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Abstract

Baroclinic eddy restratification strongly influences the ocean’s general circulation and tracer budgets, and has been routinely

parameterized via the Gent-McWilliams (GM) scheme in coarse-resolution ocean climate models. These parameterizations have

been improved via refinements of the GM eddy transfer coefficient using eddy-resolving simulations and theoretical developments.

However, previous efforts have focused primarily on the open ocean, and the applicability of existing GM parameterization ap-

proaches to continental slopes remains to be addressed. In this study, we use a suite of eddy-resolving, process-oriented simulations

to test scaling relationships between eddy buoyancy diffusivity, mean flow properties, and topographic geometries in simulations of

baroclinic turbulence over continental slopes. We focus on the case of retrograde (i.e., opposing the direction of topographic wave

propagation) winds, a configuration that arises commonly around the margins of the subtropical gyres.

Three types of scalings are examined, namely, the GEOMETRIC framework developed by Marshall et al. (2012) [A framework

for parameterizing eddy potential vorticity fluxes. J. Phys. Oceanogr. 42, 539-557], a new “Cross-Front” (CF) scaling derived via

dimensional arguments, and the mixing length theory (MLT)-based scalings tested recently by Jansen et al. (2015) [Parameterization

of eddy fluxes based on a mesoscale energy budget. Ocean Model. 92, 28-41] over a flat ocean bed. The present study emphasizes

the crucial role of the local slope parameter, defined as the ratio between the topographic slope and the depth-averaged isopycnal

slope, in controlling the nonlinear eddy buoyancy fluxes. Both the GEOMETRIC framework and the CF scaling can reproduce

the depth-averaged eddy buoyancy transfer across alongshore-uniform continental slopes, for suitably chosen constant prefactors.

Generalization of these scalings across both continental slope and open ocean environments requires the introduction of prefactors

that depend on the local slope parameter via empirically derived analytical functions. In contrast, the MLT-based scalings fail to

quantify the eddy buoyancy transfer across alongshore-uniform continental slopes when constant prefactors are adopted, but can

reproduce the cross-slope eddy flux when the prefactors are adapted via empirical functions of the local slope parameter. Application

of these scalings in prognostic ocean simulations also depends on an accurate representation of standing eddies associated with the

topographic corrugations of the continental slope. These findings offer a basis for extending existing approaches to parameterizing

transient eddies, and call for future efforts to parameterize standing eddies in coarse-resolution ocean climate models.
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1. Introduction

Continental slopes compromise a large fraction of the steep-

est areas of the sea floor (LaCasce, 2017), and connect the shal-

low continental shelves and the deep open ocean (Cacchione

et al., 2002). The topographic potential vorticity (PV) gradient

imposed by continental slopes is typically two to three orders

of magnitude larger than the local planetary vorticity gradient

(Cherian and Brink, 2018), favoring the orientation of large-

scale flows along the slope (Brink, 2016) and inhibiting cross-

slope transfer (e.g., Olascoaga et al. 2006). Most along-slope

flows, however, are also associated with sharp density fronts

and horizontal velocity shears that may be subject to baroclinic

and barotropic instabilities (LaCasce et al., 2019), from which

mesoscale eddies can develop and mediate the cross-slope ex-

change (e.g., Bower et al., 1985). Indeed, mesoscale eddies

are increasingly documented to control the transport of heat,

salt, and biogeochemical tracers between the coastal and the

open oceans, and consequently modulate water mass forma-

tions and ocean general circulation (Spall, 2004; Pickart and

Spall, 2007; Spall, 2010; Jungclaus and Mellor, 2000; Serra and

Ambar, 2002; Dinniman et al., 2011; Nøst et al., 2011; Hatter-

mann et al., 2014; Stewart and Thompson, 2012, 2015).

Increases in computing power have allowed global ocean

models to be run with a horizontal grid spacing as fine as 0.1o

(e.g. Uchida et al. 2017), resolving mesoscale at low and mid-

latitudes in the open ocean. However, even with such a fine res-

olution, mesoscale eddies cannot be resolved over continental

slopes (Hallberg, 2013). The rapid decrease of the ocean depth

leads to a decrease of the Rossby deformation radius and thus

finer scales of unstable baroclinic modes compared to those in

the open ocean. In addition, recent studies have revealed that

baroclinic modes tend to be surface intensified over steep to-

pography (LaCasce, 2017) and require high vertical resolution

to simulate in ocean models cast in geopotential coordinates

Preprint submitted to Ocean Modelling March 3, 2020



(e.g. Stewart et al., 2017). Numerical experiments on freely

evolving and wind-driven baroclinic turbulence over topogra-

phy point towards a bottom-intensified eddy energy sink due

to topographic rectification even in the absence of tides (Mer-

ryfield and Holloway 1999; Venaille 2012; Wang and Stew-

art 2018, WS18 hereafter), indicating that eddy effects at the

surface substantially differ from those near the sloping bottom

(e.g. LaCasce 1998; LaCasce and Brink 2000). This invites

the question: to what extent do existing eddy parameterizations

adopted by today’s ocean climate models capture eddy behav-

iors over continental slopes?

The most widely used approach to parameterizing mesoscale

eddies in coarse-resolution ocean climate models is a com-

bination of the Gent and McWilliams (1990, GM hereafter)

scheme, which works to flatten isopycnals and release poten-

tial energy, and the Redi (1982) scheme, which serves to flux

tracers downgradient along isopycnals. This approach hinges

upon the prescription of the GM and Redi eddy transfer coeffi-

cients, which measure the strengths of adiabatic buoyancy and

isopycnal mixing by transient eddies, respectively, depending

on the large-scale, explicitly resolved flow properties. In the

quasi-geostrophic (QG) ocean interior, the GM transfer coeffi-

cent can be approximately related to the Redi transfer coeffi-

cient (Abernathey et al., 2013), therefore accurate construction

of the former may shed light on the latter.

Various schemes have been proposed to construct the GM

eddy transfer coefficient using properties of the resolved flow.

For instance, the mixing length theory (MLT hereafter, Prandtl

1925) paradigm formulates the GM transfer coefficient as the

product of an eddy length scale and a characteristic eddy ve-

locity (or equivalently the product of an inverse eddy time

scale and the squared eddy length scale), multiplied by a

non-dimensional prefactor coefficient (e.g. Green 1970; Stone

1972; Visbeck et al. 1997; Eden and Greatbatch 2008; Cessi

2008; Jansen et al. 2015). Other formulations have been de-

rived from mathematical constraints on the eddy stress tensor

(e.g. Marshall et al. 2012; Bachman et al. 2017; Mak et al.

2017, 2018), from scalings diagnosed from numerical experi-

ments (e.g. Bachman and Fox-Kemper 2013), and from kine-

matic consideration of fluid parcel motions (Fox-Kemper et al.,

2008). Although these approaches have achieved increasing fi-

delity in their representation of eddy restratification and trans-

port in the open ocean (Griffies, 2004), they are not necessarily

transferable to continental slopes.

Previous studies of cross-slope eddy buoyancy transfer have

relied principally on the modified QG Eady (1949) or Phillips

(1954) models, which predict that the ratio between the bottom

slope and the isopycnal slope, denoted by the slope parameter

δ, determines the stability of along-slope flows (Blumsack and

Gierasch, 1972; Mechoso, 1980; Spall, 2004; Isachsen, 2011;

Pennel et al., 2012; Poulin et al., 2014; Hetland, 2017; LaCasce

et al., 2019; Manucharyan and Isachsen, 2019). Specifically, for

δ < 0, corresponding to prograde (i.e. in the same direction as

the topographic wave propagation) flows, both the wavelengths

and the growth rates of unstable waves decrease as the magni-

tude of δ increases. By contrast, for δ > 0, corresponding to ret-

rograde (i.e. opposite to the direction of topographic wave prop-

agation) flows, the linear growth rate instead increases, but then

drops to zero for δ > 1. The linear prediction has proved to be

qualitatively useful in interpreting the nonlinear eddy buoyancy

transfer in prograde fronts via primitive equation simulations

and laboratory experiments (Spall, 2004; Isachsen, 2011; Pen-

nel et al., 2012; Poulin et al., 2014; Ghaffari et al., 2018). This

contrasts with retrograde flows, in which the nonlinear eddy

mixing persists (WS18, Manucharyan and Isachsen 2019), and

may even be enhanced, when δ exceeds 1 (e.g. Isachsen 2011;

Stewart and Thompson 2013). A theoretical basis for interpret-

ing the variation of nonlinear eddy buoyancy flux with the slope

parameter in retrograde fronts remains elusive (Isachsen, 2011).

Most of the aforementioned studies have also chosen to ne-

glect the influence of topographic canyons/ridges on eddy buoy-

ancy transfer across continental slopes. However, this choice

carries certain caveats, because topographic canyons/ridges

were found to be ubiquitous along realistic continental margins

(see Fig. 5 of Harris and Whiteway (2011) for a global distribu-

tion of submarine canyons). A number of studies have revealed

that topographic canyons/ridges can substantially enhance the

onshore intrusions of mass and physical/biogeochemical prop-

erties in retrograde slope fronts (e.g. Kämpf 2007; Allen and

Hickey 2010), which are directly linked to the arrested to-

pographically trapped waves over canyons/ridges (Zhang and

Lentz, 2017, 2018).

A paradigm for constructing the GM-based eddy transfer co-

efficient that accounts for the effects of the bottom slope is

yet to be developed. Such a paradigm should incorporate the

aforementioned nonlinear eddy characteristics over continental

slopes, particularly in retrograde fronts where linear predictions

proved to be ineffective. This article serves as a first step to fill

this crucial gap by constructing multiple slope-aware and nu-

merically implementable scalings of the depth-averaged cross-

slope eddy buoyancy mixing, focusing on the case of flows

driven by retrograde wind forcing. In the limit of a flat ocean

bed, most scalings reduce to the formulations that have been

tested in previous studies. Consistent with the findings of Har-

ris and Whiteway (2011), we also investigate to what extent

topographic canyons/ridges may impact the proposed scalings

for transient eddy buoyancy fluxes. The rest of this article is

organized as follows. In Section 2, we describe the model con-

figurations employed in this study, compare the key character-

istics of wind-driven flows over an alongshore-uniform slope

and over a corrugated slope, and highlight the quantitative in-

fluence of topographic corrugation on eddy buoyancy transfer.

In Section 3, we propose the scalings for the depth-averaged

eddy buoyancy mixing across alongshore-uniform continental

slopes. In Section 4, we assess the transferability of these scal-

ings to alongshore-corrugated slopes. Discussion and conclu-

sion follow in Section 5.

2. Numerical simulations

In this section, we describe the model configuration of our sim-

ulations, illustrate the simulated flow characters, and quantify

the cross-slope eddy buoyancy fluxes. All experiments use the

MIT general circulation model (MITgcm hereafter, Marshall
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Table 1: List of parameters used in the reference model run. Italics indicate

parameters that are independently varied between model runs.

Value Description

Lx 800 km Zonal domain size

Ly 500 km Meridional domain size

H 4000 m Maximum ocean depth

Zs 2250 m Slope mid-depth

Hs 3500 m Shelf height

Ys 200 km Mean mid-slope offshore position

λt +∞ km Alongshore bathymetric wavelength

Yt 0 km Mid-slope position excursion

Ws 50 km Slope half-width

Yw 200 km Peak wind stress position

Lr 50 km Width of northern relaxation

Tr 7 days Northern relaxation timescale

τo 0.05N m−2 Wind stress maximum

Lw 400 km Meridional wind stress width

ρ0 1000 kg m−3 Reference density

α 1 × 10−4 oC−1 Thermal expansion coefficient

Cp 4000 J kg−1 oC−1 Specific heat of seawater

g 9.81 m2 s−1 Gravitational constant

f0 1×10−4s−1 Coriolis parameter

Am
4

2.9 × 108m4s−1 Biharmonic viscosity

△x 2 km Horizontal grid spacing

△z 10.5 m–103.8 m Vertical level spacing

△t 131 s Time step size

et al. 1997), the quantitative performance of which in simulat-

ing continenal shelf/slope eddies has been evaluated in WS18

against an isopycnal-coordinate model and a terrain-following

coordinate model.

2.1. Reference model configuration

The configuration of our reference simulation follows that of

WS18, the most salient details of which are reiterated here, with

reference physical parameters summarized in Table 1. We con-

sider a zonal channel with a continental shelf of 500 m depth

located at the southern boundary of the domain. The shelf is

deeper than most realistic continental shelves (e.g. Cacchione

et al. 2002) to ensure that the flow field over the shelf and slope

is adequately resolved. The ocean depth is 4000 m at the north-

ern boundary and shoals from the center of the domain toward

the shelf across an idealized continental slope. Specifically, the

bathymetry z = h(x, y) is defined by

h(x, y) = −Zs −
1

2
Hs tanh

[

y − Ys − Ytsin (2πx/λt)

Ws

]

, (1)

where x ∈ [−Lx/2, Lx/2] is the along-slope distance (longitude)

from the domain center, y ∈ [0, Ly] is the offshore distance (lat-

itude), Zs = 2250 m denotes the slope mid-depth, Hs = 3500

m represents the shelf height, and Ws = 50 km is the slope

half-width. The latitude of the center of the continental slope

varies longitudinally (see Fig. 1), with mean position Ys = 200

km, wavelength λt, and onshore/offshore excursion amplitude

Yt. The channel spans 800 km and 500 km in the along-slope

and cross-slope directions, respectively. Throughout this work,

we will use “along-slope” and “longitudinal” or “zonal” inter-

changeably, and similarly for the “cross-slope” with “latitudi-

nal” or “meridional”. The channel is posed on an f -plane, with

a Coriolis parameter f0 = 1 × 10−4s−1, as changes in depth

dominate the background PV gradient, and so the slope can be

thought of as being oriented in any direction relative to meridi-

ans.

We use a horizontal grid spacing of 2 km and 70 vertical

levels, with vertical grid spacing increasing from 10 m at the

surface to over 100 m at the ocean bed. Partial grid cells with a

minimum non-dimensional fraction of 0.1 are used to improve

representation of flows over the continental slope (Griffies et al.,

2000). Simulations conducted at higher (1 km) horizontal grid

resolution or based on 133 vertical levels yielded no qualitative

differences from the results reported below.

The channel is forced at the surface by a steady alongshore

wind stress with a cross-shore profile defined by

τx = −τo · sin2 (y/Lw) , 0 < y < Lw. (2)

Here τo =0.05 N/m2 denotes the maximum strength of wind,

which coincides with the mean offshore slope position Ys = 200

km, Lw = 400 km measures for the width of forcing in the off-

shore direction, and the negative sign on the right-hand side of

(2) corresponds to retrograde (i.e. westward) wind stress. No

surface buoyancy flux is prescribed. At the ocean bed, the

channel is subject to a drag stress with quadratic coefficient

Cd = 2.5 × 10−3, serving as a sink for energy and momentum

imparted by the surface wind stress.

Periodic boundary conditions are used in the alongshore di-

rection. No-normal-flow conditions are imposed at the shore-

ward and offshore edges of the domain. The potential tem-

perature is restored to a reference exponential profile across a

sponge layer of 50 km width at the northern boundary, with a

maximum relaxation time scale of 7 days, to facilitate the evo-

lution of ocean flow into a statistically steady state. This effec-

tively fixes the first baroclinic Rossby deformation radius

Ld =

∫ 0

−|h| Ns dz

π f0
, (3)

at approximately 18 km in the deep open ocean, where Ns is the

buoyancy frequency.

The surface K-Profile Parameterization (KPP) (Large et al.,

1994) is used with its default setting for the reference simu-

lation. Because almost no difference is yielded by replacing

the KPP with a large diffusivity of 100 m2/s for parameteriz-

ing convective instabilities, all subsequent experiments follow

the latter option for computational efficiency. In addition, an

explicit biharmonic viscosity is used for numerical stability.

2.2. Experiments

A suite of experiments are performed by varying the refer-

ence settings in §2.1. Specifically, we independently adjust the

maximum strength of wind, the thermal expansion coefficient,

and importantly, the slope geometry, for each simulation, which

are summarized in Table 2. We vary these dimensional parame-

ters in such a way as to cover a wide range of continental slope

configurations, characterized by five non-dimensional numbers

discussed below, and meanwhile avoid redundant runs.
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Table 2: Simulation parameters varied between the model experiments. For parameter definitions, refer to Table 1.

Experiment Ly(km) Ws(km) λt(km) Yt(km) τ0(N/m2) α(10−4 oC−1)

SMOOTH Reference 500 50 +∞ 0 0.05 1.0

SMOOTH 0.5τ0 500 50 +∞ 0 0.025 1.0

SMOOTH 1.5τ0 500 50 +∞ 0 0.075 1.0

SMOOTH 2.0τ0 500 50 +∞ 0 0.10 1.0

SMOOTH 0.5Ws 500 25 +∞ 0 0.05 1.0

SMOOTH 0.66Ws 500 33 +∞ 0 0.05 1.0

SMOOTH 1.5Ws 500 75 +∞ 0 0.05 1.0

SMOOTH 2.0Ws 500 100 +∞ 0 0.05 1.0

SMOOTH 0.5α 500 50 +∞ 0 0.05 0.5

SMOOTH 2.0α 500 50 +∞ 0 0.05 2.0

CORRUG 200λt12.5Yt 600 50 200.0 12.5 0.05 1.0

CORRUG 200λt25Yt 600 50 200.0 25.0 0.05 1.0

CORRUG 200λt37.5Yt 600 50 200.0 37.5 0.05 1.0

CORRUG 200λt50Yt 600 50 200.0 50.0 0.05 1.0

CORRUG 266.7λt50Yt 600 50 266.7 50.0 0.05 1.0

CORRUG 400λt50Yt 600 50 400.0 50.0 0.05 1.0

CORRUG 800λt50Yt 600 50 800.0 50.0 0.05 1.0

The wind stress magnitude is quantified by a Rossby number

defined as

Rτ =
τ0

ρ0 f 2
0

LwH
, (4)

which is varied between 1.56×10−6 and 6.25×10−6, correspond-

ing to a wind-driven overturning with its strength ranging from

0.25 m2/s to 1.00 m2/s per unit channel width and thus resem-

bling those across the margins of mid-latitude gyres (e.g. Colas

et al. 2013) and high-latitude marginal seas (e.g. Manucharyan

and Isachsen 2019). The stratification off the shelf/slope is

quantified via the non-dimensionalized buoyancy frequency

N∗ =

∫ 0

−H
Ns|y=Ly

dz

π f0H
, (5)

where Ns|y=Ly
denotes the vertical buoyancy frequency at the

northern boundary. The first baroclinic Rossby deformation

radius determined by (5) measures from 12 km through 25

km, mimicking the near-slope ocean condition at mid-/high-

latitudes (see, e.g. Fig. 6 and Fig. 8 of Chelton et al. 1998). The

slope steepness is measured by

st =
Hs

2Ws

, (6)

which is varied between 1.75 × 10−2 and 7.00 × 10−2, corre-

sponding to a topographic slope angle ranging from 1o to 4o

in the meridional direction, consistent with typical slope steep-

nesses in the ocean (e.g. Cacchione et al. 2002). The corruga-

tion (or roughness) of the sloping ocean bed is quantified by the

non-dimensional alongshore bathymetric wavelength

λ0 =
λt

2(Ws + Yt)
, (7)

and the depth variation of the slope

Υ =
max(Hm) −min(Hm)

H
, (8)

where Hm is the height of ocean bed at the mean mid-slope

position y = Ys. Similar parameters to (4) and (8) are defined by

Brink (2010) to study tidal rectification over continental shelves

and slopes in a barotropic ocean.

The simulations in Table 2 are categorized into two groups,

one based on zonally uniform channels (names beginning with

“SMOOTH”) and the other characterized by along-slope topo-

graphic variations (names beginning with “CORRUG”) with

finite positive values of Yt and λt in (1). Preliminary ex-

perimentation reveals that flows in the CORRUG runs may

be affected by the northern sponge layer if the offshore ex-

cursions of the continental slope are sufficiently large. We

therefore expanded the channel width to 600 km, while re-

taining identical relaxation at the northern 50-km-wide bound-

ary, in all CORRUG simulations. Further expansion of the

channel width to 800 km yielded negligible differences to the

CORRUG results. To facilitate comparison between simula-

tions, we partition the corrugated-slope domains into south-

ern, central, and northern slope regions delineated by the lati-

tudes y ∈ [Ys −Ws − Yt, Ys −Ws), y ∈ [Ys −Ws, Ys +Ws], and

y ∈ (Ys +Ws, Ys +Ws + Yt], respectively. As such, the cen-

tral slope region of a zonally uniform channel is also its entire

slope region since Yt = 0 (see Fig. 1(c)–(d)). The southern and

northern slope regions accommodate, if any, onshore intrusion

of canyons and offshore excursion of ridges, respectively.

All model runs integrate the three-dimensional, hydrostatic

Boussinesq momentum equations coupled with a linearized

equation of state depending on potential temperature only. Each

simulation is spun up from a resting state at a coarse 4 km res-

olution for 35 years until a statistically steady state is reached,

as determined from the time series of total kinetic energy. The

solutions are then interpolated onto a finer 2 km grid and re-

run for another 15 years to re-establish statistical equilibrium.

Daily outputs taken from the final 5 years are analyzed.

2.3. Simulated flows

Fig. 1(a)–(b) illustrate snapshots of sea surface potential

temperature (color contours) along with topographic geome-

tries in the reference simulation SMOOTH Reference and in

a simulation with a slightly corrugated continental slope, COR-

RUG 200λt12.5Yt (λt = 200 km, Yt = 12.5 km), respectively.
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Figure 1: Schematic illustrations of the slope bathymetry used in (a) SMOOTH Reference and (b) CORRUG 200λt12.5Yt simulations, superposed by the snapshots

of sea surface potential temperature (color), selected bathymetric contours (black), and selected quasi-streamlines of the time-mean sea surface horizontal velocity

(white). Time-/zonal-mean eddy kinetic energy as a function of depth and offshore distance for the (c) SMOOTH Reference and (d) CORRUG 200λt12.5Yt runs,

superposed by time-/zonal-mean isopycnals (dashed contours, interval: 1oC) and alongshore velocity profiles (solid contours, interval: 0.1 m/s). The velocity

contours u = 0 m/s are highlighted with bold lines. The upper panels of (c)–(d) illustrate the reference wind stress profile (blue line) used in this study, with negative

signs corresponding to the retrograde direction. The northern sponge layer in the SMOOTH Reference run is shadowed with dark gray in panel (c), and not shown

for the CORRUG 200λt12.5Yt run (in the latter the sponge layer lies between 550 and 600 km offshore). In panel (d), both the deepest and shallowest bathymetry

contours at each latitude are plotted to illustrate the slight corrugation of the slope. The latitudes dividing the shelf/slope and slope/deep ocean are indicated by

black dashed lines in panels (c)–(d). In panel (d), the northern and the southern slope regions are shadowed (see text in §2.2 for definitions of these regions).

Selected isobaths (black contours) and quasi-streamlines1 of the

time-mean horizontal velocity field uh at sea surface (white con-

tours) are superposed on the potential temperature, where • de-

notes a time average over the 5-year-long analysis period. Vig-

orous eddies are visible in both simulations. However, while

the surface mean flow is almost exactly aligned with the iso-

baths in Fig. 1(a), standing meanders2 with horizontal scales

comparable to the zonal extent of the topographic variations

arise and traverse the isobaths in Fig. 1(b). Numerous studies

have shown that standing meanders in retrograde flows over a

corrugated shelf/slope result from the arrested PV waves gen-

1The time-mean surface horizontal velocity fields in our simulations are

not exactly divergence-free. The quasi-streamlines are selected contours of the

quasi-streamfunction calculated as ψsurf (x, y) =
∫ y

0
u(x, y)

∣

∣

∣

∣

z=0
dy.

2In this article we use the terms standing meanders, stationary meanders,

and standing eddies interchangeably.

erated by topographic variations (Allen, 1975; Wang and Moo-

ers, 1976; Csanady, 1978; Brink, 1986, 1991; Connolly et al.,

2014; Zhang and Lentz, 2017, 2018), similar to those found

in the Antarctic Circumpolar Current over a topographic ridge

(Treguier and McWilliams, 1990; Stevens and Ivchenko, 1997;

Abernathey and Cessi, 2014; Thompson and Naveira Garabato,

2014; Stewart and Hogg, 2017). Accompanying the standing

meanders is the lower contrast of potential temperature between

the shelf/slope and the open ocean, suggesting stronger restrat-

ification compared to the case shown in Fig. 1(a).

In Fig. 1(c)–(d), we quantify the time/zonal-averages of po-

tential temperature
〈

θ
〉

and zonal velocity 〈u〉, superposed on

the logarithms of zonally averaged eddy kinetic energy (EKE)
1
2

〈

u′2 + v′2
〉

per unit mass, where 〈•〉 = 1
Lx

∮

• dx denotes the

zonal-mean operator and the prime denotes the deviation of a

quantity from its time-mean. EKE exhibits similar structures

and magnitudes between the simulations. However, in the pres-
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ence of standing meanders, the retrograde flow is weakened

with its maximum strength shifted onshore, and the topographi-

cally induced prograde flow (see WS18 for the interpretation of

prograde flow generation), where u > 0 m/s, occupies a larger

area.

2.4. Cross-slope eddy buoyancy mixing

In this study, we specifically focus on developing scalings for

transient eddy buoyancy fluxes across alongshore-uniform con-

tinental slopes, and then assessing the transferability of these

scalings to corrugated continental slopes, which induce stronger

restratification (Fig. 1(a)–(b)) and support weaker retrograde

flows (Fig. 1(c)–(d)). For brevity, a detailed examination of

the dynamics of mesoscale eddies over corrugated continental

slopes is deferred to a future study. In the SMOOTH simula-

tions, the cross-slope fluxes can be equivalently defined as those

across the meridians or across the isobaths. Over a corrugated

slope, however, these two types of fluxes differ. Meridional

fluxes at a fixed latitude are determined by flows both over the

ridges and within the canyons at the same latitude, and represent

the deviations from the large-scale zonal-mean flow. This type

of fluxes can be readily decomposed into a transient eddy part

and a standing eddy part (e.g. Bischoff and Thompson 2014).

However, the cross-isobath fluxes are confined above certain

depths, and are directly shaped by the topographic PV gradient.

This type of fluxes has been previously calculated to study fluid

parcel exchanges between the shallow shelves and the open

ocean (e.g. Brink 2010, 2011; Gan et al. 2009, 2013). Or, re-

stated, meridional fluxes may include both cross-isobath and

along-isobath components, whereas cross-isobath fluxes stress

the motions traversing absolute depths. There is thus no reason

to expect that a single scaling would apply to both types of eddy

fluxes over a corrugated slope.

To illustrate the impact of standing meanders to the cross-

slope buoyancy transfer by transient eddies, we first quantify

the depth-averaged eddy buoyancy diffusivities in Fig. 2 as

functions of latitude using the meridional transient eddy heat

fluxes3, defined by

κθ = −
Fθ

〈

∫ 0

−|h| θy dz

〉 , (9a)

Fθ =

〈∫ 0

−|h|
v′θ′ dz

〉

. (9b)

The definition (9a)–(9b) avoids ill-defined κθ in well-mixed re-

gions by integrating the eddy buoyancy flux Fθ and mean buoy-

ancy gradient separately (e.g. Jansen et al. 2015). Across the

slope, κθ in the presence of canyons/ridges (red solid curve)

ranges from -10 m2/s at y = 150 km to 74 m2/s at y = 250 km

and is in general larger than that in the zonally uniform chan-

nel (for y ≥ 168 km, blue curve), which ranges from 5 m2/s

to 26 m2/s across the same latitudinal range, with its minimum

3As our simulations employ a linear equation of state depending on the

potential temperature only, buoyancy flux is proportional to heat flux and we

therefore use these two terms interchangeably in this article.

reaching 3 m2/s at y ≃ 163 km. The enhanced meridional buoy-

ancy diffusivity produced by CORRUG 200λt12.5Yt is consis-

tent with the weakened meridional temperature gradient over

the shelf/slope (Fig. 1(a)–(b)).

We then calculate the buoyancy diffusivity using the cross-

isobath, rather than the meridional, heat fluxes:

κiso
θ |h=h0

= −
F iso
θ

∮

n ·
∫ 0

−|h| ∇Hθ dz ds

∣

∣

∣

∣

∣

∣

h=h0

, (10a)

F iso
θ |h=h0

=

∫∫

|h|≤|h0 |

(

∇ ·
∫ 0

−|h|
u′

h
θ′dz

)

dA. (10b)

Here h = h0 is a selected isobath, ∇H is the horizontal gradi-

ent operator, n = −∇Hh/|∇Hh| is the offshore unit normal vec-

tor to the isobath, ds denotes the infinitesimal arclength along

the selected isobath, h = h0, and dA denotes an infinitesi-

mal horizontal area. Although κiso
θ

is defined as a function of

|h|, it is mapped onto Fig. 2 (red dashed line) as a function

of the mean offshore distance of each isobath. It should be

noted that both (9b) and (10b) automatically eliminate the ro-

tational component of transient eddy fluxes based on the two-

dimensional divergence theorem (Marshall and Shutts, 1981;

Fox-Kemper et al., 2003)4. In addition, calculation of F iso
θ
|h=h0

via (10b) is far more efficient than using the isobath-normal

components of the depth-integrated eddy fluxes, which have

to be obtained by interpolating eddy fluxes from the regular

model grids onto the lateral location of each isobath. The cross-

isobath flux/gradient are exactly identical to the meridional

flux/gradient for SMOOTH runs. The cross-isobath buoyancy

diffusivity κiso
θ

in CORRUG 200λt12.5Yt is generally smaller

in magnitude than the meridional diffusivity κθ in either of the

simulations shown here over the continental slope.

3. Scaling cross-slope buoyancy mixing

Our findings in §2.3–§2.4 suggest that the cross-slope buoy-

ancy transfer can be quantitatively modulated by standing ed-

dies. For instance, standing eddies can drive stronger restratifi-

cation (Fig. 1(a)–(b) and Fig. 2). Furthermore, topographically

induced prograde flows, which were shown to be associated

with upgradient buoyancy fluxes by transient eddies (see Fig. 10

of WS18), tend to be enhanced in the presence of standing ed-

dies (Fig. 1(c)–(d)). These quantitative differences should be

factored into the scaling/parameterization of cross-slope buoy-

ancy transfer, which necessarily incorporate the effects of both

transient and standing eddies. However, there is no basis yet for

parameterizing standing eddy fluxes, which must be addressed

in future work. The qualitative behavior of transient eddies,

such as the surface intensification of EKE (Fig. 1(c)–(d)), nev-

ertheless remain when topographic corrugation is introduced.

4It follows from two-dimensional divergence theorem that the total eddy

flux across the boundary of a control area is equal to the integral of the diver-

gence of eddy flux over this area. The rotational component of the eddy flux

vanishes via the divergence operator upon area-integral. In a periodic chan-

nel model subject to no-normal-flow lateral boundary conditions, the divergent

eddy flux can only traverse the open boundaries defined by isobaths.
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Figure 2: Depth-averaged eddy buoyancy diffusivities as functions of lati-

tude. The northern sponge layer in SMOOTH Reference is shadowed with

dark gray. The northern/southern slope regions in CORRUG 200λt12.5Yt are

shadowed with light gray. Red solid (dashed) curve indicates the eddy

buoyancy diffusivity in the meridional (cross-isobath) direction in the COR-

RUG 200λt12.5Yt run. The blue curve indicates the eddy buoyancy diffusivity

in the meridional direction, or equivalently in the cross-isobath direction, in the

SMOOTH Reference run.

This makes the SMOOTH simulations, which carry the advan-

tage of isolating the transient eddy fluxes from the standing me-

anders, a natural starting point for our investigation.

In this article, we focus on the local (i.e. depth-averaged)

cross-slope eddy buoyancy mixing, shown in Fig. 2, as a first

step toward a more general parameterization. These diagnos-

tics integrate the vertical structure of the eddy fluxes, which

typically serve to restratify the ocean close to the surface, but

destratify close to the bottom slope (WS18, see also Appendix

A). However, even the depth-averaged eddy diffusivity may still

turn negative over portions of the continental slope (see Fig.

2). We note that recently developed parameterizations of eddy

transfer in the open ocean are formulated in terms of similar

depth-averaged diffusivities (Jansen et al., 2015; Mak et al.,

2017, 2018). In this section, we aim to derive scalings of eddy

buoyancy mixing that transition smoothly from zonally uni-

form continental slopes to open ocean environments, and sub-

sequently evaluate the transferability of these scalings to the

corrugated continental slopes.

3.1. Parameter dependence of eddy buoyancy diffusivity

To assess the effect of mean (retrograde) flow properties on

the cross-slope eddy mixing, one has several options to define

a parameter space, within which three of the non-dimensional

numbers are arguably the most crucial: the local slope parame-

ter,

δloc = |∇Hh| ·
(∫ 0

−|h|
N2

s dz

) / (

n ·
∫ 0

−|h|
∇Hb dz

)

, (11)

the local Richardson number,

Riloc = |h| f 2
0

(∫ 0

−|h|
N2

s dz

) / (

n ·
∫ 0

−|h|
∇Hb dz

)2

, (12)

and the local slope Burger number,

Buloc =
|∇hh|
f0|h|

(∫ 0

−|h|
Ns dz

)

, (13)

where n = −∇Hh/|∇Hh| is the offshore isobath-normal unit vec-

tor. In the SMOOTH simulations, the lateral buoyancy gradient

∇Hb is almost exactly aligned with n (Fig. 1(a)), and we there-

fore have

n ·
∫ 0

−|h|
∇Hb dz ≃

∫ 0

−|h|
|∇Hb| dz ≡

∫ 0

−|h|
M2 dz. (14)

Later in §4 we extend the definitions (11)–(12) to the CORRUG

simulations, in which the mean flows are no longer parallel to

the bathymetry (Fig. 1(b)).

In the modified QG Eady (1949) model, the slope parameter

hinges upon the sign of the lateral PV gradient at the ocean bed,

which determines the coupling of linear baroclinic modes at the

bottom and at the surface (Vallis, 2006). The dynamic meaning

of the slope parameter defined by (11) is much less obvious in

more general cases where interior PV gradients become finite,

but previous studies indicate that a quantitative relation between

δloc and cross-slope eddy diffusivity still exists (e.g. Isachsen

2011; Stewart and Thompson 2013). The Richardson num-

ber is an indicator of baroclinicity of the flow, and has been

used in multiple studies to parameterize eddy buoyancy fluxes

(e.g. Visbeck et al. 1997; Marshall et al. 2012; Bachman and

Fox-Kemper 2013). Finally, recent study of Hetland (2017)

suggests that the slope Burger number is critical in constraining

the eddy growth in prograde fronts, while its role in retrograde

fronts has yet to be determined. It should be noted that any two

of these non-dimensional numbers can be used to approximate

the third (Hetland, 2017),

Buloc · Ri
1/2

loc
∼

[

|∇Hh|Ns

f0

] [

Ns f0

M2

]

= [|∇Hh|]
[

N2
s

M2

]

=
Bottom slope

Isopycnal slope
∼ δloc.

(15)

We also seek to understand the influences of three dimen-

sional quantities on cross-slope eddy mixing: the (topographic)

Rhines scale

LRh =

√

ue

βt

, βt =
f0

|h| |∇Hh|, (16)

the local EKE per horizontal area

〈

1
|h|

∫ 0

−|h| EKE dz

〉

, or equiva-

lently the eddy velocity scale adopted in (16),

ue =

√

2

|h|

∫ 0

−|h|
EKE dz, (17)

and the local eddy potential energy (EPE) per horizontal area

(Aiki et al., 2016),

1

|h|

Nlay−1
∑

i=1

EPEi =
1

|h|

Nlay−1
∑

i=1

1

2
ρ0g′iη

′2
i+1/2

, (18)
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Figure 3: Scatter plots of the depth-averaged eddy buoyancy diffusivity against (a) the local slope parameter, and (b) the local Richardson number. All diagnostics

are zonally averaged. Dark gray markers indicate diagnostics made over the slope, and light gray markers indicate diagnostics made from the peripheral regions of

the slope (see Section 3.1 for definitions of different regions). Selected functional fits have been overlaid to quantify the relations between the physical parameters

and the local eddy buoyancy diffusivity. The independent and dependent variables of the functional fits are represented by x and y, which should not be confused

with the model domain coordinates.

where the subscript i denotes the counting of isopycnal lay-

ers from surface to bottom with its maximum denoted by Nlay,

ηi+1/2 is the isopycnal interface between layers i and i + 1, and

g′
i
= g(ρi+1 − ρi)/ρ0 stands for the associated reduced gravity.

The local EPE can be calculated either via the LAYERS pack-

age in MITgcm (e.g. Mak et al. 2018), or by converting the

diagnostics on a geopotential coordinate system onto isopycnal

coordinates following Young (2012); in this study, we follow

the latter approach by selecting a total of Nlay = 71 isopyc-

nal layers, with buoyancy intervals selected based on the pre-

scribed vertical discretization of the buoyancy field in the north-

ern sponge layer. Previous studies have found these dimen-

sional parameters to be salient in parameterizing eddy effects

in the open ocean (e.g. Eden and Greatbatch 2008; Cessi 2008;

Marshall et al. 2012; Jansen et al. 2015).

We diagnose the non-dimensional numbers (11)–(13), the di-

mensional quantities (16)–(18), and the cross-slope eddy buoy-

ancy diffusivity κθ in portions of the model domain where the

ocean depth lies between 510 m and 3990 m. For simulations

with widened continental slopes, we further constrain the anal-

ysis to the region south of y = 350 km (i.e. at least 100 km

away from the northern sponge layer) to avoid the influence of

the lateral boundaries and the weak topographic PV gradient βt

in nearly flat regions. WS18 has shown (in their Fig. 3) that

potential energy conversion from EKE may occur throughout

the water column between y = 350 km and 450 km due to the

buoyancy restoring at the northern boundary in the reference

run.

These analysis regions, aggregated across all SMOOTH sim-

ulations, yield 1428 latitudinal bands from which to draw di-

agnostics of (11)–(13) and (16)–(18). We then zonally average

and plot these parameters against κθ via gray markers in Fig.

3 and in Appendix B. Diagnostics made within the continen-

tal slope region y ∈ [Ys −Ws,Ys +Ws], which are consistently

between 938 m and 3568 m depths in our simulations, are high-

lighted using a darker gray tone. We stress that although these

controlling parameters were coupled in several ways to param-

eterize baroclinic eddy fluxes in previous studies (e.g. Visbeck

et al. 1997; Spall 2004; Jansen et al. 2015), each of them in iso-

lation does not necessarily have a functional relationship with

the eddy diffusivity.

Fig. 3(a) shows the relationship between the bottom slope

steepness, relative to the isopycnal slope, and the cross-slope

eddy buoyancy diffusivity. Consistent with previous studies

based on primitive equation simulations (e.g. Isachsen 2011;

Stewart and Thompson 2013), cross-slope eddy mixing is in-

creasingly suppressed as δ deviates from 0 toward positive val-

ues. However, in contrast to the linear prediction (Blumsack

and Gierasch, 1972; Mechoso, 1980), no stabilization of the

flow is found for δ > 1. In fact, the cross-slope eddy mixing ap-

pears to increase approximately linearly with δ for δ > 1. The

discrepancy between the linear prediction based on the modi-

fied Eady (1949) or Phillips (1951) model and the non-linear

model results is mainly due to the lack of interior PV gradi-

ent and flow nonlinearity in the former (Trodahl and Isachsen,

2018; Ghaffari et al., 2018).

Many functional forms could be used to fit the relation be-

tween κθ and 〈δloc〉. Favoring simplicity, we use a sum of a

linear function and a reciprocal function,

κθ ∼ γ

[

〈δloc〉 +
1

ϕ 〈δloc〉 + Γ

]

, (19)

as illustrated by Fig. 3(a). Here γ = 2.5 is the estimated slope

of the linear functional part, ϕ = 5 × 10−2 is a constant that ad-

justs the decay rate of the reciprocal functional part, and Γ ≪ 1

denotes a positive constant to accommodate the limit 〈δloc〉 → 0
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(i.e. nearly flat ocean bed case). It should be noted that there is

no theoretical basis for the functional fit (19). Following pre-

vious studies (e.g. Stewart and Thompson 2013), our approach

is entirely empirical. The least-squares error produced by (19)

decreases by a factor of 2 compared to a linear functional fit if

diagnostics from both the continental slope and the open ocean

regions are accounted for. When diagnostics from the continen-

tal shelf are also included, the relation (19) generates a slightly

larger error than a linear fit, partly due to the emergence of

negative eddy diffusivity and local slope parameter. This issue

can be fixed by replacing the reciprocal function in (19) with

an exponential decay. However, our key findings reported in

later sections do not qualitatively depend on such modifications.

Crucially, the mathematically simple form of (19) helps to sim-

plify our analysis contrasted to most other nonlinear functions.

The eddy diffusivity is then predicted to reach its minimum as

〈δloc〉≃ 4.42 ∼ O(1). As the ocean bed becomes steeper, eddy

mixing starts to be constrained by the linear functional part of

(19). For 〈δloc〉 → +∞ (i.e. zero projection of isopycnal slope in

the cross-slope direction), this simple approximation becomes

unbounded. We return to this point and discuss potential regu-

larizations for this issue in §5.

Fig. 3(b) exhibits widespread scatter of the local Richardson

number 〈Riloc〉 against the eddy diffusivity κθ. Further examina-

tion suggests the relation

κθ ∼ γ
〈

10−3Riloc

〉1/2
, (20)

with γ varying from -1 to 350 depending on the simulations and

geographic locations. Similar to (19), the relation (20) is em-

pirical, selected from many possible nonlinear fits. The cases

exhibiting weakly negative values of γ are those dominated by

eddy destratification, which are relatively rare in the SMOOTH

simulations (see §4). Over continental slopes, γ ≃ 75 yields

a good fit for all simulations, with the least-squares error

smaller than from an optimized linear fit by a factor of approxi-

mately 1.85. These results may seem counter-intuitive as higher

Richardson number suggests weaker baroclinicity of the along-

slope flow and thus lower available potential energy reservoir.

In the classical Eady (1949) model, baroclinic mode growth

rate is exactly proportional to f0/
√

Ri (e.g. Pedlosky 1987;

Vallis 2006), suggesting an anti-correlation between κθ and

〈Riloc〉1/2 if the linear modes govern the eddy mixing. Exist-

ing eddy parameterizations also treat the Eady growth rate as a

key parameter (e.g. Visbeck et al. 1997; Marshall et al. 2012).

The relationships between the eddy diffusivity and the other

selected parameters, (13) and (16)–(18), are shown in Appendix

B. Of the potential controlling parameters explored, only the

local slope parameter δloc (in isolation) exhibits a strong func-

tional relation with the eddy diffusivity in both the continen-

tal slope and open ocean environments. Although the lo-

cal Richardson number Riloc constrains eddy buoyancy fluxes

across the continental slope, and has been incorporated in ex-

isting eddy parameterizations (e.g. Visbeck et al. 1997; Mar-

shall et al. 2012; Bachman and Fox-Kemper 2013), the eddy

buoyancy diffusivity cannot be scaled by Riloc alone in the open

ocean environment. Other parameters (in isolation) may ex-

hibit functional relationships with the eddy diffusivity in the

open ocean, but not over the continental slope (see Appendix

B). These findings suggests that existing eddy parameteriza-

tions may be adaptable to continental slopes via the introduc-

tion of a dependence on the local slope parameter, as shown in

the following sections.

3.2. Scaling of eddy mixing via the GEOMETRIC framework

The observation that κθ tends to scale with 〈Riloc〉1/2 (Fig.

3(b)) motivates the application of a recently developed

paradigm of eddy parameterization that combines the square

root of the Richardson number with the total eddy energy,

namely, the GEOMETRIC framework (Marshall et al., 2012;

Bachman et al., 2017; Mak et al., 2017, 2018). Specifically,

Marshall et al. (2012) defined

κGeom = γGeom

Ns

M2
E = γGeom

√
Ri

f0
E, (21)

based on a geometric constraint on the Eliassen-Palm flux ten-

sor in quasi-geostrophic flows. Here γGeom is a non-dimensional

prefactor, whose magnitude is bounded by unity, and E denotes

the sum of the EKE and the EPE per unit mass. In a coarse-

resolution ocean model, if an additional prognostic equation for

the subgrid eddy energy budget is implemented (e.g. Mak et al.

2018), the only free parameter in (21) is γGeom, which contains

the information about the partition between the EKE and EPE,

and the anisotropy of the eddy buoyancy fluxes (Marshall et al.,

2012).

It should be noted that the cross-slope eddy diffusivity can

turn negative, even in a depth-averaged sense, over zonally uni-

form slopes (Fig. 3). This contradicts other eddy parameteri-

zations that permit vertically local destratification of flows by

baroclinic eddies, but ensure net potential energy destruction

across a full water column (e.g. Ferrari et al. 2010). This fur-

ther motivates the application of the GEOMETRIC framework

over steep slopes: the coefficient γGeom may become predomi-

nantly negative across a water column if the relative orientation

of the eddy buoyancy flux to the mean buoyancy gradient is

sufficiently small (Marshall et al., 2012).

Fig. 4(a) demonstrates the performance of the local GEO-

METRIC scaling,

κGeom = γ

√
Riloc

f0
Eloc, (22a)

Eloc =
1

|h|



















∫ 0

−|h|
EKE dz +

Nlay−1
∑

i=1

EPEi



















, (22b)

in quantifying κθ over continental slopes. Here γ = γGeom =

1.08 × 10−2 is a constant that optimizes the linear fit between

the scaling (22a–b) and the diagnosed diffusivities, and Eloc

denotes the depth-averaged total eddy energy per unit mass.

A strong correlation (r2 = 0.87) is found. The prefactor

γ ≃ 1.08 × 10−2 is smaller than proposed by Mak et al. (2018)

for open-ocean applications by a factor of almost 4, reflecting

the much less efficient extraction of the mean-flow energy via
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Figure 4: (a) Scatter plot of the depth-averaged eddy buoyancy diffusivity against the local GEOMETRIC scaling with a constant coefficient chosen to optimize the

linear fit. (b) Illustration of the variation of the local GEOMETRIC prefactor as a function of the local slope parameter, which can be approximated by an analytical

function. (c) Scatter plot of the depth-averaged eddy buoyancy diffusivity against a modified local GEOMETRIC scaling defined via the depth-averaged EKE, with

a constant coefficient chosen to optimize the linear fit. (d) Same as in panel (c) but with the depth-averaged EKE replaced by the depth-averaged EPE. Dark gray

markers indicate diagnostics made across the slope region. Light gray markers in panel (b) indicate diagnostics made from the open ocean and shelf regions (see text

in §3.1 for definitions of these regions). All diagnostics have been zonally averaged. The correlation coefficients quoted in each panel are all statistically significant

at the 1% level. The independent and dependent variables of the functional fits are represented by x and y in panel (b), which should not be confused with the model

domain coordinates.

downgradient eddy buoyancy fluxes over steep slopes (Marshall

et al., 2012; Bachman et al., 2017) and the bulk compensation

between surface-intensified baroclinic instability and bottom-

trapped eddy destratification (WS18).

The transition of the local GEOMETRIC prefactor

γGeom = κθ

/ 〈 √
Riloc

f0
Eloc

〉

(23)

from the continental slopes toward the nearly flat regions can

be quantified via the local slope parameter, and is illustrated

in Fig. 4(b). Approaching the nearly flat regions, the prefactor

ranges from 0 to over 0.1 with a median of approximately 0.04,

consistent with the values adopted in idealized simulations of

the Antarctic Circumpolar Current (Mak et al., 2017, 2018).

Over continental slopes, γGeom tends to converge between 0.01

and 0.02. The weakest mixing is found for 〈δloc〉 between 0.5

and 4.0. A preliminary parameterization of (23) that captures

this trend,

γGeom = γFGeom(δloc), (24a)

FGeom(δloc) = Ψ · tanh (Γ · δloc) +
1

δloc + Γ
, (24b)

is presented in Fig. 4(b), where γ ∼ O(10−2) denotes a con-

stant coefficient that sets the overall magnitude of the GEO-

METRIC prefactor, and FGeom is an empirical function that

measures the variation of γGeom with δloc. Two parameters are

defined in FGeom and summarized in Table 3: Ψ = 1.35 cap-

tures the (re-scaled) GEOMETRIC prefactor over steep slopes,

and Γ = 0.1 controls the asymptotic approach of FGeom to Ψ for

large δloc and avoids FGeom becoming ill-defined as δloc → 0.

Equation (24a) is then bounded by γ/Γ ≃ 0.08 (i.e. twice as

large as the value used by Mak et al. 2018) as δloc→ 0, and

converges to γΨ ≃ 0.01 as δloc→ +∞. Substitution of this pa-

rameterization in place of the constant coefficient in (22) yields

a closer agreement between κGeom and κθ, with their correlation

raised to r2 = 0.92. When the diagnostics from the open ocean
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GEOMETRIC Cross-Front Mixing Length theory

Slope-aware scalings γFGeom(δloc)
√

RilocEloc/ f0 γFCF(δloc)ue|h|/S θ
loc

γFMLT(δloc)ueLRh

Empirical functions FGeom(δloc),

FCF(δloc), and FMLT(δloc) Ψ · tanh (Γ · δloc) + 1
δloc+Γ

Ψ · tanh (Γ · δloc) + 1
2δloc+Γ

δloc +
1

δloc+Γ

Overall magnitude of γ

(cross-slope-averaged) 8.0 × 10−3 8.0 × 10−4 3.3 × 10−3

Selected value of Ψ 1.35 0.50 N/A

Selected value of Γ 0.10 0.10 0.01

Table 3: List of the slope-aware scalings of cross-slope eddy diffusivity proposed in this study. The local slope parameter δloc is given by (11); the local Richardson

number Riloc is given by (12); the eddy velocity scale ue is given by (17); the local eddy energy Eloc is given by (22b); S θ
loc

denotes the local isopycnal slope

projected onto the cross-isobath direction and is approximated by (28b) over alongshore uniform slopes; the empirical functions FGeom, FCF, and FMLT are given

by (24b), (29b), and (46b), respectively.

(both the open ocean and the continental shelf) are included, the

diagnosis-scaling correlation is r2 = 0.61 (r2 = 0.45, not plot-

ted) with a constant prefactor, but reaches r2 = 0.90 (r2 = 0.76)

with the parameterization (24), as illustrated in Fig. 5(a).

Following Bachman et al. (2017), we proceed to investigate

whether the predictive power of the GEOMETRIC scaling sub-

ject to a constant prefactor is constrained by differing eddy en-

ergy types used in (22b). To this end, we recalculate κGeom with

the total eddy energy Eloc in (22a) replaced by either the lo-

cal EKE or the local EPE. Fig. 4(c)–(d) indicates that although

both energy types serve to establish positive correlations be-

tween the GEOMETRIC scaling and the diagnosed eddy dif-

fusivity, the local EPE appears to play a more important role

over steep slopes. This is in contrast with the finding of Bach-

man et al. (2017) that the predictive skill of the GEOMETRIC

formula is independent of the eddy energy type adopted over a

flat-bottomed ocean.

3.3. The Cross-Front scaling of eddy buoyancy transfer

We next formulate an alternative scaling for the cross-slope

eddy buoyancy transfer. Conventional dimensional arguments

suggest that the eddy diffusivity can be defined as the product

of a squared length scale and a inverse time scale (c.f. §1). Here

we use the topographic Rhines scale and the constant Coriolis

frequency to construct our scaling. We stress that these choices

are made based entirely on a variety of trials (not shown), rather

than upon any theoretical basis. Because neither quantity in

isolation has a functional relationship with the eddy diffusivity

over the continental slope (Appendix B), we further affix a local

slope parameter to capture the variation of the eddy diffusivity

over steep slopes shown in Fig. 3(a), and define

κCF = γCFδlocL2
Rh f0. (25)

Here γCF is a non-dimensional coefficient, and the subscript

“CF” stands for “Cross-Front”. This name was motivated by

an alternative writing of (25),

κCF ∼ δloc · L2
Rh · f0

∼ |∇Hh| · N2
s

M2
· ue

βt

· f0

=
f0|∇Hh|
|h| · |h| · N2

s

M2
· ue

βt

= βt · |h| ·
N2

s

M2
· ue

βt

= ue ·
(

N2
s

M2
|h|

)

,

(26)

which is a MLT-like scaling with the characteristic eddy veloc-

ity defined in (17), and the eddy length scale
N2

s

M2 |h| measuring

the horizontal distance required for the tilted isopycnals to span

the entire ocean depth. The rearrangement (26) suggests that

κCF does not explicitly depend on the topographic steepness,

but rather on the isopycnal slope, if γCF is defined as a constant.

The local CF scaling, following (26),

κCF = γ ue|h|
(∫ 0

−|h|
N2

s dz

) / (∫ 0

−|h|
M2 dz

)

, (27)

exhibits a strong correlation (r2 = 0.83) with the diagnosed

cross-slope eddy diffusivity (Fig. 6(a)), where γ = γCF =

4× 10−4 has been chosen to optimize the linear fit. The correla-

tion reduces to r2 = 0.70 if the diagnostics from the open ocean

are included, and to r2 = 0.57 if both the continental shelf and

open ocean portions are accounted for (not shown), which indi-

cates that a constant prefactor is appropriate over steep slopes

but unable to make the scaling transition smoothly from slopes

toward the more flat regions.

The transition of the local CF prefactor,

γCF = κθ

/ 〈

ue

|h|
S θ

loc

〉

, (28a)

S θ
loc =

(∫ 0

−|h|
M2 dz

) / (∫ 0

−|h|
N2

s dz

)

, (28b)
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Figure 5: Scatter plots of depth-averaged eddy diffusivity against the slope-

aware forms of (a) the local GEOMETRIC scaling, (b) the local CF scaling,

and (c) the local MLT-based scaling, with constants γ selected to optimize the

linear fit in each panel. Red markers indicate diagnostics made to the south of

slope regions with shallowest depth bounded by 510 m. Blue markers indicate

diagnostics collected to the north of slope regions with deepest depth bounded

by 3990 m and northernmost location bounded by y = 350 km. Gray markers

indicate diagnostics made across the slope region. The functions FGeom, FCF,

and FMLT are given by (24b), (29b), and (46b), respectively, and summarized

in Table 3. The correlation coefficients quoted in each panel are all statistically

significant at the 1% level.

from the continental slope to the nearly flat regions can be pa-

rameterized in terms of 〈δloc〉 following the approach described

in §3.2, as shown in Fig. 6(b). We propose a functional relation

between the CF scaling prefactor and the local slope parameter

that is similar to (24),

γCF = γFCF(δloc), (29a)

FCF(δloc) = Ψ · tanh (Γ · δloc) +
1

2δloc + Γ
, (29b)

where γ ∼ O(10−3) is a constant that sets the overall magni-

tude of γCF. As in (24b), the parameters in (29b), Ψ = 0.5 and

Γ = 0.1, are selected to approximate the variation of the empiri-

cal function FCF with δloc (see Table 3). Then it follows that that

γCF is bounded by γ/Γ ≃ 8 × 10−3 in the flat bottom limit and

converges to γΨ ≃ 4 × 10−4 over steep slopes. Replacement of

the constant coefficient in (27) with the parameterization (29)

yields a diagnosis-scaling correlation of r2 = 0.86 over steep

slopes, and of r2 = 0.91 (r2 = 0.77) if one includes the diag-

nostics from the open ocean region (both the open ocean and

the shelf regions), as shown in Fig. 5(b).

Next we assess which of the variables that constitute the eddy

length scale are most crucial in predicting the cross-slope eddy

diffusivity when γCF is fixed as a constant. In Fig. 6(c) we plot

a simplified form of the CF scaling,

κCF = γueZs

(∫ 0

−|h|
N2

s dz

) / (∫ 0

−|h|
M2 dz

)

, (30)

with which we maintain the spatially varying isopycnal slope

but replace the ocean depth |h| in (27) with the slope mid-

depth Zs (Table 1). Interestingly, the diagnosis-scaling corre-

lation gets even stronger (r2 = 0.89) compared to the case with

the original local CF form (27). Further replacement of the

local vertical stratification
∫ 0

−|h| N
2
s dz

/

|h| with the cross-slope-

averaged vertical stratification leads to

κCF = γueZsN
2
0

/ (

1

|h|

∫ 0

−|h|
M2 dz

)

, (31a)

N2
0 =

(∫∫

slope

1

|h|

∫ 0

−|h|
N2

s dz dA

) / (∫∫

slope

dA

)

, (31b)

where the subscript “slope” denotes the region over which the

integral is performed. The modification (31) slightly changes

the scatter pattern between the scaling and the diagnosed diffu-

sivity, but not the predictive skill of the CF scaling (Fig. 6(d)).

Equations (31a)–(31b) also indicate that the cross-slope eddy

buoyancy fluxes, Fθ ≃ κCF

(

1
|h|

∫ 0

−|h| M
2 dz

)

, scale only with the

characteristic eddy velocity ue, reminiscent of the empirical

findings by Stewart and Thompson (2016) that the eddy thick-

ness fluxes across the Antarctica continental margin scale with

ue alone (see their Equation 25). If the isopycnal slope quantity

in (27) is substituted by its cross-slope-average, the correlation

between κθ and κCF is diminished (r2 = 0.69, not shown). Main-

taining the spatially varying ocean depth and local vertical strat-

ification while replacing the spatially varying horizontal strati-

fication with its cross-slope-average produces a even lower cor-

relation between the scaling and the diagnosed eddy diffusivity
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Figure 6: (a) Scatter plot of the depth-averaged eddy buoyancy diffusivity against the local CF scaling subject to a constant coefficient chosen to optimize the linear

fit. (b) Illustration of the variation of the local CF prefactor as a function of the local slope parameter, which can be approximated by an analytical function. (c)

Scatter plot of the depth-averaged eddy buoyancy diffusivity against the modified local CF scaling defined by maintaining the spatially varying isopycnal slope but

replacing the ocean depth with the slope mid-depth. A constant coefficient is chosen to optimize the linear fit. (d) Scatter plot of the depth-averaged eddy buoyancy

diffusivity against the modified local CF scaling defined by maintaining the spatially varying horizontal stratification, but replacing the ocean depth and the spatially

varying vertical stratification with the slope mid-depth and the cross-slope-averaged vertical stratification, respectively. A constant coefficient is chosen to optimize

the linear fit. Dark gray markers indicate diagnostics made across the slope region. Light gray markers in panel (b) indicate diagnostics made from the open ocean

and shelf regions (see text in §3.1 for definitions of these regions). All diagnostics have been zonally averaged. The correlation coefficients quoted in each panel are

all statistically significant at the 1% level. The independent and dependent variables of the functional fits are represented by x and y in panel (b), which should not

be confused with the model domain coordinates.

(r2 = 0.41, not shown). Implementation of the CF formula over

continental slopes for parameterization purposes should there-

fore preserve the spatial variation of the local isopycnal slope,

or at least the horizontal stratification.

We note that (26) resembles the eddy buoyancy transfer co-

efficient proposed by Bachman and Fox-Kemper (2013),

κB13 = γRi−0.31ue

(

N2
s

M2
|h|

)

, (32)

which is diagnosed from a set of Eady-like spin-down simu-

lations (see also Bachman et al. 2017). Equation (32) differs

from (26) by a factor of Ri−0.31. Over the continental slope, the

local Richardson number varies between O(10) − O(103) (Fig.

3(b)), leading to the decrease of the predicted eddy diffusivity

via κB13 by a factor of 2-10 compared to κCF. In Fig. 7(a) we

plot the local form of

κB13 = γRi−0.31
loc ue|h|

(∫ 0

−|h|
N2

s dz

) / (∫ 0

−|h|
M2 dz

)

(33)

against κθ with γ = 2.5 × 10−3 chosen to minimize the linear

mismatch. The correlation (r2 = 0.59) between the two quanti-

ties is much lower than the case shown in Fig. 6(a).

By replacing the eddy velocity scale ue in (26) with the mean

thermal wind velocity, one obtains the eddy transfer coefficient

formulated by Fox-Kemper et al. (2008)

κFK08 = γ
N2

s h2

f0
, (34)

which has been implemented to parameterize submesoscale

eddy restratificaiton in the mixed layer in global ocean climate

models (Fox-Kemper et al., 2011). As pointed out by Bachman

et al. (2017), κFK08 does not depend on the eddy energy budget
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Figure 7: Scatter plots of the depth-averaged eddy buoyancy diffusivity against the local forms of the (a) Bachman and Fox-Kemper (2013) scaling and the (b)

Fox-Kemper et al. (2008) scaling. Constant coefficients are selected to optimize the linear fits. Diagnostics are made across the continental slope region and zonally

averaged. The correlation coefficients quoted in each panel are all statistically significant at the 1% level.

due to its differing definition of the characteristic velocity scale.

In Fig. 7(b) we compare the local form,

κFK08 = γ|h|
(∫ 0

−|h|
N2

s dz

) /

f0, (35)

with κθ, where γ = 2 × 10−4 optimizes the linear fit. An almost

identical correlation (r2 = 0.59) compared to the case shown

in Fig. 7(a) is reached between κθ and κFK08. While the weak-

ened correlation between κB13 and diagnostics sources from the

Richardson number-dependent multiplier in (33), it is mainly

the omission of the isopycnal slope quantity (i.e. M2/N2) that

lowers the predictive skill of (35).

3.4. Slope-dependent mixing length theory

Although the original form of the CF scaling (25) incorpo-

rates the local slope parameter δloc, further transformation (26)

frames it as a MLT-based scaling that is relatively insensitive

to topographic steepness over continental slopes (see also Fig.

6(b)). It is then natural to ask whether other MLT-based eddy

parameterizations, most of which do not explicitly incorporate

topographic effects, apply to continental slopes. This ques-

tion is also practical in that modern ocean general circulation

models, such as the latest version of the Modular Ocean Model

(MOM6), have a set of MLT-based eddy parameterizations im-

plemented. Most of these parameterizations depend on a variety

of optional length scales plus a prognostic subgrid EKE budget.

To apply these parameterizations over continental slopes, one

has to first select the most appropriate eddy length scale.

3.4.1. Previous mixing length theory-based scalings

Various studies have proposed that the eddy buoyancy trans-

fer coefficient can be parameterized as

κMLT ∼ uele, (36)

where ue is drawn from the local EKE budget following (17)

and le denotes an eddy length scale to be determined (e.g. Eden

and Greatbatch 2008; Cessi 2008; Jansen et al. 2015). Re-

cently, Jansen et al. (2015) has demonstrated that assigning the

Rhines scale (defined via planetary vorticity gradient) as the

eddy length scale such that

κMLT ∼ ueLRh, (37)

broadly quantifies the eddy buoyancy mixing over a flat-

bottomed ocean via a suite of idealized simulations (see their

Fig. 6).

The eddy length scale has previously been defined as the

“width of the baroclinic zone”, across which baroclinic eddies

were mostly generated (e.g. Visbeck et al. 1997; Bachman and

Fox-Kemper 2013; Jansen et al. 2015). In the context of conti-

nental slope, one choice for the width of the baroclinic zone is

the width of the slope (see Table 1), i.e.,

κMLT ∼ ueWs. (38)

This formulation has been reported to accurately quantify the

cross-slope eddy thickness flux in the Antarctic Slope Front

(Stewart and Thompson, 2016).

Eden and Greatbatch (2008) have advocated to prescribe the

eddy length scale not only by the Rhines scale, but also by the

first Rossby radius of deformation such that

κMLT ∼ ue ·min(Ld, LRh). (39)

This approach was motivated by the observation that eddy mix-

ing is more isotropic (anisotropic) and limited by the deforma-

tion radius (Rhines scale) at mid- (low) latitude (Eden, 2007).

Others have chose to only use the deformation radius when test-

ing eddy parameterizations (e.g. Cessi 2008).
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Figure 8: Scatter plots of the depth-averaged buoyancy diffusivity against MLT-based scalings constructed using (a) the product of the eddy velocity scale and the

topographic Rhines scale, (b) the product of the eddy velocity scale and the slope half-width, (c) the product of the eddy velocity scale and the first Rossby radius

of deformation, (d) the product of the eddy velocity scale and the frictional scale, (e) the Visbeck et al. (1997) variant, and (f) the Stone (1972) variant. All scalings

are subject to constant coefficients chosen to optimize the linear fits. Diagnostics are made across the continental slope region and zonally averaged. Positive

correlation coefficients have been squared and negative ones are shown directly. The p-value corresponding to the correlation coefficient quoted in panel (a) is 0.86.

The correlation coefficients quoted in panels (b)–(f) are all statistically significant at the 1% level.

Eddy growth over a flat-bottomed ocean subject to quadratic

bottom drag and vanishing PV gradient can also be limited by

a frictional scale L f (e.g. Jansen et al. 2015), leading to

κMLT ∼ ueL f , L f =
he

Cd

, (40)

where he denotes the vertical scale of near-bottom flow. Over

topography, he can be identified with the Prandlt e−folding

scale (e.g. Rhines 1970; Treguier and McWilliams 1990; Mer-

ryfield and Holloway 1999; Brink 2016, see also Appendix A),

and is naturally bounded by the ocean depth |h|, i.e.,

he ≡ min





















LJ f0|h|
∫ 0

−|h| Ns dz
, |h|





















, (41)

where LJ ≡ LRh stands for the width of near-bottom jets and has

been defined as the topographic Rhines scale, consistent with

previous studies (e.g. Maltrud and Vallis 1991, 1992; Thomp-

son 2010; WS18). Equations (40)–(41) suggests that the jet

width, which may represent the scale at which nonlinear ed-

dies equilibrate, differs from the frictional scale by a factor of

CdNs/ f0, which is far less than unity across the regions of our

interest with its maximum below 0.08. We thereby speculate

that the eddy growth are much less constrained by the fric-

tional scale than by the topographic Rhines scale over conti-

nental slopes.

Fig. 8(a)–(d) compares κθ with the eddy transfer coefficient

(36) via different choices for the eddy length scale. The corre-

lations are invariably weak or even negative, which may have

been anticipated as no quantitative trend is revealed between

the diagnosed eddy diffusivity and the local topographic Rhines

scale or the local EKE (see Appendix B).

It should be noted that the actual application of the scal-

ing (36) as eddy parameterizations also requires the knowledge

of the subgrid EKE, which is not always available in coarse-

resolution ocean models. We therefore assess two additional

scalings that are independent of the local EKE: one developed

by Visbeck et al. (1997),

κV97 = γ
f0√
Ri

l2e = γ σEl2e , (42)

and the other by Stone (1972),

κS72 = γσmax · λ2|σ=σmax
. (43)

Here γ denotes the constant coefficient to be determined for

each case, σmax is the maximum growth rate of linear baroclinic

waves, and λ|σ=σmax
is the corresponding wavelength. Equation

(42) defines the eddy velocity scale as the product of the eddy

length scale le and the Eady growth rate σE ∼ f0/
√

Ri, whereas

(43) uses the product of the wavelength and growth rate of the

most unstable baroclinic linear mode. Visbeck et al. (1997) as-

signed the width of baroclinic zone as the eddy length scale
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Figure 9: As Fig. 8, but with scalings adapted by δ−dependent prefactors following (45). The correlation coefficients quoted in each panel are all statistically

significant at the 1% level.

and found that a constant prefactor γ = 0.015 in (42) applied

to a range of baroclinic processes. Over steep slopes, however,

we found no optimal length scale for (42) after a series of tests

(not shown). The topographic Rhines scale is thus chosen as a

representative case. Fig. 8(e) shows that the local form of (42),

κV97 = γ
f0√
Riloc

L2
Rh, (44)

is uncorrelated with the diagnosed diffusivity.

Under the Eady (1949) or Phillips (1954) model setup, κS72 is

equivalent to κV97 if the deformation radius is used as the eddy

length scale, since the most unstable mode resulting from the

interacting surface and bottom edge waves has fixed wavelength

proportional to the deformation radius (Vallis, 2006). In prim-

itive equation simulations, however, the most unstable baro-

clinic mode is not necessarily excited by edge wave interac-

tions, and its wavelength has to be diagnosed locally. In ad-

dition, lateral shear of the alongshore flow tends to modulate

the linear wave characteristics (Killworth, 1980). We there-

fore conducted a linear stability analysis following the approach

detailed in §4.4 of WS18 to extract the most unstable modes

whose wavelength is at least half of the deformation radius at

each latitude across the slope region. Expanding the search

range in wavelength does not change the result. Fig. 8(f) shows

that the Stone (1972) scaling is uncorrelated with the diagnosed

eddy diffusivity.

3.4.2. Slope-aware mixing length theory-based scalings

We now adapt these tested MLT-based scalings to a sloping

ocean bed by utilizing an empirical functional relation between

the eddy buoyancy diffusivity and the local slope parameter that

is similar to (19). Our proposed scaling follows

κMLT = γ

(

δloc +
1

δloc + Γ

)

uele. (45)

Here γ is a constant prefactor and Γ ≪ 1 can be adjusted so that

γ/Γ reaches the same order of magnitude as the MLT scaling

coefficient diagnosed over a flat ocean bed (δloc = 0). Equation

(45) differs from (36) by a factor of δloc + 1/(δloc + Γ), which,

as we show in the following, significantly improves its predic-

tive skill. We treat Jansen et al.’s (2015) diagnostics over a flat

ocean bed (summarized in their Fig. 6) as a starting point to

better frame the order of magnitude of Γ.

In Fig. 9(a), we plot the cross-slope eddy diffusivity

κθ against the δ−dependent MLT-based scaling using the topo-

graphic Rhines scale (16) and the eddy velocity (17),

κMLT = γFMLT(δloc) · ueLRh, (46a)

FMLT(δloc) = δloc +
1

δloc + Γ
, (46b)

where γ = 3.3 × 10−3 is selected to optimize the linear fit

between κMLT and κθ, and Γ = 1.0 × 10−2 simplifies (46) to

κMLT = 0.33ueLRh when δloc→ 0 (see Table 3). The prefactor

then reaches the same order of magnitude as that diagnosed by

Jansen et al. (2015). Importantly, the correlation achieved by

κMLT against κθ (r2 = 0.92) is much enhanced compared to the

case shown in Fig. 8(a).

Next we replace the topographic Rhines scale in (46) with the

slope half-width (Table 1) and plot the redefined κMLT against
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κθ in Fig. 9(b). The prefactor γ = 4.0 × 10−4 is again chosen to

optimize the diagnosis-scaling linear fit, which combined with

Γ = 1.0 × 10−2 makes the prefactor asymptote to 4.0 × 10−2

in the flat bottom-limit, consistent with the value diagnosed by

Jansen et al. (2015) when the “baroclinic width” was chosen

as their eddy mixing length. The correlation between κθ and

κMLT (r2 = 0.82) slightly drops compared to the case shown in

Fig. 9(a).

Over steep slopes, the topographic Rhines scale is compara-

ble in magnitude to the first Rossby radius of deformation due

to the suppressed eddy velocity scale and the increase of topo-

graphic PV gradient. In Fig. 9(c), we plot the relationship be-

tween the slope-aware κMLT, with LRh substituted by Ld in (46),

and the diagnosed eddy diffusivity. Here γ = 1.9 × 10−3 has

the same order of magnitude as the prefactor when LRh serves

as the mixing length. However, Γ = 1.0 × 10−3 makes the full

coefficient of κMLT approach O (1) in the flat-bottomed ocean,

similar to the magnitude diagnosed by Jansen et al. (2015). The

correlation is similarly strong (r2 = 0.90) as in the case shown

in Fig. 9(a).

Although we expect that the frictional scale to be less rel-

evant over steep slopes, adopting L f as the mixing length in

(46) and assuming that LJ = LRh in (41) nevertheless yield a

strong correlation between κMLT and κθ (r2 = 0.83), as shown

in Fig. 9(d). The prefactor has again been adjusted to optimize

the diagnosis-scaling linear fit and to account for the magnitude

of the MLT-based scaling reported by Jansen et al. (2015). The

strong correlation does not imply that the eddy mixing is fric-

tionally controlled over steep slopes, but rather that the local

buoyancy frequency

(

∫ 0

−|h| Ns dz

)

/

|h| does not vary significantly

(the variation is within a factor of 2 across the entire channel),

leading to L f ∼ LRh based on (40)–(41).

Fig. 9(a)–(d) indicates that the scaling (45) is insensitive to

the eddy length scale chosen over steep slopes, as long as the

eddy velocity scale ue is used. Implementation of (45) should

therefore prioritize the optimal mixing length scale that makes

the scaling transition smoothly from the slope toward the open

ocean. If the diagnostics from the open ocean (both the shelf

and the open ocean) are included in the comparison, the corre-

lation of the Rhines scale-based κMLT (46) with the diagnosed

diffusivity reduces to r2 = 0.79 (r2 = 0.65), as shown in Fig.

5(c). Defining the frictional length scale, which is partly de-

pendent on the topographic Rhines scale, as the mixing length

in (45) slightly modifies the diagnosis-scaling correlation: the

correlation coefficient is r2 = 0.71 if the open ocean is included

and r2 = 0.52 if both the shelf and the open ocean are included

(not shown). In contrast, neither the deformation radius nor the

slope half-width produces a diagnosis-scaling correlation bet-

ter than r2 = 0.06 if the open ocean diagnostics are included.

Our findings therefore suggest that the Rhines scale is the most

suitable choice for the eddy mixing length, mirroring findings

of Jansen et al. (2015) in the context of a flat-bottomed ocean.

In Fig. 9(e)–(f) we also test the slope-aware forms of the local

Visbeck et al. (1997) scaling

κV97 = γFMLT ·
f0√
Riloc

L2
Rh, (47)

and the local Stone (1972) scaling

κS72 = γFMLT · σmax · λ2|σ=σmax
. (48)

These formulations do not show significant improvements in

predictive skill compared to their slope-unaware counterparts.

Our findings suggest that accurate implementation of the MLT-

based scaling for steep slopes depends crucially on the subgrid

EKE budget.

4. Impact of along-slope topographic variations

§3.2–§3.4 suggest that eddy buoyancy mixing across con-

tinental slopes can be reproduced via the GEOMETRIC scal-

ing, the CF scaling, or the δ−dependent MLT-based scaling

that incorporates the eddy velocity scale ue and the topographic

Rhines scale LRh. While both the GEOMETRIC scaling and

the CF scaling are able to quantify the eddy transfer across

steep slopes with suitably-chosen constant prefactors, they re-

quire δ-dependent prefactors to transition from the slope to

the open ocean. In this section, we investigate the extent to

which these slope-aware scaling frameworks apply to continen-

tal slopes featuring topographic canyons and ridges, over which

standing meanders lead to stronger restratification, and the to-

pographically induced prograde flows tend to penetrate to the

upper ocean (c.f. §2.3).

4.1. Meridional vs cross-isobath eddy mixing

In the context of corrugated continental slope, we face a

choice as whether to compare the scalings with the eddy buoy-

ancy diffusivity directed across meridians (9a) or across iso-

baths (10a). To address this, we first assess the functional

dependence of eddy diffusivity on the two most crucial non-

dimensional parameters over steep slopes: the local slope pa-

rameter and the local Richardson number (c.f. §3.1). There is

some freedom in defining these two parameters in the presence

of canyons/ridges because the mean geostrophic currents do not

follow the isobaths (Fig. 1(b)). One choice would be to com-

pletely neglect the zonal variations in the topography and mean

flow, and define these two parameters via the meridional com-

ponents of the mean buoyancy and bathymetry gradients. How-

ever, the resulting δloc and Riloc exhibit no correlation with the

meridional eddy buoyancy transfer (not shown). Instead, we

use the local slope parameter and the local Richardson num-

ber defined by (11) and (12), respectively. That is, we ignore

the cross-isobath part of the mean flow, and assume that the

eddy buoyancy transfer, either in the meridional direction or in

the cross-isobath direction, is determined by the along-isobath

component of the large-scale geostrophic current.

In Fig 10(a), we compare the zonally averaged slope param-

eter 〈δloc〉 with the meridional eddy buoyancy diffusivity κθ.

Diagnostics have been drawn from three zonal regions across

the channel: (i) the region peripheral to the northern/southern

slope regions with ocean depths between 510 m and 3990 m and

lying south of y = 450 km, (ii) the northern/southern slope re-

gions, and (iii) the central slope region. Diagnostics from these

regions have been plotted with light gray, dark gray, and blue

16



Figure 10: (a) Scatter plot of depth-averaged eddy buoyancy diffusivity in the meridional direction against the zonally averaged local slope parameter in the

CORRUG runs. (b) Scatter plot of depth-averaged eddy buoyancy diffusivity in the cross-isobath direction against the along-isobath-averaged local slope parameter

in the CORRUG runs. (c) Scatter plot of depth-averaged eddy buoyancy diffusivity in the meridional direction against the zonally averaged local Richardson

number in the CORRUG runs. (d) Scatter plot of depth-averaged eddy buoyancy diffusivity in the cross-isobath direction against the along-isobath-averaged local

Richardson number in the CORRUG runs. In panels (a) and (c), light gray markers indicate diagnostics made from the peripheral regions to the north (south) of

the northern (southern) slope regions, dark gray markers indicate diagnostics made from the northern/southern slope regions, and blue markers indicate diagnostics

made across the central slope regions (see text in §2.2 for definitions of these regions). In panels (b) and (d), light gray markers indicate diagnostics made from the

peripheral regions of the slope with ocean depth |h| ∈ [510 m, 938 m] or |h| ∈ [3568 m, 3990 m], and blue markers indicate diagnostics made from the slope region

with ocean depth |h| ∈ [938 m, 3568 m] (see text in §4.1 for definitions of these regions). In panels (c) and (d), logarithmic axes are used to accommodate the wide

range of the local Richardson number. The functional fit from Fig. 3(a) is presented in (a)–(b). The independent and dependent variables of the functional fits are

represented by x and y in all panels, which should not be confused with the model domain coordinates.

markers, respectively. κθ exhibits a much more scattered rela-

tionship with δloc than in the SMOOTH runs, shown in Fig. 3(a).

The simple δ−function fit (19) becomes limited in characteriz-

ing the variation of meridional mixing across corrugated slopes.

Strongly negative diffusivities of O(−100) m2/s emerge on the

peripheries of the continental slope, and slightly negative eddy

diffusivity with negative values of 〈δloc〉 is found in the north-

ern/southen slope regions. The negative values of 〈δloc〉 are due

to stationary recirculations residing over topographic ridges.

In Fig. 10(b), we plot the cross-isobath eddy diffusivity

κiso
θ

defined by (10a) against the local slope parameter averaged

along isobaths,

⌊δloc⌉ |h=h0
=

∮

δloc ds
∮

ds
. (49)

Here ⌊•⌉ denotes the along-isobath-mean operator and the line

integral operator is performed where h = h0. Diagnostics

from the shelf and open ocean regions, defined by |h| ∈ [510

m, 938 m] and |h| ∈ [3568 m, 3990 m] respectively, are plot-

ted with light gray markers, whereas the slope region, defined

by |h| ∈ [938 m, 3568 m], are plotted with blue markers.

Our simulations show that the cross-isobath eddy diffusivity

is in general smaller in magnitude than the meridional one,

consistent with the example shown in Fig. 2. In addition, the

cross-isobath eddy diffusivity appears to be better fit by our

empirically-derived function of δloc (19) than the meridional

eddy diffusivity, indicating that the local slope parameter de-

fined by (11) mainly constrains the cross-isobath, rather than

meridional, component of transient eddy buoyancy fluxes.

In Figs. 10(c) and (d), we compare the relationship between

the local Richardson number and the eddy diffusivity under a

zonal vs along-isobath average, respectively. Over corrugated

slopes, the local Richardson number reaches O(102) − O(107)

due to the stronger restratification and thus weaker baroclinic

shear of the flow. The along-isobath-average calculation pro-

duces a better fit between the square root of the local Richard-
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Figure 11: Scatter plots of the depth-averaged eddy buoyancy diffusivity in the cross-isobath direction derived from the CORRUG runs, against the slope-aware

forms of (a) the local GEOMETRIC scaling, (c) the local CF scaling, and (d) the local MLT-based scaling, with constant coefficients γ selected to optimize the

linear fits. Panel (b) illustrates the variation of the GEOMETRIC prefactor with the local slope parameter, superimposed by identical functional fit presented in

Fig. 4(b). Dark gray markers indicate diagnostics drawn from the slope region defined by ocean depths in the range |h| ∈ [938 m, 3568 m]. Light gray markers

in panel (b) indicate diagnostics drawn from the peripheral regions of the slope, between sea floor depths of |h| ∈ [510 m, 3990 m]. Red (blue) markers indicate

diagnostics drawn from the slope region produced by the CORRUG 200λt12.5Yt (CORRUG 400λt50Yt) run. The functions FGeom, FCF, and FMLT are given by

(24b), (29b), and (46b), respectively, and are summarized in Table 3. The correlation coefficients quoted in each panel are all statistically significant at the 1%

level. The independent and dependent variables of the functional fits are represented by x and y in panel (b), which should not be confused with the model domain

coordinates.

son number

⌊Riloc⌉|h=h0
=

∮

Riloc ds
∮

ds
(50)

and the eddy diffusivity κiso
θ

than that produced by the zonal-

average calculation.

4.2. Scaling cross-isobath mixing over corrugated slopes

In this section, we evaluate the predictive skills of the scal-

ings proposed in §3.2–§3.4 over corrugated slopes. We com-

pare these scalings under an along-isobath-average because our

diagnostics in Fig. 10 indicate that the local eddy diffusivity has

stronger functional relationships with the local slope parame-

ter and the local Richardson number under an along-isobath-

average than under a zonal average. Because the local slope

parameter varies even along the isobaths of a corrugated slope

due to the presence of standing eddies, the δ−dependent prefac-

tors for these scalings are preserved from §3 before the along-

isobath-averages are made.

Fig. 11(a) shows the relationship between κiso
θ

and the slope-

aware GEOMETRIC scaling,

κ
topo

Geom
= γ

⌊

FGeom(δloc)

√
Riloc

f0
Eloc

⌉

, (51)

in which the empirical function FGeom is identical to (24b)

(see Table 3 for selected values of parameters in FGeom), and

γ = 1.02 × 10−2 is a constant chosen to optimize the linear

fit between κ
topo

Geom
and κiso

θ
. The diagnosis-scaling correlation

(r2 = 0.67) is smaller than for the case of zonally uniform

slopes (r2 = 0.92). A fraction of diagnosed diffusivities, such

as those produced by CORRUG 200λt12.5Yt (highlighted with

red markers), and CORRUG 400λt50Yt (highlighted with blue

markers) are particularly poorly captured by (51). Negative val-

ues of κ
topo

Geom
in CORRUG 400λt50Yt indicates the presence of

locally prograde fronts (i.e. δloc < 0) associated with standing

meanders.

In Fig. 11(b) we investigate the factors that contribute to
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the diversion of diagnosed eddy diffusivity from the theoret-

ical prediction by plotting the diagnosed GEOMETRIC pref-

actor against the local slope parameter, as in Fig. 4(b). This

plot shows that the empirical relation between γGeom and δloc in

the SMOOTH simulations approximately applies to the COR-

RUG simulations. However, as the ocean bed becomes steeper,

the diagnosed prefactor exhibits more scatter in the CORRUG

simulations than in the SMOOTH simulations. Specifically, for

〈δloc〉 > 10, the diagnosed GEOMETRIC prefactor ranges be-

tween [0.94, 1.84] in the SMOOTH simulations but between

[0.06, 1.87] in the CORRUG simulations.

In Fig. 11(c) we plot κiso
θ

against the slope-aware CF scaling,

κ
topo

CF
= γ



























FCF(δloc)ue|h|

∫ 0

−|h| N
2
s dz

∣

∣

∣

∣

n ·
∫ 0

−|h| ∇hb dz

∣

∣

∣

∣



























, (52)

in which n = −∇Hh/|∇Hh|, FCF is identical to (29b) (see Table

3 for selected values of parameters in FCF), and γ = 8.9 × 10−4

is selected to optimize the linear fit. The diagnosis-scaling cor-

relation (r2 = 0.73) is slightly stronger than that in Fig. 11(a),

but remains weaker than for the case of zonally uniform slopes

(r2 = 0.86). As in the GEOMETRIC case, the weaker agree-

ment between the diagnosed diffusivity and the scaling (52)

shown in Fig. 11(c) is partly due to the outlying results from

CORRUG 200λt12.5Yt and CORRUG 400λt50Yt.

In Fig. 11(d) we contrast κiso
θ

against the slope aware MLT-

based scaling

κ
topo

MLT
= γ ⌊FMLT(δloc)ueLRh⌉ , (53)

in which FMLT is identical to (46b) (see Table 3 for selected

value of parameter in FMLT), and γ = 4.6 × 10−3 optimizes

the linear fit. The diagnosis-scaling correlation (r2 = 0.72) is

comparable to those produced by the GEOMETRIC and the CF

scalings. The weaker agreement between the diagnosed dif-

fusivity and the scaling (53) contrasted to the SMOOTH case

(r2 = 0.92) is again partly attributed to the outlying results from

CORRUG 200λt12.5Yt and CORRUG 400λt50Yt.

4.3. Cross-slope-averaged scaling of cross-slope eddy mixing

In the flat-bottomed ocean context, Jansen et al. (2015) pro-

posed a parameterization using the bulk-averaged eddy mixing

over an entire baroclinic zone, rather than using horizontally-

local properties. This approach may also be favored over con-

tinental slopes, as topographic corrugation leads to increased

scatter of the diagnosed eddy diffusivity against the scalings

proposed in this study (see Fig. 11). In addition, WS18

have shown that the eddy energy transfer becomes non-local

(e.g. Chen et al. 2014) across steep slopes, and any closure

of the subgrid eddy energy, from which the eddy velocity is

provided, based on the local production/dissipation balance

(e.g. Cessi 2008) may become inaccurate. In Fig. 12, we plot

the diagnosed cross-isobath eddy diffusivity {κiso
θ
} against the

three slope-aware scalings after averaging over the continental

slope regions, defined by ocean depths in the range |h| ∈ [938

m, 3568 m], where {•} denotes the bulk area-mean operator.

Diagnostics from both the SMOOTH (black markers) and the

CORRUG (blue markers) simulations are included. All three

scalings produce strong correlations (r2 > 0.80) with the diag-

nosed diffusivity across our suite of simulations. The bulk eddy

transfer coefficients in the SMOOTH simulations are particu-

larly closely reproduced, with correlations exceeding r2 = 0.89,

and reaching r2 = 0.98 for the MLT case.

5. Discussion and conclusion

Accurate representation of mesoscale eddy effects in coarse-

resolution ocean climate models remains a pressing challenge

for the oceanographic community. Mid-latitude mesoscale ed-

dies over continental slopes, in particular, cannot be resolved

even in eddy-permitting global ocean models (Hallberg, 2013).

Existing approaches of eddy parameterization have mostly been

developed based on the open ocean turbulent properties and are

thus independent of the bottom topography, which may lead to

incorrect water mass formations and adjustment of ocean gen-

eral circulations over continental slopes.

In this article, we have examined three numerically imple-

mentable scalings for eddy buoyancy transfer across retrograde

slope fronts: the GEOMETRIC scaling originally developed by

Marshall et al. (2012), a new Cross-Front scaling derived via di-

mensional analysis, and the mixing length theory (MTL)-based

scaling (Prandtl, 1925). We demonstrate that both the GEO-

METRIC framework and the CF scaling are capable of quan-

tifying the eddy diffusivity over the continental slope, in isola-

tion, following the selection of suitable constant prefactor co-

efficients. However, in order to capture the eddy mixing across

both the continental slope and the open ocean, all three scaling

approaches require the insertion of a prefactor that depends on

the slope parameter δ.

We have shown that by making the prefactor a simple analyti-

cal function of the local slope parameter, each of these scalings

is able to reproduce the depth-averaged eddy mixing over the

slope and in the open ocean (c.f. Fig. 5). However, over conti-

nental shelves, the eddy transfer coefficients are much less well

captured by these scalings. The reason for this is unclear and

must be addressed in future work based on the studies focus-

ing on continental shelves (e.g. Brink 2016). It should be noted

that the continental shelves in our simulations are set to be un-

realistically deep in order to isolate the cross-slope eddy fluxes,

and therefore may have limited applicability to cross-shelf eddy

fluxes.

Table 3 summarizes our proposed slope-aware scalings, with

parameter values chosen based on our cross-slope-averaged cal-

culation (Fig. 12), which maximizes the agreements between

the scalings and the diagnosed eddy diffusivity. The prefactor

for both the GEOMETRIC framework and the CF scaling can

be constructed as the sum of a sigmoid function (e.g. hyperbolic

tangent in this study) and a decay function (e.g. reciprocal func-

tion in this study) of the local slope parameter, which converge

to empirical constants over the flat ocean bed and over steep

slopes. For MLT-based scaling, we propose a linear function

of δloc combined with a decay function. However, this func-

tion becomes unbounded if the isopycnals are completely flat
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Figure 12: Scatter plots of the depth-averaged eddy buoyancy diffusivity in the

cross-isobath direction against the slope-aware forms of (a) the local GEOMET-

RIC scaling, (b) the local CF scaling, and (c) the local MLT-based scaling, with

constant γ selected to optimize the linear fits. Diagnostics are bulk-averaged

across the continental slope region, defined by sea floor depths in the range

|h| ∈ [938 m, 3568 m], in both the SMOOTH and CORRUG runs. Black

(blue) markers indicate diagnostics made from the SMOOTH (CORRUG) sim-

ulations. The functions FGeom, FCF, and FMLT are given by (24b), (29b), and

(46b), respectively, and summarized in Table 3. The correlation coefficients

quoted in each panel are all statistically significant at the 1% level.

over the slope (i.e. δloc→ +∞). For numerical implementation

purposes, one can fix this issue by replacing the linear function

with a nonlinear one that asymptotes to an empirical constant

or decay to zero when the slope parameter crosses a threshold

value. It should be noted that the sign of each slope-aware scal-

ing depends not only on the sign of the local slope parameter,

but also on the specific functional form of its prefactor. A scal-

ing designed for retrograde front (i.e. δloc > 0) may thus stay

positive when the slope parameter turns negative (see Fig. 11).

This issue can be addressed by adding a switch-like heaviside

function of δloc that shuts down the mixing across a retrograde

front when δloc turns negative.

In the context of buoyancy-driven prograde front (i.e. δloc <

0), Spall (2004) has previously proposed a slope-dependent

scaling for the eddy heat flux,

v′θ′ ∼ e−2|δloc | Utw · ∆θ, (54)

where ∆θ denotes the temperature (or buoyancy) difference

across the front, whose spatial span can be approximated by

the slope width. The scaling (54) was constructed to fit the an-

alytical solution of eddy heat fluxes produced by the modified

Eady (1949) model (Blumsack and Gierasch, 1972). Further

rearrangement of (54) leads to

κθ ∼ e−2|δloc | Utw ·Ws, (55)

which constitutes a MLT-based scaling, posed in terms of the

thermal wind velocity and the width of the slope. Spall’s (2004)

results combined with our findings complement existing eddy

parameterizations by incorporating the leading order effects of

bottom topography.

The substantially differing dynamics induced by bottom

canyons/ridges limits the applicability of the slope-aware scal-

ings developed based on eddy dynamics over zonally uniform

slopes. For instance, our proposed scalings conceal the ver-

tical structure of eddy mixing, which may substantially im-

pact the along-slope flow in the presence of topographic cor-

rugations. This is reflected in Fig. 1(c)–(d): even slight bot-

tom corrugation tends to expand the region occupied by to-

pographically induced prograde flows. Notwithstanding these

issues, our recommended slope-aware scalings produce much

stronger correlations with the diagnosed cross-isobath eddy dif-

fusivity over corrugated slopes compared with those between

the topography-independent eddy parameterizations and diag-

nosed eddy transfer coefficients over zonally uniform slopes.

This indicates that adaption of existing eddy parameterizations

via the δ−functions is a promising avenue for future model de-

velopment efforts.

Parameterizing standing eddy effects over large-scale topo-

graphic features remain an open challenge in physical oceanog-

raphy. Though our scalings do not predict the standing eddy

component of cross-slope buoyancy flux, they constitute a sig-

nificant step toward parameterizing the transient component of

cross-slope buoyancy mixing and thus should be tested as pa-

rameterizations in coarse-resolution models. It is particularly

important to investigate whether a coarse resolution model that

can resolve large-scale bathymetric variations, but not transient

eddy generation, will be able to represent the standing eddy

buoyancy fluxes across continental slopes. Such an investiga-

tion may be more pertinent to eddy-permitting global ocean
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models (e.g. Uchida et al. 2017). Indeed, for typical IPCC-

Class Earth System Models with horizontal grid spacing of 1o

or coarser, even the continental shelf/slope itself may be unre-

solved. If eddy-permitting models can indeed reproduce stand-

ing eddy fluxes, a parameterization of the transient eddy buoy-

ancy flux would be the only part that is required to represent the

mesoscale.

To convert our proposed scalings into full closures of tran-

sient eddy buoyancy fluxes, a priori knowledge of the EKE

or the total eddy energy is required. Modern ocean general

circulation models such as the MOM6 are increasingly main-

taining prognostic subgrid EKE or total eddy energy budgets

(e.g. Jansen et al. 2019; Mak et al. 2018). These models will

serve as a natural starting point for testing slope-aware eddy pa-

rameterizations. However, caution must taken, given that most

subgrid eddy energy budgets only reflect open ocean eddy prop-

erties. Over continental slopes, lateral EKE fluxes via anoma-

lous pressure work are dominant in the upper ocean, and EKE

tends to be converted into potential energy near the ocean bed

(WS18), both of which remain poorly constrained by existing

eddy parameterizations (e.g. Eden and Greatbatch 2008; Mal-

trud and Holloway 2008)5. In addition, parameterization of

eddy energy dissipation near topographic features remains a

challenging research topic even for the well-studied open ocean

(e.g. Yang et al. 2018). To accurately apply our proposed scal-

ings, existing formulations of subgrid EKE budgets may need

to be adapted to steep continental slopes.

Though the slope-aware scalings exhibit remarkable skill

in quantifying the depth-averaged cross-slope eddy buoyancy

transfer, our idealized model configuration carries several

caveats. For instance, we did not consider the effects of ex-

ternal buoyancy forcing, which can considerably modulate the

structure of slope fronts (e.g. Stewart and Thompson 2013).

Time-dependent wind forcing can also project onto mesoscale

variability over steep slopes (e.g. Zhai and Greatbatch 2007;

Renault et al. 2016), and the evolution to equilibrium may be

substantially modulated by “eddy memory” (Sinha and Aber-

nathey, 2016; Manucharyan et al., 2017; Manucharyan and

Isachsen, 2019). Tidal flows, which have been completely ne-

glected in this study, may play a critical role in shaping the

shelf break fronts (Brink, 2012, 2013). Our study has focused

on the cross-slope eddy buoyancy transfer, and it remains un-

clear how closely this is related to the isopycnal eddy mixing

(Redi, 1982). In the context of a flat-bottomed ocean, Aber-

nathey et al. (2013) derived an analytical relation (their Equa-

tion (24)) between the GM and the Redi eddy transfer coeffi-

cients. The merits of this relation in inferring the isopycnal dif-

fusivity via the GM transfer coefficient, particularly over con-

tinental slopes, have yet to be investigated. All these issues

remain to be addressed in future investigations.

5Maltrud and Holloway (2008) and related work have proposed to imple-

ment a biharmonic or Laplacian viscosity that forces a mean prograde flow

along the isobaths of a continental slope, thus ensembling the eddy-rectified

flow character. However, this approach is not energetically constrained.
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Appendix A. Vertical structure of eddy mixing

Fig. 13(a) shows the cross-isobath eddy diffusivity of buoy-

ancy averaged along each isobath of the slope regions (|h| ∈
[938 m, 3568 m]) in the SMOOTH Reference and the COR-

RUG 200λt12.5Yt runs as functions of depth. In both sim-

ulations, mixing is surface-intensified and eddies are found

to flux buoyancy up-gradient approaching the sloping ocean

bed. The negative buoyancy diffusivity mirrors the formation of

bottom-trapped prograde flows in Fig. 1(a)–(b). In Fig. 13(b),

we switch the vertical coordinate from depth to the normal-

ized height from the ocean bed by the Prandlt e-folding scale

(e.g.Treguier and McWilliams 1990) defined in (41) with LJ

approximated by the topographic Rhines scale. The exact lo-

cations of sign reversal of buoyancy diffusivity do not follow a

clear trend with the normalized height, but are generally within

πLe from the sloping ocean bed.

Appendix B. Additional parameter dependence of eddy

buoyancy diffusivity

The relation between 〈Buloc〉 and κθ is illustrated in Fig.

14(a). The eddy diffusivity rapidly decreases as the slope

Burger number increases from 0. Over continental slopes, how-

ever, κθ is rather insensitive to 〈Buloc〉. These can be under-

stood via the relationships of 〈δloc〉 and 〈Riloc〉 to the cross-

slope eddy diffusivity. In the nearly flat-bottomed ocean, we

have κθ∼ γ1 〈δloc〉−1 (Fig. 3(a)) and κθ∼ γ2

〈

10−3 Riloc

〉1/2
(Fig.

3(b)), where γ1 ≃ 50 and γ2 ∈ [−1, 350], then (15) leads to

κθ∼ 10−3/4(50γ2)1/2〈Buloc〉−1/2. In Fig. 14(a) we plot the corre-

sponding functional fit for γ2 = 1 (γ2 = 350) in solid (dashed)

line, which captures the rapid decay of eddy mixing with the

slope Burger number. As the ocean bed becomes steeper, we

have κθ∼ γ1 〈δloc〉 (Fig. 3(a)) and κθ∼ γ2

〈

10−3 Riloc

〉1/2
(Fig.

3(b)), then (15) gives 〈Buloc〉 ≃ 0.95 for γ1 = 2.5 and

γ2 = 75, which provides no information about the eddy dif-

fusivity. That is, the eddy diffusivity is almost independent of

the slope Burger number over steep slopes in retrograde fronts.

Fig. 14(b) contrasts the topographic Rhines scale 〈LRh〉 with

the cross-slope eddy diffusivity. We fit a weakly quadratic rela-

tion, which produces a least-squares error slightly smaller than

that generated by an optimized linear fit (by a factor of approx-

imately 1.2) when diagnostics from the continental slope and
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Figure 13: The cross-isobath eddy buoyancy diffusivity across the continental slope regions defined by ocean depths in the range |h| ∈ [938 m, 3568 m] as functions

of (a) depth and (b) normalized height from the ocean bed by the Prandlt e−folding scale defined in (41). Diagnostics are averaged along isobaths. Blue (red)

markers indicate diagnostics from the SMOOTH Reference (CORRUG 200λt12.5Yt) run.

the open ocean are considered. The quadratic approximation

is no better than a linear fit when the continental shelf is also

included. Over the continental slope alone, no clear correlation

between the two quantities is found. Comparing κθ against the

first Rossby radius of deformation, or the Rhines scale normal-

ized by the deformation radius, does not yield further insight

(not shown).

We plot the depth-averaged EKE and EPE against the eddy

diffusivity in Figs. 14(d) and (e), respectively. The two en-

ergy reservoirs are roughly equipartitioned with the local EPE

slightly higher the local EKE. The strength of the cross-slope

eddy mixing does not seem to be controlled by the amount of

eddy energy alone. Indeed, over continental slopes, κθ is gen-

erally below 120 m2/s, while neither the EKE nor the EPE are

generally lower than that in regions away from the slope.
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