Scalings for eddy buoyancy transfer across continental slopes under retrograde winds
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Abstract

Baroclinic eddy restratification strongly influences the ocean’s general circulation and tracer budgets, and has been routinely
parameterized via the Gent-McWilliams (GM) scheme in coarse-resolution ocean climate models. These parameterizations have
been improved via refinements of the GM eddy transfer coefficient using eddy-resolving simulations and theoretical developments.
However, previous efforts have focused primarily on the open ocean, and the applicability of existing GM parameterization ap-
proaches to continental slopes remains to be addressed. In this study, we use a suite of eddy-resolving, process-oriented simulations
to test scaling relationships between eddy buoyancy diffusivity, mean flow properties, and topographic geometries in simulations of
baroclinic turbulence over continental slopes. We focus on the case of retrograde (i.e., opposing the direction of topographic wave
propagation) winds, a configuration that arises commonly around the margins of the subtropical gyres.

Three types of scalings are examined, namely, the GEOMETRIC framework developed by Marshall et al. (2012) [A framework
for parameterizing eddy potential vorticity fluxes. J. Phys. Oceanogr. 42, 539-557], a new “Cross-Front” (CF) scaling derived via
dimensional arguments, and the mixing length theory (MLT)-based scalings tested recently by Jansen et al. (2015) [Parameterization
of eddy fluxes based on a mesoscale energy budget. Ocean Model. 92, 28-41] over a flat ocean bed. The present study emphasizes
the crucial role of the local slope parameter, defined as the ratio between the topographic slope and the depth-averaged isopycnal
slope, in controlling the nonlinear eddy buoyancy fluxes. Both the GEOMETRIC framework and the CF scaling can reproduce
the depth-averaged eddy buoyancy transfer across alongshore-uniform continental slopes, for suitably chosen constant prefactors.
Generalization of these scalings across both continental slope and open ocean environments requires the introduction of prefactors
that depend on the local slope parameter via empirically derived analytical functions. In contrast, the MLT-based scalings fail to
quantify the eddy buoyancy transfer across alongshore-uniform continental slopes when constant prefactors are adopted, but can
reproduce the cross-slope eddy flux when the prefactors are adapted via empirical functions of the local slope parameter. Application
of these scalings in prognostic ocean simulations also depends on an accurate representation of standing eddies associated with the
topographic corrugations of the continental slope. These findings offer a basis for extending existing approaches to parameterizing
transient eddies, and call for future efforts to parameterize standing eddies in coarse-resolution ocean climate models.
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1. Introduction open oceans, and consequently modulate water mass forma-
tions and ocean general circulation (Spall, 2004; Pickart and
Spall, 2007; Spall, 2010; Jungclaus and Mellor, 2000; Serra and

Ambar, 2002; Dinniman et al., 2011; Ngst et al., 2011; Hatter-

Continental slopes compromise a large fraction of the steep-
est areas of the sea floor (LaCasce, 2017), and connect the shal-

low continental shelves and the deep open ocean (Cacchione
et al., 2002). The topographic potential vorticity (PV) gradient
imposed by continental slopes is typically two to three orders
of magnitude larger than the local planetary vorticity gradient
(Cherian and Brink, 2018), favoring the orientation of large-
scale flows along the slope (Brink, 2016) and inhibiting cross-
slope transfer (e.g., Olascoaga et al. 2006). Most along-slope
flows, however, are also associated with sharp density fronts
and horizontal velocity shears that may be subject to baroclinic
and barotropic instabilities (LaCasce et al., 2019), from which
mesoscale eddies can develop and mediate the cross-slope ex-
change (e.g., Bower et al., 1985). Indeed, mesoscale eddies
are increasingly documented to control the transport of heat,
salt, and biogeochemical tracers between the coastal and the
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mann et al., 2014; Stewart and Thompson, 2012, 2015).

Increases in computing power have allowed global ocean
models to be run with a horizontal grid spacing as fine as 0.1°
(e.g. Uchida et al. 2017), resolving mesoscale at low and mid-
latitudes in the open ocean. However, even with such a fine res-
olution, mesoscale eddies cannot be resolved over continental
slopes (Hallberg, 2013). The rapid decrease of the ocean depth
leads to a decrease of the Rossby deformation radius and thus
finer scales of unstable baroclinic modes compared to those in
the open ocean. In addition, recent studies have revealed that
baroclinic modes tend to be surface intensified over steep to-
pography (LaCasce, 2017) and require high vertical resolution
to simulate in ocean models cast in geopotential coordinates
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(e.g. Stewart et al., 2017). Numerical experiments on freely
evolving and wind-driven baroclinic turbulence over topogra-
phy point towards a bottom-intensified eddy energy sink due
to topographic rectification even in the absence of tides (Mer-
ryfield and Holloway 1999; Venaille 2012; Wang and Stew-
art 2018, WS18 hereafter), indicating that eddy effects at the
surface substantially differ from those near the sloping bottom
(e.g. LaCasce 1998; LaCasce and Brink 2000). This invites
the question: to what extent do existing eddy parameterizations
adopted by today’s ocean climate models capture eddy behav-
iors over continental slopes?

The most widely used approach to parameterizing mesoscale
eddies in coarse-resolution ocean climate models is a com-
bination of the Gent and McWilliams (1990, GM hereafter)
scheme, which works to flatten isopycnals and release poten-
tial energy, and the Redi (1982) scheme, which serves to flux
tracers downgradient along isopycnals. This approach hinges
upon the prescription of the GM and Redi eddy transfer coefi-
cients, which measure the strengths of adiabatic buoyancy and
isopycnal mixing by transient eddies, respectively, depending
on the large-scale, explicitly resolved flow properties. In the
quasi-geostrophic (QG) ocean interior, the GM transfer coefli-
cent can be approximately related to the Redi transfer coefhi-
cient (Abernathey et al., 2013), therefore accurate construction
of the former may shed light on the latter.

Various schemes have been proposed to construct the GM
eddy transfer coefficient using properties of the resolved flow.
For instance, the mixing length theory (MLT hereafter, Prandtl
1925) paradigm formulates the GM transfer coefficient as the
product of an eddy length scale and a characteristic eddy ve-
locity (or equivalently the product of an inverse eddy time
scale and the squared eddy length scale), multiplied by a
non-dimensional prefactor coefficient (e.g. Green 1970; Stone
1972; Visbeck et al. 1997; Eden and Greatbatch 2008; Cessi
2008; Jansen et al. 2015). Other formulations have been de-
rived from mathematical constraints on the eddy stress tensor
(e.g. Marshall et al. 2012; Bachman et al. 2017; Mak et al.
2017, 2018), from scalings diagnosed from numerical experi-
ments (e.g. Bachman and Fox-Kemper 2013), and from kine-
matic consideration of fluid parcel motions (Fox-Kemper et al.,
2008). Although these approaches have achieved increasing fi-
delity in their representation of eddy restratification and trans-
port in the open ocean (Griffies, 2004), they are not necessarily
transferable to continental slopes.

Previous studies of cross-slope eddy buoyancy transfer have
relied principally on the modified QG Eady (1949) or Phillips
(1954) models, which predict that the ratio between the bottom
slope and the isopycnal slope, denoted by the slope parameter
0, determines the stability of along-slope flows (Blumsack and
Gierasch, 1972; Mechoso, 1980; Spall, 2004; Isachsen, 2011;
Pennel et al., 2012; Poulin et al., 2014; Hetland, 2017; LaCasce
etal., 2019; Manucharyan and Isachsen, 2019). Specifically, for
¢ < 0, corresponding to prograde (i.e. in the same direction as
the topographic wave propagation) flows, both the wavelengths
and the growth rates of unstable waves decrease as the magni-
tude of ¢ increases. By contrast, for 6 > 0, corresponding to ret-
rograde (i.e. opposite to the direction of topographic wave prop-

agation) flows, the linear growth rate instead increases, but then
drops to zero for 6 > 1. The linear prediction has proved to be
qualitatively useful in interpreting the nonlinear eddy buoyancy
transfer in prograde fronts via primitive equation simulations
and laboratory experiments (Spall, 2004; Isachsen, 2011; Pen-
nel et al., 2012; Poulin et al., 2014; Ghaffari et al., 2018). This
contrasts with retrograde flows, in which the nonlinear eddy
mixing persists (WS18, Manucharyan and Isachsen 2019), and
may even be enhanced, when ¢ exceeds 1 (e.g. Isachsen 2011;
Stewart and Thompson 2013). A theoretical basis for interpret-
ing the variation of nonlinear eddy buoyancy flux with the slope
parameter in retrograde fronts remains elusive (Isachsen, 2011).

Most of the aforementioned studies have also chosen to ne-
glect the influence of topographic canyons/ridges on eddy buoy-
ancy transfer across continental slopes. However, this choice
carries certain caveats, because topographic canyons/ridges
were found to be ubiquitous along realistic continental margins
(see Fig. 5 of Harris and Whiteway (2011) for a global distribu-
tion of submarine canyons). A number of studies have revealed
that topographic canyons/ridges can substantially enhance the
onshore intrusions of mass and physical/biogeochemical prop-
erties in retrograde slope fronts (e.g. Kdmpf 2007; Allen and
Hickey 2010), which are directly linked to the arrested to-
pographically trapped waves over canyons/ridges (Zhang and
Lentz, 2017, 2018).

A paradigm for constructing the GM-based eddy transfer co-
efficient that accounts for the effects of the bottom slope is
yet to be developed. Such a paradigm should incorporate the
aforementioned nonlinear eddy characteristics over continental
slopes, particularly in retrograde fronts where linear predictions
proved to be ineffective. This article serves as a first step to fill
this crucial gap by constructing multiple slope-aware and nu-
merically implementable scalings of the depth-averaged cross-
slope eddy buoyancy mixing, focusing on the case of flows
driven by retrograde wind forcing. In the limit of a flat ocean
bed, most scalings reduce to the formulations that have been
tested in previous studies. Consistent with the findings of Har-
ris and Whiteway (2011), we also investigate to what extent
topographic canyons/ridges may impact the proposed scalings
for transient eddy buoyancy fluxes. The rest of this article is
organized as follows. In Section 2, we describe the model con-
figurations employed in this study, compare the key character-
istics of wind-driven flows over an alongshore-uniform slope
and over a corrugated slope, and highlight the quantitative in-
fluence of topographic corrugation on eddy buoyancy transfer.
In Section 3, we propose the scalings for the depth-averaged
eddy buoyancy mixing across alongshore-uniform continental
slopes. In Section 4, we assess the transferability of these scal-
ings to alongshore-corrugated slopes. Discussion and conclu-
sion follow in Section 5.

2. Numerical simulations

In this section, we describe the model configuration of our sim-
ulations, illustrate the simulated flow characters, and quantify
the cross-slope eddy buoyancy fluxes. All experiments use the
MIT general circulation model (MITgcm hereafter, Marshall



Table 1: List of parameters used in the reference model run. Italics indicate
parameters that are independently varied between model runs.

Value Description
L, 800 km Zonal domain size
L, 500 km Meridional domain size
H 4000 m Maximum ocean depth
Z 2250 m Slope mid-depth
Hy 3500 m Shelf height
Y, 200 km Mean mid-slope offshore position
Ay +00 km Alongshore bathymetric wavelength
Y; 0 km Mid-slope position excursion
Wy 50 km Slope half-width
Y, 200 km Peak wind stress position
L, 50 km Width of northern relaxation
T, 7 days Northern relaxation timescale
T, 0.05N m~2 Wind stress maximum
L, 400 km Meridional wind stress width
L0 1000 kg m™3 Reference density
a 1x10™4°C! Thermal expansion coefficient
C, 4000Jkg™'oc™! Specific heat of seawater
g 9.81 m?s~! Gravitational constant
fo 1x1074s7! Coriolis parameter
Ay 29X 103m*s~! Biharmonic viscosity
Ax 2 km Horizontal grid spacing
Az 10.5m-103.8 m Vertical level spacing
At 131s Time step size

et al. 1997), the quantitative performance of which in simulat-
ing continenal shelf/slope eddies has been evaluated in WS18
against an isopycnal-coordinate model and a terrain-following
coordinate model.

2.1. Reference model configuration

The configuration of our reference simulation follows that of
WS18, the most salient details of which are reiterated here, with
reference physical parameters summarized in Table 1. We con-
sider a zonal channel with a continental shelf of 500 m depth
located at the southern boundary of the domain. The shelf is
deeper than most realistic continental shelves (e.g. Cacchione
et al. 2002) to ensure that the flow field over the shelf and slope
is adequately resolved. The ocean depth is 4000 m at the north-
ern boundary and shoals from the center of the domain toward
the shelf across an idealized continental slope. Specifically, the
bathymetry z = h(x, y) is defined by

y—Y,— Ysin(2ax/4;)
Wi

h(x,y) = —Z5 — %HS tanh , (D
where x € [-L,/2, L,/2] s the along-slope distance (longitude)
from the domain center, y € [0, L,] is the offshore distance (lat-
itude), Z; = 2250 m denotes the slope mid-depth, H; = 3500
m represents the shelf height, and W; = 50 km is the slope
half-width. The latitude of the center of the continental slope
varies longitudinally (see Fig. 1), with mean position Y, = 200
km, wavelength A,, and onshore/offshore excursion amplitude
Y;. The channel spans 800 km and 500 km in the along-slope
and cross-slope directions, respectively. Throughout this work,
we will use “along-slope” and “longitudinal” or “zonal” inter-
changeably, and similarly for the “cross-slope” with “latitudi-
nal” or “meridional”. The channel is posed on an f-plane, with
a Coriolis parameter fy = 1 x 107s7!, as changes in depth

dominate the background PV gradient, and so the slope can be
thought of as being oriented in any direction relative to meridi-
ans.

We use a horizontal grid spacing of 2 km and 70 vertical
levels, with vertical grid spacing increasing from 10 m at the
surface to over 100 m at the ocean bed. Partial grid cells with a
minimum non-dimensional fraction of 0.1 are used to improve
representation of flows over the continental slope (Griffies et al.,
2000). Simulations conducted at higher (1 km) horizontal grid
resolution or based on 133 vertical levels yielded no qualitative
differences from the results reported below.

The channel is forced at the surface by a steady alongshore
wind stress with a cross-shore profile defined by

T, =-7,-sin’ (y/L,),  0<y<L,. 2)
Here 7, =0.05 N/m? denotes the maximum strength of wind,
which coincides with the mean offshore slope position Y = 200
km, L,, = 400 km measures for the width of forcing in the off-
shore direction, and the negative sign on the right-hand side of
(2) corresponds to retrograde (i.e. westward) wind stress. No
surface buoyancy flux is prescribed. At the ocean bed, the
channel is subject to a drag stress with quadratic coeflicient
Cq = 2.5 x 1073, serving as a sink for energy and momentum
imparted by the surface wind stress.

Periodic boundary conditions are used in the alongshore di-
rection. No-normal-flow conditions are imposed at the shore-
ward and offshore edges of the domain. The potential tem-
perature is restored to a reference exponential profile across a
sponge layer of 50 km width at the northern boundary, with a
maximum relaxation time scale of 7 days, to facilitate the evo-
lution of ocean flow into a statistically steady state. This effec-
tively fixes the first baroclinic Rossby deformation radius

0
_ L‘th.v dz
7fo ’

at approximately 18 km in the deep open ocean, where Nj is the
buoyancy frequency.

The surface K-Profile Parameterization (KPP) (Large et al.,
1994) is used with its default setting for the reference simu-
lation. Because almost no difference is yielded by replacing
the KPP with a large diffusivity of 100 m?/s for parameteriz-
ing convective instabilities, all subsequent experiments follow
the latter option for computational efficiency. In addition, an
explicit biharmonic viscosity is used for numerical stability.

Ly 3

2.2. Experiments

A suite of experiments are performed by varying the refer-
ence settings in §2.1. Specifically, we independently adjust the
maximum strength of wind, the thermal expansion coefficient,
and importantly, the slope geometry, for each simulation, which
are summarized in Table 2. We vary these dimensional parame-
ters in such a way as to cover a wide range of continental slope
configurations, characterized by five non-dimensional numbers
discussed below, and meanwhile avoid redundant runs.



Table 2: Simulation parameters varied between the model experiments. For parameter definitions, refer to Table 1.

Experiment Lykm) Wykm) A(km) Y(km) 7o(N/m?) a(107*°C™)
SMOOTH _Reference 500 50 +00 0 0.05 1.0
SMOOTH_0.57¢ 500 50 +00 0 0.025 1.0
SMOOTH_1.57 500 50 +00 0 0.075 1.0
SMOOTH_ 2.0t 500 50 +00 0 0.10 1.0
SMOOTH_0.5W, 500 25 +00 0 0.05 1.0
SMOOTH_0.66W, 500 33 +00 0 0.05 1.0
SMOOTH_1.5W, 500 75 +00 0 0.05 1.0
SMOOTH_2.0W, 500 100 +00 0 0.05 1.0
SMOOTH_0.5« 500 50 +00 0 0.05 0.5
SMOOTH_2.0« 500 50 +00 0 0.05 2.0
CORRUG_2002,12.5Y; 600 50 200.0 12.5 0.05 1.0
CORRUG_2002,25Y; 600 50 200.0 25.0 0.05 1.0
CORRUG_2004,37.5Y; 600 50 200.0 37.5 0.05 1.0
CORRUG_2002,50Y; 600 50 200.0 50.0 0.05 1.0
CORRUG_266.71,50Y; 600 50 266.7 50.0 0.05 1.0
CORRUG_4002,50Y; 600 50 400.0 50.0 0.05 1.0
CORRUG_8002,50Y; 600 50 800.0 50.0 0.05 1.0

The wind stress magnitude is quantified by a Rossby number

defined as
7o

Ri= —2—,
! pOf()szH

which is varied between 1.56x107 and 6.25x107%, correspond-
ing to a wind-driven overturning with its strength ranging from
0.25 m?/s to 1.00 m?/s per unit channel width and thus resem-
bling those across the margins of mid-latitude gyres (e.g. Colas
et al. 2013) and high-latitude marginal seas (e.g. Manucharyan
and Isachsen 2019). The stratification off the shelf/slope is
quantified via the non-dimensionalized buoyancy frequency

“

0
_ LH Ns|y:1‘de
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s
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where Ny|,—; denotes the vertical buoyancy frequency at the
northern boundary. The first baroclinic Rossby deformation
radius determined by (5) measures from 12 km through 25
km, mimicking the near-slope ocean condition at mid-/high-
latitudes (see, e.g. Fig. 6 and Fig. 8 of Chelton et al. 1998). The
slope steepness is measured by

— HS
T2wW,

st (6)
which is varied between 1.75 x 1072 and 7.00 x 1072, corre-
sponding to a topographic slope angle ranging from 1° to 4°
in the meridional direction, consistent with typical slope steep-
nesses in the ocean (e.g. Cacchione et al. 2002). The corruga-
tion (or roughness) of the sloping ocean bed is quantified by the
non-dimensional alongshore bathymetric wavelength

A

A= —+, 7
"W+ ) @

and the depth variation of the slope
' max(H,,) — min(H,,) @)

H b
where H,, is the height of ocean bed at the mean mid-slope
position y = Y. Similar parameters to (4) and (8) are defined by

Brink (2010) to study tidal rectification over continental shelves
and slopes in a barotropic ocean.

The simulations in Table 2 are categorized into two groups,
one based on zonally uniform channels (names beginning with
“SMOOTH”) and the other characterized by along-slope topo-
graphic variations (names beginning with “CORRUG”) with
finite positive values of Y; and A, in (1). Preliminary ex-
perimentation reveals that flows in the CORRUG runs may
be affected by the northern sponge layer if the offshore ex-
cursions of the continental slope are sufficiently large. We
therefore expanded the channel width to 600 km, while re-
taining identical relaxation at the northern 50-km-wide bound-
ary, in all CORRUG simulations. Further expansion of the
channel width to 800 km yielded negligible differences to the
CORRUG results. To facilitate comparison between simula-
tions, we partition the corrugated-slope domains into south-
ern, central, and northern slope regions delineated by the lati-
tudesy e [V, - W, -Y,, Yy —Wy),ye[Y,—- W, Y, + W], and
y € (Ys+ W, Y+ W, + Yy, respectively. As such, the cen-
tral slope region of a zonally uniform channel is also its entire
slope region since Y; = 0 (see Fig. 1(c)—(d)). The southern and
northern slope regions accommodate, if any, onshore intrusion
of canyons and offshore excursion of ridges, respectively.

All model runs integrate the three-dimensional, hydrostatic
Boussinesq momentum equations coupled with a linearized
equation of state depending on potential temperature only. Each
simulation is spun up from a resting state at a coarse 4 km res-
olution for 35 years until a statistically steady state is reached,
as determined from the time series of total kinetic energy. The
solutions are then interpolated onto a finer 2 km grid and re-
run for another 15 years to re-establish statistical equilibrium.
Daily outputs taken from the final 5 years are analyzed.

2.3. Simulated flows

Fig. 1(a)—(b) illustrate snapshots of sea surface potential
temperature (color contours) along with topographic geome-
tries in the reference simulation SMOOTH _Reference and in
a simulation with a slightly corrugated continental slope, COR-
RUG_2004,12.5Y; (4, = 200 km, Y; = 12.5 km), respectively.
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Figure 1: Schematic illustrations of the slope bathymetry used in (a) SMOOTH_Reference and (b) CORRUG_2004;12.5Y; simulations, superposed by the snapshots
of sea surface potential temperature (color), selected bathymetric contours (black), and selected quasi-streamlines of the time-mean sea surface horizontal velocity
(white). Time-/zonal-mean eddy kinetic energy as a function of depth and offshore distance for the (c) SMOOTH_Reference and (d) CORRUG-2004;12.5Y; runs,
superposed by time-/zonal-mean isopycnals (dashed contours, interval: 1°C) and alongshore velocity profiles (solid contours, interval: 0.1 m/s). The velocity
contours # = 0 m/s are highlighted with bold lines. The upper panels of (c)—(d) illustrate the reference wind stress profile (blue line) used in this study, with negative
signs corresponding to the retrograde direction. The northern sponge layer in the SMOOTH_Reference run is shadowed with dark gray in panel (c), and not shown
for the CORRUG_2004,12.5Y; run (in the latter the sponge layer lies between 550 and 600 km offshore). In panel (d), both the deepest and shallowest bathymetry
contours at each latitude are plotted to illustrate the slight corrugation of the slope. The latitudes dividing the shelf/slope and slope/deep ocean are indicated by
black dashed lines in panels (c)—(d). In panel (d), the northern and the southern slope regions are shadowed (see text in §2.2 for definitions of these regions).

Selected isobaths (black contours) and quasi-streamlines' of the
time-mean horizontal velocity field uy, at sea surface (white con-
tours) are superposed on the potential temperature, where o de-
notes a time average over the 5-year-long analysis period. Vig-
orous eddies are visible in both simulations. However, while
the surface mean flow is almost exactly aligned with the iso-
baths in Fig. 1(a), standing meanders’ with horizontal scales
comparable to the zonal extent of the topographic variations
arise and traverse the isobaths in Fig. 1(b). Numerous studies
have shown that standing meanders in retrograde flows over a
corrugated shelf/slope result from the arrested PV waves gen-

The time-mean surface horizontal velocity fields in our simulations are
not exactly divergence-free. The quasi-streamlines are selected contours of the

quasi-streamfunction calculated as Ygy£(x,y) = J(;y u(x, y)‘ 0 dy.
2=

2In this article we use the terms standing meanders, stationary meanders,
and standing eddies interchangeably.

erated by topographic variations (Allen, 1975; Wang and Moo-
ers, 1976; Csanady, 1978; Brink, 1986, 1991; Connolly et al.,
2014; Zhang and Lentz, 2017, 2018), similar to those found
in the Antarctic Circumpolar Current over a topographic ridge
(Treguier and McWilliams, 1990; Stevens and Ivchenko, 1997;
Abernathey and Cessi, 2014; Thompson and Naveira Garabato,
2014; Stewart and Hogg, 2017). Accompanying the standing
meanders is the lower contrast of potential temperature between
the shelf/slope and the open ocean, suggesting stronger restrat-
ification compared to the case shown in Fig. 1(a).

In Fig. 1(c)-(d), we quantify the time/zonal-averages of po-
tential temperature 5> and zonal velocity (u), superposed on
the logarithms of zonally averaged eddy kinetic energy (EKE)
% <u’2 + v’2> per unit mass, where (o) = LLX f- dx denotes the
zonal-mean operator and the prime denotes the deviation of a
quantity from its time-mean. EKE exhibits similar structures
and magnitudes between the simulations. However, in the pres-



ence of standing meanders, the retrograde flow is weakened
with its maximum strength shifted onshore, and the topographi-
cally induced prograde flow (see WS18 for the interpretation of
prograde flow generation), where u > 0 m/s, occupies a larger
area.

2.4. Cross-slope eddy buoyancy mixing

In this study, we specifically focus on developing scalings for
transient eddy buoyancy fluxes across alongshore-uniform con-
tinental slopes, and then assessing the transferability of these
scalings to corrugated continental slopes, which induce stronger
restratification (Fig. 1(a)-(b)) and support weaker retrograde
flows (Fig. 1(c)—(d)). For brevity, a detailed examination of
the dynamics of mesoscale eddies over corrugated continental
slopes is deferred to a future study. In the SMOOTH simula-
tions, the cross-slope fluxes can be equivalently defined as those
across the meridians or across the isobaths. Over a corrugated
slope, however, these two types of fluxes differ. Meridional
fluxes at a fixed latitude are determined by flows both over the
ridges and within the canyons at the same latitude, and represent
the deviations from the large-scale zonal-mean flow. This type
of fluxes can be readily decomposed into a transient eddy part
and a standing eddy part (e.g. Bischoff and Thompson 2014).
However, the cross-isobath fluxes are confined above certain
depths, and are directly shaped by the topographic PV gradient.
This type of fluxes has been previously calculated to study fluid
parcel exchanges between the shallow shelves and the open
ocean (e.g. Brink 2010, 2011; Gan et al. 2009, 2013). Or, re-
stated, meridional fluxes may include both cross-isobath and
along-isobath components, whereas cross-isobath fluxes stress
the motions traversing absolute depths. There is thus no reason
to expect that a single scaling would apply to both types of eddy
fluxes over a corrugated slope.

To illustrate the impact of standing meanders to the cross-
slope buoyancy transfer by transient eddies, we first quantify
the depth-averaged eddy buoyancy diffusivities in Fig. 2 as
functions of latitude using the meridional transient eddy heat
fluxes?, defined by

Ky = _fo (9a)

(1,8 az)

0
Fy= <f Wdz>. (9b)
~|nl

The definition (9a2)—(9b) avoids ill-defined x4 in well-mixed re-
gions by integrating the eddy buoyancy flux Fy and mean buoy-
ancy gradient separately (e.g. Jansen et al. 2015). Across the
slope, kg in the presence of canyons/ridges (red solid curve)
ranges from -10 m?/s at y = 150 km to 74 m?/s at y = 250 km
and is in general larger than that in the zonally uniform chan-
nel (for y > 168 km, blue curve), which ranges from 5 m?/s
to 26 m?/s across the same latitudinal range, with its minimum

3 As our simulations employ a linear equation of state depending on the
potential temperature only, buoyancy flux is proportional to heat flux and we
therefore use these two terms interchangeably in this article.

reaching 3 m?/s at y ~ 163 km. The enhanced meridional buoy-
ancy diffusivity produced by CORRUG_2004,12.5Y, is consis-
tent with the weakened meridional temperature gradient over
the shelf/slope (Fig. 1(a)—(b)).

We then calculate the buoyancy diffusivity using the cross-
isobath, rather than the meridional, heat fluxes:

) Fiso
Ky ln=hy = = — , (10a)
§n . f—lhl Va0 dz dslh=h,
Fil = f f (v . fo Wdz) dA. (10b)
B il

Here h = hg is a selected isobath, Vy is the horizontal gradi-
ent operator, n = —Vyh/|Vgh| is the offshore unit normal vec-
tor to the isobath, ds denotes the infinitesimal arclength along
the selected isobath, &~ = hy, and dA denotes an infinitesi-
mal horizontal area. Although ng is defined as a function of
|k, it is mapped onto Fig. 2 (red dashed line) as a function
of the mean offshore distance of each isobath. It should be
noted that both (9b) and (10b) automatically eliminate the ro-
tational component of transient eddy fluxes based on the two-
dimensional divergence theorem (Marshall and Shutts, 1981;
Fox-Kemper et al., 2003)*. In addition, calculation of F jf"lhzhn
via (10b) is far more efficient than using the isobath-normal
components of the depth-integrated eddy fluxes, which have
to be obtained by interpolating eddy fluxes from the regular
model grids onto the lateral location of each isobath. The cross-
isobath flux/gradient are exactly identical to the meridional
flux/gradient for SMOOTH runs. The cross-isobath buoyancy
diffusivity Ké‘"’ in CORRUG_2004;12.5Y; is generally smaller
in magnitude than the meridional diffusivity «y in either of the
simulations shown here over the continental slope.

3. Scaling cross-slope buoyancy mixing

Our findings in §2.3—-§2.4 suggest that the cross-slope buoy-
ancy transfer can be quantitatively modulated by standing ed-
dies. For instance, standing eddies can drive stronger restratifi-
cation (Fig. 1(a)—(b) and Fig. 2). Furthermore, topographically
induced prograde flows, which were shown to be associated
with upgradient buoyancy fluxes by transient eddies (see Fig. 10
of WS18), tend to be enhanced in the presence of standing ed-
dies (Fig. 1(c)—-(d)). These quantitative differences should be
factored into the scaling/parameterization of cross-slope buoy-
ancy transfer, which necessarily incorporate the effects of both
transient and standing eddies. However, there is no basis yet for
parameterizing standing eddy fluxes, which must be addressed
in future work. The qualitative behavior of transient eddies,
such as the surface intensification of EKE (Fig. 1(c)—(d)), nev-
ertheless remain when topographic corrugation is introduced.

“It follows from two-dimensional divergence theorem that the total eddy
flux across the boundary of a control area is equal to the integral of the diver-
gence of eddy flux over this area. The rotational component of the eddy flux
vanishes via the divergence operator upon area-integral. In a periodic chan-
nel model subject to no-normal-flow lateral boundary conditions, the divergent
eddy flux can only traverse the open boundaries defined by isobaths.
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This makes the SMOOTH simulations, which carry the advan-
tage of isolating the transient eddy fluxes from the standing me-
anders, a natural starting point for our investigation.

In this article, we focus on the local (i.e. depth-averaged)
cross-slope eddy buoyancy mixing, shown in Fig. 2, as a first
step toward a more general parameterization. These diagnos-
tics integrate the vertical structure of the eddy fluxes, which
typically serve to restratify the ocean close to the surface, but
destratify close to the bottom slope (WS18, see also Appendix
A). However, even the depth-averaged eddy diffusivity may still
turn negative over portions of the continental slope (see Fig.
2). We note that recently developed parameterizations of eddy
transfer in the open ocean are formulated in terms of similar
depth-averaged diffusivities (Jansen et al., 2015; Mak et al.,
2017, 2018). In this section, we aim to derive scalings of eddy
buoyancy mixing that transition smoothly from zonally uni-
form continental slopes to open ocean environments, and sub-
sequently evaluate the transferability of these scalings to the
corrugated continental slopes.

3.1. Parameter dependence of eddy buoyancy diffusivity

To assess the effect of mean (retrograde) flow properties on
the cross-slope eddy mixing, one has several options to define
a parameter space, within which three of the non-dimensional
numbers are arguably the most crucial: the local slope parame-

ter,
0
6100=|VHh|-(f Nfdz)/(n'f VHde), (11)
—lAl =|hl

the local Richardson number,

0 2
Riloczlhlfoz(fﬁ Nfdz)/(n-f VHZdz) . (12)
—IAl —lnl

and the local slope Burger number,

oL
Buoe = —— N, dz|, 13
loc fOlhl " s ( )

where n = —Vyh/|Vyh| is the offshore isobath-normal unit vec-
tor. In the SMOOTH simulations, the lateral buoyancy gradient
VHE is almost exactly aligned with n (Fig. 1(a)), and we there-
fore have

0 0 0

n- f Vub dz ~ f |Vyb| dz = M*dz.  (14)
—lhl Al Al

Later in §4 we extend the definitions (11)-(12) to the CORRUG

simulations, in which the mean flows are no longer parallel to

the bathymetry (Fig. 1(b)).

In the modified QG Eady (1949) model, the slope parameter
hinges upon the sign of the lateral PV gradient at the ocean bed,
which determines the coupling of linear baroclinic modes at the
bottom and at the surface (Vallis, 2006). The dynamic meaning
of the slope parameter defined by (11) is much less obvious in
more general cases where interior PV gradients become finite,
but previous studies indicate that a quantitative relation between
Oloc and cross-slope eddy diffusivity still exists (e.g. Isachsen
2011; Stewart and Thompson 2013). The Richardson num-
ber is an indicator of baroclinicity of the flow, and has been
used in multiple studies to parameterize eddy buoyancy fluxes
(e.g. Visbeck et al. 1997; Marshall et al. 2012; Bachman and
Fox-Kemper 2013). Finally, recent study of Hetland (2017)
suggests that the slope Burger number is critical in constraining
the eddy growth in prograde fronts, while its role in retrograde
fronts has yet to be determined. It should be noted that any two
of these non-dimensional numbers can be used to approximate
the third (Hetland, 2017),

| N[N, N2
Butoe - Rill% ~ [WHME} 7];0} = IVl [W}

(15)
Bottom slope

- Isopycnal slope "¢

We also seek to understand the influences of three dimen-
sional quantities on cross-slope eddy mixing: the (topographic)

Rhines scale
Ue ﬁ]
Lpp = ([—, = —|Vgyh|, 16
Rh ‘,ﬁt B |h|| whl (16)

the local EKE per horizontal area <ﬁ i EKE dz>, or equiva-

lently the eddy velocity scale adopted in (16),

5 (0
U, = —f EKE dz, (17)
1Al J_yp

and the local eddy potential energy (EPE) per horizontal area
(Aiki et al., 2016),

Niay—1

1
mZEPE

i=1

Niay—1 1

— )

NTDIE LT (18)
i=1
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where the subscript i denotes the counting of isopycnal lay-
ers from surface to bottom with its maximum denoted by Ny,
ni+1/2 1s the isopycnal interface between layers i and i + 1, and
g = g(pir1 — pi)/po stands for the associated reduced gravity.
The local EPE can be calculated either via the LAYERS pack-
age in MITgem (e.g. Mak et al. 2018), or by converting the
diagnostics on a geopotential coordinate system onto isopycnal
coordinates following Young (2012); in this study, we follow
the latter approach by selecting a total of N,y = 71 isopyc-
nal layers, with buoyancy intervals selected based on the pre-
scribed vertical discretization of the buoyancy field in the north-
ern sponge layer. Previous studies have found these dimen-
sional parameters to be salient in parameterizing eddy effects
in the open ocean (e.g. Eden and Greatbatch 2008; Cessi 2008;
Marshall et al. 2012; Jansen et al. 2015).

We diagnose the non-dimensional numbers (11)—(13), the di-
mensional quantities (16)—(18), and the cross-slope eddy buoy-
ancy diffusivity ky in portions of the model domain where the
ocean depth lies between 510 m and 3990 m. For simulations
with widened continental slopes, we further constrain the anal-
ysis to the region south of y = 350 km (i.e. at least 100 km
away from the northern sponge layer) to avoid the influence of
the lateral boundaries and the weak topographic PV gradient S,
in nearly flat regions. WS18 has shown (in their Fig. 3) that
potential energy conversion from EKE may occur throughout
the water column between y = 350 km and 450 km due to the
buoyancy restoring at the northern boundary in the reference
run.

These analysis regions, aggregated across all SMOOTH sim-
ulations, yield 1428 latitudinal bands from which to draw di-
agnostics of (11)—(13) and (16)—(18). We then zonally average
and plot these parameters against ky via gray markers in Fig.
3 and in Appendix B. Diagnostics made within the continen-

tal slope region y € [Y; — W, Y + W], which are consistently
between 938 m and 3568 m depths in our simulations, are high-
lighted using a darker gray tone. We stress that although these
controlling parameters were coupled in several ways to param-
eterize baroclinic eddy fluxes in previous studies (e.g. Visbeck
et al. 1997; Spall 2004; Jansen et al. 2015), each of them in iso-
lation does not necessarily have a functional relationship with
the eddy diffusivity.

Fig. 3(a) shows the relationship between the bottom slope
steepness, relative to the isopycnal slope, and the cross-slope
eddy buoyancy diffusivity. Consistent with previous studies
based on primitive equation simulations (e.g. Isachsen 2011;
Stewart and Thompson 2013), cross-slope eddy mixing is in-
creasingly suppressed as ¢ deviates from O toward positive val-
ues. However, in contrast to the linear prediction (Blumsack
and Gierasch, 1972; Mechoso, 1980), no stabilization of the
flow is found for ¢ > 1. In fact, the cross-slope eddy mixing ap-
pears to increase approximately linearly with ¢ for 6 > 1. The
discrepancy between the linear prediction based on the modi-
fied Eady (1949) or Phillips (1951) model and the non-linear
model results is mainly due to the lack of interior PV gradi-
ent and flow nonlinearity in the former (Trodahl and Isachsen,
2018; Ghaftari et al., 2018).

Many functional forms could be used to fit the relation be-
tween kg and (Jjoc). Favoring simplicity, we use a sum of a
linear function and a reciprocal function,

Ko ~ ¥ |{0l0c) + 19)

[ <6loc> +T|’
as illustrated by Fig. 3(a). Here y = 2.5 is the estimated slope
of the linear functional part, ¢ = 5 x 1072 is a constant that ad-
justs the decay rate of the reciprocal functional part, and I' < 1
denotes a positive constant to accommodate the limit (djoc) — 0



(i.e. nearly flat ocean bed case). It should be noted that there is
no theoretical basis for the functional fit (19). Following pre-
vious studies (e.g. Stewart and Thompson 2013), our approach
is entirely empirical. The least-squares error produced by (19)
decreases by a factor of 2 compared to a linear functional fit if
diagnostics from both the continental slope and the open ocean
regions are accounted for. When diagnostics from the continen-
tal shelf are also included, the relation (19) generates a slightly
larger error than a linear fit, partly due to the emergence of
negative eddy diffusivity and local slope parameter. This issue
can be fixed by replacing the reciprocal function in (19) with
an exponential decay. However, our key findings reported in
later sections do not qualitatively depend on such modifications.
Crucially, the mathematically simple form of (19) helps to sim-
plify our analysis contrasted to most other nonlinear functions.
The eddy diffusivity is then predicted to reach its minimum as
(O1oc)= 4.42 ~ O(1). As the ocean bed becomes steeper, eddy
mixing starts to be constrained by the linear functional part of
(19). For (8joc) — +o0 (i.e. zero projection of isopycnal slope in
the cross-slope direction), this simple approximation becomes
unbounded. We return to this point and discuss potential regu-
larizations for this issue in §5.

Fig. 3(b) exhibits widespread scatter of the local Richardson
number (Rij,) against the eddy diffusivity ky. Further examina-
tion suggests the relation

3. \1/2
ko ~ ¥ (107 Ritge) ", (20)

with y varying from -1 to 350 depending on the simulations and
geographic locations. Similar to (19), the relation (20) is em-
pirical, selected from many possible nonlinear fits. The cases
exhibiting weakly negative values of y are those dominated by
eddy destratification, which are relatively rare in the SMOOTH
simulations (see §4). Over continental slopes, y =~ 75 yields
a good fit for all simulations, with the least-squares error
smaller than from an optimized linear fit by a factor of approxi-
mately 1.85. These results may seem counter-intuitive as higher
Richardson number suggests weaker baroclinicity of the along-
slope flow and thus lower available potential energy reservoir.
In the classical Eady (1949) model, baroclinic mode growth
rate is exactly proportional to fy/ VRi (e.g. Pedlosky 1987;
Vallis 2006), suggesting an anti-correlation between x, and
(Ritoe)'/? if the linear modes govern the eddy mixing. Exist-
ing eddy parameterizations also treat the Eady growth rate as a
key parameter (e.g. Visbeck et al. 1997; Marshall et al. 2012).
The relationships between the eddy diffusivity and the other
selected parameters, (13) and (16)—(18), are shown in Appendix
B. Of the potential controlling parameters explored, only the
local slope parameter ). (in isolation) exhibits a strong func-
tional relation with the eddy diffusivity in both the continen-
tal slope and open ocean environments. Although the lo-
cal Richardson number Rij,. constrains eddy buoyancy fluxes
across the continental slope, and has been incorporated in ex-
isting eddy parameterizations (e.g. Visbeck et al. 1997; Mar-
shall et al. 2012; Bachman and Fox-Kemper 2013), the eddy
buoyancy diffusivity cannot be scaled by Rij,. alone in the open
ocean environment. Other parameters (in isolation) may ex-

hibit functional relationships with the eddy diffusivity in the
open ocean, but not over the continental slope (see Appendix
B). These findings suggests that existing eddy parameteriza-
tions may be adaptable to continental slopes via the introduc-
tion of a dependence on the local slope parameter, as shown in
the following sections.

3.2. Scaling of eddy mixing via the GEOMETRIC framework

The observation that «, tends to scale with (Rijoc)'/? (Fig.
3(b)) motivates the application of a recently developed
paradigm of eddy parameterization that combines the square
root of the Richardson number with the fotal eddy energy,
namely, the GEOMETRIC framework (Marshall et al., 2012;
Bachman et al., 2017; Mak et al., 2017, 2018). Specifically,
Marshall et al. (2012) defined

KGeom = YGeom %E = YGeom \jc_ORTlEa 21
based on a geometric constraint on the Eliassen-Palm flux ten-
sor in quasi-geostrophic flows. Here yGeom 1S @ non-dimensional
prefactor, whose magnitude is bounded by unity, and E denotes
the sum of the EKE and the EPE per unit mass. In a coarse-
resolution ocean model, if an additional prognostic equation for
the subgrid eddy energy budget is implemented (e.g. Mak et al.
2018), the only free parameter in (21) is ygeom, Which contains
the information about the partition between the EKE and EPE,
and the anisotropy of the eddy buoyancy fluxes (Marshall et al.,
2012).

It should be noted that the cross-slope eddy diffusivity can
turn negative, even in a depth-averaged sense, over zonally uni-
form slopes (Fig. 3). This contradicts other eddy parameteri-
zations that permit vertically local destratification of flows by
baroclinic eddies, but ensure net potential energy destruction
across a full water column (e.g. Ferrari et al. 2010). This fur-
ther motivates the application of the GEOMETRIC framework
over steep slopes: the coefficient ygeom may become predomi-
nantly negative across a water column if the relative orientation
of the eddy buoyancy flux to the mean buoyancy gradient is
sufficiently small (Marshall et al., 2012).

Fig. 4(a) demonstrates the performance of the local GEO-
METRIC scaling,

KGeom = 7Y Eoc, (22a)

Nigy—1

1
Eioe = — EKE d EPE; |, 22b
loc 1] [ﬁl Z+ Z ] ( )

i=1

in quantifying «y over continental slopes. Here ¥ = yGeom =
1.08 x 1072 is a constant that optimizes the linear fit between
the scaling (22a—b) and the diagnosed diffusivities, and Ej,.
denotes the depth-averaged total eddy energy per unit mass.
A strong correlation (> = 0.87) is found. The prefactor
¥ ~ 1.08 x 1072 is smaller than proposed by Mak et al. (2018)
for open-ocean applications by a factor of almost 4, reflecting
the much less efficient extraction of the mean-flow energy via
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Figure 4: (a) Scatter plot of the depth-averaged eddy buoyancy diffusivity against the local GEOMETRIC scaling with a constant coefficient chosen to optimize the
linear fit. (b) Illustration of the variation of the local GEOMETRIC prefactor as a function of the local slope parameter, which can be approximated by an analytical
function. (c) Scatter plot of the depth-averaged eddy buoyancy diffusivity against a modified local GEOMETRIC scaling defined via the depth-averaged EKE, with
a constant coefficient chosen to optimize the linear fit. (d) Same as in panel (c) but with the depth-averaged EKE replaced by the depth-averaged EPE. Dark gray
markers indicate diagnostics made across the slope region. Light gray markers in panel (b) indicate diagnostics made from the open ocean and shelf regions (see text
in §3.1 for definitions of these regions). All diagnostics have been zonally averaged. The correlation coefficients quoted in each panel are all statistically significant
at the 1% level. The independent and dependent variables of the functional fits are represented by x and y in panel (b), which should not be confused with the model

domain coordinates.

downgradient eddy buoyancy fluxes over steep slopes (Marshall
et al., 2012; Bachman et al., 2017) and the bulk compensation
between surface-intensified baroclinic instability and bottom-
trapped eddy destratification (WS18).

The transition of the local GEOMETRIC prefactor

_ VRijoc
YGeom = Ko o Eoc

(23)

from the continental slopes toward the nearly flat regions can
be quantified via the local slope parameter, and is illustrated
in Fig. 4(b). Approaching the nearly flat regions, the prefactor
ranges from O to over 0.1 with a median of approximately 0.04,
consistent with the values adopted in idealized simulations of
the Antarctic Circumpolar Current (Mak et al., 2017, 2018).
Over continental slopes, yGeom tends to converge between 0.01
and 0.02. The weakest mixing is found for (d},.) between 0.5
and 4.0. A preliminary parameterization of (23) that captures

this trend,

YGeom = YFGeom(Oioc)s (24a)

1
FGeom(éloc) =Y tanh (F “Oloc) + ——=,

24b
(5100 +T ( )

is presented in Fig. 4(b), where y ~ 0(1072) denotes a con-
stant coefficient that sets the overall magnitude of the GEO-
METRIC prefactor, and Fgeom 1S an empirical function that
measures the variation of ygeom With djc. TWo parameters are
defined in FGeom and summarized in Table 3: ¥ = 1.35 cap-
tures the (re-scaled) GEOMETRIC prefactor over steep slopes,
and I' = 0.1 controls the asymptotic approach of Fgeom to ¥ for
large 6o and avoids Fgeom becoming ill-defined as djoc — O.
Equation (24a) is then bounded by y/I" ~ 0.08 (i.e. twice as
large as the value used by Mak et al. 2018) as djoc— 0, and
converges to y¥ =~ 0.01 as 6joc— +co. Substitution of this pa-
rameterization in place of the constant coefficient in (22) yields
a closer agreement between Kgeom and «y, with their correlation
raised to 7> = 0.92. When the diagnostics from the open ocean



GEOMETRIC

Cross-Front Mixing Length theory

Slope-aware scalings
Empirical functions Fgeom(Sioc),

Fcg(1oc), and Fyr(Sioc)
Overall magnitude of y

(cross-slope-averaged) 8.0x 1073
Selected value of ¥ 1.35
Selected value of T’ 0.10

yFGeom (6Ioc) \ Riloc Eloc /fO

¥ . tanh (F . 6100) + 61(,C]+1"

YFcr(Goc)uelhl/SY . YFML (010 )te LRn
¥ - tanh (T - Sioc) + 3577 Stoc + 5F
8.0x 107 3.3%x1073
0.50 N/A
0.10 0.01

Table 3: List of the slope-aware scalings of cross-slope eddy diffusivity proposed in this study. The local slope parameter dj, is given by (11); the local Richardson
number Rij, is given by (12); the eddy velocity scale u, is given by (17); the local eddy energy Ejoc is given by (22b); Sfoc denotes the local isopycnal slope
projected onto the cross-isobath direction and is approximated by (28b) over alongshore uniform slopes; the empirical functions Fgeom, FcF, and Fypr are given

by (24b), (29b), and (46b), respectively.

(both the open ocean and the continental shelf) are included, the
diagnosis-scaling correlation is 7> = 0.61 (> = 0.45, not plot-
ted) with a constant prefactor, but reaches > = 0.90 (> = 0.76)
with the parameterization (24), as illustrated in Fig. 5(a).

Following Bachman et al. (2017), we proceed to investigate
whether the predictive power of the GEOMETRIC scaling sub-
ject to a constant prefactor is constrained by differing eddy en-
ergy types used in (22b). To this end, we recalculate kgeom With
the total eddy energy Ejo. in (22a) replaced by either the lo-
cal EKE or the local EPE. Fig. 4(c)—(d) indicates that although
both energy types serve to establish positive correlations be-
tween the GEOMETRIC scaling and the diagnosed eddy dif-
fusivity, the local EPE appears to play a more important role
over steep slopes. This is in contrast with the finding of Bach-
man et al. (2017) that the predictive skill of the GEOMETRIC
formula is independent of the eddy energy type adopted over a
flat-bottomed ocean.

3.3. The Cross-Front scaling of eddy buoyancy transfer

We next formulate an alternative scaling for the cross-slope
eddy buoyancy transfer. Conventional dimensional arguments
suggest that the eddy diffusivity can be defined as the product
of a squared length scale and a inverse time scale (c.f. §1). Here
we use the topographic Rhines scale and the constant Coriolis
frequency to construct our scaling. We stress that these choices
are made based entirely on a variety of trials (not shown), rather
than upon any theoretical basis. Because neither quantity in
isolation has a functional relationship with the eddy diffusivity
over the continental slope (Appendix B), we further affix a local
slope parameter to capture the variation of the eddy diffusivity
over steep slopes shown in Fig. 3(a), and define

KCF = YCFOioc Ligy fo- 25)

Here ycr is a non-dimensional coefficient, and the subscript
“CF” stands for “Cross-Front”. This name was motivated by

10

an alternative writing of (25),

2
KcF ~ Oloc * LRh : fO

IVuhl - N2 u,
NT.E.fO
:ﬁ)|v”h|.|h|.N_3.&
A M2 B (26)
N? u
) A
B: - |l B
N;
=ue-(M2|hl),

which is a MLT-like scaling with the characteristic eddy veloc-

ity defined in (17), and the eddy length scale A]\;—‘zlhl measuring

the horizontal distance required for the tilted isopycnals to span

the entire ocean depth. The rearrangement (26) suggests that

kcr does not explicitly depend on the topographic steepness,

but rather on the isopycnal slope, if ycr is defined as a constant.
The local CF scaling, following (26),

s[5l e}

exhibits a strong correlation (+> = 0.83) with the diagnosed
cross-slope eddy diffusivity (Fig. 6(a)), where y = 7ycF
4% 10~* has been chosen to optimize the linear fit. The correla-
tion reduces to 72 = 0.70 if the diagnostics from the open ocean
are included, and to 2 = 0.57 if both the continental shelf and
open ocean portions are accounted for (not shown), which indi-
cates that a constant prefactor is appropriate over steep slopes
but unable to make the scaling transition smoothly from slopes
toward the more flat regions.
The transition of the local CF prefactor,

27

|l
YCF = K@/ <Me—>, (28a)
ST}OC
0
st = ( f' M? dz) / ( f N} dz), (28b)
—IAl —lnl
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Figure 5: Scatter plots of depth-averaged eddy diffusivity against the slope-
aware forms of (a) the local GEOMETRIC scaling, (b) the local CF scaling,
and (c) the local MLT-based scaling, with constants y selected to optimize the
linear fit in each panel. Red markers indicate diagnostics made to the south of
slope regions with shallowest depth bounded by 510 m. Blue markers indicate
diagnostics collected to the north of slope regions with deepest depth bounded
by 3990 m and northernmost location bounded by y = 350 km. Gray markers
indicate diagnostics made across the slope region. The functions FGeom, FCF,
and Fypr are given by (24b), (29b), and (46b), respectively, and summarized
in Table 3. The correlation coeflicients quoted in each panel are all statistically
significant at the 1% level.

from the continental slope to the nearly flat regions can be pa-
rameterized in terms of (do.) following the approach described
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in §3.2, as shown in Fig. 6(b). We propose a functional relation
between the CF scaling prefactor and the local slope parameter
that is similar to (24),

vck = YFcp(010c)s (29a)

FCF(6loc) =Y tanh (F *Oloc) + (29b)

1
26100 +I’

where y ~ O(1073) is a constant that sets the overall magni-

tude of ycp. As in (24b), the parameters in (29b), ¥ = 0.5 and
I' = 0.1, are selected to approximate the variation of the empiri-
cal function Fcr with 6. (see Table 3). Then it follows that that
ycr is bounded by y/I" ~ 8 x 1073 in the flat bottom limit and
converges to y¥ ~ 4 x 107 over steep slopes. Replacement of
the constant coefficient in (27) with the parameterization (29)
yields a diagnosis-scaling correlation of 72 = 0.86 over steep
slopes, and of 7> = 0.91 (+* = 0.77) if one includes the diag-
nostics from the open ocean region (both the open ocean and
the shelf regions), as shown in Fig. 5(b).

Next we assess which of the variables that constitute the eddy
length scale are most crucial in predicting the cross-slope eddy
diffusivity when ycr is fixed as a constant. In Fig. 6(c) we plot
a simplified form of the CF scaling,

KeF = YiteZ ( I ; N dz)/ (.[;

with which we maintain the spatially varying isopycnal slope
but replace the ocean depth |A| in (27) with the slope mid-
depth Z, (Table 1). Interestingly, the diagnosis-scaling corre-
lation gets even stronger (> = 0.89) compared to the case with
the original local CF form (27). Further replacement of the

M? dz) , (30)

local vertical stratification f—0|h| NS2 dz/ || with the cross-slope-
averaged vertical stratification leads to

0
KcF = yueZsNé/ (i f M? dz),
~|nl
1
Ngz(ff — Nfdsz)/(ff dA), (31b)
slope Ihl —|h| slope

|hl
where the subscript “slope” denotes the region over which the
integral is performed. The modification (31) slightly changes
the scatter pattern between the scaling and the diagnosed diffu-
sivity, but not the predictive skill of the CF scaling (Fig. 6(d)).
Equations (31a)—(31b) also indicate that the cross-slope eddy

(31a)

buoyancy fluxes, Fy =~ «cp (Wll L (I)hl M? dz), scale only with the
characteristic eddy velocity u,, reminiscent of the empirical
findings by Stewart and Thompson (2016) that the eddy thick-
ness fluxes across the Antarctica continental margin scale with
u, alone (see their Equation 25). If the isopycnal slope quantity
in (27) is substituted by its cross-slope-average, the correlation
between kg and kcr is diminished (#2 = 0.69, not shown). Main-
taining the spatially varying ocean depth and local vertical strat-
ification while replacing the spatially varying horizontal strati-
fication with its cross-slope-average produces a even lower cor-
relation between the scaling and the diagnosed eddy diffusivity
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Figure 6: (a) Scatter plot of the depth-averaged eddy buoyancy diffusivity against the local CF scaling subject to a constant coefficient chosen to optimize the linear
fit. (b) Illustration of the variation of the local CF prefactor as a function of the local slope parameter, which can be approximated by an analytical function. (c)
Scatter plot of the depth-averaged eddy buoyancy diffusivity against the modified local CF scaling defined by maintaining the spatially varying isopycnal slope but
replacing the ocean depth with the slope mid-depth. A constant coefficient is chosen to optimize the linear fit. (d) Scatter plot of the depth-averaged eddy buoyancy
diffusivity against the modified local CF scaling defined by maintaining the spatially varying horizontal stratification, but replacing the ocean depth and the spatially
varying vertical stratification with the slope mid-depth and the cross-slope-averaged vertical stratification, respectively. A constant coefficient is chosen to optimize
the linear fit. Dark gray markers indicate diagnostics made across the slope region. Light gray markers in panel (b) indicate diagnostics made from the open ocean
and shelf regions (see text in §3.1 for definitions of these regions). All diagnostics have been zonally averaged. The correlation coefficients quoted in each panel are
all statistically significant at the 1% level. The independent and dependent variables of the functional fits are represented by x and y in panel (b), which should not
be confused with the model domain coordinates.

(r? = 0.41, not shown). Implementation of the CF formula over plot the local form of
continental slopes for parameterization purposes should there-

0 0
fore preserve the spatial variation of the local isopycnal slope, KB13 = )’RifO'SIMe| Al ( f N2 dz) / ( f M2 dz) (33)
oC N

or at least the horizontal stratification. || Il
We note that (26) resembles the eddy buoyancy transfer co- against kg with y = 2.5 x 1073 chosen to minimize the linear
efficient proposed by Bachman and Fox-Kemper (2013), mismatch. The correlation (2 = 0.59) between the two quanti-

ties is much lower than the case shown in Fig. 6(a).
A2 By replacing the eddy velocity scale u, in (26) with the mean
k13 = YRy, (%|h|) , (32) thermal wind velocity, one obtains the eddy transfer coeflicient
M formulated by Fox-Kemper et al. (2008)

27,2
which is diagnosed from a set of Eady-like spin-down simu- KFK08 = Y Nk , (34)
lations (see also Bachman et al. 2017). Equation (32) differs Jo
from (26) by a factor of Ri~*3!. Over the continental slope, the which has been implemented to parameterize submesoscale
local Richardson number varies between O(10) — O(10%) (Fig. eddy restratificaiton in the mixed layer in global ocean climate
3(b)), leading to the decrease of the predicted eddy diffusivity =~ models (Fox-Kemper et al., 2011). As pointed out by Bachman

via kg3 by a factor of 2-10 compared to «cg. In Fig. 7(a) we et al. (2017), kpkos does not depend on the eddy energy budget
12
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Figure 7: Scatter plots of the depth-averaged eddy buoyancy diffusivity against the local forms of the (a) Bachman and Fox-Kemper (2013) scaling and the (b)
Fox-Kemper et al. (2008) scaling. Constant coefficients are selected to optimize the linear fits. Diagnostics are made across the continental slope region and zonally
averaged. The correlation coefficients quoted in each panel are all statistically significant at the 1% level.

due to its differing definition of the characteristic velocity scale. where u, is drawn from the local EKE budget following (17)
In Fig. 7(b) we compare the local form, and /, denotes an eddy length scale to be determined (e.g. Eden
0 and Greatbatch 2008; Cessi 2008; Jansen et al. 2015). Re-

Kexos = Yl ( f Nf dz) / -, (35) cen.tly, Jansen et al. (201.5) has demonstra.te.d that as.signing the

il Rhines scale (defined via planetary vorticity gradient) as the

eddy length scale such that
with kg, where y = 2 x 107 optimizes the linear fit. An almost

identical correlation (> = 0.59) compared to the case shown KMLT ~ UeLRn, (37)
in Fig. 7(a) is reached between «y and kpgos. While the weak-
ened correlation between g3 and diagnostics sources from the broadly quantifies the eddy buoyancy mixing over a flat-

Richardson number-dependent multiplier in (33), it is mainly  bottomed ocean via a suite of idealized simulations (see their
the omission of the isopycnal slope quantity (i.e. M>/N*) that  Fig. 6).

lowers the predictive skill of (35). The eddy length scale has previously been defined as the
o “width of the baroclinic zone”, across which baroclinic eddies
3.4. Slope-dependent mixing length theory were mostly generated (e.g. Visbeck et al. 1997; Bachman and

Although the original form of the CF scaling (25) incorpo- Fox-Kemper 2013; Jansen et al. 2015). In the context of conti-
rates the local slope parameter Jj,., further transformation (26) nental slope, one choice for the width of the baroclinic zone is
frames it as a MLT-based scaling that is relatively insensitive  the width of the slope (see Table 1), i.e.,
to topographic steepness over continental slopes (see also Fig.

6(b)). It is then natural to ask whether other MLT-based eddy KMt ~ UeWs. (38)
parameterizations, most of which do not explicitly incorporate
topographic effects, apply to continental slopes. This ques- This formulation has been reported to accurately quantify the

tion is also practical in that modern ocean general circulation ~ cross-slope eddy thickness flux in the Antarctic Slope Front
models, such as the latest version of the Modular Ocean Model ~ (Stewart and Thompson, 2016).

(MOMO), have a set of MLT-based eddy parameterizations im- Eden and Greatbatch (2008) have advocated to prescribe the
plemented. Most of these parameterizations depend on a variety eddy length scale not only by the Rhines scale, but also by the
of optional length scales plus a prognostic subgrid EKE budget. first Rossby radius of deformation such that

To apply these parameterizations over continental slopes, one

has to first select the most appropriate eddy length scale. KMmLT ~ Ue - Min(Ly, Lgn)- (39)
3.4.1. Previous mixing length theory-based scalings This approach was motivated by the observation that eddy mix-
Various studies have proposed that the eddy buoyancy trans- ~ 10g is more isotropic (anisotropic) and limited by the deforma-
fer coefficient can be parameterized as tion radius (Rhines scale) at mid- (low) latitude (Eden, 2007).
Others have chose to only use the deformation radius when test-

KMLT ~ Uele, (36) ing eddy parameterizations (e.g. Cessi 2008).

13
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Figure 8: Scatter plots of the depth-averaged buoyancy diffusivity against MLT-based scalings constructed using (a) the product of the eddy velocity scale and the
topographic Rhines scale, (b) the product of the eddy velocity scale and the slope half-width, (c) the product of the eddy velocity scale and the first Rossby radius
of deformation, (d) the product of the eddy velocity scale and the frictional scale, (e) the Visbeck et al. (1997) variant, and (f) the Stone (1972) variant. All scalings
are subject to constant coefficients chosen to optimize the linear fits. Diagnostics are made across the continental slope region and zonally averaged. Positive
correlation coefficients have been squared and negative ones are shown directly. The p-value corresponding to the correlation coefficient quoted in panel (a) is 0.86.
The correlation coefficients quoted in panels (b)—(f) are all statistically significant at the 1% level.

Eddy growth over a flat-bottomed ocean subject to quadratic
bottom drag and vanishing PV gradient can also be limited by
a frictional scale Ly (e.g. Jansen et al. 2015), leading to

h

Ly = C—Z, (40)

KmLT ~ ULy,

where 5, denotes the vertical scale of near-bottom flow. Over
topography, h, can be identified with the Prandlt e—folding
scale (e.g. Rhines 1970; Treguier and McWilliams 1990; Mer-
ryfield and Holloway 1999; Brink 2016, see also Appendix A),
and is naturally bounded by the ocean depth |4, i.e.,

N Ljfolhl

0
i N dz

he ’ |h| ’ (41)

where L; = Lg;, stands for the width of near-bottom jets and has
been defined as the topographic Rhines scale, consistent with
previous studies (e.g. Maltrud and Vallis 1991, 1992; Thomp-
son 2010; WS18). Equations (40)—(41) suggests that the jet
width, which may represent the scale at which nonlinear ed-
dies equilibrate, differs from the frictional scale by a factor of
CyN/ fo, which is far less than unity across the regions of our
interest with its maximum below 0.08. We thereby speculate
that the eddy growth are much less constrained by the fric-
tional scale than by the topographic Rhines scale over conti-
nental slopes.
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Fig. 8(a)—(d) compares ky with the eddy transfer coeflicient
(36) via different choices for the eddy length scale. The corre-
lations are invariably weak or even negative, which may have
been anticipated as no quantitative trend is revealed between
the diagnosed eddy diffusivity and the local topographic Rhines
scale or the local EKE (see Appendix B).

It should be noted that the actual application of the scal-
ing (36) as eddy parameterizations also requires the knowledge
of the subgrid EKE, which is not always available in coarse-
resolution ocean models. We therefore assess two additional
scalings that are independent of the local EKE: one developed
by Visbeck et al. (1997),

fo 2
kvor = y——=I, =y 0El, (42)
VRi
and the other by Stone (1972),
Ks72 = YO max * Alo=opay- 43)

Here vy denotes the constant coefficient to be determined for
each case, 0y 1s the maximum growth rate of linear baroclinic
waves, and Al,=.,, 1S the corresponding wavelength. Equation
(42) defines the eddy velocity scale as the product of the eddy
length scale /, and the Eady growth rate og ~ fy/ VRi, whereas
(43) uses the product of the wavelength and growth rate of the
most unstable baroclinic linear mode. Visbeck et al. (1997) as-
signed the width of baroclinic zone as the eddy length scale
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Figure 9: As Fig. 8, but with scalings adapted by d—dependent prefactors following (45). The correlation coefficients quoted in each panel are all statistically

significant at the 1% level.

and found that a constant prefactor y = 0.015 in (42) applied
to a range of baroclinic processes. Over steep slopes, however,
we found no optimal length scale for (42) after a series of tests
(not shown). The topographic Rhines scale is thus chosen as a
representative case. Fig. 8(e) shows that the local form of (42),

fo
VRiloc

is uncorrelated with the diagnosed diffusivity.

Under the Eady (1949) or Phillips (1954) model setup, «s7; is
equivalent to kyy7 if the deformation radius is used as the eddy
length scale, since the most unstable mode resulting from the
interacting surface and bottom edge waves has fixed wavelength
proportional to the deformation radius (Vallis, 2006). In prim-
itive equation simulations, however, the most unstable baro-
clinic mode is not necessarily excited by edge wave interac-
tions, and its wavelength has to be diagnosed locally. In ad-
dition, lateral shear of the alongshore flow tends to modulate
the linear wave characteristics (Killworth, 1980). We there-
fore conducted a linear stability analysis following the approach
detailed in §4.4 of WS18 to extract the most unstable modes
whose wavelength is at least half of the deformation radius at
each latitude across the slope region. Expanding the search
range in wavelength does not change the result. Fig. 8(f) shows
that the Stone (1972) scaling is uncorrelated with the diagnosed
eddy diffusivity.

L, (44)

Kvor =Y

3.4.2. Slope-aware mixing length theory-based scalings
We now adapt these tested MLT-based scalings to a sloping
ocean bed by utilizing an empirical functional relation between
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the eddy buoyancy diffusivity and the local slope parameter that
is similar to (19). Our proposed scaling follows

1
KMLT = 7(5loc + m) uel,. (45)

Here vy is a constant prefactor and I' < 1 can be adjusted so that
v/T reaches the same order of magnitude as the MLT scaling
coefficient diagnosed over a flat ocean bed (9}, = 0). Equation
(45) differs from (36) by a factor of 6joc + 1/(S10c + '), which,
as we show in the following, significantly improves its predic-
tive skill. We treat Jansen et al.’s (2015) diagnostics over a flat
ocean bed (summarized in their Fig. 6) as a starting point to
better frame the order of magnitude of I'.

In Fig. 9(a), we plot the cross-slope eddy diffusivity
kg against the 6—dependent MLT-based scaling using the topo-
graphic Rhines scale (16) and the eddy velocity (17),

kmrr = YFMLT(S10c) * e Lrn, (46a)

1
Fyir(Ooc) = Oloc + ——, (46b)

Oloc + I

where y = 3.3 x 1073 is selected to optimize the linear fit
between kvt and kg, and T = 1.0 x 1072 simplifies (46) to
kmer = 0.33u,Lgp, when 6joc— 0 (see Table 3). The prefactor
then reaches the same order of magnitude as that diagnosed by
Jansen et al. (2015). Importantly, the correlation achieved by
KMLT against kg (r* = 0.92) is much enhanced compared to the

case shown in Fig. 8(a).
Next we replace the topographic Rhines scale in (46) with the
slope half-width (Table 1) and plot the redefined kv against



kg in Fig. 9(b). The prefactor y = 4.0 x 107 is again chosen to
optimize the diagnosis-scaling linear fit, which combined with
I' = 1.0 x 1072 makes the prefactor asymptote to 4.0 x 1072
in the flat bottom-limit, consistent with the value diagnosed by
Jansen et al. (2015) when the “baroclinic width” was chosen
as their eddy mixing length. The correlation between kg and
kmrr (P2 = 0.82) slightly drops compared to the case shown in
Fig. 9(a).

Over steep slopes, the topographic Rhines scale is compara-
ble in magnitude to the first Rossby radius of deformation due
to the suppressed eddy velocity scale and the increase of topo-
graphic PV gradient. In Fig. 9(c), we plot the relationship be-
tween the slope-aware ky 1, with Lgy, substituted by L, in (46),
and the diagnosed eddy diffusivity. Here y = 1.9 x 1073 has
the same order of magnitude as the prefactor when Ly, serves
as the mixing length. However, I' = 1.0 x 10> makes the full
coefficient of kv approach O (1) in the flat-bottomed ocean,
similar to the magnitude diagnosed by Jansen et al. (2015). The
correlation is similarly strong (r*> = 0.90) as in the case shown
in Fig. 9(a).

Although we expect that the frictional scale to be less rel-
evant over steep slopes, adopting Ly as the mixing length in
(46) and assuming that L; = Lgy in (41) nevertheless yield a
strong correlation between kyr and kg (r* = 0.83), as shown
in Fig. 9(d). The prefactor has again been adjusted to optimize
the diagnosis-scaling linear fit and to account for the magnitude
of the MLT-based scaling reported by Jansen et al. (2015). The
strong correlation does not imply that the eddy mixing is fric-
tionally controlled over steep slopes, but rather that the local

buoyancy frequency ( i N dz) / |h] does not vary significantly
(the variation is within a factor of 2 across the entire channel),
leading to Ly ~ Ly based on (40)-(41).

Fig. 9(a)—(d) indicates that the scaling (45) is insensitive to
the eddy length scale chosen over steep slopes, as long as the
eddy velocity scale u, is used. Implementation of (45) should
therefore prioritize the optimal mixing length scale that makes
the scaling transition smoothly from the slope toward the open
ocean. If the diagnostics from the open ocean (both the shelf
and the open ocean) are included in the comparison, the corre-
lation of the Rhines scale-based «yr (46) with the diagnosed
diffusivity reduces to > = 0.79 (> = 0.65), as shown in Fig.
5(c). Defining the frictional length scale, which is partly de-
pendent on the topographic Rhines scale, as the mixing length
in (45) slightly modifies the diagnosis-scaling correlation: the
correlation coefficient is 72 = 0.71 if the open ocean is included
and r? = 0.52 if both the shelf and the open ocean are included
(not shown). In contrast, neither the deformation radius nor the
slope half-width produces a diagnosis-scaling correlation bet-
ter than 7> = 0.06 if the open ocean diagnostics are included.
Our findings therefore suggest that the Rhines scale is the most
suitable choice for the eddy mixing length, mirroring findings
of Jansen et al. (2015) in the context of a flat-bottomed ocean.

In Fig. 9(e)—(f) we also test the slope-aware forms of the local
Visbeck et al. (1997) scaling

Kkvo7 = yYFwmrr - —Lth, @7

lloc
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and the local Stone (1972) scaling

Ks72 = YFMLT * Oimax * Alo=orpey - (48)
These formulations do not show significant improvements in
predictive skill compared to their slope-unaware counterparts.
Our findings suggest that accurate implementation of the MLT-
based scaling for steep slopes depends crucially on the subgrid
EKE budget.

4. Impact of along-slope topographic variations

§3.2-§3.4 suggest that eddy buoyancy mixing across con-
tinental slopes can be reproduced via the GEOMETRIC scal-
ing, the CF scaling, or the 6—dependent MLT-based scaling
that incorporates the eddy velocity scale u, and the topographic
Rhines scale Lgy. While both the GEOMETRIC scaling and
the CF scaling are able to quantify the eddy transfer across
steep slopes with suitably-chosen constant prefactors, they re-
quire 6-dependent prefactors to transition from the slope to
the open ocean. In this section, we investigate the extent to
which these slope-aware scaling frameworks apply to continen-
tal slopes featuring topographic canyons and ridges, over which
standing meanders lead to stronger restratification, and the to-
pographically induced prograde flows tend to penetrate to the
upper ocean (c.f. §2.3).

4.1. Meridional vs cross-isobath eddy mixing

In the context of corrugated continental slope, we face a
choice as whether to compare the scalings with the eddy buoy-
ancy diffusivity directed across meridians (9a) or across iso-
baths (10a). To address this, we first assess the functional
dependence of eddy diffusivity on the two most crucial non-
dimensional parameters over steep slopes: the local slope pa-
rameter and the local Richardson number (c.f. §3.1). There is
some freedom in defining these two parameters in the presence
of canyons/ridges because the mean geostrophic currents do not
follow the isobaths (Fig. 1(b)). One choice would be to com-
pletely neglect the zonal variations in the topography and mean
flow, and define these two parameters via the meridional com-
ponents of the mean buoyancy and bathymetry gradients. How-
ever, the resulting dj,. and Rij,. exhibit no correlation with the
meridional eddy buoyancy transfer (not shown). Instead, we
use the local slope parameter and the local Richardson num-
ber defined by (11) and (12), respectively. That is, we ignore
the cross-isobath part of the mean flow, and assume that the
eddy buoyancy transfer, either in the meridional direction or in
the cross-isobath direction, is determined by the along-isobath
component of the large-scale geostrophic current.

In Fig 10(a), we compare the zonally averaged slope param-
eter (O1c) With the meridional eddy buoyancy diffusivity .
Diagnostics have been drawn from three zonal regions across
the channel: (i) the region peripheral to the northern/southern
slope regions with ocean depths between 510 m and 3990 m and
lying south of y = 450 km, (ii) the northern/southern slope re-
gions, and (iii) the central slope region. Diagnostics from these
regions have been plotted with light gray, dark gray, and blue
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Figure 10: (a) Scatter plot of depth-averaged eddy buoyancy diffusivity in the meridional direction against the zonally averaged local slope parameter in the
CORRUG runs. (b) Scatter plot of depth-averaged eddy buoyancy diffusivity in the cross-isobath direction against the along-isobath-averaged local slope parameter
in the CORRUG runs. (c) Scatter plot of depth-averaged eddy buoyancy diffusivity in the meridional direction against the zonally averaged local Richardson
number in the CORRUG runs. (d) Scatter plot of depth-averaged eddy buoyancy diffusivity in the cross-isobath direction against the along-isobath-averaged local
Richardson number in the CORRUG runs. In panels (a) and (c), light gray markers indicate diagnostics made from the peripheral regions to the north (south) of
the northern (southern) slope regions, dark gray markers indicate diagnostics made from the northern/southern slope regions, and blue markers indicate diagnostics
made across the central slope regions (see text in §2.2 for definitions of these regions). In panels (b) and (d), light gray markers indicate diagnostics made from the
peripheral regions of the slope with ocean depth || € [S10 m, 938 m] or |4| € [3568 m, 3990 m], and blue markers indicate diagnostics made from the slope region
with ocean depth |#] € [938 m, 3568 m] (see text in §4.1 for definitions of these regions). In panels (c) and (d), logarithmic axes are used to accommodate the wide
range of the local Richardson number. The functional fit from Fig. 3(a) is presented in (a)-(b). The independent and dependent variables of the functional fits are
represented by x and y in all panels, which should not be confused with the model domain coordinates.

markers, respectively. kg exhibits a much more scattered rela-
tionship with dj,c than in the SMOOTH runs, shown in Fig. 3(a).
The simple 6—function fit (19) becomes limited in characteriz-
ing the variation of meridional mixing across corrugated slopes.
Strongly negative diffusivities of O(—100) m?/s emerge on the
peripheries of the continental slope, and slightly negative eddy
diffusivity with negative values of (Jjo.) is found in the north-
ern/southen slope regions. The negative values of (dj,c) are due
to stationary recirculations residing over topographic ridges.

In Fig. 10(b), we plot the cross-isobath eddy diffusivity
Ké” defined by (10a) against the local slope parameter averaged
along isobaths,

§ 6]0C ds
55 ds
Here | o] denotes the along-isobath-mean operator and the line

integral operator is performed where h hy. Diagnostics
from the shelf and open ocean regions, defined by |h| € [510

LS1oc 1 Ih=hy = (49)
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m, 938 m] and || € [3568 m, 3990 m] respectively, are plot-
ted with light gray markers, whereas the slope region, defined
by |k € [938 m, 3568 m], are plotted with blue markers.
Our simulations show that the cross-isobath eddy diffusivity
is in general smaller in magnitude than the meridional one,
consistent with the example shown in Fig. 2. In addition, the
cross-isobath eddy diffusivity appears to be better fit by our
empirically-derived function of dj,c (19) than the meridional
eddy diffusivity, indicating that the local slope parameter de-
fined by (11) mainly constrains the cross-isobath, rather than
meridional, component of transient eddy buoyancy fluxes.

In Figs. 10(c) and (d), we compare the relationship between
the local Richardson number and the eddy diffusivity under a
zonal vs along-isobath average, respectively. Over corrugated
slopes, the local Richardson number reaches O(10%) — O(107)
due to the stronger restratification and thus weaker baroclinic
shear of the flow. The along-isobath-average calculation pro-
duces a better fit between the square root of the local Richard-
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Figure 11: Scatter plots of the depth-averaged eddy buoyancy diffusivity in the cross-isobath direction derived from the CORRUG runs, against the slope-aware
forms of (a) the local GEOMETRIC scaling, (c) the local CF scaling, and (d) the local MLT-based scaling, with constant coefficients y selected to optimize the
linear fits. Panel (b) illustrates the variation of the GEOMETRIC prefactor with the local slope parameter, superimposed by identical functional fit presented in
Fig. 4(b). Dark gray markers indicate diagnostics drawn from the slope region defined by ocean depths in the range || € [938 m, 3568 m]. Light gray markers
in panel (b) indicate diagnostics drawn from the peripheral regions of the slope, between sea floor depths of || € [510 m, 3990 m]. Red (blue) markers indicate
diagnostics drawn from the slope region produced by the CORRUG_2004;12.5Y; (CORRUG_4004;50Y;) run. The functions FGeom, Fcr, and Fyrr are given by
(24b), (29b), and (46b), respectively, and are summarized in Table 3. The correlation coefficients quoted in each panel are all statistically significant at the 1%
level. The independent and dependent variables of the functional fits are represented by x and y in panel (b), which should not be confused with the model domain

coordinates.

son number
§ Riroe ds

f ds
and the eddy diffusivity Kg“’ than that produced by the zonal-
average calculation.

LRiloc 1lh=h, = (50)

4.2. Scaling cross-isobath mixing over corrugated slopes

In this section, we evaluate the predictive skills of the scal-
ings proposed in §3.2-§3.4 over corrugated slopes. We com-
pare these scalings under an along-isobath-average because our
diagnostics in Fig. 10 indicate that the local eddy diffusivity has
stronger functional relationships with the local slope parame-
ter and the local Richardson number under an along-isobath-
average than under a zonal average. Because the local slope
parameter varies even along the isobaths of a corrugated slope
due to the presence of standing eddies, the 6—dependent prefac-
tors for these scalings are preserved from §3 before the along-
isobath-averages are made.

Fig. 11(a) shows the relationship between Kéf" and the slope-
aware GEOMETRIC scaling,

topo \ R iloc

KGeom =Y FGeom(éloc)—Eloc s (51)
Jo

in which the empirical function Fgeon 1S identical to (24b)
(see Table 3 for selected values of parameters in Fgeom), and
y = 1.02 x 1072 is a constant chosen to optimize the linear
fit between koo and «i°. The diagnosis-scaling correlation
(#® = 0.67) is smaller than for the case of zonally uniform
slopes (> = 0.92). A fraction of diagnosed diffusivities, such
as those produced by CORRUG_2004,12.5Y; (highlighted with
red markers), and CORRUG_4004,50Y; (highlighted with blue
markers) are particularly poorly captured by (51). Negative val-
ues of Kgfgm in CORRUG_4001,50Y; indicates the presence of
locally prograde fronts (i.e. i, < 0) associated with standing
meanders.

In Fig. 11(b) we investigate the factors that contribute to
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the diversion of diagnosed eddy diffusivity from the theoret-
ical prediction by plotting the diagnosed GEOMETRIC pref-
actor against the local slope parameter, as in Fig. 4(b). This
plot shows that the empirical relation between ygeom and dj,c in
the SMOOTH simulations approximately applies to the COR-
RUG simulations. However, as the ocean bed becomes steeper,
the diagnosed prefactor exhibits more scatter in the CORRUG
simulations than in the SMOOTH simulations. Specifically, for
(010c) > 10, the diagnosed GEOMETRIC prefactor ranges be-
tween [0.94, 1.84] in the SMOOTH simulations but between
[0.06, 1.87] in the CORRUG simulations.

In Fig. 11(c) we plot Kéf" against the slope-aware CF scaling,

0
f—lhl N2 dz

Vhl_) dz'

topo

Kep =7 Fcr(O10c)uclhl s (52)

|n' i
in which n = =Vyh/|Vyh|, Fcr is identical to (29b) (see Table
3 for selected values of parameters in Fcg), and y = 8.9 x 107
is selected to optimize the linear fit. The diagnosis-scaling cor-
relation (> = 0.73) is slightly stronger than that in Fig. 11(a),
but remains weaker than for the case of zonally uniform slopes
(r* = 0.86). As in the GEOMETRIC case, the weaker agree-
ment between the diagnosed diffusivity and the scaling (52)
shown in Fig. 11(c) is partly due to the outlying results from
CORRUG_2004,12.5Y; and CORRUG_4002;50Y;.

In Fig. 11(d) we contrast Kés" against the slope aware MLT-
based scaling

topo

KMLT (53)

=y LFmer(S10c)ue LrnT
in which Fyqr is identical to (46b) (see Table 3 for selected
value of parameter in Fyyr), and y = 4.6 X 1073 optimizes
the linear fit. The diagnosis-scaling correlation (¥ = 0.72) is
comparable to those produced by the GEOMETRIC and the CF
scalings. The weaker agreement between the diagnosed dif-
fusivity and the scaling (53) contrasted to the SMOOTH case
(r* = 0.92) is again partly attributed to the outlying results from
CORRUG-2004,12.5Y; and CORRUG_4004,50Y.

4.3. Cross-slope-averaged scaling of cross-slope eddy mixing

In the flat-bottomed ocean context, Jansen et al. (2015) pro-
posed a parameterization using the bulk-averaged eddy mixing
over an entire baroclinic zone, rather than using horizontally-
local properties. This approach may also be favored over con-
tinental slopes, as topographic corrugation leads to increased
scatter of the diagnosed eddy diffusivity against the scalings
proposed in this study (see Fig. 11). In addition, WS18
have shown that the eddy energy transfer becomes non-local
(e.g. Chen et al. 2014) across steep slopes, and any closure
of the subgrid eddy energy, from which the eddy velocity is
provided, based on the local production/dissipation balance
(e.g. Cessi 2008) may become inaccurate. In Fig. 12, we plot
the diagnosed cross-isobath eddy diffusivity {Kfj”} against the
three slope-aware scalings after averaging over the continental
slope regions, defined by ocean depths in the range |h| € [938
m, 3568 m], where {e} denotes the bulk area-mean operator.

19

Diagnostics from both the SMOOTH (black markers) and the
CORRUG (blue markers) simulations are included. All three
scalings produce strong correlations (> > 0.80) with the diag-
nosed diffusivity across our suite of simulations. The bulk eddy
transfer coefficients in the SMOOTH simulations are particu-
larly closely reproduced, with correlations exceeding > = 0.89,
and reaching r> = 0.98 for the MLT case.

5. Discussion and conclusion

Accurate representation of mesoscale eddy effects in coarse-
resolution ocean climate models remains a pressing challenge
for the oceanographic community. Mid-latitude mesoscale ed-
dies over continental slopes, in particular, cannot be resolved
even in eddy-permitting global ocean models (Hallberg, 2013).
Existing approaches of eddy parameterization have mostly been
developed based on the open ocean turbulent properties and are
thus independent of the bottom topography, which may lead to
incorrect water mass formations and adjustment of ocean gen-
eral circulations over continental slopes.

In this article, we have examined three numerically imple-
mentable scalings for eddy buoyancy transfer across retrograde
slope fronts: the GEOMETRIC scaling originally developed by
Marshall et al. (2012), a new Cross-Front scaling derived via di-
mensional analysis, and the mixing length theory (MTL)-based
scaling (Prandtl, 1925). We demonstrate that both the GEO-
METRIC framework and the CF scaling are capable of quan-
tifying the eddy diffusivity over the continental slope, in isola-
tion, following the selection of suitable constant prefactor co-
efficients. However, in order to capture the eddy mixing across
both the continental slope and the open ocean, all three scaling
approaches require the insertion of a prefactor that depends on
the slope parameter 9.

We have shown that by making the prefactor a simple analyti-
cal function of the local slope parameter, each of these scalings
is able to reproduce the depth-averaged eddy mixing over the
slope and in the open ocean (c.f. Fig. 5). However, over conti-
nental shelves, the eddy transfer coeflicients are much less well
captured by these scalings. The reason for this is unclear and
must be addressed in future work based on the studies focus-
ing on continental shelves (e.g. Brink 2016). It should be noted
that the continental shelves in our simulations are set to be un-
realistically deep in order to isolate the cross-slope eddy fluxes,
and therefore may have limited applicability to cross-shelf eddy
fluxes.

Table 3 summarizes our proposed slope-aware scalings, with
parameter values chosen based on our cross-slope-averaged cal-
culation (Fig. 12), which maximizes the agreements between
the scalings and the diagnosed eddy diffusivity. The prefactor
for both the GEOMETRIC framework and the CF scaling can
be constructed as the sum of a sigmoid function (e.g. hyperbolic
tangent in this study) and a decay function (e.g. reciprocal func-
tion in this study) of the local slope parameter, which converge
to empirical constants over the flat ocean bed and over steep
slopes. For MLT-based scaling, we propose a linear function
of o combined with a decay function. However, this func-
tion becomes unbounded if the isopycnals are completely flat
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Figure 12: Scatter plots of the depth-averaged eddy buoyancy diffusivity in the
cross-isobath direction against the slope-aware forms of (a) the local GEOMET-
RIC scaling, (b) the local CF scaling, and (c) the local MLT-based scaling, with
constant y selected to optimize the linear fits. Diagnostics are bulk-averaged
across the continental slope region, defined by sea floor depths in the range
|k € [938 m, 3568 m], in both the SMOOTH and CORRUG runs. Black
(blue) markers indicate diagnostics made from the SMOOTH (CORRUG) sim-
ulations. The functions FGeom, Fcr, and Fypr are given by (24b), (29b), and
(46b), respectively, and summarized in Table 3. The correlation coefficients
quoted in each panel are all statistically significant at the 1% level.

over the slope (i.e. djoc— +c0). For numerical implementation
purposes, one can fix this issue by replacing the linear function
with a nonlinear one that asymptotes to an empirical constant
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or decay to zero when the slope parameter crosses a threshold
value. It should be noted that the sign of each slope-aware scal-
ing depends not only on the sign of the local slope parameter,
but also on the specific functional form of its prefactor. A scal-
ing designed for retrograde front (i.e. djoc > 0) may thus stay
positive when the slope parameter turns negative (see Fig. 11).
This issue can be addressed by adding a switch-like heaviside
function of 6y that shuts down the mixing across a retrograde
front when 0, turns negative.

In the context of buoyancy-driven prograde front (i.e. djoc <
0), Spall (2004) has previously proposed a slope-dependent
scaling for the eddy heat flux,

VO ~ e 0l Uy, - NG, (54)

where A6 denotes the temperature (or buoyancy) difference
across the front, whose spatial span can be approximated by
the slope width. The scaling (54) was constructed to fit the an-
alytical solution of eddy heat fluxes produced by the modified
Eady (1949) model (Blumsack and Gierasch, 1972). Further
rearrangement of (54) leads to

Kg ~ e_zléloc‘ Utw : Wsa (55)

which constitutes a MLT-based scaling, posed in terms of the
thermal wind velocity and the width of the slope. Spall’s (2004)
results combined with our findings complement existing eddy
parameterizations by incorporating the leading order effects of
bottom topography.

The substantially differing dynamics induced by bottom
canyons/ridges limits the applicability of the slope-aware scal-
ings developed based on eddy dynamics over zonally uniform
slopes. For instance, our proposed scalings conceal the ver-
tical structure of eddy mixing, which may substantially im-
pact the along-slope flow in the presence of topographic cor-
rugations. This is reflected in Fig. 1(c)—(d): even slight bot-
tom corrugation tends to expand the region occupied by to-
pographically induced prograde flows. Notwithstanding these
issues, our recommended slope-aware scalings produce much
stronger correlations with the diagnosed cross-isobath eddy dif-
fusivity over corrugated slopes compared with those between
the topography-independent eddy parameterizations and diag-
nosed eddy transfer coefficients over zonally uniform slopes.
This indicates that adaption of existing eddy parameterizations
via the 6—functions is a promising avenue for future model de-
velopment efforts.

Parameterizing standing eddy effects over large-scale topo-
graphic features remain an open challenge in physical oceanog-
raphy. Though our scalings do not predict the standing eddy
component of cross-slope buoyancy flux, they constitute a sig-
nificant step toward parameterizing the transient component of
cross-slope buoyancy mixing and thus should be tested as pa-
rameterizations in coarse-resolution models. It is particularly
important to investigate whether a coarse resolution model that
can resolve large-scale bathymetric variations, but not transient
eddy generation, will be able to represent the standing eddy
buoyancy fluxes across continental slopes. Such an investiga-
tion may be more pertinent to eddy-permitting global ocean



models (e.g. Uchida et al. 2017). Indeed, for typical IPCC-
Class Earth System Models with horizontal grid spacing of 1°
or coarser, even the continental shelf/slope itself may be unre-
solved. If eddy-permitting models can indeed reproduce stand-
ing eddy fluxes, a parameterization of the transient eddy buoy-
ancy flux would be the only part that is required to represent the
mesoscale.

To convert our proposed scalings into full closures of tran-
sient eddy buoyancy fluxes, a priori knowledge of the EKE
or the total eddy energy is required. Modern ocean general
circulation models such as the MOM6 are increasingly main-
taining prognostic subgrid EKE or total eddy energy budgets
(e.g. Jansen et al. 2019; Mak et al. 2018). These models will
serve as a natural starting point for testing slope-aware eddy pa-
rameterizations. However, caution must taken, given that most
subgrid eddy energy budgets only reflect open ocean eddy prop-
erties. Over continental slopes, lateral EKE fluxes via anoma-
lous pressure work are dominant in the upper ocean, and EKE
tends to be converted into potential energy near the ocean bed
(WS18), both of which remain poorly constrained by existing
eddy parameterizations (e.g. Eden and Greatbatch 2008; Mal-
trud and Holloway 2008)°. In addition, parameterization of
eddy energy dissipation near topographic features remains a
challenging research topic even for the well-studied open ocean
(e.g. Yang et al. 2018). To accurately apply our proposed scal-
ings, existing formulations of subgrid EKE budgets may need
to be adapted to steep continental slopes.

Though the slope-aware scalings exhibit remarkable skill
in quantifying the depth-averaged cross-slope eddy buoyancy
transfer, our idealized model configuration carries several
caveats. For instance, we did not consider the effects of ex-
ternal buoyancy forcing, which can considerably modulate the
structure of slope fronts (e.g. Stewart and Thompson 2013).
Time-dependent wind forcing can also project onto mesoscale
variability over steep slopes (e.g. Zhai and Greatbatch 2007;
Renault et al. 2016), and the evolution to equilibrium may be
substantially modulated by “eddy memory” (Sinha and Aber-
nathey, 2016; Manucharyan et al., 2017; Manucharyan and
Isachsen, 2019). Tidal flows, which have been completely ne-
glected in this study, may play a critical role in shaping the
shelf break fronts (Brink, 2012, 2013). Our study has focused
on the cross-slope eddy buoyancy transfer, and it remains un-
clear how closely this is related to the isopycnal eddy mixing
(Redi, 1982). In the context of a flat-bottomed ocean, Aber-
nathey et al. (2013) derived an analytical relation (their Equa-
tion (24)) between the GM and the Redi eddy transfer coefhi-
cients. The merits of this relation in inferring the isopycnal dif-
fusivity via the GM transfer coefficient, particularly over con-
tinental slopes, have yet to be investigated. All these issues
remain to be addressed in future investigations.

SMaltrud and Holloway (2008) and related work have proposed to imple-
ment a biharmonic or Laplacian viscosity that forces a mean prograde flow
along the isobaths of a continental slope, thus ensembling the eddy-rectified
flow character. However, this approach is not energetically constrained.
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Appendix A. Vertical structure of eddy mixing

Fig. 13(a) shows the cross-isobath eddy diffusivity of buoy-
ancy averaged along each isobath of the slope regions (Ji| €
[938 m, 3568 m]) in the SMOOTH _Reference and the COR-
RUG_2004;12.5Y; runs as functions of depth. In both sim-
ulations, mixing is surface-intensified and eddies are found
to flux buoyancy up-gradient approaching the sloping ocean
bed. The negative buoyancy diffusivity mirrors the formation of
bottom-trapped prograde flows in Fig. 1(a)—(b). In Fig. 13(b),
we switch the vertical coordinate from depth to the normal-
ized height from the ocean bed by the Prandlt e-folding scale
(e.g. Treguier and McWilliams 1990) defined in (41) with L,
approximated by the topographic Rhines scale. The exact lo-
cations of sign reversal of buoyancy diffusivity do not follow a
clear trend with the normalized height, but are generally within
nL, from the sloping ocean bed.

Appendix B. Additional parameter dependence of eddy
buoyancy diffusivity

The relation between (Buj,) and kg is illustrated in Fig.
14(a). The eddy diffusivity rapidly decreases as the slope
Burger number increases from 0. Over continental slopes, how-
ever, Ky is rather insensitive to (Bu,.). These can be under-
stood via the relationships of (djoc) and (Rij,c) to the cross-
slope eddy diffusivity. In the nearly flat-bottomed ocean, we
have Ko~ 71 (610c)™" (Fig. 3()) and kg~ 72 (107 Rine) '~ (Fig.
3(b)), where y; ~ 50 and y, € [—1, 350], then (15) leads to
kg~ 1073/*(5092)*(Buioe )%, In Fig. 14(a) we plot the corre-
sponding functional fit for y, = 1 (y, = 350) in solid (dashed)
line, which captures the rapid decay of eddy mixing with the
slope Burger number. As the ocean bed becomes steeper, we
have ko~ 1 (Sioc) (Fig. 3(@)) and ko~ 2 (107 Ric)” (Fig.
3(b)), then (15) gives (Bujy.) 0.95 for y; 2.5 and
v> = 75, which provides no information about the eddy dif-
fusivity. That is, the eddy diffusivity is almost independent of
the slope Burger number over steep slopes in retrograde fronts.

Fig. 14(b) contrasts the topographic Rhines scale (Lgy) with
the cross-slope eddy diffusivity. We fit a weakly quadratic rela-
tion, which produces a least-squares error slightly smaller than
that generated by an optimized linear fit (by a factor of approx-
imately 1.2) when diagnostics from the continental slope and
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Figure 13: The cross-isobath eddy buoyancy diffusivity across the continental slope regions defined by ocean depths in the range || € [938 m, 3568 m] as functions
of (a) depth and (b) normalized height from the ocean bed by the Prandlt e—folding scale defined in (41). Diagnostics are averaged along isobaths. Blue (red)
markers indicate diagnostics from the SMOOTH_Reference (CORRUG-2004;12.5Y;) run.

the open ocean are considered. The quadratic approximation
is no better than a linear fit when the continental shelf is also
included. Over the continental slope alone, no clear correlation
between the two quantities is found. Comparing «y against the
first Rossby radius of deformation, or the Rhines scale normal-
ized by the deformation radius, does not yield further insight
(not shown).

We plot the depth-averaged EKE and EPE against the eddy
diffusivity in Figs. 14(d) and (e), respectively. The two en-
ergy reservoirs are roughly equipartitioned with the local EPE
slightly higher the local EKE. The strength of the cross-slope
eddy mixing does not seem to be controlled by the amount of
eddy energy alone. Indeed, over continental slopes, kg is gen-
erally below 120 m? /s, while neither the EKE nor the EPE are
generally lower than that in regions away from the slope.

References

Abernathey, R., Cessi, P., 2014. Topographic enhancement of eddy efficiency
in baroclinic equilibration. J. Phys. Oceanogr. 44 (8), 2107-2126.

Abernathey, R., Ferreira, D., Klocker, A., 2013. Diagnostics of isopycnal mix-
ing in a circumpolar channel. Ocean Modell. 72, 1-16.

Aiki, H., Zhai, X., Greatbatch, R. J., 2016. Energetics of the global ocean: The
role of mesoscale eddies. Ch. 4, pp. 109-134.

Allen, J. S., 1975. Coastal trapped waves in a stratified ocean. J. Phys.
Oceanogr. 5 (2), 300-325.

Allen, S. E., Hickey, B. M., 2010. Dynamics of advection-driven upwelling
over a shelf break submarine canyon. J. Geophys. Res. 115 (C8).

Bachman, S., Fox-Kemper, B., 2013. Eddy parameterization challenge suite I:
Eady spindown. Ocean Model. 64, 12 — 28.

Bachman, S., Marshall, D., Maddison, J., Mak, J., 2017. Evaluation of a scalar
eddy transport coefficient based on geometric constraints. Ocean Modell.
109, 44 — 54.

Bischoff, T., Thompson, A. F.,, 2014. Configuration of a Southern Ocean storm
track. J. Phys. Oceanogr. 44 (12), 3072-3078.

Blumsack, S. L., Gierasch, P. J., 1972. Mars: The effects of topography on
baroclinic instability. J. Atmos. Sci. 29 (6), 1081-1089.

Bower, A. S., Rossby, H. T., Lillibridge, J. L., 1985. The Gulf Stream—barrier
or blender? J. Phys. Oceanogr. 15, 24-32.

22

Brink, K. H., 1986. Topographic drag due to barotropic flow over the continen-
tal shelf and slope. J. Phys. Oceanogr. 16 (12), 2150-2158.

Brink, K. H., 1991. Coastal-trapped waves and wind-driven currents over the
continental shelf. Ann. Rev. Fluid Mech. 23 (1), 389-412.

Brink, K. H., 2010. Topographic rectification in a forced, dissipative, barotropic
ocean. J. Mar. Res. 68 (3-4), 337-368.

Brink, K. H., 2011. Topographic rectification in a stratified ocean. J. Mar. Res.
69 (4-5), 483-499.

Brink, K. H., 2012. Baroclinic instability of an idealized tidal mixing front. J.
Mar. Res. 70 (4), 661-688.

Brink, K. H., 2013. Instability of a tidal mixing front in the presence of realistic
tides and mixing. J. of Mar. Res. 71 (3), 227-251.

Brink, K. H., 2016. Cross-shelf exchange. Annu. Rev. Fluid Mech. 8, 59-78.

Cacchione, D. A., Pratson, L. F., Ogston, A. S., 2002. The shaping of continen-
tal slopes by internal tides. Science 296 (5568), 724-727.

Cessi, P, 2008. An energy-constrained parameterization of eddy buoyancy flux.
J. Phys. Oceanogr. 38 (8), 1807-1819.

Chelton, D. B., deSzoeke, R. A., Schlax, M. G., El Naggar, K., Siwertz, N.,
1998. Geographical variability of the first baroclinic Rossby radius of defor-
mation. J. Phys. Oceanogr. 28, 433-460.

Chen, R., Flierl, G. R., Wunsch, C., 2014. A description of local and nonlocal
eddy-mean flow interaction in a global eddy-permitting state estimate. J.
Phys. Oceanogr. 44 (9), 2336-2352.

Cherian, D. A., Brink, K. H., 2018. Shelf flows forced by deep-ocean anticy-
clonic eddies at the shelf break. J. Phys. Oceanogr. 48 (5), 1117-1138.

Colas, F., Capet, X., McWilliams, J. C., Li, Z., 2013. Mesoscale eddy buoyancy
flux and eddy-Induced circulation in Eastern Boundary Currents. J. Phys.
Oceanogr. 43 (6), 1073-1095.

Connolly, T. P, Hickey, B. M., Shulman, I., Thomson, R. E., 2014. Coastal
trapped waves, alongshore pressure gradients, and the California Undercur-
rent. J. Phys. Oceanogr. 44 (1), 319-342.

Csanady, G. T., 1978. The arrested topographic wave. J. Phys. Oceanogr. 8 (1),
47-62.

Dinniman, M. S., Klinck, J. M., Jr., W. O. S, 2011. A model study of Circum-
polar Deep Water on the West Antarctic Peninsula and Ross Sea continental
shelves. Deep Sea Res. Pt. II 58 (13-16), 1508— 1523.

Eady, E. T., 1949. Long waves and cyclone waves. Tellus 1, 33-52.

Eden, C., 2007. Eddy length scales in the North Atlantic Ocean. J Geophys.
Res. 112 (C6).

Eden, C., Greatbatch, R. J., 2008. Towards a mesoscale eddy closure. Ocean
Model. 20 (3), 223 — 239.

Ferrari, R., Griffies, S. M., Nurser, A. G., Vallis, G. K., 2010. A boundary-value
problem for the parameterized mesoscale eddy transport. Ocean Model.
32 (3), 143 - 156.



200

ORef. . 13
X 0.57 solid: y = =
O 1.57
160 J

+20n dashed: y = 22
7 0.5W, 1 vz
£>0.66WV,

120 1

P

= \

«~ 80

03

40

0 5 1‘0 15 20 25
() po (%) EKE dz/|h] ) (3/m?)

y = 0.018z2 + 0.95x + 13.79

L L L

100 120

20 40 60 80
(Lgn) (km)
160 |
120+
~
(o]
)
«~ 80 .
N
40 R
¢}
0 5 10 15 20 25

po (S EPE/|n) (3/m)
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the depth-averaged eddy kinetic energy, (c) the depth-averaged eddy kinetic energy density per unit area, and (d) the depth-averaged eddy potential energy density
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