
(
p,p∗)

*n,α
(
dp|X(n)) ! Dα + 1

1 − α
ε2
n.

Theorem 5.2 follows from an application of Corollary 3.7. A main ingredient is
to show that

Bn
(
p∗, ε;p0

) ⊃
{

ν ∈ $K−1 :
K∑

h=1

∣∣νh − ν∗
h

∣∣ < ε2

}

,

and the proof is completed by a standard small ball probability estimate for Dirich-
let vectors.

6. Discussion. The study of concentration properties here complements the
development of power posteriors from a coherent system of updating beliefs as
discussed in [10]. When the model is misspecified, Bissiri, Holmes and Walker
[10] argue that it is preferable to view − logp

(n)
θ (X(n)) as a loss function relat-

ing the data X(n) with parameter θ . A formal Bayesian update combining a prior
*(·) with the above loss function necessarily has to take the form *n,α(θ |X(n)) ∝
[p(n)

θ (X(n))]α*(θ) to remain coherent. This coherence property assigns a special
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place to power posteriors among the bigger class of Gibbs posteriors. The com-
plementary view arising from the current presentation highlights the natural devel-
opment of the divergence measure Dα from a power likelihood with exponent α,
leading to a natural and useful metric for studying concentration in a large class of
problems.

The coherence property of [10] holds for any α > 0 and does not require α
to be less than one. Indeed, there are instances in the literature where values of
α > 1 have been used. Holmes and Walker [31] provide an example of fitting a
Poisson model to count data showing under-dispersion, where a power bigger than
one is intuitively reasonable. A power larger than one also arises in a stochas-
tic approximation of a complete likelihood in big data settings. If X1, . . . ,Xn are
i.i.d. from a density p and X′

1, . . . ,X
′
m is a random subset of {X1, . . . ,Xn}, then a

stochastic approximation of the complete likelihood based on the random subset is∏n
i=1 p(Xi) ≈ ∏m

j=1[p(X′
j )]n/m, since

∑n
i=1 logp(Xi) ≈ n

m

∑m
j=1 logp(X′

j ) by
the strong law. Some other instances of a power larger than one from the ma-
chine learning literature include [1, 20]. However, for α > 1, the Dα divergence
is stronger than the Kullback–Leibler divergence and we do not expect the con-
centration results to hold in the stated generality for these stronger divergences.
Second, Dα may cease to be convex for α > 1, rendering statements about point
estimates difficult. For these reasons, we have restricted attention to α < 1 in the
present paper.

Another issue beyond the scope of the paper is the choice of α. While it is
reassuring that the rate of convergence remains unaffected by the choice of α,
a principled procedure to choose α should reflect improved finite sample behav-
ior. A detailed discussion regarding the optimal choice of α from a prediction
perspective is available in [25]. For parametric models, [31] recently proposed an
approach based on equating the prior expected gain in information between the
prior and posterior from two experiments. It would be interesting to extend our
concentration results with such data-driven choices of α.

SUPPLEMENTARY MATERIAL

Proofs of main results (DOI: 10.1214/18-AOS1712SUPP; .pdf). All proofs
and additional details pertaining to Section 4 and Section 5 are provided in the
supplementary document.
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