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Abstract: Influenza D viruses (IDV) are known to co-circulate with viral and bacterial pathogens
in cattle and other ruminants. Currently, there is limited knowledge regarding host responses to
IDV infection and whether IDV infection affects host susceptibility to secondary bacterial infections.
To begin to address this gap in knowledge, the current study utilized a combination of in vivo and
in vitro approaches to evaluate host cellular responses against primary IDV infection and secondary
bacterial infection with Staphylococcus aureus (S. aureus). Primary IDV infection in mice did not result
in clinical signs of disease and it did not enhance the susceptibility to secondary S. aureus infection.
Rather, IDV infection appeared to protect mice from the usual clinical features of secondary bacterial
infection, as demonstrated by improved weight loss, survival, and recovery when compared to
S. aureus infection alone. We found a notable increase in IFN-f3 expression following IDV infection
while utilizing human alveolar epithelial A549 cells to analyze early anti-viral responses to IDV
infection. These results demonstrate for the first time that IDV infection does not increase the
susceptibility to secondary bacterial infection with S. aureus, with evidence that anti-viral immune
responses during IDV infection might protect the host against these potentially deadly outcomes.
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1. Introduction

The 2011 classification of a novel virus as Deltainfluenzavirus, or influenza D virus (IDV), expanded
the Orthomyxoviridae family into four genera: influenza A, B, C, and D [1,2]. This virus was first
isolated from swine samples that were collected in Oklahoma (D/swine/Oklahoma/1334/2011, OK11),
and subsequent bovine serology studies showed that cows are the natural reservoir for IDV [2,3].
Archived sera confirm the presence of IDV in cows since at least 2003 [3,4], and it is speculated to have
phylogenetically split from its most similar counterpart, influenza C virus (ICV), around 1900 AD [5,6].
The fact that IDV can co-infect with influenza A and other agglutinating viruses has been speculated
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as a reason that this virus went undetected until 2011 [3,7]. Additionally, IDV is known to co-circulate
with a variety of viruses that cause bovine respiratory disease, which further impeded its isolation [8].

It is suspected that IDV is present in cattle and other small ruminants worldwide [3,8-16], but,
at the current time, we do not know the level at which IDV could contribute to human infections.
Current serology results predict that approximately 1.3% of humans are positive for antibodies against
IDV [2], with seropositivity approaching 90% in humans that work closely with cattle [17]. While these
results warrant further testing and exploration of IDV, it has been noted that seropositivity does not
necessarily indicate that IDV infection occurred [6]. Laboratory experiments confirm that IDV can
infect guinea pigs and ferrets, the latter of which is used as a standard animal model to study influenza
viruses due to its similar infection pattern to that of humans [2,7,18,19].

It is well established that most influenza-related deaths are due to complications from secondary
bacterial infection, including pneumonia [20], and that the host response to the virus can direct
susceptibility to these complicated infections [21,22]. Our group and others [21-23] have shown
that the virus itself can impact the severity of a secondary bacterial infection while using both the
viral genes expressed [24,25] and the regulation of host type I IFN expression during primary virus
infection [26-28]. At this time, little is known regarding the host immune response against IDV infection.
Similarly, the impact of IDV infection on susceptibility to secondary bacterial infection has not been
examined. In this study, we initiate the characterization of IDV interactions with the host immune
response by infecting mice with IDV and evaluating susceptibility to secondary bacterial infection
with Staphylococcus aureus (S. aureus). Our work focused on host cellular immune responses that were
induced after both primary IDV infection and secondary S. aureus infection using a murine model.
We also utilized A549 cells, which are a model cell line for human type II alveolar epithelial cells of the
lung that are a major target for infectious microbes [29], to measure type I IFN responses by human
cells that were infected with IDV.

Our results demonstrate that IDV infection does not cause clinical symptoms in wildtype mice.
Moreover, in response to infection with IDV, we found that macrophage levels are not affected by
subsequent secondary bacterial infection. We also determined that IDV infection was protective
against clinical signs of secondary bacterial infection, as demonstrated by decreased illness and
increased survival in S. aureus-challenged, IDV-infected mice as compared to mice that were inoculated
with bacteria alone. When using A549 cells to compare IDV infection with influenza A virus (IAV),
which increases host susceptibility to secondary bacterial infections in mice, an effect that is at least,
in part, through the downregulation of IEN-f3 [27], we found that IDV increased A549 cell expression
of IFN-f. This study demonstrates, for the first time, that IDV infection does not predispose the
murine host to a secondary bacterial infection, and that it can actually improve these potentially
deadly outcomes when compared to inoculation with bacteria alone. We will discuss our findings
with emphasis on how this new member of the Orthomyxoviridae family compares to current secondary
bacterial infection studies with influenza A viruses.

2. Materials and Methods

2.1. Cell Lines

Madin-Darby Canine Kidney (MDCK; American Type Culture Collection, Manassas, VA) cells
were maintained in standard MDCK cell growth media prepared while using MEM (Gibco, Carlsbad,
CA, USA), 1% MEM vitamin solution (Gibco), 1% antibiotic-antimycotic (Gibco), 1% L-glutamine
(Gibco), 5% heat-inactivated FBS (fetal bovine serum) (Atlanta Biologicals, Flowery Branch, GA),
10 mg/mL gentamicin (Gibco), and 3% sodium bicarbonate (Gibco). Human alveolar epithelial
cells (A549, ATCC) were maintained in F-12K medium (Gibco) supplemented with 10% FBS
(Atlanta Biologicals), 1% antibiotic/antimycotic solution (Gibco), and 10 mg/mL gentamicin (Gibco).
Both of the cell lines were kept at 37 °C, 5% CO,, until infection.
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2.2. Virus Preparation

The IDV isolate D/swine/Oklahoma/1334/2011 (OK11) was propagated in 10-day-old embryonated
chicken eggs, as previously described [30]. When necessary, the fifty-percent tissue culture infectious
dose (TCIDsp) was determined for the egg-grown stock of OK11, also as previously described [30].
Briefly, the MDCK cell monolayers were washed twice with phosphate-buffered saline (PBS), inoculated
with logyg serial dilutions of the diluted stock virus, and incubated for 1 h at 33 °C. The virus was
propagated over three days at 33 °C, 5% CO; in the presence of MDCK infection media that used 0.3%
bovine serum albumin (BSA) (Sigma, St. Louis, MO, USA), instead of FBS, and it was supplemented with
1.0 pg/mL TPCK-trypsin (Worthington Biochemical Co., Lakewood, NJ, USA). The hemagglutination
assay was used to confirm virus propagation in individual wells. The OK11 IDV stock had a TCIDsq
value of 10092 TCID5,/mL.

2.3. Mice

Female wild-type (WT) C57BL/6 mice (CD45.2) were purchased from Jackson Laboratories
(Bar Harbor, ME, USA) and maintained at the Montana State University (MSU; Bozeman, MT) Animal
Resources Center under pathogen-free conditions. All of the mice used in this study were six to eight
weeks of age, unless specifically indicated. All care and procedures were in accordance with NIH,
USDA and the Guide for the Care and Use of Laboratory Animals (National Research Council, 2011)
recommendations. The animal protocols were reviewed and approved by the MSU Institutional Animal
Care and Use Committee IACUC). The Association for Assessment and Accreditation of Laboratory
Animal Care accredited MSU (AAALAC; accreditation no. 713).

2.4. Mouse Inoculations, Challenge, Burden, Morbidity, Histology, and Survival

Nonsurgical intratracheal (i.t.) inoculations were performed, as previously described [31].
For OKI11 inoculations, the mice were inoculated on day 0 with 100 pL of PBS or with
1.09 x 10* plaque-forming units (PFU) OK11. For the experiments with the LAC strain of S. aureus
(methicillin-resistant S. aureus [MRSA] pulsed-field type USA300; a kind gift from Jovanka Voyich
at MSU), inoculations of 1.5 x 108 colony-forming units (CFU) were used for challenge on day 7
post-OK11 infection. Our previously described procedure for determining CFU [31] was followed on
lung homogenate samples after overnight culturing on tryptic soy agar (TSA) plates. The mice were
weighed and monitored for signs of morbidity and mortality daily after inoculation and/or challenge.
The lungs used for histological analyses were instilled and fixed in 10% buffered formalin phosphate
(Fisher Scientific, Fairlawn, NJ) for 24 h. Paraffin-embedded lung sections (5 um thick) were stained
with hematoxylin and eosin (H&E) and then evaluated under a microscope (Eclipse E800; Nikon Inc.,
Melville, NY, USA) at 4x and 40x objective magnification.

2.5. Preparation of BALF Samples and Cell Population Analysis

Mice were sacrificed by intraperitoneal (i.p.) administration of 90 mg/kg body weight sodium
pentobarbital. Bronchoalveolar lavage fluid (BALF) was obtained by lavaging the lungs with 3 mM
EDTA in PBS [32] and the cellular composition was determined by hemocytometer cell counts and
differential counts of cytospins after staining with Quick-Diff solution (Siemens; Medical Solutions
Diagnostics, Tarrytown, NY, USA).

2.6. A549 Cell Infections

The A549 cells were seeded at 3.0 X 10° cells/mL and then infected 24 h later with either egg-grown
IDV (D/swine/Oklahoma/1334/2011, OK11) or IAV (A/Puerto Rico/8/1934, PR8) that had also been
propagated in 10-day-old embryonated chicken eggs (108> TCIDsy/mL). For RT-qPCR experiments,
75 cm? flasks were infected with a multiplicity of infection (MOI) of 1.0. For ELISA experiments,
24-well plates were infected with a MOI of 0.1. A549 cells that were infected with OK11 were incubated
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for 1 h at 33 °C, 5% CO, before adding MDCK cell infection media containing BSA supplemented
with 0.1 pg/mL TPCK-trypsin. PR8-infected A549 cells were treated the same, except the one-hour
incubation took place at 37 °C, 5% COs.

2.7. RNA Isolation

RNA was isolated from 75cm? flasks of uninfected, PR8-infected, or OK11-infected cells at 24 h
post-infection (HPI) using TRIzol™ Reagent (Invitrogen, Carlsbad, CA, USA), as per the manufacturer’s
protocol, and then stored at —80 °C until needed.

2.8. One-Step RT-qPCR

RNA from uninfected, PR8-infected, and OK11-infected A549 cells was analyzed for interferon
(IFN) RNA transcript while using reverse transcription quantitative-PCR with MultiScribe™ Reverse
Transcriptase (Thermo Fisher, Waltham, MA) and the Power SYBR™ Green PCR Master Mix (Thermo
Fisher), following the manufacturer’s instructions. RT-qPCR product were detected while using an
Applied Biosystems 7300 Real-Time cycler with a program of 30 min at 48 °C for reverse transcription,
10 min at 95 °C for DNA polymerase activation, and 40 cycles of 94 °C for 15 s (denaturing), 60 °C for
60 s (annealing and extension). Gene-specific primers (Eurofins Genomics, LLC, Louisville, KY) were
as follows: IFN-f F: 5’-GTCTCCTCCAAATTGCTCTC-3’, R: 5'-ACAGGAGCTTCTGACACTGA-3’;
IEN-A1 F: 5-GGAGTAGGGCTCAGCGCATA-3’, R: 5'-GCCTCCTCACGCGAGACCTC-3’; IFN-A2
F: 5-CGTGGGCTGAGGCTGGATAC-3, R: 5-TGGCCCTGACGCTGAAGGTT-3’; IL-27 FE
5-TGGGCTGAGGCTGGATACAG-3’, R: 5-TCTGGAGGCCACCGCTGACA-3’; IFN-«2 F:
5’-CCTGATGAAGGAGGACTCCATT-3, R: 5-AAAAAGGTGAGCTGGCATACG-3’; and 185 rRNA F:
5-CTTAGAGGGACAAGTGGCG-3, R: 5'-GGACATCTAAGGGCATCACA-3’. RT-qPCR data were
analyzed using the 222Ct method [33] so that data are normalized to both the uninfected control and a
housekeeping gene (185 rRNA) and graphed as relative fold change.

2.9. ELISA

Supernatants were collected from 24-well plates of uninfected, PR8-infected, and OK11-infected
A549 cells at 24 and 48 HPI and then centrifuged to remove cell debris for 5 min at 2500 rpm. The cell
lysates were then collected using 100uL cell lysis buffer per well. Supernatants and cell lysates were
stored at —80 °C until needed. IFN-{ protein expression was analyzed while using the Verikine Human
IFN Beta ELISA Kit (PBL Assay Science, Piscataway, NJ), as per the manufacturer’s protocol.

2.10. Statistical Analysis

Unless otherwise specified in the figure legends, the reported results are means + standard
deviations (SD) from five mice per group from a single experiment. Each experiment for which the
results are presented in this paper was independently performed at least twice with similar results.
The differences between the treatment groups were analyzed by analysis of variance (ANOVA) or
Student’s t-test (two-tailed) using GraphPad Prism software. Statistical differences with p values of
< 0.05 were considered to be significant.

3. Results

3.1. IDV Infection in C57BL/6 Mice is Asymptomatic

The infection of wildtype mice with influenza A and B viruses often results in clinical disease
symptoms [34,35]. The intensity of symptoms varies, with body weight loss commonly following
increased virus replication. However, primary IDV infection with the OK11 strain did not induce
signs of clinical disease in C57BL/6 mice, as evidenced by no weight loss (Figure 1A) or other signs
of morbidity (not shown) over the course of infection with OK11 alone. At day 7 following OK11
infection, when the induction of adaptive immune responses typically becomes visible, an increase
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in the number of neutrophils and lymphocytes being recruited to the lung was found, indicating an
active immune response as compared to mock-infected mice (Figure 1B).
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Figure 1. Primary IDV infection in C57BL/6 wildtype (WT) mice. (A) C57BL/6 (WT) mice were
inoculated with OK11 (IDV; black boxes) or PBS (open circles) on day 0. Percent initial body weights
(compared to day 0) were measured each day; (B) Differential counts of white blood cells from
BALF were measured on day 7 (wWhen secondary bacterial infections are known to be detrimental).
Experiments had a minimum of 5 animals per group and were repeated two times. Data are represented
as mean + SD, and ** indicates p < 0.01 between indicated groups using Student’s t test.

Histological examination demonstrates that, when compared to PBS-inoculated mice, the lungs
from OK11-infected mice had increased edema and neutrophil infiltration in both the airways and
vasculature (Figure 2). This further demonstrates that cellular infiltration and increased inflammation
is associated with an active immune response against IDV infection.

PBS IDV IDV + S.a.

4x

40x

Figure 2. Histological analysis of primary influenza D virus (IDV) infection and subsequent bacterial
infection in C57BL/6 wildtype (WT) mice. C57BL/6 (WT) mice were inoculated with OK11 (IDV) or PBS
on day 0 or challenged with S. aureus on day 7 post-IDV. Representative images of H&E stained lung
sections are shown at 4x and 40X objective magnification. Examples of edema are demonstrated by
orange arrow heads and neutrophils by blue arrow heads.
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3.2. IDV Infection Improves Survival after S. aureus Secondary Infection but Does Not Affect Bacterial Clearance

As one of the major factors affecting influenza-mediated morbidity and mortality, we sought to
determine how OK11 infection affects susceptibility to a subsequent bacterial challenge. It is known
that mice and humans both experience increased susceptibility to secondary bacterial infections around
day 7 after infection with IAV [22,28,36-39], even when primary influenza infection only results in
minor disease. Thus, we next sought to determine whether, despite the absence of clinical disease,
OK11 infection could increase host susceptibility to subsequent S. aureus infection. We found that at
24 h after S. aureus infection, mice that were only infected with bacteria had very similar S. aureus lung
burden when compared to mice that were infected with S. aureus seven days post-OK11 (Figure 3A).
Thus, OK11 primary infection did not alter bacterial load during S. aureus secondary infection when
compared to mice that were infected with S. aureus alone.

Neutrophils are a primary responder to respiratory S. aureus infections [20], and defects in
neutrophil recruitment and/or bactericidal function have been implicated in reduced bacterial clearance
after influenza infection [39,40]. Consistent with the similar S. aureus lung burden detected at 24 h
after the infection of either mock- or OK11-infected mice, IDV infection did not alter lung neutrophil
recruitment during secondary S. aureus infection, as there were no significant differences in neutrophil
populations at 24 h post-bacterial challenge (day 8 post-OK11 infection) (Figure 3B). Interestingly,
we found that post-OK11 lung macrophage levels do not decrease in response to S. aureus secondary
infection, as they have the same number of macrophages as OK11-only infected mice (Figure 3B). This is
in contrast to what we have previously found, where secondary infection of S. aureus following IAV
infection or single infection with S. aureus alone leads to a decrease in macrophages and a dominance
of neutrophils [24,28].

C57BL/6 (WT) mice challenged with S. aureus on day 7 post-OK11 showed increased inflammation
in comparison to mice that were challenged with S. aureus alone (Figure 2). Specifically, histological
analysis found that vascular leakage occurs in response to S. aureus at 24 h post-S. aureus challenge,
regardless of prior IDV infection, and there is still residual inflammation in the OK11-infected mice
following S. aureus challenge (Figure 2 arrowheads).
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Figure 3. C57BL/6 (WT) mice were inoculated with OK11 (IDV; grey boxes) or PBS (white circles) on
day 0 and challenged with S. aureus (S.a.) or PBS on day 7. (A) Lung bacterial burden (CFUs/mL)
and (B) differential counts of white blood cells from BALF were measured 24 h after S.a. challenge.
Experiments had a minimum of five animals per group and were repeated two times. Data are
represented as mean + SD. ¥, p < 0.05, **, p < 0.01 using Student’s t test.

We did find significantly more macrophages in mice that were infected with OK11 and challenged
with S. aureus as compared to mice that were inoculated with S. aureus alone (Figure 3B, p = 0.02).
Interestingly, in response to challenge with S. aureus, OK11-infected mice had improved weight loss
(Figure 4A), survival (Figure 4B), and recovery from signs of morbidity (Figure 4C) in comparison
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to mice that were challenged with S. aureus alone. In fact, there was still 100% survival in OK11 +
S. aureus-infected mice at day 5 post-S. aureus challenge (day 12 post-OK11 infection) as compared to
mice challenged with S. aureus alone that only showed 60% survival (Figure 4B). Together, these results
suggest that prior OK11 infection might prime the inflammatory response, ultimately aiding in the
clearance of subsequent secondary bacterial infection instead of increasing susceptibility, as found
with IAV.
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Figure 4. C57BL/6 (WT) mice were inoculated with OK11 (IDV; grey boxes) or PBS (white circles)
on day 0 and challenged with S. aureus (S.a.) on day 7 (indicated by dotted red line). (A) Percent
initial body weight (compared to day 0), (B) survival, and (C) signs of morbidity were monitored and
measured daily. Experiments had a minimum of 5 animals per group and were repeated two times.
Data are represented as mean + SD. ¥, p < 0.05 (comparing groups on days 9 and 10 post-OK11) using
Student’s t test.

3.3. IDV Enhances IFN-f Expression by Lung Epithelial Cells

As OK11-infected mice were protected from subsequent bacterial challenge, we next sought to
determine the general IFN response, as the level and timing of IFNs during influenza infections is
known to contribute to the outcome of secondary bacterial infection [26-28,41]. We found that infection
of A549 cells with OK11 at a MOI of 1.0 resulted in a 7.6 fold increase in IFN-f transcript at 24 h
post-OK11 (Figure 5A). Comparatively, at 24 h post-infection, A549 cells that were infected with IAV
strain A/Puerto Rico/8/1934 (PR8) at a MOI of 1.0 showed a 7.6 fold increase in IFN-A2 transcript,
a 7.2 fold increase in IL-27 transcript, a 2.5 fold increase in IFN-«2 transcript, and a 2.4 fold increase in
IFN-A1 transcript, but no increase in the IFN-f3 transcript. No change in IFN-y transcript was found in
the A549 cells that were infected with either virus. We found increased production of IFN-f3 protein
using an ELISA (PBL Assay Science) in both cell lysates (Figure 5B) and supernatants (Figure 5C) from
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PRS- and OK11-infected A549 cells at 24 and 48 HP]I, supporting our findings at the transcript level
(Figure 5A).
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Figure 5. Interferon analysis of infected A549 cells by RT-qPCR and ELISA. (A) RNA from PR8-infected
(black bars) or OK11-infected (IDV; grey bars) A549 cells was analyzed for interferon (IFN) mRNA
transcript using RT-qPCR (Thermo Fisher). Fold change in transcript levels was calculated using the
2-8ACt method [33] so that data are normalized to both the uninfected control and the housekeeping
gene 18S rRNA. Values represent results from three independent experiments. Cell lysates (B) and
supernatants (C) of PR8- or OK11-infected A549 cells were analyzed for IFN-3 protein production
by ELISA (PBL Assay Science) and corrected for background expression using uninfected controls.
Values are from a single experiment, with both cell lysates and supernatants represented.

4. Discussion

Here, we show that the primary infection of mice with IDV does not result in disease, as mice
demonstrated none of the clinical symptoms associated with the typical progression of IAV infection.
In addition, infection with IDV did not inhibit bacterial clearance after secondary challenge with
S. aureus. In fact, we found decreased morbidity and increased survival of IDV-infected mice in
response to bacterial challenge when compared to mice that were challenged with bacteria alone.
Our findings demonstrate that mice are not susceptible to secondary bacterial infection post-IDV
infection and suggest that IDV-mediated anti-viral host responses may help to clear the bacteria by
priming a protective inflammatory response. We will discuss these results in the context of IDV
pathogenesis and the regulation of secondary bacterial infections as they compare with our previous
findings with IAV.

Our results demonstrate that infection of mice with OK11 IDV does not cause mice to exhibit the
clinical symptoms that are normally associated with influenza disease progression. Although we did
observe the recruitment of lymphocytes and neutrophils to the lung during OK11 infection, we did
not observe a decrease in body weight. Usually, the recruitment of inflammatory cells results in
increased signs of morbidity, as we have previously found with other IAV subtypes that induce cellular
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recruitment [24,28]. Additionally, we did not see a decrease in macrophage levels in mice that were
infected with IDV, which is a common observation following IAV infection in C57BL/6 mice [42].
These results indicate that the inflammatory environment during IDV infection is subdued when
compared to other influenza virus infections. Specifically, the high level of macrophages that are still
present at day 7 post-OK11 may aid in preventing the clinical symptoms that were observed after
IAV infection.

Similar to other groups [21-23], we have previously investigated infection by the PR8 strain of
IAV in mice and demonstrated that primary PR8 infection can increase morbidity and mortality of
secondary bacterial infection as compared to infection of mice with bacteria alone [25,27,32]. In this
study, we demonstrate that there is a protective effect of primary IDV infection during secondary
S. aureus infection that is not observed in mice infected with bacteria alone. Specifically, OK11-infected
mice challenged with S. aureus were less susceptible to clinical signs of disease (weight loss) and
mortality when compared to mice that received S. aureus alone. This suggests that IDV induces
host anti-viral mechanisms that are protective against secondary bacterial infection. Interestingly,
we found that, in addition to OK11 infection alone, secondary bacterial infection of OK11-infected mice
also does not decrease the level of macrophages. This suggests that macrophages may be involved
in mediating protection from secondary bacterial challenge. Our previous work with PR8-infected
C57BL/6 mice showed that protective alveolar macrophages are depleted over the course of IAV
infection and replaced by damaging inflammatory monocytes/neutrophils that contribute to secondary
bacterial susceptibility [24,28]. However, Califano, Furuya, and Metzger (2013) demonstrated that
macrophage dysfunction, rather than depletion, in C57BL/6 mice that were infected with IAV is a
factor that contributes to increased susceptibility to secondary bacterial infection [42], and our previous
PR8-infected mouse data supports this. It will be important to determine the macrophage phenotypic
properties over the course of IDV infection, and compare them with IAV responses to define how
macrophages contribute to this protection from secondary bacterial infection.

Previous work from ours, as well as other groups, has demonstrated that differential regulation of
IFNs (type L, 11, and III) mediated by the host and/or altered by viral antagonism regulate susceptibility
to secondary bacterial infection [26,27,43]. Type I IEN, such as IFN-f3, and type III IFNs (IFN-As) have
been shown to be involved in activating interferon-stimulated genes (ISGs) that limit the spread of
infection and inhibit viral replication [44,45], as well as have a role in protecting mice from secondary
bacterial infection [27]. On the other hand, type II IFN (IFN-y) has been shown to have a detrimental
effect during secondary bacterial infection [22,46]. Here, we evaluated the IFN response in A549
cells that were infected with either PR8 or OK11 to determine the early innate responses of epithelial
cells that would be the initial target for infection by IDV. We demonstrate that, in the first 24 h of
infection, OK11-infected A549 cells show increased IFN-f transcript, while PR8-infected A549 cells
show increases in IFN-A2 and IL-27, but not IFN-. This is followed by an increase in IFN-f3 protein
expression in the supernatant of OK11-infected A549 cells at 24 h post-infection and a further increase
in both cell lysate and supernatant of OK11-infected A549 cells at 48 h post-infection. This finding
suggests that the mechanism for IDV-mediated protection in vivo might be due to prolonged IFN-f3
production since IFN-3 is known to be more potent than type III IFNs and activates more ISGs [45],
which we have previously found to be the mechanism for survival after infection with the IAV strain
A/swine/Texas/4199-2/98 [28]. To determine whether this protection correlates with IFN-f3 expression
in vivo, we are currently exploring the IFN response in mouse models at various timepoints over the
course of IDV and S. aureus infection. We predict that OK11-infected mice will have increased IFN-f3
expression when compared to bacteria alone due to the previously established protective effect of
IFN-f in PR8-infected mice. Our group has also noted that PR8-infected mice show increases in IL-27
expression [28], which is important because IL-27 is another antiviral cytokine that, in response to IAV
infection, contributes to increased host susceptibility to secondary bacterial infection [47]. More research
investigating the specific contributions of individual cell types during the innate immune response
against IDV infection is needed. Investigating ISGs that IDV infection induces will also help in defining
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the specific contributions that IFN make toward the protective effect we observe in OK11-infected mice
that are subsequently infected with S. aureus.

IDV was discovered less than a decade ago, and we have limited understanding of IDV
pathogenicity and its potential involvement in secondary bacterial infections. Here we show, for the first
time, that IDV provides a potential protective effect against secondary bacterial infections, rather than
the detrimental effect that is often associated with IAV. Through our extensive research with 1AV,
we currently have genetic tools available to better understand IDV pathogenicity in both primary
virus infection and secondary bacterial infection. We are continuing to explore IDV infections in both
tissue culture and animal models, including understanding how the innate and adaptive arms of
the immune system can direct immunity against both primary IDV and IDV-associated secondary
bacterial infections.
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