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Abstract: Ocean volume and tracer transports are commonly computed on density surfaces
because doing so approximates the semi-Lagrangian mean advective transport. The resulting
density-averaged transport can be related approximately to Eulerian-averaged quantities via the
temporal residual mean (TRM), valid in the limit of small isopycnal height fluctuations. This article
builds on a formulation of the TRM for volume fluxes within Neutral Density surfaces, [the “NDTRM”,
1], selected because Neutral Density surfaces are constructed to be as neutral as possible while still
forming well-defined surfaces. This article derives a TRM, referred to as the “Neutral TRM” (NTRM),
that approximates volume fluxes within surfaces whose vertical fluctuations are defined directly by
the neutral relation. The purpose of the NTRM is to more closely approximate the semi-Lagrangian
mean transport than the NDTRM, because the latter introduces errors associated with differences
between the instantaneous state of the modeled /observed ocean and the reference climatology used
to assign the Neutral Density variable. It is shown that the NDTRM collapses to the NTRM in the
limiting case of a Neutral Density variable defined with reference to the Eulerian-mean salinity,
potential temperature and pressure, rather than an external reference climatology, and therefore
that the NTRM approximately advects this density variable. This prediction is verified directly
using output from an idealized eddy-resolving numerical model. The NTRM therefore offers an
efficient and accurate estimate of modeled semi-Lagrangian mean transports without reference to
an external reference climatology, but requires that a Neutral Density variable be computed once
from the model’s time-mean state in order to estimate isopycnal and diapycnal components of the
transport.

Keywords: isoneutral transport; Temporal Residual Mean; overturning circulation; Neutral Density

1. Introduction

Accurate quantification of the ocean’s meridional overturning circulation (MOC) is required to
infer oceanic transport of heat and other tracers around the globe [2,3]. It has been common practice
for decades to quantify the MOC in some form of density coordinate system [e.g. 4-9]. Because
flow in the ocean interior is quasi-adiabatic, this approach approximately corresponds to taking a
semi-Lagrangian mean, which in turn approximates the full Lagrangian-mean transport [10]. In
comparison to an MOC based on mass fluxes averaged at constant depth, the semi-Lagrangian mean
transport velocity contains an additional “eddy” transport, essentially a generalized Stokes drift [11].
This eddy transport is particularly important in the Southern Ocean [12-14], and therefore forms a key
component of recent conceptual models of the global overturning circulation [15-20].

The separation of the semi-Lagrangian mean transport into mean and eddy components can be
made explicit via the Temporal Residual Mean (TRM) formulation, which is valid in the asymptotic
limit of small isopycnal height fluctuations [10,21,22]. In this article we use “TRM” to refer to the
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TRM-II [22], but it is straightforward to extend our results to the TRM-I; the distinction between the
two is discussed by [23]. The TRM relates the eddy component of the transport to correlations between
the lateral velocity (1) and density () fields, and thereby allows an estimate of the semi-Lagrangian
mean transport streamfunction to be computed from Eulerian-averaged quantities. The resulting
TRM streamfunction ¥ advects the density variable -y in the following sense: in the absence of
non-conservative sources and sinks of v, the density v is materially conserved following the transport
velocity defined by ¥, up to a consistent asymptotic order in the amplitude of the isopycnal height
fluctuations [23].

This article builds upon the Neutral Density Temporal Residual Mean (NDTRM) formulation [1,
hereafter ST15]. In ST15’s formulation the Neutral Density variable of [24], referred to henceforth as
M7 wwas the advected density variable. However, the transport streamfunction ¥ was calculated
from correlations between the lateral velocity, salinity, potential temperature and pressure. This
approach bears the following advantages: (i) The NDTRM can be applied in regions where potential
density referenced to any level becomes vertically non-monotonic somewhere in the water column
(e.g. parts of the high-latitude oceans). (ii) The NDTRM circumvents the computational expense of
calculating Neutral Density globally at every model time step, as would be required to compute the
semi-Lagrangian mean transport velocity, either exactly or via the TRM. (iii) More fundamentally;,
isopycnals of Neutral Density are more closely aligned with the local neutral tangent plane, in a
global sense, than any potential density variable [24]. ST15 compared various formulations of the
TRM, and verified that higher-order approximations to the NDTRM most closely approximated the
volume fluxes computed exactly within /M%7 surfaces from numerical model output. The NDTRM
therefore offers a computationally efficient estimate of isopycnal volume fluxes within surfaces of a
stably stratified density variable that has been used widely in quantifications of the ocean’s global
overturning circulation [e.g. 6,25].

In this article we pursue the related but distinct goal of approximating the semi-Lagrangian
mean transport using vertical fluctuations defined directly by the neutral relationship [26], which we
refer to as local Neutral Surfaces. In pursing this goal we make the assumption that it is these local
Neutral Surfaces that should heave vertically under perfectly adiabatic motions [27,28], and as such
they are best suited for calculation of the semi-Lagrangian mean transport [10]. The validity of these
assumptions is discussed further in §5. In §2 we summarize relevant background literature, specifically
the formulation of the TRM [21,22] and the derivation of the NDTRM by ST15. In §3 we derive a
form of the TRM, which we refer to as the “Neutral TRM” (NTRM), that approximates volume fluxes
within local Neutral Surfaces. However, Neutral Surfaces are globally ill-defined [29]. This means
that isoneutral volume fluxes cannot be associated with a globally-defined, stably-stratified density
variable [30], which is desireable for quantifying global circulation and water mass transformation
[6,25,31]. This motivates us to return to the NDTRM, which is associated with a globally-defined
density variable, and consider the special case of a Neutral Density constructed with reference to the
Eulerian-mean salinity, potential temperature and pressure. We show that in this case, the NDTRM
reduces to the NTRM to a consistent asymptotic order in the amplitude of the isopycnal height
fluctuations. This implies that the NTRM advects a Neutral Density variable defined with respect
to the Eulerian-mean ocean state, again up to a consistent asymptotic order in the amplitude of the
isopycnal height fluctuations. In §4 we evaluate our results using idealized numerical simulations, and
verify that the NTRM and NDTRM more closely approximate volume fluxes within Neutral Density
surfaces constructed based on the model’s mean state and based on an independent reference dataset,
respectively. Finally, in §5 we summarize and provide concluding remarks.

2. Approximating volume fluxes within Neutral Density surfaces

There is a substantial existing literature on the subjects of Neutral Surfaces and the TRM
approximation [e.g. 21,22,24,26]. To achieve a self-contained presentation, this section summarizes
relevant concepts from this literature, and from the derivation of the NDTRM by ST15.
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2.1. The Temporal Residual Mean (TRM) streamfunction

The TRM transport is fundamentally related to fluctuations of material or quasi-material surfaces,
typically defined in terms of a density /buoyancy variable [21,22]. While it is impractical to quantify
the Lagrangian-mean transport of fluid parcels in the ocean in the most general sense [32], a close
approximation can be obtained by exploiting vertically stratified, quasi-material surfaces, commonly
defined via a suitable density or buoyancy variable [23]. Consider a series of vertically monotonic,
temporally-evolving, quasi-material surfaces identified by a label 7, currently not assigned any
physical meaning. We define a streamfunction ¥ at any horizontal point (xg, 1fp) on surface g as the
lateral mass flux above that surface,

z=0
¥ (x0,¥0,70) = / udz, 1)

Jz=zp(x0,50,70,t)

where u = (u,v) is the horizontal velocity vector and we have assumed a flat ocean surface (z = 0) for
simplicity. The overline indicates a time average, but could be interpreted more broadly as an average
over an ensemble of realizations of the flow [33].

The TRM approximates the mass flux defined in (1) under the assumption of small fluctuations in
the quasi-material surfaces, i.e. zy = Z + z{, with zj, = O(¢) assumed to be asymptotically small. Here
£ may be interpreted as the magnitude of the surface fluctuation relative to some vertical length scale
such as the ocean depth H, so ¢ = z,/H < 1. Using Taylor expansions of (1), it may be shown [e.g.
1,22] that ¥ may be approximated in Eulerian coordinates as a sum of mean and “eddy” components,

defined as
‘Y(XOI ]/0/ %) = ? + T*/ (23)
o 0
¥ = /jdz, (2b)
Z0
¥ = —ul(Z0)z) — Ji.(%) )2 + O (83) . (20)

Here, and henceforth in this manuscript, the rules of Reynolds averaging are assumed to apply unless
otherwise stated, i.e. ® = ® and ¢’ = 0 for any e. Note that ¥ and ¥* are streamfunctions in the sense
that their curl is equal to a non-divergent velocity field.

To write (2a) in terms of only mean quantities, and therefore to create a useful approximation to
the ocean’s Lagrangian-mean velocities, we require a suitable approximation to the surface fluctuations
z;. Correlations of quantities such as T% and 262 are not routinely provided as output from ocean
models formulated in Eulerian vertical coordinate systems, partly due to the ambiguity in the definition
of 2y, so instead z, is typically related to Eulerian fluctuations of thermodynamic variables [e.g. 1,23].
For a vertically monotonic label <, we can further Taylor-expand our continuum of labels  to obtain
an O(?) approximation to z{, [22,23],

Y (&) = —%m.(@) + O (), ®)

allowing us to express the TRM “eddy” streamfunction in terms of purely Eulerian variables,

Y*(x0,¥0,20) = =— — 557"+ 0 (). 4)
(%0, y0,%0) = =~ —3 27 ( )
Note that all variables on the right-hand side are evaluated at the mean surface elevation Zz.
Additionally, note that the O(&3) error terms on the right-hand side of (4) differ from those on the
right-hand side of (2c); additional O (%) terms have been included in the error term following the
substitution for 7/ using (3). In the interst of brevity, throughout this article we will write the error
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terms in terms of their lowest-order dependence on the relevant asymptotically small parameters
without specifically identifying when the mathematical definition of the error terms has changed.

In the form of equation (4), the TRM streamfunction is in principle straightforward to calculate
from ocean model output if we associate y with, for example, potential density or Neutral Density [24,
discussed in §2.2]. However, potential density surfaces are not particularly neutral, while the Neutral
Density variable of [24] is too computationally expensive for practical use in ocean models [1].

2.2. The Neutral Density Temporal Residual Mean (NDTRM)

ST15 derived alternative expressions to (3) for the vertical fluctuations (z() of isopycnals of a
Neutral Density variable (). These expressions contain no explicit dependence on v itself, and so
circumvent the need to explicitly compute a Neutral Density variable in order to construct the TRM.
Here we briefly summarize the portions of this derivation and the resulting expressions for z(, required
in §3.

The Neutral Density variable of [24] is assigned based on geographically distributed reference
casts. Each reference cast is pre-labeled with Neutral Density v as a function of depth, such that the
cast potential temperature, salinity and pressure may be written as 6.(y), S¢(y) and p¢(7y), respectively.
To assign a Neutral Density label to a given point in space and time, the potential temperature (6p),
salinity (Sp) and pressure (po) at that point are compared with a nearby reference cast. Specifically, the
assigned value of 7 is that which satisfies the “discrete neutral relation”, which ST15 wrote as

(Sc() = So) Bm — (0c(7) — 60) am = O(A3)- %)

This relation states that water parcels with properties (S, 6, po) and (Sc(y), 0c(77), pc(y)) would have
equal densities if both were moved adiabatically and isentropically to the mid-point pressure between
the two parcels. Here B, and «,, are short-hands for

,Bm = ,B(Sm/ Om, pm)/ Xm = “(Sm/ O, Pm)/ (6)

i.e., the saline contraction and thermal expansion coefficients evaluated at the thermodynamic
mid-point (S, O, pm ), which is defined as

Su(v) = (So+Sc(7))/2, (7a)
Om(v) = (60 +0c(7))/2, (7b)
pm(7) = (po+pe(v))/2. (7¢)

The small parameter A measures deviations of the properties (Sp, 0o, po) from the mid-values
(Sm, Om, pm)- See [1] for further details on the definition of A and the asymptotic derivation of (5).

To derive an expression for the vertical fluctuations of a Neutral Density surface, ST15 considered
the semi-Lagrangian evolution of the thermodynamic properties on such a surface, i.e. So = S(zo(t),t),
0o = 0(zo(t),t), and po = p(zo(t),t). They then posed Taylor expansions of (5) in terms of € and A, e.g.

S(zo(t),t) = S(Zo, t) + S2(z0, 1)z + S'(Z5,t) + O (82> . ®)

where S'(zg, t) = S(Zo,t) — S(Zo, t) is the Eulerian fluctuation of the salinity at z = Z.
In this article we restrict our attention to the Boussinesq case for simplicity. This effectively
corresponds to replacing po, pc and py, by zo, zc and z,,, where z. is the depth of the Neutral Density
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label 7y on the reference cast and z,,, = % (2o + z¢). In this case, the highest-order NDTRM approximation
to z{, (the “NDTRM2” of ST15) is

oS, 00, Zazm
=<5 o' Sc—8) |48 ==+ Lo/ EE| — (6. -0 {15’ 19’]
{ ,Bm + Ky + ( c ) [2 asm 2 aem ( c ) 2 asm + 2 aem

o) (A3, 52) . 9)

Here we use shorthand notation for the Eulerian-mean salinity and potential temperature at constant
height,

$(z0) =5(z0,t),  6(z0) =0(zZ0, 1), (10)

and for the haline contraction and thermal expansion coefficients evaluated as functions of
Eulerian-mean properties,

Bm = ,B (grﬂlﬂ) 7 bzm = (grﬂrﬂ) . (11)

Equation (9) approximately relates the Neutral Surface height fluctuations to Eulerian fluctuations of S
and 6, in analogy with (3). By excluding terms from (9), ST15 derived lower-order approximations to
z(,, referred to as the “NDTRM1”,

S Bu—0'R _
/ m m 3 2
INDTRM1 = — == ———— + O (A7,¢%,€A ), (12)
S; ,Bm — 00y ( )
and “NDTRMO” ~
"B—0'w - -
ZNDTRMO = _75[57701 +0 <A3, A?, €2, SA) , (13)
z ,B — bz
where we define
B=pB(50,z), &=a(S067%) (14)

in analogy with (11). For brevity we omit complete expressions for the NDTRM streamfunctions,
derived by substituting (9)—-(13) into (2a), and a discussion of the evaluation of the “cast” terms S and
0.; we refer the reader to ST15 for information on such specifics of the NDTRM.

These expressions differ from those given by ST15 via the introduction of an additional small
parameter, A, that measures deviations of the Eulerian mean properties, S and 6, from the cast
properties, S; and 6.. Thus, conceptually, the three small parameters in (9)—(13) are related via
A~A+e

3. Approximating volume fluxes within local Neutral Surfaces

The Neutral Density variable of [24] (vM%7) was formulated with the aim of obtaining a
density-like variable whose surfaces lie as parallel as possible to the local neutral tangent plane
everywhere in the ocean. However, due to the ocean’s equation of state, is not possible to construct
such a variable exactly [29,30]. Thus in general the vertical fluctuations of Neutral Density surfaces
differ from from fluctuations of local Neutral Surfaces [34]. In §1 we posited that local Neutral Surfaces
are best suited to estimating semi-Lagrangian mean transport, and therefore also to formulating
the TRM, because adiabatic flows are constrained to follow these surfaces. The validity of these
assumptions is discussed further in §5.
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In this section we aim to formulate a TRM that approximates fluxes along local Neutral Surfaces
as closely as possible (the NTRM). We first derive an approximation to the vertical fluctuations of
local Neutral Surfaces, denoted zyg, for comparison with the NDTRM approximations to z{, given in
§2. This approximation alone yields an incomplete TRM because the resulting streamfunction (2a) is
not associated with a globally-defined set of surfaces (i.e. v). To circumvent this issue we consider a
mean whose reference dataset (i.e. S, 6. and p.) is chosen to be the local
Eulerian-mean thermodynamic properties (i.e. S, § and Z). For such a Neutral Density variable the
NDTRM reduces to the NTRM, up to the same asymptotic order in ¢, which implies that the NTRM
does in fact advect a globally-defined density variable, y™¢*". We also show that the NTRM coincides
with a TRM derived based on fluctuations of surfaces of locally-referenced potential density, up to the
same asymptotic order in €.

Neutral Density variable

3.1. Vertical fluctuations of local Neutral Surfaces

Consider a local Neutral Surface with instantaneous height z = z((t) at a fixed horizontal location
(x0,¥0). To simplify our presentation we will drop all dependence on horizontal location in what
follows. We define the time-evolution of zy(#) via the semi-Lagrangian neutral relationship [26],

B6S(z0(t), t) — ad6(20(t), ) =0, (15)

where 05 and 66 denote infinitesimal changes in the salinity and potential temperature on the surface.
Both B and « are themselves evaluated at the local salinity S(zo(t), t), potential temperature 6(zo(t), t)
and pressure p(zo(t),t). Dividing by an infinitesimal unit of time 6, equation (15) may be expanded
to describe the time evolution of zg,

as a0 d as a6
,Bg(z()r t) - DCE(ZOI t):| % = - |:;Bat(201 t) - aai(ZO/ t) . (16)

t

We now use (16) to derive a relationship between the Neutral Surface height fluctuations zj, =
zo(t) — zp and the Eulerian fluctuations of S and 6. Note that fluctuations of S and # may not only
be associated with vertical heaving of Neutral Surfaces; they may also result from lateral stirring
of property gradients along Neutral Surfaces. To simplify the presentation we assume that the
magnitudes of both vertical heaving-induced and lateral stirring-induced property fluctuations are
small and characterized by the same small parameter €. A caveat to this assumption is that even
outside of the ocean’s surface and bottom boundary layers there may be a non-negligible influence of
surface buoyancy fluxes [35]. For further discussion of these points and a rationalization of the small
parameter ¢, the reader is referred to ST15.

By posing Taylor expansions of f and « as e.g.

B (S(z0(t),1),8(z0(t), 1), 20(t)) = B (S(20), 8(20), Z0) + O(e) = b+ O(e), (17)

we can approximate (16) as

35 96, | dz o A
lﬁaZ(Zo,f) - txaz(Zo,t)] % = - [,Bat(z()/t) —a—- (%, t)} +0 (82) : (18)

Finally, integrating (18) with respect to t yields an expression for the local Neutral Surface height
fluctuation, which we denote as z{g, in terms of 5" and ¢/,

(352452) Z&S:_(gs'_ae/)m(&). (19)
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23s  Note that the constant of integration vanishes between (18) and (19) because by definition, % =5 =
20 0/ =0. Substituting (19) into (2a)—(2c) yields the following expression for the NTRM streamfunction,

0 Bu'S — 30 (7 o _
Yoy m) = [ wdet puls —wul 1 T (prs? o5 +20%) +0 ().
= pOzS —waz0 2 (Ea%E —aaﬁé)

(20)

242

2a3 Note that in applying (20) we are free to select zy, for example to coincide with a model vertical grid
2aa  level. Equation (19) then approximates the vertical fluctuations of a local Neutral Surface zy(t) whose
2as mean elevation is zg, and (20) approximates the transport above z = zj.

26 3.2. Connection to the Neutral Density Temporal Residual Mean (NDTRM)

247 While the NTRM streamfunction (20) approximates the semi-Lagrangian mean transport, in
248 isolation it does not quantify isopycnal/diapycnal fluxes because we have not yet associated it with a
200 globally-defined set of surfaces (i.e. 7). It therefore does not advect a density variable, and the fluxes
20 cannot be partitioned into adiabatic and diabatic components [e.g. 23]. We therefore now consider
251 whether the NDTRM, which is associated with a globally-defined density variable (e.g. 7/M%7), can be
22 adapted to more closely approximate the fluxes within local Neutral Surfaces.

253 We first note that there is a close similarity between our equations for the vertical fluctuations of
zss  local Neutral Surfaces, (19), and the vertical fluctuations of Neutral Density surfaces, (9)—(13). Indeed,
25 (19) is identical to the lowest-order form of the NDTRM, the NDTRMO (13), except for the differing
26 asymptotic order of the error terms,

257 Z{\]DTRMO = Zf\IS + O (A3, Az, SA, 52) . (21)

2ss In other words, there are O(A®), O(A?) and O(eA) terms that appear explicitly on the right-hand sides
20 Of (9) and (12), and these terms allow Zf\IDTRMz and z{\IDTRMl to more closely approximate Neutral
260 Density surface fluctuations than z{yrrvo- However, by treating these O(A3), O(A2) and O(eA) terms
261 as error terms in (13) we actually obtain a closer approximation of local Neutral Surface fluctuations
262 (ze of (19))

263 Motivated by this observation, we now seek a hypothetical Neutral Density variable that
26s eliminates the O(A?), O(A?) and O(eA) terms in the NDTRM. This is achieved by constructing
2es a Neutral Density variable, referred to as y™¢®", using the Eulerian-mean thermodynamic properties
206 in place of the reference dataset,

(Sc(7),0c(7), 2¢(7)) = (S(z(7)), 8(z (7)), 2 (7)) - (22)

26 Here we have implicitly assumed that the local water column has been pre-labeled with -y based on
20 the Eulerian-mean thermodynamic properties, and the reference elevation z,(7y) is the elevation in this
270 water column that has been labeled with Neutral Density «. The isopycnal fluctuation z = zo(t) is
an  therefore defined by the discrete neutral relation (5) in the form

(5(z¢ (7)) = S(20(t), 1)) B — (B(zr (7)) — 8(z0(1), 1)) am = O(&%). (23)

z7a  Here By, and «,, are defined as in (6), but with the thermodynamic mid-point defined as

Sm(zo(t),t,7) = [S(z0(t),t) +S(z:(7))] /2, (24a)
Om(z0(t), t,7) = [0(z0(t),t) +0(z:(7))] /2, (24b)
377 zm(t, ) = (20(t) +2r(7))/2. (24¢)
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Note that the transformation defined by (22) and (24a)—(24c) does not immediately eliminate the
O(A?), O(A?) and O(eA) terms in the NDTRM formulae (9), (12) and (13). Instead, this transformation
implies a modified interpretation of A and A. We now define A as a measure of the difference between
the mean isopycnal elevation zy and the mean mid-point elevation z,;, or equivalently between zy and
zr, compared to a dynamical scale height H, for example the ocean depth. Via Taylor expansions of
S(z0) and 8(zp), e

I 3% "
5(20) = S(z7) + (3 — 21) 5= (z) + O (4?) (25)
0
it follows that A also measures deviations of S and 6 from S,, and 6,,, or equivalently from S(z,(7y))
and 0(z,(7y)). It then follows from (8) that again A ~ A + ¢, where A measures differences between
(S(z0(t),1),0(20(t), 1), 20(t)) and (Sm(20(t), £, 7), Om(20(£), £,7), Zm (£, 7))

We have now established that the transformation described by (22) and (24a)-(24c) leaves the
NDTRM formulae (9), (12) and (13) largely unchanged, but modifies the interpretation of the O(A?),
O(A?) and O(eA) error terms. To approach the NTRM, we now demonstrate that

A~ (26)

This implies that the difference (A) between the “parcel” properties on the heaving Neutral Density
surface and the properties of the reference “cast” (consisting of the Eulerian-mean thermodynamic
properties) necessarily scales with the amplitude (¢) of the isopycnal height fluctuations in the limit
e — 0. To derive (26), we first note that the reference elevation must approach zj in the limit of
vanishingly small ¢, i.e. z,(y) — Zg as ¢ — 0, because in this limit zo(t) — zp, and the (stationary)
isopycnal must satisfy the neutral relation with itself. We therefore write z, = zg + dz,, where
5z, = O(A) by definition, and seek a relationship between §z, and e by posing a Taylor expansion of
(23) in terms of ¢ and A. First, we note that the midpoint thermodynamic properties can be written as

Sm :§+O(S,A)/ Hm :§+ O(E,A), Zm :%4‘0(8/&)/ (27)

where we have moved all terms in §’, #" and zj, into the error terms on the right-hand sides of these
equations. We can write §,;, and &, as

Bu=B+0(A), am=0a+0(A), (28)

where B and @ are defined as in (14). Substituting (27) and (28) into (23), Taylor expanding S(z,(7))
and 0(z,(y)) in terms of éz,, and Taylor expanding S(z(t),t) and 0(zo(t),t) as in (8), we obtain

295 90\ ./ x oxo
§b<&mf%%%>—O(AﬁﬁAA). (29)

Noting again that the left-hand side of (29) is O(A) by definition, we conclude that 6z, = O(e) and
that (26) holds.

Finally, we combine the transformation defined by (22) and (24a)—(24c) with the asymptotic
relationships (27), (28) and (26) to obtain the following transformation of the variables in (9), (12) and
(13):

A—e Ao (30a)
@m = B+ 0(€),  Pm— B+0O(e), (30b)
Se = S+0(e), 0.—0+0(e), (30c)

Su—=S+0(), 0n—0+0(), zZm—7zo+O(e). (30d)
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Substituting (22)—(30c) into (9)—(13), we find that all forms of the NDTRM collapse to the NTRM, to a
consistent asymptotic order in ¢,

ZNpTRM2 = 288 + O (82) , (31a)
zZ\pTRMI = 2ZNs + O (€2> , (31b)
ZNDTRMO = 2Ng + O (82> . (31c)

mean

This implies that, to a consistent order in ¢, the NTRM advects a Neutral Density variable y
constructed via the discrete neutral relation (5), using the Eulerian-mean thermodynamic properties
(S,0,7z) as the reference dataset.

3.3. Equivalence to fluctuations of locally-referenced potential density surfaces

We now show that our equation (19) for the vertical fluctuations of Neutral Surfaces also coincides
with the fluctuations of surfaces of locally-referenced potential density, to the same order of accuracy in
e. [36] used a TRM based on locally-referenced potential density fluctuations, but did not demonstrate
its equivalence to fluctuations of local Neutral Surfaces.

We define locally-referenced potential density o%; as the density referenced to the mean height zy,

0 (20(8), 1) 0 (S(20(8), 1), 0(20 (1), 1), %) - (32)

Here p is the in situ density and zy(t) is the instantaneous height of the o%; surface whose mean depth
is Zg. Below we identify this oz; surface to a consistent order of asymptotic approximation in the
amplitude of the surface height fluctuation, .

Posing Taylor expansions of S and ¢ following (8), we may expand (32) as

oz5(20(4),t) = p (S(20),6(%0), 20)

1+<ﬂmﬁ+%@@jm0)ﬁﬂmﬂ&@m)

—(w%ﬂ+%m$@m0w6%wwﬁa>+0Gﬂ.6&

Taking the mean of (33) yields an expression for the semi-Lagrangian-mean locally-referenced potential
density

o=(z0(D), 1) = p (3(20),8(z0), 70) + O (). (34)
As zj is defined by a surface of constant locally-referenced potential density, it follows that

05 (20(), 1) = o55(20(1), 1) (35)

Substituting (35) and (34) into (33) eliminates the first two terms in (33) to a consistent order of
approximation in ¢, and thus (33) reduces to

zZirpp = Zns + O (82) , (36)

where z{ ppp, denotes vertical fluctuations of the locally-referenced potential density surface. Therefore,
to the same asymptotic order of approximation in ¢, the NTRM estimate of isopycnal height fluctuations
also coincides with vertical fluctuations of locally-referenced potential density surfaces.
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Figure 1. Diagnostics of the mean model state, where averages are taken in time (over 5 years of
daily snapshots) and in the along-slope (zonal) direction (400 km distance at ~1 km horizontal grid
spacing. (a) Potential temperature 0, (b) practical salinity S, (c) Neutral Density constructed based on
the model’s mean state, which we denote as 7™ (see §4), (d) difference between W, where /M%7
is the Neutral Density calculated using the reference dataset and algorithm of [24], and yy™mean,

4. Comparison and assessment using an idealized numerical model

The key result of §3 is that the NTRM streamfunction (20) approximates volume fluxes within
local Neutral Surfaces, and advects a Neutral Density variable defined using the Eulerian-mean
thermodynamic properties (S, 0,Zy) as a reference dataset. An implication of this result is that while
the NDTRM should more accurately approximate volume fluxes within surfaces of /M, the NTRM
should more accurately approximate volume fluxes within surfaces of 7™". We now test this
prediction using output from an idealized numerical model of the Antarctic continental shelf and
slope. We use this model because its geometry simplifies the task of computing ™", and because
nonlinearities in the seawater equation of state lead to relatively pronounced deviations of potential
density and Neutral Density surfaces in the simulated region [1,37,38].

4.1. Model configuration

The modeling approach has been described in detail by [1,39-42], so here we present only salient
aspects of its configuration and refer the reader to previously published articles. The MIT general
circulation model [43,44] was configured in a zonally re-entrant channel of length L, = 400 km and
widh L, = 450 km, with its depth ranging from 500 m over the continental shelf at the southern
boundary to 3000 m at the northern boundary. The model was forced via a combination of a steady
westward surface wind stress, linear drag at the sea floor, a two-equation representation of surface
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Figure 2. Time-/alongshore-mean (a) y™¢*", (b) M7 () salinity and (d) potential temperature in the
bottom-most model grid point, i.e. in the layer of dense water that descends down the continental
slope [42], as a function of distance from the shore. This plot illustrates that the use of an independent
reference dataset leads to a spurious local minima, e.g. around y = 200 km, in 7//M7. These are absent
in y™€" indicating that it more closely tracks Neutral Surfaces. The rapid density variations around
y = 100 km are due to “steps” in the model’s geopotential-coordinate representation of the continental
slope.

sea ice heat and salt exchanges [see 42], a constant input of salt over the southernmost 50 km of the
model domain, and restoring toward profiles of 8 and S derived from hydrography within a sponge
layer covering the northernmost 50 km of the domain. The model’s horizontal grid spacing is around
1km, sufficient to resolve the eddy field [41], and the vertical grid consists of 53 vertical levels with
spacings increasing from around 13 m at the surface to around 100 m at the sea floor. The analysis
conducted here uses 5 years of daily model snapshots from a period in which the simulation had
reached statistically steady state.

4.2. Constructing Neutral Density from the model’s mean state

To test the NTRM we must first construct y™<?", i.e. for each time t, and model grid location
(xi,yj,zk) we must assign Neutral Densities 'ymea“(xi,y]-,zk, ty), where i = 1...Ny, j = 1... Ny,
k=1...N;,and n = 1...N; are gridpoint indices. Similar to the procedure laid out by [24], we
require a dataset to which the instantaneous model stratification can be referred in order to assign
a ™" value to each grid point. In [24], this dataset was the hydrographic climatology of [45] and
a corresponding set of neutral density labels on a coarse global grid. Similarly, for the purpose of
constructing ™" the reference dataset is the model’s time-mean hydrography, S(y;, z) and 6 (yj, z)

(see Fig. 1(a-b)), and a corresponding set of neutral density labels y7of*" (y;, 2k ). Note that the reference
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dataset is approximately independent of x due to the zonally symmetric model geometry and forcing.
The approximate two-dimensionality of the time-mean hydrography also implies that the neutral
helicity of the reference dataset is zero [29]. Taken together with the simply connected model domain,
this implies that Neutral Surfaces are well defined [46].

We now outline the procedure for labeling the reference dataset with 7 ;f*" and assigning vy
values to instantaneous model output. This procedure closely follows that described by [24], to which
the reader is referred for more specific details of the algorithm. We first labeled the northernmost
model water column, 'yigfea“(yNy, zx), by setting it equal to M7 (y Ny zx). Here /M%7 was calculated
from the hydrographic measurements used to restore the model stratification in the offshore sponge
layer, taking the model domain to lie along a slice between (61W,67S) at y = 0 and (50.6W,675) aty =
450 km [1]. We then iterated southward through the model water columns, assigning the j" column,
{ymean(y;, z) | k = 1...N.}, from the (j + 1) column using the form of the discrete neutral relation
(5) given by [24] and linear vertical interpolation. For grid points in the j column that were denser
or lighter than any grid point in the (j 4+ 1) water column, we linearly extrapolated Y™ (yj, zx)
vertically. Note that in our vertical density extrapolation we assigned the vertical gradient of  f*™"

to be equal to the vertical gradient of locally-referenced potential density, whereas in this region the
JM97
v

mean

vertical gradient of
potential density (the “b-factor” of [24]). This choice of extrapolation was made for simplicity and
should not influence our results, though a consequence is that ™" spans a smaller range of density
values than 1Y"M%7 in this model domain.

To calculate 'ymea“(xi,yj,zk, t,) for a given model gridpoint with salinity S(x;, Yis Zks tn)
and potential temperature G(x,-,yj,zk, t,), we construct continuous functions of z, S(yj,z) and
0(yj,z), via linear interpolation. ~We then find a depth z, such that (S(yj, z),0(yj zr),2r)
and (S(x,-,y]-,zk, tn),Q(xi,y]-,zk, tn),zx) satisfy the discrete neutral relation. We then assigned
Y™ (x4, Y, 2k, tn) by linear vertical interpolation of ¢ (y;, zx) to the point z.r. Note that our

algorithm for assigning y™ea" differs slightly from the algorithm of [24] for assigning 7™ to assign

mean
Y

was typically assigned to be twice the vertical gradient of locally-referenced

we refer each gridpoint to a horizontally local “cast” consisting of the Eulerian-mean model
properties, whereas the algorithm of [24] refers each gridpoint to a four geographically local reference
casts. Additionally, we use linear vertical interpolation to assign a 1"M?” value, whereas the algorithm
of [24] uses quadratic interpolation.

In Fig. 1(a-b) we plot the time- and zonal-mean potential temperature and salinity, 6 and S, that
serve as the reference dataset in the construction of ¢™¢*". The mean state is qualitatively similar
to hydrographic measurements from the western Weddell Sea [41], and exhibits a layer of relatively
cold, fresh, shelf-sourced bottom water that descends down the continental slope. Fig. 1(c) shows
the time and zonal mean of the Neutral Density constructed from the model’s mean state, i.e. y™ean,
while Fig. 1(d) shows the difference between 1/M%7 and y™ean, As expected, 1’M?7 takes lower values
than ™" in waters lighter than the lightest water at the northern boundary, and higher values than
y™ea" in waters denser than the densest water at the northern boundary, due to the procedure for
extrapolating [ f*". Some variations are visible across the continental slope due to the presence
of alternating along-slope jets that slowly drift offshore, and which do not perfectly cancel under
integration over the 5-year analysis period [42].

We anticipate that ™" should be more closely aligned with local Neutral Surfaces than /M. To
illustrate this, in Fig. 2 we plot the ~mean W, 09, 0 and S at the sea floor as a function of cross-slope
distance, i.e. within the dense outflowing layer of shelf-sourced bottom water. Fig. 2 shows that /M%7
exhibits spurious fluctuations and local minima, on the order of 0.01 kg m~3, that are absent in y™mean,
For example, around y = 200 km there are negligible variations in 6 and S, indicating that the sea floor

should coincide with a neutral surface. This is reflected in y™m€an, but not in 9/M%, which exhibits a
mean

spurious local minimum at this point. We conclude that iso-surfaces of
with local Neutral Surfaces than 1/M%, though the spurious variations in /M%7 are nonetheless quite
small compared to the domain-scale ranges of 7™ and AIMI7.

are more closely aligned
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Figure 3. Comparison of transports calculated via TRM approximations vs. diagnosed directly from
model output by averaging within density surfaces. Transports are quantified via streamfunctions
with blue colors corresponding to counter-clockwise circulation and black contours shown at intervals
of (a) 0.025Sv and (b—d) 0.01 Sv. (a) Diagnosed transport within ™" surfaces ($p™<"), (b) difference
between diagnosed transports within 1/M% surfaces and ™2 surfaces (/M%7 — ypmean) (c) difference
between NTRM-estimated transport within /™" surfaces and diagnosed transport within ™"
surfaces (leTRM — ™€), (d) difference between NDTRM-estimated transport within <y, surfaces and
diagnosed transports within /%7 surfaces (pNPTRM — /M) The diagnosed streamfunctions, ¢™ea"

mean

and /M%7, have been mapped from density to z coordinates using the time-mean depths of 7 and

M7 surfaces, respectively.

4.3. Comparing diagnosed and TRM transports

Having constructed 7™, we now compare the transports within 7™ and 9?7 surfaces, as
estimated by the TRM and diagnosed directly from the model simulations. Based on §3, we anticipate
that the NTRM should more closely approximate the diagnosed fluxes within ™" surfaces, while
the NDTRM should more closely approximate the diagnosed fluxes within 7/™%7 surfaces.

We diagnose fluxes within density surfaces via direct calculation of (1). The procedure is
summarized here to achieve a self-contained presentation; for further details the reader is referred to
ST15. For each model snapshot, the model-reported meridional volume fluxes and Neutral Density
(y™ean or 4IM97) on geopotential surfaces are interpolated to a vertical grid that is 10 times finer than
the model’s vertical grid (see [1,41,42]). The volume fluxes are then assigned to a discrete set of
density bins, averaged in time to compute mean volume fluxes within density surfaces, and integrated
vertically in density space to obtain the streamfunction. To map the streamfunction back to z-space,
we also average the height zy of each density surface, and map the streamfunction at density g to
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Figure 4. Comparison of total thickness-weighted average cross-slope transports calculated via TRM
approximations vs. diagnosed directly from model output. (a) Total southward transport, (b) total
interior southward transport, i.e. excluding wind-driven Ekman transport of surface waters [see §4 and
1].

height zj. This allows for direct comparison with the TRM, which approximates the transport above
the isopycnal whose mean elevation is zg. Note that due to the zonal symmetry of the model domain,
we only calculate the meridional component of the streamfunction, which quantifies circulation in the
y/z plane. We denote the streamfunction corresponding to volume fluxes in ™" surfaces as ™",
and the streamfunction corresponding to volume fluxes in 1"M%” surfaces as yp/M%’.

We compare ™" and "M% with the NTRM and NDTRM estimates of the volume fluxes. The
NTRM is evaluated as the meridional component of (20), with the mean operator defined as a time
and zonal average. We denote the resulting streamfunction as N"®M. The NDTRM streamfunction
is defined following equation (B.4) of ST15, and is denoted as ¢NPTRM, Throughout this section we
use “NDTRM” to refer to the NDTRM2 of ST15, which was shown to exhibit closer agreement with
diagnosed fluxes in 1"M%7 surfaces than lower-order formulations of the NDTRM.

In Fig. 3 we compare ™ and /M7, yNTRM gang pNDIRM directly. Fig. 3(a) shows the
overturning circulation diagnosed from volume fluxes within ™" surfaces. The circulation is
characterized by wind-driven shoreward transport within the surface mixed layer and shoreward
interior eddy transport across the continental slope [42]. These shoreward transports are returned
offshore via dense shelf water export down the continental slope. Fig. 3 quantifies the difference in
the computed transports within ™" and 1'% surfaces. The most substantial difference is that the
amplitude of /M%7 is enhanced relative to ™" over the upper continental slope and the continental
shelf, exceeding the ~0.23 Sv shelf overturning magnitude of y™¢" by around 0.08 Sv. This suggests
that a non-negligible fraction of the diagnosed shelf overturning in $"™°7 surfaces is due to errors
introduced by the independent reference dataset of [24]. Figs. 3(c—d) show the differences between
pmean and YNTRM and between /™7 and yNPTRM  respectively. Both TRM streamfunctions somewhat
underestimate the amplitude of the overturning circulation over the continental shelf, and also exhibit
errors close to the ocean surface and floor, where the vertical stratification is weak. The latter might
be ameliorated by adopting a generalized form of the NTRM that utilizes vertical tracer fluxes in
weakly-stratified regions, analogous to the methods proposed by [47,48]. The errors are typically
smaller than 0.05Sv in magnitude, which is smaller than the difference between ™" and y/M?7 over
the shelf, suggesting that ¢NT®M more closely approximates ™" and that yNPTRM more closely
approximates /M%7,
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Figure 5. Comparison between cross-slope heat and salt fluxes diagnosed directly from the model
output vs. estimated using TRM streamfunctions (see §4). Fluxes are plotted over a subset of the model
domain in which the eddy transport was found to be primarily advective, rather than diffusive [42].
(a,b) Diagnosed offshore heat and salt fluxes, respectively. (c,d) Differences between diagnosed and
NTRM-/NDTRM-estimated offshore heat and salt fluxes, respectively.

To quantify the agreement between the TRM and diagnosed transports, in Fig. 4(a) we compare
the net southward transport reported by each streamfunction, as a function of latitude. This calculation
follows ST15, and only includes southward transport at any given latitude if that transport has been
supplied from the northern boundary of the domain, i.e. only counting streamlines that connect
that latitude to the northern boundary. Fig. 4(b) shows a similar comparison, but only accounting
for southward interior transport, i.e. excluding transport in the surface mixed layer. In each case,
PNTRM and ypNPTRM more closely tracks ™ and ¢™M?7, respectively, over the continental slope
(y < 150km). Over the continental slope (150km < y < 250km) the transports are difficult to
distinguish, as suggested by Fig. 3. In the deep ocean (y 2 250 km) the TRM and diagnosed transports
diverge due to large differences in the streamfunctions close to the sea floor (see Fig. 3(c-d)). Thus,
our net southward transport metrics confirm the result suggested by the overturning streamfunction
comparison in Fig. 3: the NTRM more closely approximates volume fluxes in 1p™®" surfaces, while the

TM97

NDTRM more closely approximates fluxes in surfaces.

4.4. Advective tracer transport

Finally, we note that that in addition to estimating isopycnal/diapycnal transports, TRM
streamfunctions may also be used to estimate the advective flux of tracers. Importantly, no
globally-defined density variable is needed to perform such an estimate, so, e.g., it would not be
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necessary to construct a Neutral Density variable like ™" in conjunction with the NTRM for this
purpose. We now compare the advective meridional fluxes of § and S estimated by the NTRM and
NDTRM with those diagnosed from the model simulation. We focus on the continental shelf and open
ocean regions (y 2 150 km), in which the heat and salt transports have been shown to be primarily
advective, rather than diffusive [42].

Fig. 5(a—b) shows the northward eddy fluxes of heat and salt, diagnosed directly from the daily
model output via

0 ____
Flay =L | Tz, (37)

Here x = 0 or x = S, z = —h(y) is the sea floor elevation, the mean operator ® denotes a time and
zonal average, and primes / denote deviations from that average. The heat and salt fluxes have been
rescaled to take units of TW and Gg/ s, respectively, for ease of interpretation. We calculate NTRM
and NDTRM estimates of the advective fluxes via

0
Fam = —La /7 ) al/]g;dez. (38)
Here we set rrv = wNTRM and P1rMm = leDTRM to define the flux estimates Ff\‘ITRM and Ff\(]DTRM,
respectively. In Fig. 5(c—d) we plot the differences between the diagnosed and TRM-estimated heat
and salt fluxes, which typically differ by around 10-20%. There is very little difference between the
NTRM and NDTRM salt fluxes, whereas the NTRM yields errors in the heat flux that are up to 40%
smaller than the errors incurred by using the NDTRM.

5. Summary and Conclusion

The Temporal Residual Mean (TRM) transport requires an Eulerian approximation for vertical
fluctuations of a set of quasi-material surfaces [e.g. 21-23]. The TRM approximates the transport
within these surfaces, which in turn approximates the semi-Lagrangian mean and Lagrangian-mean
transports [10]. This article builds on a recent study by [1, hereafter ST15], who used the Neutral
Density variable 7//M%7 of [24] to construct a Neutral Density TRM (NDTRM) that can be applied
anywhere in the ocean, circumventing the limitations of e.g. potential density at high latitudes. A key
result of this article is that the vertical fluctuations of local Neutral Surfaces, which are defined directly
via the continuous form of the neutral relation, can be approximated via (19). The corresponding
TRM streamfunction (20), referred to as the “Neutral TRM” (NTRM) should more closely approximate
the semi-Lagrangian mean transport than the NDTRM, and therefore also better approximate the
generalized Lagrangian mean transport [10]. The NTRM also coincides with a TRM based on vertical
fluctuations of locally-referenced potential density surfaces, again to the same asymptotic order in the
amplitude of the isopycnal height fluctuations.

In isolation the NTRM streamfunction does not directly quantify isopycnal and diapycnal ocean
transports [see e.g. 31] because local Neutral Surfaces are, by definition, not globally well-defined.
However, in §3 we showed for the special case of a Neutral Density variable (Y™") constructed using
the Eulerian-mean ocean state, the NDTRM reduces to the NTRM, up to the same asymptotic order in
the amplitude of the isopycnal height fluctuations. Thus the NTRM approximately quantifies adiabatic
and diabatic volume fluxes within and across ™" surfaces, again up to a consistent asymptotic order
in the amplitude of the isopycnal height fluctuations.

In §4 we tested this theoretical prediction explicitly using an idealized eddy-resolving simulation
of the Antarctic continental shelf and slope. Using the model’s time-mean state as a reference dataset
for y™ea e labeled the model output with both 4™ and 497 and computed volume fluxes within
surfaces of both Neutral Density variables. We showed that ™" iso-surfaces were more closely

,yJM97 mean gyrfaces should

aligned with local Neutral Surfaces than
be more closely aligned with the local neutral tangent plane. Consistent with §3, we found that the

NTRM more closely approximated volume fluxes within y™¢" surfaces, while the NDTRM more

, indicating that fluxes within -y
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closely approximated volume fluxes within 7//M%” surfaces. Finally, we compared the advective fluxes

of heat and salt estimated by the NTRM and NDTRM, with those diagnosed from the model. Both
formulations of the TRM yielded flux estimates in close agreement with the diagnosed fluxes, though
the NTRM yielded a somewhat closer approximation to the heat fluxes.

The results summarized above suggest that for most oceanographic purposes, the NTRM is
preferable to the NDTRM for the purposes of estimating isopycnal and diapycnal volume fluxes, and
of estimating advective tracer fluxes. It also bears the advantage of being more convenient to compute
than the NDTRM, as it makes no explicit reference to globally-defined Neutral Density variable or
to the set of reference casts used to defined such a variable. A practical consideration is that the
NTRM advects a Neutral Density variable constructed from the model’s time-mean state, i.e. ™"
[23]. Though algorithms for constructing global, approximately neutral density variables have been
proposed [e.g. 24,49,50], translating these algorithms to the time-mean state of a three-dimensional
model with an arbitrary ocean geometry is non-trivial. More recent algorithms have been proposed
to construct global, approximately neutral surfaces [46,51], but have not yet been adapted to the
construction of three-dimensional Neutral Density variables. Furthermore, a Neutral Density variable

such as mean

would need to be constructed with great care to achieve consistency with 4/M%7, which
has been used to map the global overturning circulation [6,25].

Throughout this manuscript we have assumed that local Neutral Surfaces coincide with purely
adiabatic flows [26], and are therefore optimal for the construction of the TRM. Neutral helicity
precludes the construction of a continuous density variable that lies exactly parallel to these surfaces
everywhere in the ocean [29]. However, on the basis of two-parcel energetic considerations, [52] argued
that that adiabatic parcel displacements should not, in fact, follow the neutral tangent plane. Variance
of potential temperature and salinity has been found to be larger on Neutral Density surfaces than
on surfaces of potential density referenced to 2000 decibars [26,53], though this does not explicitly
contradict the notion that adiabatic parcel displacements follow neutral surfaces. Although this topic
remains under debate [54-56], an implication is that there may yet be a more accurate choice than
local Neutral Surfaces to define adiabatic heaving, and therefore to approximate the semi-Lagrangian
mean and generalized Lagrangian mean transports. Further work is required to compare estimates of
thickness-weighted average transports within different formulations of quasi-neutral surfaces, such as
w-surfaces [51], thermodynamic neutral density (¢T) surfaces [50], and orthobaric density surfaces
[49].

Previous studies have used the NTRMO, and thus implicitly the NTRM (see §3), to estimate
volume fluxes within /"M% surfaces [e.g. 42,57-59]. In principle, this incurs an O(A) error in the
approximation, where A quantifies differences between the model’s mean state and the independent
reference dataset. On the other hand, our comparison in §4 shows that the NTRM approximates
transports within 4/M%” surfaces almost as closely as it approximates transports within ™" surfaces,
so in practice such errors may not be of concern. However, further work is required to evaluate errors
associated with neutral helicity when quantifying transports within y™¢" surfaces using the NTRM.
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