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Synthesis of high-entropy alloy nanoparticles on
supports by the fast moving bed pyrolysis
Shaojie Gao 1, Shaoyun Hao 1, Zhennan Huang 2, Yifei Yuan 2,3, Song Han 4, Lecheng Lei 1,5,

Xingwang Zhang 1,5✉, Reza Shahbazian-Yassar 2 & Jun Lu 3✉

High-entropy alloy nanoparticles (HEA-NPs) are important class of materials with significant

technological potential. However, the strategies for synthesizing uniformly dispersed HEA-

NPs on granular supports such as carbon materials, γ-Al2O3, and zeolite, which is vital to their

practical applications, are largely unexplored. Herein, we present a fast moving bed pyrolysis

strategy to immobilize HEA-NPs on granular supports with a narrow size distribution of 2 nm

up to denary (MnCoNiCuRhPdSnIrPtAu) HEA-NPs at 923 K. Fast moving bed pyrolysis

strategy ensures the mixed metal precursors rapidly and simultaneously pyrolyzed at high

temperatures, resulting in nuclei with a small size. The representative quinary (FeCoPdIrPt)

HEA-NPs exhibit high stability (150 h) toward hydrogen evolution reaction with high mass

activity, which is 26 times higher than the commercial Pt/C at an overpotential of 100mV.

Our strategy provides an improved methodology for synthesizing HEA-NPs on various

supports.
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H igh-entropy alloys, containing five or even more metals,
have attracted significant attentions1–5, because of their
unique chemical and physical complexity, which endow

alloys with tunable features and properties such as thermal sta-
bility, superior corrosion resistance, high hardness, exceptional
ductility, and superparamagnetism6–10. A wide range of resear-
ches have revealed that the nanoparticles loading on the supports
could significantly improve specific surface area and surface
energy compared with the bulk materials or the nanoparticles
themselves11,12. In addition, in industrial applications, the nano-
particles need to be dispersedly immobilized on granular supports,
such as Al2O3, zeolite, and carbon materials etc., which can make
the catalysts feature with tunable size, shape, and stability, enhan-
cing the catalytic performance13–15. Therefore, the supported high-
entropy alloy nanoparticles (HEA-NPs) can be promisingly applied
in catalysis, chemical sensing, biology, and energy conversion16–21.
However, the common extreme high temperature related approa-
ches such as arc melting16 and laser cladding22 are not suitable for
supporting HEA-NPs due to the rapid growth and aggregation of
nanoparticles23. Although multimetallic nanoparticles can be pro-
duced at relatively mild conditions, including magnetron sputter-
ing24, the mixed metal oxides inking25, electrodeposition26, and
polymer lithography methods27,28, which are difficult for uniformly
immobilizing HEA-NPs on granular supports. Notably, Yao et al.
applied carbothermal shock method successfully supported 8 ele-
mental HEA-NPs on conductive activated carbon fiber through
flash heating and cooling strategy29, but it is very challenging for
this joule heating method to immobilize HEA-NPs on granular
supports (independent of their electrical conductivity) such as active
carbon, alumina oxide, and zeolite. Exploring the efficient method
for immobilizing HEA-NPs on these granular supports is obviously
significant for facilitating the industrial application of HEA-NPs
and providing facile platform for designing catalysts and under-
standing support-metal interaction effect.

Presently, wet impregnation followed by reductive pyrolysis in
the programmed temperature heating way, which is always con-
ducted in the fixed bed pyrolysis (FBP) reactor, is the most popular
method for preparation of supported nanoparticles on granular
supports13,14. However, in the conventional FBP process, the metal
ions are sequentially reduced due to the different starting reductive
temperatures of precursors, which are mainly resulted from
the different chemical reductive potentials30,31. According to the
classical LaMer mechanism of the formation of nanocrystals, the
higher supersaturation of monomers can induce a burst nucleation
and the smaller nuclei formation32–35. The theoretical and
experimental results of nanoalloying have shown that decreasing
critical size of nuclei could reduce the excess free energy cost for
formation of nanoalloys avoiding phase separation36–41.

Here we show a general and facile fast moving bed pyrolysis
(FMBP) strategy following wet impregnation for the preparation
of ultrasmall and highly dispersed HEA-NPs coming up to 10
immiscible elements (Mn, Co, Ni, Cu, Rh, Pd, Sn, Ir, Pt, and Au)
via the pyrolysis of the mixed metal chlorides precursors loading
on various granular supports such as carbon support (carbon
black and graphene oxide), γ-Al2O3, and zeolite (Permutit). In the
FMBP process, the formation of HEA-NPs is thermodynamically
favored due to the low free energy of the formation of nuclei,
which results from the fast pyrolysis of precursors at high tem-
peratures. The representative quinary (FeCoPdIrPt) HEA-NPs
possess the high activity and exceptional stability toward hydro-
gen evolution in water splitting.

Results
The FMBP strategy for HEA-NPs. Our FMBP strategy allows the
metal precursors to rapidly reach 923 K within 5 s (a propulsion

speed of 20 cm s−1) with the temperature in the heating zone only
dropping to 920 K (Fig. 1a and Supplementary Movie 1). The
FMBP strategy ensures the simultaneous pyrolysis of the mixed
metal precursors (Supplementary Figs. 1 and 2) due to rapidly
reaching the high temperature (above the pyrolysis temperature
of all precursors), resulting in the high supersaturation of
monomers, in turn forming smaller nuclei clusters to form
HEA-NPs without phase separation (Fig. 1b). In contrast, the
FBP strategy can only synthesize phase-separated alloy, because
each metal precursor would be reduced in sequence for their
various reduction potentials during temperature programming
(20 Kmin−1) (Fig. 1b). Moreover, we simulate the heat transfer of
20 mg of precursors/graphene oxide (GO) placed in a quartz boat
(the commercial ANSYS FLUENT software). The results showed
that GO could reach 923 K within 5 s, which was consistent with
the time of the actual experimental operation (Fig. 1c, Supple-
mentary Movie 2).

Crystal structure and composition characterization. As-proof-
concept, the denary (MnCoNiCuRhPdSnIrPtAu) HEA-NPs were
synthesized by the FMBP strategy. Firstly, the mixed denary metal
chloride salts precursors coordinated with 1,10-Phenanthroline
(Phen) were loaded on GO by the wet impregnation method,
then, followed by the reductive pyrolysis to obtain HEA-NPs at
923 K through the FMBP strategy (details in experimental sec-
tion). It was seen that the denary (MnCoNiCuRhPdSnIrPtAu)
HEA-NPs were uniformly dispersed on GO with an ultrasmall
size ~2 nm (Fig. 1d). The high-resolution scanning transmission
electron microscope (HR-STEM) revealed that the crystalline
structure of denary HEA-NPs was face-centered cubic (fcc)
(Fig. 1e). Additionally, the elemental maps indicated that 10
elements were uniformly distributed in the nanoparticles, sug-
gesting that the denary HEA-NPs were atomically mixing without
phase separation (Fig. 1f). It should be pointed out that the HEA-
NPs with a low loading of HEA-NPs on GO (3 wt%) were too
small to obtain clear mapping images in high resolution with
energy-dispersive X-ray (EDX) spectroscopy, so we used a high
loading of HEA-NPs on GO (10 wt%), as shown in Fig. 1f.

Our FMBP strategy can facilely synthesize a wide range of
HEA-NPs, including the quinary (e.g., CuPdSnPtAu), senary
(e.g., NiCuPdSnPtAu), septenary (e.g., NiCuPdSnIrPtAu), and
octonary (e.g., CoNiCuPdSnIrPtAu) alloy at 923 K (Fig. 2),
illustrating the reliability and generality of the FMBP strategy for
synthesis of HEA-NPs. The elemental maps clearly revealed that
each element in these alloys supported on GO was uniformly
mixed without phase separation (Fig. 2a–g). Besides that, the
corresponding elemental maps for the atomic scale HAADF-
STEM image of CuSnPdAuPt HEA-NPs further revealed these
elements were uniformly distributed in these HEA-NPs (Supple-
mentary Fig. 3). Additionally, high-resolution high-angle annular
dark-field imaging in scan transmission electron microscopy
(HAADF-STEM) showed that the lattice fringe spacing in the
denary nanoparticle (50 nm) was 2.21 Å, which was well identical
with that in the denary nanoparticle with the size of 2 nm
(Fig. 1e), revealing that the nanoparticles in the denary high-
entropy alloy forming homogeneous alloys. Simultaneously, the
formation of quinary (CuPdSnPtAu) and octonary (CoNiCuPdS-
nIrPtAu) HEA-NPs were also confirmed by HAADF-STEM
(Supplementary Figs. 3 and 4). Additionally, in order to prove
that the synthesized alloy nanoparticles are atomically mixed
without phase segregation, the representative quinary and denary
HEA-NPs were characterized with powder X-ray diffraction
(XRD), which revealed that the homogeneous HEA-NPs by the
FMBP strategy were successfully synthesized (Supplementary
Figs. 5 and 6).
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The composition ratio of each element in these HEA-NPs was
analyzed through EDX (Supplementary Figs. 7–13, showing that
the atomic ratio of each element was very close to the expected
ratio. The composition of individual particles (FeCoPdPtIr HEA-
NPs) was further analyzed to prove each element in HEA-NPs is
uniformly distributed. The atomic ratio of each element was close
to the average compositions (Supplementary Fig. 14). The atomic
ratio error in these alloys is below 15%, which may be due to the
possible evaporation of metal precursors and the analysis error. In
order to further prove that the proportion of each element is
equal to the desired ratio of metals, we used inductively coupled
plasma optical emission spectroscopy (ICP-OES) to analyze the
composition of HEA-NPs. The results showed that the element

ratio of the quinary, octonary, and denary HEA-NPs was very
close to the results obtained by the EDX (Supplementary
Tables 1–3). Furthermore, the ternary, octonary, and denary
HEA-NPs were respectively characterized with X-ray photoelec-
tron spectroscopy (XPS) (Supplementary Figs. 15–19), confirm-
ing the homogenous HEA-NPs. Thus, this indicates the generality
of our method to achieve various mixing compositions in HEA-
NPs on different substrates.

Immobilizing HEA-NPs on various supports. Our FMBP
strategy can be readily extended to immobilize HEA-NPs on
various granular supports including γ-Al2O3, zeolite, and carbon
black (Fig. 3), taking the quinary (CuPdSnPtAu) HEA-NPs as an
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Fig. 1 The FMBP strategy for synthesis of HEA-NPs. a Schematic diagram of the FMBP experimental setup for synthesis of HEA-NPs. b Schematic
diagrams for synthesis of homogeneous and phase-separated HEA-NPs by FMBP and FBP strategies, respectively. c The simulation of the time required for
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e The HR-STEM image for the denary (MnCoNiCuRhPdSnIrPtAu) HEA-NPs (inset, the Fourier transform analysis for denary (MnCoNiCuRhPdSnIrPtAu)
HEA-NPs indicated that the denary HEA-NPs featured with an fcc crystal framework). f Elemental maps for denary (MnCoNiCuRhPdSnIrPtAu) HEA-NPs
(The loading of HEA-NPs on GO was 10 wt%). The elements in HEA-NPs have the equal atomic ratio. Scale bar d: 10 nm, e: 0.5 nm, and f: 10 nm.
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example. It should be pointed out that when γ-Al2O3 or zeolite
was used as supports, the reduction of metal precursors was
achieved with H2 (100 sccm) under 923 K. As shown in Fig. 3d,
the elemental maps clearly revealed that elements in the quinary
(CuPdSnPtAu) HEA-NPs on γ-Al2O3 and zeolite were also uni-
formly mixed without phase separation, suggesting formation of
homogenous alloys, in agreement with results of Fig. 2 (GO as
supports). These results indicated that our FMBP method is
general to immobilize HEA-NPs on various supports. Moreover,
the HEA-NPs synthesized by our FMBP method exhibited a
uniform and small particle size distribution (~5 nm) when the
loading of alloys was 3 wt% (Fig. 3e and Supplementary Figs. 20
and 21). For example, the sizes of these particles from 1.5 to
2.5 nm occupy 73.8% in the size distribution for the denary
(MnCoNiCuRhPdSnIrPtAu@GO) HEA-NPs (Supplementary
Fig. 21). These HEA-NPs are mostly smaller than 5 nm in dia-
meter and uniformly dispersed on carbon supports (GO and
carbon black), γ-Al2O3, and zeolite. It should be noted that the
HR-TEM pictures of HEA-NPs supported on GO, carbon black,
γ-Al2O3, and zeolite all showed clear crystal lattices (Fig. 3f,
Supplementary Figs. 7–13), suggesting HEA-NPs were highly
crystalline.

Effect of temperature on alloy formation. We carried out con-
trol experiments to verify the assumption that the strategy of
pyrolysis reduction of mixed metal precursors governed the for-
mation of alloys (Fig. 4). We took the ternary (NiPdPt@GO) alloy
as an example to investigate the influence of different pyrolysis
strategies on alloy formation, because more elements will make
the characterization much more complicated and challenging. In
the FMBP process, the NiPdPt alloy was formed without phase
segregation (Fig. 4b). In contrast, as shown in Fig. 4d, when the
propulsion speed was decreased to 1 cm s−1 (20 s for precursors
to reach the heating zone), namely the slow moving bed pyrolysis
(SMBP), the phase-separated NiPdPt nanoparticle was clearly
formed, where Pt and Pd were not uniformly in the NiPdPt
nanoparticles. More obviously, Pd only existed in the core of
NiPdPt nanoparticles obtained by the conventional FBP strategy
(923 K) with a heating rate of 20 Kmin−1 (~31 min from 298 K to
923 K), indicating a completely phase segregation (Fig. 4f, Sup-
plementary Fig. 22). Besides that, the pyrolysis strategy also
changed and affected the particle size of the synthesized alloy
(Fig. 4a, c, e). These controls clearly illustrated the key role of the
pyrolysis strategies of the mixed metal precursors for formation
of HEA-NPs.
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Fig. 2 HAADF and elemental maps for HEA-NPs synthesized by FMBP. HAADF and elemental maps for the quinary (CuPdSnPtAu) (a), senary
(NiCuPdSnAuPt) (b), septenary (CoNiCuPdSnPtAu) (c), septenary (NiCuPdSnIrPtAu) (d), octonary (CoNiCuPdSnIrPtAu) (e) and (f), and denary
(MnCoNiCuRhPdSnIrPtAu) alloy (g), and supported on GO. h The high-resolution TEM image for the denary (MnCoNiCuRhPdSnIrPtAu@GO) HEA-NPs.
The inset shows the Fourier transform analysis for denary HEA-NPs indicating that the denary HEA-NPs exhibited an fcc crystal framework. The loading of
HEA-NPs on GO was 10 wt%. The elements in HEA-NPs have the equal atomic ratio. Scale bar (a–c, e, f): 50 nm, d: 20 nm, g: 10 nm, and h: 1 nm.
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Mechanism of formation of HEA-NPs. The formation of
nanocrystals is generally divided into three steps according to the
LaMer’s nucleation mechanism (Fig. 5a, b)32,39,42:

Precursors ! Monomers $ Nuclei ! Nanocrystal

The correlation of free energy of nuclei with HEA-NPs is
significant for nuclei, because different energy can lead to forming
alloys or phase-separated nanocrystal. The overall free energy
change versus the nucleus size during the formation of nuclei
(Fig. 5c and Supplementary Fig. 23) as follows33,34,39:

ΔGr ¼ 4πr2γþ 4
3
πr3ΔGV ð1Þ

ΔGV ¼ �RTlnS
Vm

ð2Þ

ΔGr ¼ 4πr2γþ 4
3
πr3ΔGV ¼ 4πr2γ� 4

3
πr3

RTlnS
Vm

ð3Þ

Where r is the nucleation radius, γ is surface free energy in per
unit area, R is the ideal gas constant, ΔGV is the free energy gap
for per unit volume of metal solids and solute particles, T is the
temperature for nucleation, Vm is solid molar volume, S is the
ratio of supersaturation concentration to equilibrium concentra-
tion, and ΔGr is excess free energy, which is related with the
surface energy (4πr2γ) and volume free energy (4/3)πr3ΔGV.
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Fig. 3 Supporting HEA-NPs on various supports. The schematic diagrams for HEA-NPs dispersed on γ-Al2O3 (a), zeolite (b), and carbon black (c). d The
elemental maps for quinary (CuPdSnPtAu) supported on Al2O3 and zeolite, (The loading of HEA-NPs on γ-Al2O3 and zeolite was 10 wt%). e STEM images
revealed that the HEA-NPs synthesized by FMBP strategy were highly dispersed on γ-Al2O3, zeolite, carbon black, and GO. f HR-TEM images for HEA-NPs
supported on γ-Al2O3, zeolite, carbon black, and GO synthesized by FMBP strategy (The loading of HEA-NPs on supports was 3 wt%). The elements in
HEA-NPs have the equal atomic ratio. Scale bar d: 10 nm, e: 20 nm, f: 5 nm.
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As shown in Fig. 5c, when the radius of nuclei is smaller than
the critical value, the nuclei is easily decomposed, and the new
nuclei forms resulting from the aggregation of monomers or the
small nuclei. When the nucleus size is larger than the critical
radius (r*), the nucleation system will decrease its free energy by
the growth of bigger clusters39. The critical radius r* and the
corresponding critical excess free energy ΔGr* can be described as
the followings by solving the equation dGr/dr= 0:

r� ¼ 2γVm

RTlnS
ð4Þ

ΔGr� ¼ 4πr�2γ� 4
3
πr�3

RTlnS
Vm

ð5Þ

Therefore, we can get the quantitative relation between the
temperature and critical radius of nuclei (r*) according to Eq. 4
(Fig. 6a). Then, the quantitative relation between the critical
excess free energy (ΔGr*) and the critical radius (r*) can be
further calculated according to Eq. 5 (Fig. 6b and Supplementary
Tables 4 and 5). Obviously, the reaction temperature has a strong
effect on the critical radius of nuclei (r*) and the critical excess
free energy (ΔGr*), for example, at 923 K, r*, and ΔGr* were
0.313 nm and 2.54 × 10−20 J, respectively (Supplementary
Table 6). In contrast, at 673 K, r*, and ΔGr* were 0.442 nm and
5.08 × 10−20 J, respectively.

In our FMBP, the mixed metal precursors could rapidly reach
the high temperature (e.g. 923 K). The time for the supports such
as GO, zeolite, and γ-Al2O3 supporting precursors to reach 923 K
in the FMBP process were simulated. The results revealed that
these supports could reach 923 K within 5 s, showing almost no
difference with the practical operation (Supplementary Fig. 24
and Movies 1 and 2). It should be noted that all metal precursors
with different properties could be efficiently decomposed under
923 K (Supplementary Tables 4–8). Therefore, in the FMBP
process (Fig. 5a, c), the formation of HEA-NPs was thermo-
dynamically favored due to the low critical excess free energy
(ΔGr*)39–42. The nuclei of alloys with the small size will be much
favorable due to the fact that these monomers only need little
energy for nucleation43,44. In contrast, in FBP (Fig. 5b) or SMBP,
the formation of alloys slowly going through the low temperature
(e.g. 673 K) with the slow heating way would result in the larger
radius of nuclei, and the phase separation would occur due to the
high ΔGr* (Fig. 4c–f). The total number of the nuclei clusters
obeys the Boltzmann distribution, and the increase of nuclei
radius will decrease the number of nuclei35,39,40. The higher
nucleation temperature is beneficial to the nucleation rate (Fig. 5d,
Supplementary Fig. 25, and Supplementary Note 1). Therefore, in
our FMBP, the homogenous HEA-NPs with small size (2 nm)

were easily formed due to the smaller nuclei radius and the fast
nucleation rate.

We investigated the pyrolysis reduction temperatures of metal
precursors on the formation of alloys in the FMBP process. Also
taking the ternary NiPdPt alloy as example, it was obviously seen
that NiPdPt alloy cannot be obtained under the pyrolysis
temperature of 673 K. The Ni element was scattered on the GO
support, and the bimetallic PdPt alloy can be formed due to their
similar chemical reduction potentials (Supplementary Fig. 26).
When the reduction pyrolysis temperature increased to 923 K and
1173 K, the NiPdPt alloy was successfully synthesized with
uniformly mixing of Ni, Pt, and Pd (Fig. 4b and Supplementary
Fig. 26). However, the NiPdPt alloy synthesized with FMBP
under 1173 K produced larger and aggregated HEA-NPs particles
(Supplementary Fig. 27). Additionally, according to the calculated
free energy and Boltzmann distribution, the rate of the
transformation of metal precursors to nuclei clusters (dN/dt)
was close to 1 at 923 K, when S (the ratio of supersaturation
concentration to equilibrium concentration) was in range of 5–20
(Supplementary Fig. 25). The nucleation rate directly determined
the size and number of nuclei generated in the supersaturation of
monomers. The faster the pyrolysis rate of precursors, the
supersaturation of monomer will be higher. Thus, the larger the
number of the nuclei clusters, and the smaller the nanocrystals
generated. Overall therefore, the reasonable reduction pyrolysis
temperature of 923 K is important for our FMBP strategy to get
the HEA-NPs with small size.

Actually, the annealing time for synthesizing HEA-NPs was
also investigated in detail, including 30 min, 120 min, and 180
min. Different annealing time will affect the formation of high-
entropy alloys. When the annealing time was set at 30 min, the
CuSnPdPtAu HEA-NPs would be wrapped by carbon (Supple-
mentary Fig. 28), which cannot be sufficiently decomposed.
Moreover, as can be seen from Supplementary Fig. 28, when the
annealing time was set at 180 min, the size of CuSnPdPtAu HEA-
NPs would significantly increase. Thus, the annealing time of 120
min was chosen as the suitable time for synthesizing the
ultrasamll HEA-NPs. Besides that, the selective reaction time
was also based on the diffusion of reactants and draining of gases
produced from precursors.

HER tests. Our FMBP strategy can facilely produce various HEA-
NPs, which have many potential applications. As a proof concept,
we applied FeCoPdIrPt@GO HEA-NPs (Supplementary Figs. 29–
33) loaded on carbon paper (CP) as the working electrode for
hydrogen evolution reaction (HER) in the solution containing
KOH (1M). In order to prove FeCoPdIrPt@GO prepared by
FMBP possess high performance toward HER, the single-metallic
(e.g., Fe@GO), bi-metallic (e.g., CoPd@GO), tri-metallic (e.g.,
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PtPdIr@GO) samples, even the FeCoPdIrPt@GO prepared by
FBP were employed for HER (Supplementary Fig. 32). Through
comparison these samples, FeCoPdIrPt@GO (FMBP) exhibited
the best performance toward HER. As shown in Fig. 7a, the
FeCoPdIrPt@GO exhibited a low overpotential (ɳ) of 42 mV at
the current density of 10 mA cm−2, which was much lower than
that of the commercial Pt/C (ɳ10= 64 mV). Besides that, at the
ɳ= 100mV, the FeCoPdIrPt@GO exhibited with a mass activity of
9.1 mA μgPt, which was 26 times higher than 0.35 mA μgPt for Pt/
C. Moreover, it should be noted that FeCoPdIrPt@GO possessed
the superior performance as compared with other electrocatalysts
(Supplementary Table 9). The value of Rct (charge transfer
resistance) for FeCoPdIrPt@GO was much smaller than that of
Pt/C (Supplementary Fig. 32), revealing a much more relatively
rapid charge transfer between the interface for FeCoPdIrPt@GO
and the electrolyte, which boosted the HER activity. In order to
confirm the excellent performance of FeCoPdIrPt@GO toward
HER, the electrochemical active surface area (ECSA) was also
analyzed, calculating from Cdl (double-layer capacitance), which
was ascribed to CV (cyclic voltammetry) curves tested in the non-
Faradaic region (Supplementary Fig. 33a). The ECSA for
FeCoPdIrPt@GO reached 1462.5mA cm−2 (Cdl= 58.5 mF cm−2),
demonstrating that the larger ECSA also contributed to the high
HER performance of FeCoPdIrPt@GO. The Tafel slopes of dif-
ferent samples composed of various metals were calculated to
investigate the mechanism of HER (Supplementary Fig. 32e). It
was seen that the Tafel slopes of Ir and CoPd were 117 and
204mV dec−1, respectively, indicating the limiting step for these
samples was the Volmer step (water dissociation)45. In contrast,
the Tafel slopes of Pt, PtPdIr, and FeCoPtPdIr were decreased to
98, 97, and 82mV dec−1, respectively, indicating the limiting steps
of HER on Pt-based alloys were Heyrovsky-Tafel steps (adsorp-
tion/desorption of hydrogen species)45. FeCoPtPdIr possessed the
smallest Tafel slope, indicating the fastest kinetic toward HER.
Furthermore, the Faraday efficiency for FeCoPdIrPt@GO is 99.4%,
indicating the current mainly came from HER instead of side
reactions (Fig. 7c). The excellent performance of FeCoPdIrPt@GO
toward HER could be ascribed to the electronic effects of homo-
genous alloys, due to the synergic effect of HEAs so called
“cocktail effect”19,46. In addition, multi-element interactions can
lead to a huge divergence of the properties and states of the center
atoms as compared to atoms in the single-element material26,46.
According to the theory of electrochemical HER, the free energy
for hydrogen species (ΔGH*) on catalysts close to 0 V would
optimize the HER activity due to the lower reaction barrier, which
resulted from the balance of adsorption and desorption47.
Therefore, the compromise between Co (strong adsorption) and Ir
(weak adsorption) would moderate ΔGH* of FeCoPdIrPt. In

addition, although Pd itself has the poor HER activity, it is ben-
eficial to modulate the hydrogen binding energy (HBE) on the Pt
surface47, improving the HER activity. Moreover, based on the
theoretical simulations, the electronic structure (i.e. d-band center)
is an important indicator of the activity of electrocatalyst, because
the d-orbital electrons determine both bond formation (ΔGH*)
and bond-breaking48,49. If the d-band center was too close to or
far from the Fermi level, the electrocatalytic activity of catalysts
would be reduced. For FeCoPdIrPt, the transition metals (Fe and
Co)50,51 and Pd52 could downshift the antibonding states of Pt,
and more electrons would fill the antibonding states, which
facilitated the desorption of hydrogen species accelerating
hydrogen evolution. Therefore, the tuned d-band center of
FeCoPdIrPt contributed to its enhanced HER activity. These
results reveal that the FeCoPdIrPt@GO is a highly active and
stable catalyst, possessing a promising potential application in
practical and commercial conditions. The stability test for
FeCoPdIrPt@GO was performed with chronopotentiometry under
the same conditions. As shown in Fig. 7b, FeCoPdIrPt@GO
exhibited a long stability of 150 h at 10mA cm−2 without obvious
change. Simultaneously, FeCoPdIrPt@GO also could run for 150 h
at 100mA cm−2 with a decreasing overpotential of 46 mV (Sup-
plementary Fig. 33c). Moreover, the morphology and composition
of FeCoPdIrPt on GO maintained well after the HER test (Sup-
plementary Fig. 34). The high stability of the quinary HEA-NPs
toward HER was related with entropic stabilization, which leads
the thermodynamic stable state, thus, preventing adequate driving
forces from degradation of HEA-NPs53.

Discussion
In summary, we develop a facile synthesis strategy, i.e. fast
moving bed pyrolysis, for synthesizing the ultrasmall homo-
geneous HEA-NPs with up to ten elements (MnCoNi-
CuRhPdSnIrPtAu) highly dispersed on various granular supports.
Our strategy can ensure the mixed metal precursors to be
simultaneously pyrolyzed at high temperatures, which results in
the high supersaturation of monomers and the small size of
nuclei, producing the highly dispersed HEA-NPs on supports.
The parameters and mechanism of fast moving bed pyrolysis for
producing HEA-NPs are carefully investigated. The representa-
tive FeCoPdIrPt HEA-NPs exhibit the smaller overpotential and
the higher mass activity of HER in electrochemical water splitting
as compared with the commercial Pt/C. The enhanced HER
performance is attributed to the synergic effect of elements in
HEA-NPs. Further, we propose a scalable method for production
of supported HEA-NPs (Supplementary Fig. 35). The resultant
HEA-NPs holds a promising future for the applications in cata-
lysis, chemical sensing, biology, and energy conversion. Our
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FMBP strategy opens a venue for synthesizing alloys and nano-
materials with tunable compositions, which have a wide of
potential applications.

Methods
Materials and reagents. Graphene oxide (GO, thickness, 0.8–1.2 nm) was pur-
chased from Nanjing XFNANO Materials Tech. Co., Ltd and employed as the
support. 1,10-Phenanthroline(C12H8N2, 97.0%), Zeolite (Permutit) and γ-Al2O3

were all purchased from Aladdin. Carbon black VX 72 was bought from Cabot
Corporation. Acetone, Cobalt(II) chloride hexahydrate (CoCl2·6H2O, 99.0%),
Copper(II) chloride dihydrate (CuCl2·2H2O, 99.0%), Manganese(II) chloride tet-
rahydrate (MnCl2·4H2O, 99.0%), and Palladium(II) chloride (PdCl2, 99.99%) were
received from Sinopharm Chemical Reagent Co., Ltd. Rhodium(III) chloride tri-
hydrate (RhCl3·3H2O, 98%), Chloroauric acid (HAuCl4), and Chloroplatinic acid
hexahydrate (H2PtCl6·6H2O, 99.99%) were purchased from Shanghai Macklin
Biochemical Co., Ltd. Nickel chloride hexahydrate (NiCl2·6H2O, 99.999%), Stannic
chloride hydrated (SnCl4·5H2O, 99.995%), and Iridium chloride (IrCl3, 99.8%)
were received from Aladdin. All the reagents were used without further purifica-
tion. Ultrapure Milli-Q water (18.2 MΩ cm−1) was used to prepare all the aqueous
solutions and wash samples. Ethanol was received from Shanghai Lingfeng che-
mical regent Co., Ltd. Pt/C (20 wt%) was purchased from MACKLIN Biochemical
Technology Co., Ltd.

Supporting metal precursors. Before the preparation of the metal precursors
loading on GO (zeolite, γ-Al2O3, and carbon black), the GO was suspended into
ultrapure Milli-Q water and ethyl alcohol by ultrasound for 12 h under the recycled
water, maintaining the temperature at 318 K. Then, different metal chlorides were
sequentially added to the ultrasonically GO solution containing a certain amount of
Phen in order of the metal activity (the order was listed as follows: MnCl2·4H2O >
CoCl2·6H2O > NiCl2·6H2O > CuCl2·2H2O > RhCl3·3H2O > PdCl2 > SnCl4·5H2O >
IrCl3 > H2PtCl6·6H2O >HAuCl4). Each metal chloride was added into the mixing
solution at an interval of 15 min, avoiding the active metal salt being directly
reduced. Simultaneously, the aqueous solution was evaporated to dryness at 323 K
in the ultrasound system.

The FMBP strategy for preparation of supported HEA-NPs. We synthesized the
HEA-NPs via a fast moving bed pyrolysis (FMBP) strategy. The loading of the
HEA-NPs on the supports was 3 wt% for preparation of the ultra-small HEA-NPs.
Before calcination, the quartz boat cleaned by ultrasonication in acetone and
ethanol for 15 min, respectively. Besides that, the processed quartz boat was dried
in vacuum drying oven for 2 h at 355 K. Firstly, the prepared metal precursors
loading on GO was evenly placed in a quartz boat, which was placed in a region
outside of the furnace about 20 cm.

Afterwards, a vacuum pump was used to extract the gas for 30 min to make the
pressure gauge display below 100 Pa. Then, the switch for Ar gas (99.999%) is
turned on, keeping flowing Ar (100 sccm) for 30 min to purge the tube. Secondly,
the furnace rises to 923 K with a heating rate of 10 K min−1. The quartz boat
supporting the samples was then pushed into the center of the hot zone with a
speed of 20 cm s−1 for FMBP (The quartz boat could reach the center of the hot
zone within 1 s). After annealing for 120 min at 923 K, the furnace was cooled
naturally to the room temperature. Finally, the HEA-NPs can be obtained.
Similarly, when Zeolite and γ-Al2O3 were respectively used as supports, H2

(100 sccm) was employed as the reduction gas in the FMBP strategy.

The FMBP strategy for preparation of the HEA-NPs for EDX. The method for
preparation of HEA-NPs for elemental maps was similar to the method for pre-
paration of the ultrasmall HEA-NPs. Except that, the loading of alloy on the
supports was 10 wt% for elemental maps.

The FBP strategy for synthesizing phase-separated NiPdPt. The method for
preparation of phase-separated HEA-NPs was different with FMBP and SMBP
strategies. The difference among them is in the annealing process. The metal pre-
cursors in porcelain boat was heated to 923 K (~31min) with a rate of 20 Kmin−1

under the flowing of Ar (100 sccm) and maintained 120min. Then, the furnace was
also naturally cool to room temperature. After that, the phase-separated HEA-NPs
were obtained.

The SMBP strategy for preparation of phase-separated NiPdPt. The method
for preparation of phase-separated HEA-NPs was similar to that of the FMBP. The
difference between two methods is in the annealing process. The metal precursors
in quartz boat was pushed into the furnace with a speed of 1 cm s−1 (20 s) and
heated at 923 K for 2 h under the flowing of Ar (100 sccm). Then, the furnace was
also naturally cool to room temperature. After that, the phase-separated HEA-NPs
were obtained.

Simulating temperature variation of supports/precursors. The time for pre-
cursors@GO reaching 923 K or 1173 K in the FMBP strategy was simulated with
the ANSYS FLUENT software. Details:

Geometry: wall-in (mm)= 350, wall-out (mm)= 150; wall-heat (mm)= 250,
Inner diameter of tube (mm)= 23; Density (kg m−3): GO= 100, zeolite= 640,
Al2O3= 460, Quartz= 2650; Mesh number: 1154045.

Specific heat capacity (J kg−1 K−1): GO= 700, zeolite= 950, Al2O3= 840,
Quartz= 800.

Coefficient of thermal conductivity (Wm−1 K−1): GO= 5300, zeolite= 0.15,
Al2O3= 30, Quartz= 2.

Boundary conditions: wall-out= 298 K, wall-in= 298 K, wall-heat= 923 K or
1173 K, velocity magnitude of gas (m s−1)= 0.004; Time step size= 0.2 s, number
of time steps= 50.

Physical and chemical characterizations
XRD characterization. X-ray powder diffraction (XRD) patterns for HEA-NPs were
characterized by a Rigaku D/Max 2400 X-ray diffractometer furnishing with Cu Kα
radiation (λ= 1.5406 Å) with a scan rate of 5° min−1. All the patterns were
recorded in the range of 30–90° (2-Theta).

XPS characterization. The patterns of X-ray photoelectron spectroscopy (XPS) for
the samples were all performed on a Kratos Axis Ultra DLD using Mg Kα as the
excitation source.

TEM characterization. The morphology and microstructure of the multimetallic
alloy were characterized by an atomic resolution analytical transmission electron
microscopy (TEM) (Titan G2 80–200 ChemiSTEM, FEI worked at 200 kV and
equipped with 4 probe super EDS) featuring with high-resolution TEM (HRTEM),
high-angle annular dark-field scanning transmission electron microscopy
(HAADF-STEM), and corresponding energy-dispersive X-ray (EDX) spectrometry.
The samples were prepared via dropping the HEA-NPs, which were dispersed in
ethanol, onto the carbon-coated molybdenum TEM grids employing capillary at
least five times.

ICP characterization. The HEA-NPs loading was determined with inductively
coupled plasma (ICP) analysis carried out on an Agilent ICP-OES730 instrument.
The quinary (CuSnPdPtAu), octonary (CoNiCuPdSnIrPtAu), and denary
(MnCoNiCuRhPdSnIrPtAu) alloy were characterized. Firstly, a certain amount of
the samples were weighed, then, these samples were added to a mixed solution
containing 6 mL of aqua regia and 1 mL of hydrofluoric acid. Then oven was
heated to 458 K and keeping for 8 h. After cooling to room temperature, trans-
ferring, and testing in a constant volume instrument.

The electrochemical test for HER. The HER performance of the prepared electrode
was performed on a Bio-Logic VSP potentiostat with a standard three-electrode
system. The prepared quinary (FeCoPdPtIr) HEA-NPs supported on GO (3 wt%)
were loaded on carbon paper (CP, 1 × 1 cm2), which was employed as the working
electrode. In order to prove the quinary (FeCoPdPtIr) alloy exhibited an excellent
activity toward HER, the pure CP was also applied as the working electrode. The
mass of the quinary (FeCoPdPtIr@GO) HEA-NPs on CP was 1 mg cm−2. Simi-
larly, the weight of the commercial Pt/C loaded on CP was 1.2 mg cm−2. Besides
that, the graphite rod and Hg/HgO were used as the counter and reference elec-
trodes, respectively. The LSV curves of the prepared samples were conducted in a
1-M KOH solution (pH= 13.8). Simultaneously, the obtained potentials were all
calculated with iR correction and transformed into reversible hydrogen electrode
(RHE). All the electrochemical impedance spectroscopy (EIS) tests for these
samples were conducted at the onset potential from 0.01 Hz to 100 kHz. The
stability for the prepared quinary (FeCoPdPtIr) alloy was carried out 1M KOH
solution at a constant current density of 10 mA cm−2 toward HER. Moreover, the
commercial Pt/C (20%, 1 mg cm−2) were used toward HER as the compared test.
The double layered capacitances (Cdl) of the working electrodes were calculated by
CV curves from the potentials (0.11–0.21 V vs RHE) with different scan rates
(10–30 mV s−1). The current densities were linear with the scan rates, and the
slope was Cdl. In order to calculate ECSA, the applied the specific capacitance
(20–60 μF cm−2) was set as 40 μF cm−2.

ECSA ¼ Cdl=Cs ´ASA ð6Þ

Where Cs is the specific capacitance and ASA is the actual surface area of
substrates.

Calculation of Faradaic efficiency. The Faradaic efficiency (FE) for quinary
(FeCoPdPtIr) alloy in 1M KOH solution during HER was conducted in a three-
electrode configuration. The amount of H2 during reaction was detected by a gas
chromatography (GC, 9790II, Hangzhou Gatai Scientific Instruments), using the
thermal conductivity detector. Before test, the electrolyte (under stirring) and cell
were first degassed to remove air with Argon for 30 min at least. A constant current
of 10 mA was used for producing hydrogen. The gaseous samples were drawn with
a gas tight syringe, and the amount of hydrogen was obtained the GC instrument.
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The gases were drawn and analyzed three times and the average value of them
was used.

The Faradaic efficiency (FE) of HER on electrodes is calculated with the
equation:

FE H2;%ð Þ ¼ VH2
´ 2 ´ F ´ i ´ t
Vm

´ 100% ð7Þ
VH2 is the measured volume of H2, F is the Faraday constant (96,485 Cmol−1), i

is the current, t is the time for electrolysis for producing hydrogen, and Vm is the
molar volume of the gas.

Data availability
All source data supporting the findings of this study are available from the corresponding
authors upon reasonable request.
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