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Abstract: Ocean volume and tracer transports are commonly computed on density surfaces1

because doing so approximates the semi-Lagrangian mean advective transport. The resulting2

density-averaged transport can be related approximately to Eulerian-averaged quantities via the3

temporal residual mean (TRM), valid in the limit of small isopycnal height fluctuations. This article4

builds on a formulation of the TRM for volume fluxes within Neutral Density surfaces, [the “NDTRM”,5

1], selected because Neutral Density surfaces are constructed to be as neutral as possible while still6

forming well-defined surfaces. This article derives a TRM, referred to as the “Neutral TRM” (NTRM),7

that approximates volume fluxes within surfaces whose vertical fluctuations are defined directly by8

the neutral relation. The purpose of the NTRM is to more closely approximate the semi-Lagrangian9

mean transport than the NDTRM, because the latter introduces errors associated with differences10

between the instantaneous state of the modeled/observed ocean and the reference climatology used11

to assign the Neutral Density variable. It is shown that the NDTRM collapses to the NTRM in the12

limiting case of a Neutral Density variable defined with reference to the Eulerian-mean salinity,13

potential temperature and pressure, rather than an external reference climatology, and therefore14

that the NTRM approximately advects this density variable. This prediction is verified directly15

using output from an idealized eddy-resolving numerical model. The NTRM therefore offers an16

efficient and accurate estimate of modeled semi-Lagrangian mean transports without reference to17

an external reference climatology, but requires that a Neutral Density variable be computed once18

from the model’s time-mean state in order to estimate isopycnal and diapycnal components of the19

transport.20

Keywords: isoneutral transport; Temporal Residual Mean; overturning circulation; Neutral Density21

1. Introduction22

Accurate quantification of the ocean’s meridional overturning circulation (MOC) is required to23

infer oceanic transport of heat and other tracers around the globe [2,3]. It has been common practice24

for decades to quantify the MOC in some form of density coordinate system [e.g. 4–9]. Because25

flow in the ocean interior is quasi-adiabatic, this approach approximately corresponds to taking a26

semi-Lagrangian mean, which in turn approximates the full Lagrangian-mean transport [10]. In27

comparison to an MOC based on mass fluxes averaged at constant depth, the semi-Lagrangian mean28

transport velocity contains an additional “eddy” transport, essentially a generalized Stokes drift [11].29

This eddy transport is particularly important in the Southern Ocean [12–14], and therefore forms a key30

component of recent conceptual models of the global overturning circulation [15–20].31

The separation of the semi-Lagrangian mean transport into mean and eddy components can be32

made explicit via the Temporal Residual Mean (TRM) formulation, which is valid in the asymptotic33

limit of small isopycnal height fluctuations [10,21,22]. In this article we use “TRM” to refer to the34
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TRM-II [22], but it is straightforward to extend our results to the TRM-I; the distinction between the35

two is discussed by [23]. The TRM relates the eddy component of the transport to correlations between36

the lateral velocity (u) and density (γ) fields, and thereby allows an estimate of the semi-Lagrangian37

mean transport streamfunction to be computed from Eulerian-averaged quantities. The resulting38

TRM streamfunction Ψ advects the density variable γ in the following sense: in the absence of39

non-conservative sources and sinks of γ, the density γ is materially conserved following the transport40

velocity defined by Ψ, up to a consistent asymptotic order in the amplitude of the isopycnal height41

fluctuations [23].42

This article builds upon the Neutral Density Temporal Residual Mean (NDTRM) formulation [1,43

hereafter ST15]. In ST15’s formulation the Neutral Density variable of [24], referred to henceforth as44

γJM97, was the advected density variable. However, the transport streamfunction Ψ was calculated45

from correlations between the lateral velocity, salinity, potential temperature and pressure. This46

approach bears the following advantages: (i) The NDTRM can be applied in regions where potential47

density referenced to any level becomes vertically non-monotonic somewhere in the water column48

(e.g. parts of the high-latitude oceans). (ii) The NDTRM circumvents the computational expense of49

calculating Neutral Density globally at every model time step, as would be required to compute the50

semi-Lagrangian mean transport velocity, either exactly or via the TRM. (iii) More fundamentally,51

isopycnals of Neutral Density are more closely aligned with the local neutral tangent plane, in a52

global sense, than any potential density variable [24]. ST15 compared various formulations of the53

TRM, and verified that higher-order approximations to the NDTRM most closely approximated the54

volume fluxes computed exactly within γJM97 surfaces from numerical model output. The NDTRM55

therefore offers a computationally efficient estimate of isopycnal volume fluxes within surfaces of a56

stably stratified density variable that has been used widely in quantifications of the ocean’s global57

overturning circulation [e.g. 6,25].58

In this article we pursue the related but distinct goal of approximating the semi-Lagrangian59

mean transport using vertical fluctuations defined directly by the neutral relationship [26], which we60

refer to as local Neutral Surfaces. In pursing this goal we make the assumption that it is these local61

Neutral Surfaces that should heave vertically under perfectly adiabatic motions [27,28], and as such62

they are best suited for calculation of the semi-Lagrangian mean transport [10]. The validity of these63

assumptions is discussed further in §5. In §2 we summarize relevant background literature, specifically64

the formulation of the TRM [21,22] and the derivation of the NDTRM by ST15. In §3 we derive a65

form of the TRM, which we refer to as the “Neutral TRM” (NTRM), that approximates volume fluxes66

within local Neutral Surfaces. However, Neutral Surfaces are globally ill-defined [29]. This means67

that isoneutral volume fluxes cannot be associated with a globally-defined, stably-stratified density68

variable [30], which is desireable for quantifying global circulation and water mass transformation69

[6,25,31]. This motivates us to return to the NDTRM, which is associated with a globally-defined70

density variable, and consider the special case of a Neutral Density constructed with reference to the71

Eulerian-mean salinity, potential temperature and pressure. We show that in this case, the NDTRM72

reduces to the NTRM to a consistent asymptotic order in the amplitude of the isopycnal height73

fluctuations. This implies that the NTRM advects a Neutral Density variable defined with respect74

to the Eulerian-mean ocean state, again up to a consistent asymptotic order in the amplitude of the75

isopycnal height fluctuations. In §4 we evaluate our results using idealized numerical simulations, and76

verify that the NTRM and NDTRM more closely approximate volume fluxes within Neutral Density77

surfaces constructed based on the model’s mean state and based on an independent reference dataset,78

respectively. Finally, in §5 we summarize and provide concluding remarks.79

2. Approximating volume fluxes within Neutral Density surfaces80

There is a substantial existing literature on the subjects of Neutral Surfaces and the TRM81

approximation [e.g. 21,22,24,26]. To achieve a self-contained presentation, this section summarizes82

relevant concepts from this literature, and from the derivation of the NDTRM by ST15.83
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2.1. The Temporal Residual Mean (TRM) streamfunction84

The TRM transport is fundamentally related to fluctuations of material or quasi-material surfaces,85

typically defined in terms of a density/buoyancy variable [21,22]. While it is impractical to quantify86

the Lagrangian-mean transport of fluid parcels in the ocean in the most general sense [32], a close87

approximation can be obtained by exploiting vertically stratified, quasi-material surfaces, commonly88

defined via a suitable density or buoyancy variable [23]. Consider a series of vertically monotonic,89

temporally-evolving, quasi-material surfaces identified by a label γ0, currently not assigned any90

physical meaning. We define a streamfunction Ψ at any horizontal point (x0, y0) on surface γ0 as the91

lateral mass flux above that surface,92

Ψ(x0, y0, γ0) =
∫ z=0

z=z0(x0,y0,γ0,t)
u dz, (1)93

where u = (u, v) is the horizontal velocity vector and we have assumed a flat ocean surface (z = 0) for94

simplicity. The overline indicates a time average, but could be interpreted more broadly as an average95

over an ensemble of realizations of the flow [33].96

The TRM approximates the mass flux defined in (1) under the assumption of small fluctuations in97

the quasi-material surfaces, i.e. z0 = z0 + z′0 with z′0 = O(ε) assumed to be asymptotically small. Here98

ε may be interpreted as the magnitude of the surface fluctuation relative to some vertical length scale99

such as the ocean depth H, so ε = z′0/H ≪ 1. Using Taylor expansions of (1), it may be shown [e.g.100

1,22] that Ψ may be approximated in Eulerian coordinates as a sum of mean and “eddy” components,101

defined as102

Ψ(x0, y0, z0) = Ψ + Ψ
⋆, (2a)103

Ψ =
∫ 0

z0

u dz, (2b)104

Ψ
⋆ = −u

′(z0)z′0 −
1
2 uz(z0) z′0

2 +O
(

ε3
)

. (2c)105

106

Here, and henceforth in this manuscript, the rules of Reynolds averaging are assumed to apply unless107

otherwise stated, i.e. • = • and •′ = 0 for any •. Note that Ψ and Ψ
⋆ are streamfunctions in the sense108

that their curl is equal to a non-divergent velocity field.109

To write (2a) in terms of only mean quantities, and therefore to create a useful approximation to110

the ocean’s Lagrangian-mean velocities, we require a suitable approximation to the surface fluctuations111

z′0. Correlations of quantities such as u
′z′0 and z′0

2 are not routinely provided as output from ocean112

models formulated in Eulerian vertical coordinate systems, partly due to the ambiguity in the definition113

of z0, so instead z′0 is typically related to Eulerian fluctuations of thermodynamic variables [e.g. 1,23].114

For a vertically monotonic label γ, we can further Taylor-expand our continuum of labels γ to obtain115

an O(ε2) approximation to z′0 [22,23],116

γ′(z0) = −z′0γz(z0) +O
(

ε2
)

, (3)117

allowing us to express the TRM “eddy” streamfunction in terms of purely Eulerian variables,118

Ψ
⋆(x0, y0, z0) =

u
′γ′

γz
−

1

2

uz

γ2
z

γ′2 +O
(

ε3
)

. (4)119

Note that all variables on the right-hand side are evaluated at the mean surface elevation z0.120

Additionally, note that the O(ε3) error terms on the right-hand side of (4) differ from those on the121

right-hand side of (2c); additional O(ε3) terms have been included in the error term following the122

substitution for γ′ using (3). In the interst of brevity, throughout this article we will write the error123
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terms in terms of their lowest-order dependence on the relevant asymptotically small parameters124

without specifically identifying when the mathematical definition of the error terms has changed.125

In the form of equation (4), the TRM streamfunction is in principle straightforward to calculate126

from ocean model output if we associate γ with, for example, potential density or Neutral Density [24,127

discussed in §2.2]. However, potential density surfaces are not particularly neutral, while the Neutral128

Density variable of [24] is too computationally expensive for practical use in ocean models [1].129

2.2. The Neutral Density Temporal Residual Mean (NDTRM)130

ST15 derived alternative expressions to (3) for the vertical fluctuations (z′0) of isopycnals of a131

Neutral Density variable (γ). These expressions contain no explicit dependence on γ itself, and so132

circumvent the need to explicitly compute a Neutral Density variable in order to construct the TRM.133

Here we briefly summarize the portions of this derivation and the resulting expressions for z′0 required134

in §3.135

The Neutral Density variable of [24] is assigned based on geographically distributed reference136

casts. Each reference cast is pre-labeled with Neutral Density γ as a function of depth, such that the137

cast potential temperature, salinity and pressure may be written as θc(γ), Sc(γ) and pc(γ), respectively.138

To assign a Neutral Density label to a given point in space and time, the potential temperature (θ0),139

salinity (S0) and pressure (p0) at that point are compared with a nearby reference cast. Specifically, the140

assigned value of γ is that which satisfies the “discrete neutral relation”, which ST15 wrote as141

(Sc(γ)− S0) βm − (θc(γ)− θ0) αm = O(∆3). (5)142
143

This relation states that water parcels with properties (S0, θ0, p0) and (Sc(γ), θc(γ), pc(γ)) would have144

equal densities if both were moved adiabatically and isentropically to the mid-point pressure between145

the two parcels. Here βm and αm are short-hands for146

βm ≡ β(Sm, θm, pm), αm ≡ α(Sm, θm, pm), (6)147

i.e., the saline contraction and thermal expansion coefficients evaluated at the thermodynamic148

mid-point (Sm, θm, pm), which is defined as149

Sm(γ) ≡ (S0 + Sc(γ))/2, (7a)150

θm(γ) ≡ (θ0 + θc(γ))/2, (7b)151

pm(γ) ≡ (p0 + pc(γ))/2. (7c)152
153

The small parameter ∆ measures deviations of the properties (S0, θ0, p0) from the mid-values154

(Sm, θm, pm). See [1] for further details on the definition of ∆ and the asymptotic derivation of (5).155

To derive an expression for the vertical fluctuations of a Neutral Density surface, ST15 considered156

the semi-Lagrangian evolution of the thermodynamic properties on such a surface, i.e. S0 = S(z0(t), t),157

θ0 = θ(z0(t), t), and p0 = p(z0(t), t). They then posed Taylor expansions of (5) in terms of ε and ∆, e.g.158

S(z0(t), t) = S(z0, t) + Sz(z0, t)z′0 + S′(z0, t) +O
(

ε2
)

. (8)159

where S′(z0, t) = S(z0, t)− S(z0, t) is the Eulerian fluctuation of the salinity at z = z0.160

In this article we restrict our attention to the Boussinesq case for simplicity. This effectively161

corresponds to replacing p0, pc and pm by z0, zc and zm, where zc is the depth of the Neutral Density162
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label γ on the reference cast and zm = 1
2 (z0 + zc). In this case, the highest-order NDTRM approximation163

to z′0 (the “NDTRM2” of ST15) is164

165

z′NDTRM2

{
− Sz β̂m + θz α̂m +

(
Sc − S

)
[

1
2 Sz

∂β̂m

∂Sm
+ 1

2 θz
∂β̂m

∂θm
+ 1

2

∂β̂m

∂zm

]
166

−
(
θc − θ

) [
1
2 Sz

∂α̂m

∂Sm
+ 1

2 θz
∂α̂m

∂θm
+ 1

2

∂α̂m

∂zm

] }
167

= −

{
−S′ β̂m + θ′ α̂m +

(
Sc − S

)
[

1
2 S′ ∂β̂m

∂Sm
+ 1

2 θ′
∂β̂m

∂θm

]
−
(
θc − θ

) [
1
2 S′ ∂α̂m

∂Sm
+ 1

2 θ′
∂α̂m

∂θm

] }
168

+O
(

∆
3, ε2

)
. (9)169

170

Here we use shorthand notation for the Eulerian-mean salinity and potential temperature at constant171

height,172

S(z0) ≡ S(z0, t), θ(z0) ≡ θ(z0, t), (10)173

and for the haline contraction and thermal expansion coefficients evaluated as functions of174

Eulerian-mean properties,175

β̂m ≡ β
(
Sm, θm, zm

)
, α̂m ≡ α

(
Sm, θm, zm

)
. (11)176

Equation (9) approximately relates the Neutral Surface height fluctuations to Eulerian fluctuations of S177

and θ, in analogy with (3). By excluding terms from (9), ST15 derived lower-order approximations to178

z′0, referred to as the “NDTRM1”,179

z′NDTRM1 = −
S′ β̂m − θ′ α̂m

Sz β̂m − θz α̂m

+O
(

∆
3, ε2, ε∆̃

)
, (12)180

and “NDTRM0”181

z′NDTRM0 = −
S′ β̂ − θ′ α̂

Sz β̂ − θz α̂
+O

(
∆

3, ∆̃
2, ε2, ε∆̃

)
, (13)182

where we define183

β̂ ≡ β
(
S, θ, z0

)
, α̂ ≡ α

(
S, θ, z0

)
(14)184

in analogy with (11). For brevity we omit complete expressions for the NDTRM streamfunctions,185

derived by substituting (9)–(13) into (2a), and a discussion of the evaluation of the “cast” terms Sc and186

θc; we refer the reader to ST15 for information on such specifics of the NDTRM.187

These expressions differ from those given by ST15 via the introduction of an additional small188

parameter, ∆̃, that measures deviations of the Eulerian mean properties, S and θ, from the cast189

properties, Sc and θc. Thus, conceptually, the three small parameters in (9)–(13) are related via190

∆ ∼ ∆̃ + ε.191

3. Approximating volume fluxes within local Neutral Surfaces192

The Neutral Density variable of [24] (γJM97) was formulated with the aim of obtaining a193

density-like variable whose surfaces lie as parallel as possible to the local neutral tangent plane194

everywhere in the ocean. However, due to the ocean’s equation of state, is not possible to construct195

such a variable exactly [29,30]. Thus in general the vertical fluctuations of Neutral Density surfaces196

differ from from fluctuations of local Neutral Surfaces [34]. In §1 we posited that local Neutral Surfaces197

are best suited to estimating semi-Lagrangian mean transport, and therefore also to formulating198

the TRM, because adiabatic flows are constrained to follow these surfaces. The validity of these199

assumptions is discussed further in §5.200
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In this section we aim to formulate a TRM that approximates fluxes along local Neutral Surfaces201

as closely as possible (the NTRM). We first derive an approximation to the vertical fluctuations of202

local Neutral Surfaces, denoted z′NS, for comparison with the NDTRM approximations to z′0 given in203

§2. This approximation alone yields an incomplete TRM because the resulting streamfunction (2a) is204

not associated with a globally-defined set of surfaces (i.e. γ). To circumvent this issue we consider a205

Neutral Density variable γmean whose reference dataset (i.e. Sc, θc and pc) is chosen to be the local206

Eulerian-mean thermodynamic properties (i.e. S, θ and z). For such a Neutral Density variable the207

NDTRM reduces to the NTRM, up to the same asymptotic order in ε, which implies that the NTRM208

does in fact advect a globally-defined density variable, γmean. We also show that the NTRM coincides209

with a TRM derived based on fluctuations of surfaces of locally-referenced potential density, up to the210

same asymptotic order in ε.211

3.1. Vertical fluctuations of local Neutral Surfaces212

Consider a local Neutral Surface with instantaneous height z = z0(t) at a fixed horizontal location213

(x0, y0). To simplify our presentation we will drop all dependence on horizontal location in what214

follows. We define the time-evolution of z0(t) via the semi-Lagrangian neutral relationship [26],215

β δS(z0(t), t)− α δθ(z0(t), t) = 0, (15)216

where δS and δθ denote infinitesimal changes in the salinity and potential temperature on the surface.217

Both β and α are themselves evaluated at the local salinity S(z0(t), t), potential temperature θ(z0(t), t)218

and pressure p(z0(t), t). Dividing by an infinitesimal unit of time δt, equation (15) may be expanded219

to describe the time evolution of z0,220

[
β

∂S

∂z
(z0, t)− α

∂θ

∂z
(z0, t)

]
dz0

dt
= −

[
β

∂S

∂t
(z0, t)− α

∂θ

∂t
(z0, t)

]
. (16)221

We now use (16) to derive a relationship between the Neutral Surface height fluctuations z′0 =222

z0(t)− z0 and the Eulerian fluctuations of S and θ. Note that fluctuations of S and θ may not only223

be associated with vertical heaving of Neutral Surfaces; they may also result from lateral stirring224

of property gradients along Neutral Surfaces. To simplify the presentation we assume that the225

magnitudes of both vertical heaving-induced and lateral stirring-induced property fluctuations are226

small and characterized by the same small parameter ε. A caveat to this assumption is that even227

outside of the ocean’s surface and bottom boundary layers there may be a non-negligible influence of228

surface buoyancy fluxes [35]. For further discussion of these points and a rationalization of the small229

parameter ε, the reader is referred to ST15.230

By posing Taylor expansions of β and α as e.g.231

β (S(z0(t), t), θ(z0(t), t), z0(t)) = β
(
S(z0), θ(z0), z0

)
+O(ε) = β̂ +O(ε), (17)232

we can approximate (16) as233

[
β̂

∂S

∂z
(z0, t)− α̂

∂θ

∂z
(z0, t)

]
dz′0
dt

= −

[
β̂

∂S′

∂t
(z0, t)− α̂

∂θ′

∂t
(z0, t)

]
+O

(
ε2
)

. (18)234

Finally, integrating (18) with respect to t yields an expression for the local Neutral Surface height235

fluctuation, which we denote as z′NS, in terms of S′ and θ′,236

(
β̂

∂S

∂z0
− α̂

∂θ

∂z0

)
z′NS = −

(
β̂ S′ − α̂ θ′

)
+O

(
ε2
)

. (19)237
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Note that the constant of integration vanishes between (18) and (19) because by definition, z′0 = S′ =238

θ′ = 0. Substituting (19) into (2a)–(2c) yields the following expression for the NTRM streamfunction,239

240

Ψ(x0, y0, z0) =
∫ 0

z0

u dz+
β̂ u

′S′ − α̂ u
′θ′

β̂ ∂z0
S − α̂ ∂z0

θ
−

1

2

uz(z0)(
β̂ ∂z0

S − α̂ ∂z0
θ
)2

(
β̂ 2S′2 − 2β̂α̂S′θ′ + α̂2θ′2

)
+O

(
ε3
)

.

(20)

241

242

Note that in applying (20) we are free to select z0, for example to coincide with a model vertical grid243

level. Equation (19) then approximates the vertical fluctuations of a local Neutral Surface z0(t) whose244

mean elevation is z0, and (20) approximates the transport above z = z0.245

3.2. Connection to the Neutral Density Temporal Residual Mean (NDTRM)246

While the NTRM streamfunction (20) approximates the semi-Lagrangian mean transport, in247

isolation it does not quantify isopycnal/diapycnal fluxes because we have not yet associated it with a248

globally-defined set of surfaces (i.e. γ). It therefore does not advect a density variable, and the fluxes249

cannot be partitioned into adiabatic and diabatic components [e.g. 23]. We therefore now consider250

whether the NDTRM, which is associated with a globally-defined density variable (e.g. γJM97), can be251

adapted to more closely approximate the fluxes within local Neutral Surfaces.252

We first note that there is a close similarity between our equations for the vertical fluctuations of253

local Neutral Surfaces, (19), and the vertical fluctuations of Neutral Density surfaces, (9)–(13). Indeed,254

(19) is identical to the lowest-order form of the NDTRM, the NDTRM0 (13), except for the differing255

asymptotic order of the error terms,256

z′NDTRM0 = z′NS +O
(

∆
3, ∆̃

2, ε∆̃, ε2
)

. (21)257

In other words, there are O(∆3), O(∆̃2) and O(ε∆̃) terms that appear explicitly on the right-hand sides258

of (9) and (12), and these terms allow z′NDTRM2 and z′NDTRM1 to more closely approximate Neutral259

Density surface fluctuations than z′NDTRM0. However, by treating these O(∆3), O(∆̃2) and O(ε∆̃) terms260

as error terms in (13) we actually obtain a closer approximation of local Neutral Surface fluctuations261

(i.e. of (19)).262

Motivated by this observation, we now seek a hypothetical Neutral Density variable that263

eliminates the O(∆2), O(∆̃2) and O(ε∆̃) terms in the NDTRM. This is achieved by constructing264

a Neutral Density variable, referred to as γmean, using the Eulerian-mean thermodynamic properties265

in place of the reference dataset,266

(Sc(γ), θc(γ), zc(γ)) →
(

S(zr(γ)), θ(zr(γ)), zr(γ)
)

. (22)267

Here we have implicitly assumed that the local water column has been pre-labeled with γ based on268

the Eulerian-mean thermodynamic properties, and the reference elevation zr(γ) is the elevation in this269

water column that has been labeled with Neutral Density γ. The isopycnal fluctuation z = z0(t) is270

therefore defined by the discrete neutral relation (5) in the form271

(
S(zr(γ))− S(z0(t), t))

)
βm −

(
θ(zr(γ))− θ(z0(t), t)

)
αm = O(∆3). (23)272

273

Here βm and αm are defined as in (6), but with the thermodynamic mid-point defined as274

Sm(z0(t), t, γ) ≡
[
S(z0(t), t) + S(zr(γ))

]
/2, (24a)275

θm(z0(t), t, γ) ≡
[
θ(z0(t), t) + θ(zr(γ))

]
/2, (24b)276

zm(t, γ) ≡ (z0(t) + zr(γ))/2. (24c)277
278
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Note that the transformation defined by (22) and (24a)–(24c) does not immediately eliminate the

O(∆2), O(∆̃2) and O(ε∆̃) terms in the NDTRM formulae (9), (12) and (13). Instead, this transformation

implies a modified interpretation of ∆ and ∆̃. We now define ∆̃ as a measure of the difference between

the mean isopycnal elevation z0 and the mean mid-point elevation zm, or equivalently between z0 and

zr, compared to a dynamical scale height H, for example the ocean depth. Via Taylor expansions of

S(z0) and θ(z0), e.g.,

S(z0) = S(zr) + (z0 − zr)
∂S

∂z0
(zr) +O

(
∆̃

2
)

(25)

it follows that ∆̃ also measures deviations of S and θ from Sm and θm, or equivalently from S(zr(γ))279

and θ(zr(γ)). It then follows from (8) that again ∆ ∼ ∆̃ + ε, where ∆ measures differences between280

(S(z0(t), t), θ(z0(t), t), z0(t)) and (Sm(z0(t), t, γ), θm(z0(t), t, γ), zm(t, γ)).281

We have now established that the transformation described by (22) and (24a)–(24c) leaves the282

NDTRM formulae (9), (12) and (13) largely unchanged, but modifies the interpretation of the O(∆2),283

O(∆̃2) and O(ε∆̃) error terms. To approach the NTRM, we now demonstrate that284

∆̃ ∼ ε. (26)285
286

This implies that the difference (∆) between the “parcel” properties on the heaving Neutral Density287

surface and the properties of the reference “cast” (consisting of the Eulerian-mean thermodynamic288

properties) necessarily scales with the amplitude (ε) of the isopycnal height fluctuations in the limit289

ε → 0. To derive (26), we first note that the reference elevation must approach z0 in the limit of290

vanishingly small ε, i.e. zr(γ) → z0 as ε → 0, because in this limit z0(t) → z0, and the (stationary)291

isopycnal must satisfy the neutral relation with itself. We therefore write zr = z0 + δzr, where292

δzr = O(∆̃) by definition, and seek a relationship between δzr and ε by posing a Taylor expansion of293

(23) in terms of ε and ∆̃. First, we note that the midpoint thermodynamic properties can be written as294

Sm = S +O(ε, ∆̃), θm = θ +O(ε, ∆̃), zm = z0 +O(ε, ∆̃), (27)295
296

where we have moved all terms in S′, θ′ and z′0 into the error terms on the right-hand sides of these297

equations. We can write βm and αm as298

βm = β̂ +O(ε, ∆̃), αm = α̂ +O(ε, ∆̃), (28)299

where β̂ and α̂ are defined as in (14). Substituting (27) and (28) into (23), Taylor expanding S(zr(γ))300

and θ(zr(γ)) in terms of δzr, and Taylor expanding S(z0(t), t) and θ(z0(t), t) as in (8), we obtain301

δzr

(
β̂

∂S

∂z0
− α̂

∂θ

∂z0

)
= O

(
∆

3, ε, ε∆̃, ∆̃
2
)

. (29)302

303

Noting again that the left-hand side of (29) is O(∆̃) by definition, we conclude that δzr = O(ε) and304

that (26) holds.305

Finally, we combine the transformation defined by (22) and (24a)–(24c) with the asymptotic306

relationships (27), (28) and (26) to obtain the following transformation of the variables in (9), (12) and307

(13):308

∆ → ε, ∆̃ → ε, (30a)309

α̂m → α̂ +O(ε), β̂m → β̂ +O(ε), (30b)310

Sc → S +O(ε), θc → θ +O(ε), (30c)311

Sm → S +O(ε), θm → θ +O(ε), zm → z0 +O(ε). (30d)312
313
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Substituting (22)–(30c) into (9)–(13), we find that all forms of the NDTRM collapse to the NTRM, to a314

consistent asymptotic order in ε,315

z′NDTRM2 = z′NS +O
(

ε2
)

, (31a)316

z′NDTRM1 = z′NS +O
(

ε2
)

, (31b)317

z′NDTRM0 = z′NS +O
(

ε2
)

. (31c)318

319

This implies that, to a consistent order in ε, the NTRM advects a Neutral Density variable γmean
320

constructed via the discrete neutral relation (5), using the Eulerian-mean thermodynamic properties321

(S, θ, z0) as the reference dataset.322

3.3. Equivalence to fluctuations of locally-referenced potential density surfaces323

We now show that our equation (19) for the vertical fluctuations of Neutral Surfaces also coincides324

with the fluctuations of surfaces of locally-referenced potential density, to the same order of accuracy in325

ε. [36] used a TRM based on locally-referenced potential density fluctuations, but did not demonstrate326

its equivalence to fluctuations of local Neutral Surfaces.327

We define locally-referenced potential density σz0
as the density referenced to the mean height z0,328

σz0
(z0(t), t)

de f
= ρ (S(z0(t), t), θ(z0(t), t), z0) . (32)329

Here ρ is the in situ density and z0(t) is the instantaneous height of the σz0
surface whose mean depth330

is z0. Below we identify this σz0
surface to a consistent order of asymptotic approximation in the331

amplitude of the surface height fluctuation, ε.332

Posing Taylor expansions of S and θ following (8), we may expand (32) as333

334

σz0
(z0(t), t) = ρ

(
S(z0), θ(z0), z0

)
[

1 +

(
S′(z0, t) + z′0(t)

∂S

∂z
(z0, t)

)
β
(
S(z0), θ(z0), z0

)
335

−

(
θ′(z0, t) + z′0(t)

∂θ

∂z
(z0, t)

)
α
(
S(z0), θ(z0), z0

)
]
+O

(
ε2
)

. (33)336

337

Taking the mean of (33) yields an expression for the semi-Lagrangian-mean locally-referenced potential338

density339

σz0
(z0(t), t) = ρ

(
S(z0), θ(z0), z0

)
+O

(
ε2
)

. (34)340

As z0 is defined by a surface of constant locally-referenced potential density, it follows that341

σz0
(z0(t), t) ≡ σz0

(z0(t), t). (35)342

Substituting (35) and (34) into (33) eliminates the first two terms in (33) to a consistent order of

approximation in ε, and thus (33) reduces to

z′LRPD = z′NS +O
(

ε2
)

, (36)

where z′LRPD denotes vertical fluctuations of the locally-referenced potential density surface. Therefore,343

to the same asymptotic order of approximation in ε, the NTRM estimate of isopycnal height fluctuations344

also coincides with vertical fluctuations of locally-referenced potential density surfaces.345
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Figure 2. Time-/alongshore-mean (a) γmean, (b) γJM97, (c) salinity and (d) potential temperature in the

bottom-most model grid point, i.e. in the layer of dense water that descends down the continental

slope [42], as a function of distance from the shore. This plot illustrates that the use of an independent

reference dataset leads to a spurious local minima, e.g. around y = 200 km, in γJM97. These are absent

in γmean, indicating that it more closely tracks Neutral Surfaces. The rapid density variations around

y = 100 km are due to “steps” in the model’s geopotential-coordinate representation of the continental

slope.

sea ice heat and salt exchanges [see 42], a constant input of salt over the southernmost 50 km of the363

model domain, and restoring toward profiles of θ and S derived from hydrography within a sponge364

layer covering the northernmost 50 km of the domain. The model’s horizontal grid spacing is around365

1 km, sufficient to resolve the eddy field [41], and the vertical grid consists of 53 vertical levels with366

spacings increasing from around 13 m at the surface to around 100 m at the sea floor. The analysis367

conducted here uses 5 years of daily model snapshots from a period in which the simulation had368

reached statistically steady state.369

4.2. Constructing Neutral Density from the model’s mean state370

To test the NTRM we must first construct γmean, i.e. for each time tn and model grid location371

(xi, yj, zk) we must assign Neutral Densities γmean(xi, yj, zk, tn), where i = 1 . . . Nx, j = 1 . . . Ny,372

k = 1 . . . Nz, and n = 1 . . . Nt are gridpoint indices. Similar to the procedure laid out by [24], we373

require a dataset to which the instantaneous model stratification can be referred in order to assign374

a γmean value to each grid point. In [24], this dataset was the hydrographic climatology of [45] and375

a corresponding set of neutral density labels on a coarse global grid. Similarly, for the purpose of376

constructing γmean the reference dataset is the model’s time-mean hydrography, S(yj, zk) and θ(yj, zk)377

(see Fig. 1(a–b)), and a corresponding set of neutral density labels γmean
ref (yj, zk). Note that the reference378
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dataset is approximately independent of x due to the zonally symmetric model geometry and forcing.379

The approximate two-dimensionality of the time-mean hydrography also implies that the neutral380

helicity of the reference dataset is zero [29]. Taken together with the simply connected model domain,381

this implies that Neutral Surfaces are well defined [46].382

We now outline the procedure for labeling the reference dataset with γmean
ref and assigning γmean

383

values to instantaneous model output. This procedure closely follows that described by [24], to which384

the reader is referred for more specific details of the algorithm. We first labeled the northernmost385

model water column, γmean
ref (yNy , zk), by setting it equal to γJM97(yNy , zk). Here γJM97 was calculated386

from the hydrographic measurements used to restore the model stratification in the offshore sponge387

layer, taking the model domain to lie along a slice between (61W,67S) at y = 0 and (50.6W,67S) at y =388

450 km [1]. We then iterated southward through the model water columns, assigning the jth column,389 {
γmean

ref (yj, zk) | k = 1 . . . Nz

}
, from the (j + 1)th column using the form of the discrete neutral relation390

(5) given by [24] and linear vertical interpolation. For grid points in the jth column that were denser391

or lighter than any grid point in the (j + 1)th water column, we linearly extrapolated γmean
ref (yj, zk)392

vertically. Note that in our vertical density extrapolation we assigned the vertical gradient of γmean
ref393

to be equal to the vertical gradient of locally-referenced potential density, whereas in this region the394

vertical gradient of γJM97 was typically assigned to be twice the vertical gradient of locally-referenced395

potential density (the “b-factor” of [24]). This choice of extrapolation was made for simplicity and396

should not influence our results, though a consequence is that γmean spans a smaller range of density397

values than γJM97 in this model domain.398

To calculate γmean(xi, yj, zk, tn) for a given model gridpoint with salinity S(xi, yj, zk, tn)399

and potential temperature θ(xi, yj, zk, tn), we construct continuous functions of z, S(yj, z) and400

θ(yj, z), via linear interpolation. We then find a depth zr such that (S(yj, zr), θ(yj, zr), zr)401

and (S(xi, yj, zk, tn), θ(xi, yj, zk, tn), zk) satisfy the discrete neutral relation. We then assigned402

γmean(xi, yj, zk, tn) by linear vertical interpolation of γmean
ref (yj, zk) to the point zref. Note that our403

algorithm for assigning γmean differs slightly from the algorithm of [24] for assigning γJM97: to assign404

γmean we refer each gridpoint to a horizontally local “cast” consisting of the Eulerian-mean model405

properties, whereas the algorithm of [24] refers each gridpoint to a four geographically local reference406

casts. Additionally, we use linear vertical interpolation to assign a γJM97 value, whereas the algorithm407

of [24] uses quadratic interpolation.408

In Fig. 1(a–b) we plot the time- and zonal-mean potential temperature and salinity, θ and S, that409

serve as the reference dataset in the construction of γmean. The mean state is qualitatively similar410

to hydrographic measurements from the western Weddell Sea [41], and exhibits a layer of relatively411

cold, fresh, shelf-sourced bottom water that descends down the continental slope. Fig. 1(c) shows412

the time and zonal mean of the Neutral Density constructed from the model’s mean state, i.e. γmean,413

while Fig. 1(d) shows the difference between γJM97 and γmean. As expected, γJM97 takes lower values414

than γmean in waters lighter than the lightest water at the northern boundary, and higher values than415

γmean in waters denser than the densest water at the northern boundary, due to the procedure for416

extrapolating γmean
ref . Some variations are visible across the continental slope due to the presence417

of alternating along-slope jets that slowly drift offshore, and which do not perfectly cancel under418

integration over the 5-year analysis period [42].419

We anticipate that γmean should be more closely aligned with local Neutral Surfaces than γJM97. To420

illustrate this, in Fig. 2 we plot the γmean, γJM97, σ0, θ and S at the sea floor as a function of cross-slope421

distance, i.e. within the dense outflowing layer of shelf-sourced bottom water. Fig. 2 shows that γJM97
422

exhibits spurious fluctuations and local minima, on the order of 0.01 kg m−3, that are absent in γmean.423

For example, around y = 200 km there are negligible variations in θ and S, indicating that the sea floor424

should coincide with a neutral surface. This is reflected in γmean, but not in γJM97, which exhibits a425

spurious local minimum at this point. We conclude that iso-surfaces of γmean are more closely aligned426

with local Neutral Surfaces than γJM97, though the spurious variations in γJM97 are nonetheless quite427

small compared to the domain-scale ranges of γmean and γJM97.428
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Figure 3. Comparison of transports calculated via TRM approximations vs. diagnosed directly from

model output by averaging within density surfaces. Transports are quantified via streamfunctions

with blue colors corresponding to counter-clockwise circulation and black contours shown at intervals

of (a) 0.025 Sv and (b–d) 0.01 Sv. (a) Diagnosed transport within γmean surfaces (ψmean), (b) difference

between diagnosed transports within γJM97 surfaces and γmean surfaces (ψJM97 − ψmean), (c) difference

between NTRM-estimated transport within γmean surfaces and diagnosed transport within γmean

surfaces (ψNTRM − ψmean), (d) difference between NDTRM-estimated transport within γn surfaces and

diagnosed transports within γJM97 surfaces (ψNDTRM − ψJM97). The diagnosed streamfunctions, ψmean

and ψJM97, have been mapped from density to z coordinates using the time-mean depths of γmean and

γJM97 surfaces, respectively.

4.3. Comparing diagnosed and TRM transports429

Having constructed γmean, we now compare the transports within γmean and γJM97 surfaces, as430

estimated by the TRM and diagnosed directly from the model simulations. Based on §3, we anticipate431

that the NTRM should more closely approximate the diagnosed fluxes within γmean surfaces, while432

the NDTRM should more closely approximate the diagnosed fluxes within γJM97 surfaces.433

We diagnose fluxes within density surfaces via direct calculation of (1). The procedure is434

summarized here to achieve a self-contained presentation; for further details the reader is referred to435

ST15. For each model snapshot, the model-reported meridional volume fluxes and Neutral Density436

(γmean or γJM97) on geopotential surfaces are interpolated to a vertical grid that is 10 times finer than437

the model’s vertical grid (see [1,41,42]). The volume fluxes are then assigned to a discrete set of438

density bins, averaged in time to compute mean volume fluxes within density surfaces, and integrated439

vertically in density space to obtain the streamfunction. To map the streamfunction back to z-space,440

we also average the height z0 of each density surface, and map the streamfunction at density γ0 to441
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Figure 4. Comparison of total thickness-weighted average cross-slope transports calculated via TRM

approximations vs. diagnosed directly from model output. (a) Total southward transport, (b) total

interior southward transport, i.e. excluding wind-driven Ekman transport of surface waters [see §4 and

1].

height z0. This allows for direct comparison with the TRM, which approximates the transport above442

the isopycnal whose mean elevation is z0. Note that due to the zonal symmetry of the model domain,443

we only calculate the meridional component of the streamfunction, which quantifies circulation in the444

y/z plane. We denote the streamfunction corresponding to volume fluxes in γmean surfaces as ψmean,445

and the streamfunction corresponding to volume fluxes in γJM97 surfaces as ψJM97.446

We compare ψmean and ψJM97 with the NTRM and NDTRM estimates of the volume fluxes. The447

NTRM is evaluated as the meridional component of (20), with the mean operator defined as a time448

and zonal average. We denote the resulting streamfunction as ψNTRM. The NDTRM streamfunction449

is defined following equation (B.4) of ST15, and is denoted as ψNDTRM. Throughout this section we450

use “NDTRM” to refer to the NDTRM2 of ST15, which was shown to exhibit closer agreement with451

diagnosed fluxes in γJM97 surfaces than lower-order formulations of the NDTRM.452

In Fig. 3 we compare ψmean and ψJM97, ψNTRM and ψNDTRM directly. Fig. 3(a) shows the453

overturning circulation diagnosed from volume fluxes within γmean surfaces. The circulation is454

characterized by wind-driven shoreward transport within the surface mixed layer and shoreward455

interior eddy transport across the continental slope [42]. These shoreward transports are returned456

offshore via dense shelf water export down the continental slope. Fig. 3 quantifies the difference in457

the computed transports within γmean and γJM97 surfaces. The most substantial difference is that the458

amplitude of ψJM97 is enhanced relative to ψmean over the upper continental slope and the continental459

shelf, exceeding the ∼0.23 Sv shelf overturning magnitude of ψmean by around 0.08 Sv. This suggests460

that a non-negligible fraction of the diagnosed shelf overturning in ψJM97 surfaces is due to errors461

introduced by the independent reference dataset of [24]. Figs. 3(c–d) show the differences between462

ψmean and ψNTRM, and between ψJM97 and ψNDTRM, respectively. Both TRM streamfunctions somewhat463

underestimate the amplitude of the overturning circulation over the continental shelf, and also exhibit464

errors close to the ocean surface and floor, where the vertical stratification is weak. The latter might465

be ameliorated by adopting a generalized form of the NTRM that utilizes vertical tracer fluxes in466

weakly-stratified regions, analogous to the methods proposed by [47,48]. The errors are typically467

smaller than 0.05 Sv in magnitude, which is smaller than the difference between ψmean and ψJM97 over468

the shelf, suggesting that ψNTRM more closely approximates ψmean and that ψNDTRM more closely469

approximates ψJM97.470
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Figure 5. Comparison between cross-slope heat and salt fluxes diagnosed directly from the model

output vs. estimated using TRM streamfunctions (see §4). Fluxes are plotted over a subset of the model

domain in which the eddy transport was found to be primarily advective, rather than diffusive [42].

(a,b) Diagnosed offshore heat and salt fluxes, respectively. (c,d) Differences between diagnosed and

NTRM-/NDTRM-estimated offshore heat and salt fluxes, respectively.

To quantify the agreement between the TRM and diagnosed transports, in Fig. 4(a) we compare471

the net southward transport reported by each streamfunction, as a function of latitude. This calculation472

follows ST15, and only includes southward transport at any given latitude if that transport has been473

supplied from the northern boundary of the domain, i.e. only counting streamlines that connect474

that latitude to the northern boundary. Fig. 4(b) shows a similar comparison, but only accounting475

for southward interior transport, i.e. excluding transport in the surface mixed layer. In each case,476

ψNTRM and ψNDTRM more closely tracks ψmean and ψJM97, respectively, over the continental slope477

(y . 150 km). Over the continental slope (150 km . y . 250 km) the transports are difficult to478

distinguish, as suggested by Fig. 3. In the deep ocean (y & 250 km) the TRM and diagnosed transports479

diverge due to large differences in the streamfunctions close to the sea floor (see Fig. 3(c–d)). Thus,480

our net southward transport metrics confirm the result suggested by the overturning streamfunction481

comparison in Fig. 3: the NTRM more closely approximates volume fluxes in ψmean surfaces, while the482

NDTRM more closely approximates fluxes in ψJM97 surfaces.483

4.4. Advective tracer transport484

Finally, we note that that in addition to estimating isopycnal/diapycnal transports, TRM485

streamfunctions may also be used to estimate the advective flux of tracers. Importantly, no486

globally-defined density variable is needed to perform such an estimate, so, e.g., it would not be487
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necessary to construct a Neutral Density variable like γmean in conjunction with the NTRM for this488

purpose. We now compare the advective meridional fluxes of θ and S estimated by the NTRM and489

NDTRM with those diagnosed from the model simulation. We focus on the continental shelf and open490

ocean regions (y & 150 km), in which the heat and salt transports have been shown to be primarily491

advective, rather than diffusive [42].492

Fig. 5(a–b) shows the northward eddy fluxes of heat and salt, diagnosed directly from the daily493

model output via494

F
χ
eddy = Lx

∫ 0

−h
v′χ′dz. (37)495

Here χ = θ or χ = S, z = −h(y) is the sea floor elevation, the mean operator • denotes a time and496

zonal average, and primes ′ denote deviations from that average. The heat and salt fluxes have been497

rescaled to take units of TW and Gg/ s, respectively, for ease of interpretation. We calculate NTRM498

and NDTRM estimates of the advective fluxes via499

F
χ
TRM = −Lx

∫ 0

−h

∂ψTRM

∂z
χ dz. (38)500

Here we set ψTRM = ψNTRM and ψTRM = ψNDTRM to define the flux estimates F
χ
NTRM and F

χ
NDTRM,501

respectively. In Fig. 5(c–d) we plot the differences between the diagnosed and TRM-estimated heat502

and salt fluxes, which typically differ by around 10–20%. There is very little difference between the503

NTRM and NDTRM salt fluxes, whereas the NTRM yields errors in the heat flux that are up to 40%504

smaller than the errors incurred by using the NDTRM.505

5. Summary and Conclusion506

The Temporal Residual Mean (TRM) transport requires an Eulerian approximation for vertical507

fluctuations of a set of quasi-material surfaces [e.g. 21–23]. The TRM approximates the transport508

within these surfaces, which in turn approximates the semi-Lagrangian mean and Lagrangian-mean509

transports [10]. This article builds on a recent study by [1, hereafter ST15], who used the Neutral510

Density variable γJM97 of [24] to construct a Neutral Density TRM (NDTRM) that can be applied511

anywhere in the ocean, circumventing the limitations of e.g. potential density at high latitudes. A key512

result of this article is that the vertical fluctuations of local Neutral Surfaces, which are defined directly513

via the continuous form of the neutral relation, can be approximated via (19). The corresponding514

TRM streamfunction (20), referred to as the “Neutral TRM” (NTRM) should more closely approximate515

the semi-Lagrangian mean transport than the NDTRM, and therefore also better approximate the516

generalized Lagrangian mean transport [10]. The NTRM also coincides with a TRM based on vertical517

fluctuations of locally-referenced potential density surfaces, again to the same asymptotic order in the518

amplitude of the isopycnal height fluctuations.519

In isolation the NTRM streamfunction does not directly quantify isopycnal and diapycnal ocean520

transports [see e.g. 31] because local Neutral Surfaces are, by definition, not globally well-defined.521

However, in §3 we showed for the special case of a Neutral Density variable (γmean) constructed using522

the Eulerian-mean ocean state, the NDTRM reduces to the NTRM, up to the same asymptotic order in523

the amplitude of the isopycnal height fluctuations. Thus the NTRM approximately quantifies adiabatic524

and diabatic volume fluxes within and across γmean surfaces, again up to a consistent asymptotic order525

in the amplitude of the isopycnal height fluctuations.526

In §4 we tested this theoretical prediction explicitly using an idealized eddy-resolving simulation527

of the Antarctic continental shelf and slope. Using the model’s time-mean state as a reference dataset528

for γmean, we labeled the model output with both γmean and γJM97 and computed volume fluxes within529

surfaces of both Neutral Density variables. We showed that γmean iso-surfaces were more closely530

aligned with local Neutral Surfaces than γJM97, indicating that fluxes within γmean surfaces should531

be more closely aligned with the local neutral tangent plane. Consistent with §3, we found that the532

NTRM more closely approximated volume fluxes within γmean surfaces, while the NDTRM more533
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closely approximated volume fluxes within γJM97 surfaces. Finally, we compared the advective fluxes534

of heat and salt estimated by the NTRM and NDTRM, with those diagnosed from the model. Both535

formulations of the TRM yielded flux estimates in close agreement with the diagnosed fluxes, though536

the NTRM yielded a somewhat closer approximation to the heat fluxes.537

The results summarized above suggest that for most oceanographic purposes, the NTRM is538

preferable to the NDTRM for the purposes of estimating isopycnal and diapycnal volume fluxes, and539

of estimating advective tracer fluxes. It also bears the advantage of being more convenient to compute540

than the NDTRM, as it makes no explicit reference to globally-defined Neutral Density variable or541

to the set of reference casts used to defined such a variable. A practical consideration is that the542

NTRM advects a Neutral Density variable constructed from the model’s time-mean state, i.e. γmean
543

[23]. Though algorithms for constructing global, approximately neutral density variables have been544

proposed [e.g. 24,49,50], translating these algorithms to the time-mean state of a three-dimensional545

model with an arbitrary ocean geometry is non-trivial. More recent algorithms have been proposed546

to construct global, approximately neutral surfaces [46,51], but have not yet been adapted to the547

construction of three-dimensional Neutral Density variables. Furthermore, a Neutral Density variable548

such as γmean would need to be constructed with great care to achieve consistency with γJM97, which549

has been used to map the global overturning circulation [6,25].550

Throughout this manuscript we have assumed that local Neutral Surfaces coincide with purely551

adiabatic flows [26], and are therefore optimal for the construction of the TRM. Neutral helicity552

precludes the construction of a continuous density variable that lies exactly parallel to these surfaces553

everywhere in the ocean [29]. However, on the basis of two-parcel energetic considerations, [52] argued554

that that adiabatic parcel displacements should not, in fact, follow the neutral tangent plane. Variance555

of potential temperature and salinity has been found to be larger on Neutral Density surfaces than556

on surfaces of potential density referenced to 2000 decibars [26,53], though this does not explicitly557

contradict the notion that adiabatic parcel displacements follow neutral surfaces. Although this topic558

remains under debate [54–56], an implication is that there may yet be a more accurate choice than559

local Neutral Surfaces to define adiabatic heaving, and therefore to approximate the semi-Lagrangian560

mean and generalized Lagrangian mean transports. Further work is required to compare estimates of561

thickness-weighted average transports within different formulations of quasi-neutral surfaces, such as562

ω-surfaces [51], thermodynamic neutral density (γT) surfaces [50], and orthobaric density surfaces563

[49].564

Previous studies have used the NTRM0, and thus implicitly the NTRM (see §3), to estimate565

volume fluxes within γJM97 surfaces [e.g. 42,57–59]. In principle, this incurs an O(∆̃) error in the566

approximation, where ∆̃ quantifies differences between the model’s mean state and the independent567

reference dataset. On the other hand, our comparison in §4 shows that the NTRM approximates568

transports within γJM97 surfaces almost as closely as it approximates transports within γmean surfaces,569

so in practice such errors may not be of concern. However, further work is required to evaluate errors570

associated with neutral helicity when quantifying transports within γmean surfaces using the NTRM.571
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