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Abstract— This work is based on the vision that the ultimate
power integrity and efficiency may be best achieved via a
heterogeneous chain of voltage processing starting from onboard
switching voltage regulators (VRs), to on-chip switching VRs, and
finally to networks of distributed on-chip linear VRs. As such,
we propose a heterogeneous voltage regulation (HVR) archi-
tecture encompassing regulators with complimentary character-
istics in response time, size, and efficiency. By exploring the
rich heterogeneity and tunability in HVR, we develop systematic
workload-aware power management policies to adapt heteroge-
neous VRs with respect to workload change at multiple temporal
scales to significantly improve system power efficiency while pro-
viding a guarantee for power integrity. The proposed techniques
are further supported by hardware-accelerated machine learn-
ing (ML) prediction of nonuniform spatial workload distributions
for more accurate HVR adaptation at fine time granularity.
Our evaluations based on the PARSEC benchmark suite show
that the proposed adaptive three-stage HVR reduces the total
system energy dissipation by up to 23.9% and 15.7% on average
compared with the conventional static two-stage voltage regula-
tion using off-chip and on-chip switching VRs. Compared with
the three-stage static HVR, our runtime control reduces system
energy by up to 17.9% and 12.2% on average. Furthermore,
the proposed ML prediction offers up to 4.1% reduction of system
energy.

Index Terms—Machine learning (ML), multicore processor,
power delivery network (PDN), power management, voltage
regulation.

I. INTRODUCTION

UPPLY voltage regulation serves the critical role of deliv-

ering power to on-die devices for high-performance VLSI
systems such as in server and desktop applications [1]-[3].
Power shall be delivered with ensured power quality to
prevent timing violations. On the other hand, achiev-
ing power efficiency has become a key challenge in
the dark silicon age [4]. Power management must be
employed to maximize power efficiency in every possible
way [5], [6].
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Power delivery networks (PDNs) and voltage regula-
tors (VRs) significantly impact power efficiency and integrity.
Switching VRs are more efficient than linear VRs such as
low-dropout VRs [low dropout regulators (LDOs)] over wide
output voltage and load ranges, while linear VRs are more
area efficient and can achieve faster subnanosecond response
times [7]-[9]. Distributed on-chip voltage regulation is an
important ongoing design trend where multiple area-efficient
linear VRs are distributed within a power domain to provide
fast suppression of power supply noise in the vicinity of such
linear VRs. For instance, the recent IBM POWERS processor
employs 1764 on-chip distributed linear VRs [2].

Tradeoffs between performance and power dissipation can
be optimized using dynamic power management such as
dynamic voltage and frequency scaling (DVFS) [3], [10]-[15].
However, dynamic workloads and power management may
push the VRs away from their optimal operating points,
degrading the efficiency of the entire system. Recent
work has attempted to reconfigure the PDN based on the
workload [16]-[19]. As an example, the workload-aware
quantized power management (QPM) scheme in [17] adopts
simple control policies to dynamically adjust the num-
ber of active on-chip and off-chip switching VRs. How-
ever, such schemes have only considered switching VRs
and little work has been done toward holistic explo-
ration of heterogeneous VRs and their systematic adapta-
tion considering complex interdependencies between such
regulators.

This work is based on the vision that the ultimate power
quality and efficiency may be best achieved via a hetero-
geneous chain of voltage processing starting from on-board
switching VRs, to on-chip switching VRs, and finally to
networks of distributed on-chip linear VRs. As depicted
in Fig. 1, we propose a heterogeneous voltage regula-
tion (HVR) architecture encompassing regulators with compli-
mentary characteristics in response time, size, and efficiency.
This work aims to answer the following key question for
the first time. Given a desired power supply voltage set by
a higher level power management policy, e.g., one based
on DVFS, for each power domain, how shall the VRs in
the HVR system be adapted autonomously with respect to
workload change at multiple temporal scales to significantly
improve system power efficiency while providing a guaran-
tee for power integrity? The contributions of this paper are
severalfolds.
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Fig. 1. Proposed HVR.
1) This is the first work that systematically explores HVR.

2)

3)

The most general form of HVR consists of VRs with
complimentary characteristics across three processing
stages. In the first two stages, off-chip and on-chip
switching (dc—dc) converters are employed to achieve
high efficiency over a wide output voltage range, serving
the major role of voltage conversion. Compared with
single stage dc—dc conversion, two-stage dc—dc conver-
sion allows for area reduction, improved power effi-
ciency, and fine-gained DVFS, which is supported by the
fast response time of on-chip dc—dc converters. Unlike
conventional one or two-stage PDNs, HVR largely
decouples voltage conversion from voltage regulation,
the latter of which is optimally achieved by placing
a large number of compact LDOs with subnanosecond
response time in a distributed manner within each power
domain, forming an interconnected active regulation
network.

We propose systematic workload-aware control policies
to jointly optimize power efficiencies of all voltage
processing stages to maximize the overall system power
efficiency. To best exploit the potential of energy effi-
ciency of HVR, our control policies minimize system
power losses by considering interdependencies across
the entire voltage processing chain and adapt HVR at
multiple time scales given the significantly different
response times of the considered VRs.

Uncertainties caused by unknown nonuniform spatial
distribution of the workload are hard to predict but can
jeopardize power integrity. To minimize the extra voltage
margin, hence power loss, needed for accounting for
nonuniform spatial workload distribution, for the first
time, we propose a novel machine learning (ML) solu-
tion that accurately sets the output voltage of the on-chip
switching VRs to maximize the system power efficiency
while effectively tracking the worst case voltage drop in
each power domain to safeguard power integrity. Our
ML solution consists of a few on-chip voltage-noise
sensors that provide inputs to a low-overhead hardware-
accelerated ML predictor, which fine tunes the output

voltage of the on-chip switching VRs. This provides an
autonomous end-to-end integrated ML solution whose
low latency allows for fine-grained adaptation of HVR.

II. MoTIvATION OF HETEROGENEOUS
VOLTAGE REGULATION

A. Overview of Voltage Regulators

VRs are key components of a power delivery system and
the characteristics of VRs have critical impacts on power
efficiency and performance of the entire system. Generally,
linear VRs such as LDOs are more area efficient and can
achieve fast response time, while switching VRs are usually
more energy efficient. The inductor-based buck converter and
the switched capacitance (SC) converter are the two main
categories of switching VRs. The integration of SC converter
requires only capacitance, which have a significantly higher
power density and can be integrated more easily than its
inductance counterpart [20]. However, it only supports certain
discrete voltage divide ratios and usually needs a large number
of phases for ripple loss reduction [21]. On the other hand,
the enabled continuous and wide range of output voltages with
high efficiency makes inductor-based buck converter a natural
choice for dynamic voltage scaling (DVS), and therefore it
has been used for most switch VRs for past decades. In this
work, we use inductor-based buck converter as the switch
VR to demonstrate the benefit of multistage voltage regulation.
However, the adaptive control scheme with multistage voltage
regulation as proposed later may also be applied to the system
with capacitance-based converters in a similar way.

In a PDN, off-chip inductor-based buck VR, switching at a
rate of hundreds of kilohertz to tens of megahertz, can achieve
excellent efficiency at the expense of bulky and costly off-chip
LC components [22], [23]. Furthermore, off-chip VRs have
slow response times and, hence, cannot support fine-grained
DVS. There has been a great deal of progress on fully inte-
grated buck VRs, thanks to on-die/in-package inductors and
new magnetic materials [24]-[26]. Operating at a frequency
of tens or hundreds of megahertz, fully integrated buck VRs
come with fast response times and promises for efficient local
power delivery and fine-grain DVFS. However, integrating
high-Q power inductors to support high current density with
low loss is still a major challenge [24]-[26]. Compared to
their off-chip counterparts, on-chip buck VRs incur more
conduction and switching losses, leading to lower efficiency,
especially at light loads. On-chip linear (e.g., LDOs) are area
efficient and can achieve subnanosecond response times [9].
Their efficiency drops with increasing dropout voltage, making
them inefficient for wide-range voltage conversion. Clearly,
those VRs have complimentary characteristics in response
time, area and power efficiency and none of them can address
the IC power delivery challenge alone.

Conversion Versus Regulation: Although conversion and
regulation are used almost interchangeably, we shall note a
fine distinction between them with respect to the best ways
for realizing conversion and regulation. Switching VRs are
well suited for wide-range voltage conversion for which linear
VRs suffer from large loss. On the other hand, area-efficient
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TABLE I
COMPARISON OF DIFFERENT VRS
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Fig. 2. PDN architectures. (a) Single-stage PDN using off-chip buck con-
verters. (b) Two-stage PDN using both on-chip and off-chip buck converters.
(c) Proposed three-stage HVR.

integrated linear VRs provide fast regulation. Table I summa-
rizes the characteristics of different VRs.

B. Heterogeneous PDN Architecture

Three power delivery architectures are illustrated in Fig. 2.
The single-stage PDN [Fig. 2(a)] is managed by only off-chip
buck converters, achieving a high efficiency over a wide work-
load range. However, the board/package parasitics degrade the
power quality delivered from the off-chip bucks to the on-chip
power domains. Furthermore, the slow response time of
off-chip buck converters limits the application of fine-grained
DVS. Thanks to the progress of on-die/in-package inductors
and new magnetic materials the buck converters can be inte-
grated on chip. The two-stage PDN [Fig. 2(b)] consists of both
off-chip and on-chip buck converters, improves the quality of
power delivery by lowering the impedance from the power
supply to the load circuits, and supports fine-grained per-
core DVS since the integrated VRs can settle much faster.
These benefits make this architecture widely used in modern
SoCs such as the Intel’s Haswell processors [27]. However,
the response time of on-chip buck converters can still limit
the PDN performance in the case of highly unpredictable
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TABLE II
CONTROL VARIABLES IN HVR
Variable Description
N, é;)im e,on Number of online VRs in the i-th on-chip buck cluster
AV Output voltage of the i-th on-chip buck cluster
Nontine,off ~ Number of online VRs in the off-chip buck cluster
Vout,of Output voltage of the off-chip buck cluster

load currents which may occur, for example, in server-class
processors [14].

We argue that the ultimate quality and efficiency in supply
voltage regulation may be only achieved by fully exploiting
the heterogeneity in PDN architecture with heterogeneous reg-
ulators with complimentary characteristics in response time,
power efficiency, and cost. As shown in Fig. 2(c), we propose
an HVR architecture with three voltage processing stages:
multiple off-chip buck VRs supplying power to multiple clus-
ters of on-chip buck VRs with each cluster powering a network
of distributed on-chip LDO driving a power/voltage domain.
Fig. 3(a) depicts a more detailed view of the three-stage
HVR. Clearly, the first stage enjoys high efficiencies of
off-chip buck VRs over wide ranges of workloads. Their slow
response is compensated by the second stage of on-chip buck
VRs. Bypassing board/package parasitic impedances, on-chip
buck VRs can settle much faster, enabling fine grained per
core DVS otherwise impossible. Having two stages of buck
converters gives the added benefit of lowering the step-down
ratio for each stage, improving the efficiency of both off-chip
and on-chip buck converters, and reducing sizes of the off-chip
passives and power transistors [17]. Leaving most of the
voltage conversion functionality to the first two stages, the
on-chip LDO networks act as the last (main) stage of voltage
regulation. Due to the small footprint of LDOs, a large
number of compact LDOs with ultrafast response time can
be placed on-chip in a distributed manner within a power
domain, forming an interconnected active regulation network.
In vicinity of on-chip hot spots, on-chip network can respond
very quickly to local voltage droops, achieving good regulation
performance.

C. Tuning Opportunities in HVR

Heterogeneity brings in a great deal of tunability at mul-
tiple HVR stages for workload-aware adaption. The power
efficiency of a single VR stage is usually a function of its
input—output voltages and current load. For a cluster of VRs,
its power efficiency can be optimized according to runtime
workload by either tuning its input—output voltages or modu-
lating the number of online VRs, which changes the load per
regulator. There are important interdependencies among dif-
ferent voltage processing stages which must be carefully con-
sidered in order to optimize the overall energy efficiency and
regulation performance. For example, the output of the pre-
ceding VR stage is also the input of the subsequent VR stage.
Fig. 4 summarizes the rich tunability and complicated energy
and performance interdependencies in HVR system.

We define several important control variables in Table II,
and will use them throughout this paper. Considering an HVR
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Fig. 3. (a) Modeling of three-stage HVR system. (b) Distributed LDO network.
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Fig. 4. Overview of tunability in HVR system.

system consisting of N power domains as in Fig. 2(c), the con-
trol decision variables are: the number of online converters
in each on-chip buck VR cluster N® and the cluster’s

g online,on”
output voltage Vo(l’lz on i = 1,..., N, which is the input voltage
to the LDO network driven by the cluster; the number of
online converters in the off-chip buck cluster Nipline,off, and
its output voltage Vit off, Which sets the input voltage to all

on-chip buck VR clusters in the considered tree.

III. MODELING OF HVR SYSTEM

Clearly, the HVR voltage processing chain has a tree struc-
ture consisting of multiple voltage processing stages starting
from a cluster of off-chip buck VRs and ending at the on-die
loads in each local power domain. We look into the detailed
energy and regulation characteristics at each individual stage
first then consider the interdependencies across different stages
in the HVR system.

A. Characteristics Per Stage

1) On/Off-Chip Buck Clusters: Fig. 5 shows a typically
multiphase buck converter which is commonly used in modern
processor systems. Each phase of the buck VR is imple-
mented with fixed switching frequency and pulsewidth mod-
ulation (PWM). Each PWM comparator sets the duty cycle
of its output voltage waveform which then drives power
switches to produce the modulated final output voltage.
The multiple parallel time-interleaved phases cancel out the

Fig. 5.

Schematic of a multiphase PWM buck converter.

high-frequency output noise and reduce the transient response
time at the cost of increased overhead of inductors and control
circuits [28].

The major power losses of a buck converter include two
parts: the switching loss which is largely independent of load
current and the resistive loss which is a function of the load
current [29]. The switching loss dominates the power loss
at light loads while the resistive loss grows quadratically
with increasing load current. In addition, both parts of power
loss are functions of the input—output voltages of the buck
converter. In a cluster of buck VRs, its overall power efficiency
can be further impacted by the number of online VRS Nipline
which varies the total switching loss under the same overall
load current. As a result, the general form for the power
efficiency of a buck cluster can be written as

Mbuck = f(Vins Vout: Nonline, IL)- (1)

For given input—output voltages, a single VR achieves the
peak efficiency at an optimal load point I,y Where the ratio
of total loss over the load power is minimized. Relying on
the analytic power model as in [28] for a given set of design
parameters such as switching frequency, filter inductance, and
size of MOS switches, Fig. 6(a) demonstrates that the power
efficiency curves of a buck cluster can be dramatically changed
with a different number of online VRS Ngpline- The peak
power efficiency for each curve can only be achieved at a
certain optimal current load point, which is roughly Nopline Zopt-
Therefore, it is intuitive to bring online only a certain number
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Fig. 6. (a) Impact of online buck VRs on power efficiency. (b) Impact of
input voltage on Iop for a single buck VR.

of buck VRs in the cluster such that the load current per
VR stays around Iop. The number of required VRs Nopline
can be quantized as

; I
Nonline = min § Nypay, | —
Iopt

where Npax is the maximum number of VRs in a cluster and
I, is the total load current.

Note that the chain structure of the HVR makes things
much more complicated, because Iy is a function of VR’s
input—output voltages which can be influenced by the preced-
ing and subsequent stages. Fig. 6(b) illustrates the shift of Iy
for a single buck converter with varied input voltage. Such
effect must be considered in (2). As will be discussed later,
the adaptive control policy proposed in this work requires short
processing latency to enable fine-grained temporal control
resolutions. Therefore, the complex characteristics of buck
converters are stored in two lookup tables (LUTs) for the ease
of online use. For instance, LUT” stores the power efficiency
characteristics which are indexed by the input—output voltages
and load current for each buck VR. As a function of the
input and output voltages, LUT!®P! stores the optimal load
current under which the peak efficiency is achieved for a single
buck VR.

Although the dc—dc buck converters are more suitable for
voltage conversion as discussed earlier, the on-chip buck VRs,
which is the final stage in the conventional two-stage PDN,
have to be carefully designed with the consideration of supply
noise. The power integrity will be largely determined by
the transient response of the on-chip buck VRs. In general,
increasing the switching frequency of the buck VRs will help
reduce both the transient response time and output voltage
ripples but at the price of increasing switching power loss.
As a result, it is common to integrate on-chip buck converters
operating at hundreds of megahertz in the two-stage PDN [27].

2) On-Chip LDO Networks: The proposed three-stage HVR
system explores the fast voltage load regulation of an addi-
tional stage of distributed on-chip LDOs as discussed earlier.
In addition, LDOs can be designed with a good power supply
ripple rejection (PSRR) to suppress noise from the input
voltage (i.e., line regulation) [30]. As a result, the on-chip
buck converters in the three-stage HVR can be optimized to

(2)
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Fig. 8. Relationship between LDO’s dropout voltage and load current.

achieve better power efficiency, e.g., by operating them at a
lower switching frequency.

To supply a specific output voltage, a linear LDO converts
an input voltage using an error amplifier and feedback loop as
depicted in Fig. 7. The power efficiency of an LDO is strongly
limited by the input-to-output differential voltage AV = V;, —
Vout for a given targeted output voltage Vo

Vout
Vout + AV .

At a certain load point, the dropout voltage Vyop of an LDO is
defined to be the minimum input-to-output differential voltage
at which the LDO ceases to regulate the output voltage,
i.e., entering the dropout region from the regulation region.
Fig. 8(a) illustrates V,y; as a function of V;,. Therefore, it is
desirable to set Vi, just Vyp above Vi to keep the LDO
at the boundary between the dropout and regulation regions
to maximize efficiency. However, setting Vi, too low may
jeopardize the regulation of LDOs and violate power integrity.

Virop i a function of the load current Iy, which is shown
in Fig. 8(b) for a realistic LDO design [30]. It can be seen
that Vyrop is approximately linear in Iy, hence Vynp =
(IL/IL max) Vdrop,max, Where Vyrop max is the dropout voltage
at the maximum current load I max. Given a target output
voltage Vg4, €.g., one set by DVS, the optimal LDO’s input
voltage (output voltage of the on-chip buck VRs), which leads
to the highest of LDO power efficiency, is

3

Mdo =

“)

IL
Vin,opt ~ Vyq + I—Vdmp,max-

L, max

B. Interdependencies Between Voltage Processing Stages

According to the above discussion, the power efficiency
of a single VR stage largely depends on its input—output
voltages and current load. Thus, there are important interde-
pendencies among voltage processing stages which must be
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carefully considered in order to optimize the overall energy
efficiency and regulation performance. Such interdependencies
can be observed in (5), shown at the bottom of this page,
which describes the overall power efficiency as the product of
efficiencies at all stages. Since the input voltage of the off-chip
buck VRs is assumed to be constant, it is not considered in
the corresponding power efficiency #pyuck,off- Under a certain
workload Iz.on = {(If'),, 1%, .. IS0} and DVS setting
f’dd = {Vd((i}, Vﬁ), T Vd(gr)}, where N is the number of power
domains, the control variables listed in Table II can simulta-
neously influence the power efficiencies at multiple stages due
to the interdependencies in the voltage regulation chain. For
example, the output voltage of the off-chip buck VRS Vi off
influences the efficiencies of both off-chip and on-chip buck
VRs. Set by the output of corresponding on-chip buck cluster
chflz on the input voltage to an LDO network significantly
impélcts the power efficiencies of the (preceding) on-chip buck
cluster, and the final power quality for the loads observed on
the power grids. As a result, such interdependencies have to be
considered in the online adaption for maximal power efficiency
and noise tradeoffs.

IV. HVR CoONTROL POLICIES

We present our proposed control policies for three-stage
HVR, while these policies can be straightforwardly applied to
adapt two-stage HVR consisting of only off-chip and on-chip
switching VRs. Unlike most related work executing power
management in the OS or software [16], [18], the proposed
policies can be efficiently implemented in firmware based
on simple arithmetics and precomputed LUTs supported by
hardware accelerated ML prediction of workload.

The settling times of off-chip and on-chip switching VRs
of the first two stages can differ by several orders of mag-
nitude. Hence, they are adapted using two different control
cycle times, denoted by Tog and T,,, respectively. Each Tog
is split into a multiple of T,. Accordingly, off-chip and
on-chip switching VRs are adapted by two control procedures,
which are shown in Fig. 9 for an HVR system with N
power domains, one for each core. We estimate the core-level
workloads I1 1ot = {I{ ogrs I yott 15 moge) 20d T1Ton =
{IE?FM, IE)TDH, ..Ig’%ﬂn}, respectively, at the time granularities
of Tog and T,, using power sensors [31] at the output of
each on-chip switching VR (buck converter) cluster. At both
time scales, we use the workload estimates obtained from
the previous control cycle to generate control actions for the
current cycle.

In each off-chip VR control cycle T, the off-chip
VR control procedure VR_OFF_OPT is invoked to optimize
the off-chip VR output voltage Vyuoff and the number of
online off-chip VRS Nypline,off based on EL’Toﬂ-'. Each Ty
is divided into a multiple of much finer grained on-chip
VR control cycles T, as shown in Fig. 10. The on-chip control
procedure VR_ON_OPT is invoked in each Ty, cycle to adjust

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2019

l—)l Apply VR_OFF_OPT It— .
th,uﬁl Nonline,oft

Tune off-chip VRs

.
IL,Ton

No
Ve, = Apply VR_ON_0PT

Tune on-chip VRs

For each
Tot cycle

§
:
|

Fig. 9. Control of off-chip and on-chip switching VRs at two time scales.

<+—— 1 Off-Chip VR Control Period (To) —>

Make
Decision

Execute
Decision

<—— 1 0n<Chip VR Control Period (Te) ——

Fig. 10. Two control sequences.

the output voltage Vo(:ll)mn and the number of online VRs
(@)
N,

online,on fO €ach on-chip VR cluster, i = 1,2,... N, based

on the finer grained workload estimation IIE‘,)TDH. As detailed
in Section V, VR_ON_OPT relies on an ML module utilizing
a small Ng number of voltage sensors to more precisely
adjust f’out,un = {Vé;t]’m, = g Vég}un}, based on the
spatial distribution of the workload in each power domain. The
voltage sensor readings Veensor = {ngn}sor, Vs{el:?sor, R Vs(ej?,\;g‘g,
are included as input to VR_ON_OPT.

Fig. 10 shows the timing of the control sequences. There are
three steps involved in each Toq cycle. The first decision mak-
ing step executes VR_ON_OPT procedure to compute Viur on
and Nopline,on and the on-chip VRs are adjusted accordingly
in the second decision execution step.

A. Off-Chip Switching VR Control

The output voltage Viyue,off Of the off-chip switching VRs
is the input voltage to all on-chip switching VR clusters.
Vout,off impacts the power efficiencies of both on-chip and
off-chip buck VRs as well as the resistive power loss due
to printed circuit board (PCB)/package parasitics. As in Algo-
rithm 1, the off-chip control procedure VR_OFF_OPT uses the
following iterative search to find the optimal Vi off among

HHVR = ’fbuck,off(vuut,off; NDnIine,uﬂ"; IL,DE)’?buCk,Dl’l(VDut,Oﬂ:J Vuut,on: Nonline,uns IL,on)’?Ido(Vout,ons Vad)

)
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Algorithm 1 Off-Chip Control Algorithm VR_OFF_OPT

Algorithm 2 On-Chip Control Algorithm VR_ON_OPT

Inputs: .
Workload current estimations Iy, for each Tp5f cycle.

1: Maximize 1(Voue,of ), subject to

2 Vmin_an < Vo'ut,off < Vmax_on
3:  for each power domain i do
4: if 3_stage_HV R == T'rue then
5 V;(;g,on = é;) + QIE&)/I‘S:.)G:L
e Sy (i
k) T
7 out,on — Vdd
8: el(‘l_()l if ©
9: Io;tl.on = LUng?t(Vcilut,of fs cht,on)
10: Nc(::a)!ine,on = ’VIE)/I(E;)t,on—‘
11: nt(;;g_sw = LUT:EL(Vﬂut,fo? Va(;)t,mn Ig) /Nc(v:gline,m)
12 end for

132 Ipkg = 2@(1}:) Vz:(:?t,on/Vout,aff/nr(J‘rz_SW)

14: Non_chip = (Z; Vd(;)fg))/fpkgfvaumff

15 Npkg = Vout,of £/ (Vout,of f + IpkgRpkg)

16: Iopt,o_ff = LUT;‘??t(%xh v:mt,off)

17 Nontine,of f = [Ipkg/Topt,off]

18: Nof f_chip = LUTff‘f (“’:exh Vout,off; kag/Nonténe,off)

19: 11 = Non_chipTpkgTlof f_chip
20: Return {th,off: Nan!éne,uff} with maximized 7

a set of discretized values of Vi o While considering the
above interactions. At each iterative search step with a targeted
Vout, off valu;, we first estimate the input voltage to each LDO
network Vé:lz on iN line 5 as a linear function of workload to
maximize the power efficiency of the LDO’s as in Section II1-
A for three-stage HVR. Otherwise, for two-stage HVR, VD(,’JLDH
is directly set by system’s power management (e.g., DVFS)
unit as shown in line 7. Then, the optimal load point for each

on-chip buck VR 1% is determined in line 9 via an LUT
with the known input—output voltages. Né*) is further

determined in line 10. The power efﬁciencyn%gle‘,g;ch on-chip
buck cluster is conveniently estimated through the use of
another LUT in line 11. The total through-package current,
which is the sum of the input currents of all on-chip buck
clusters is computed in line 13 and used as the load current of
the off-chip buck cluster. The power efficiency of the on-chip
components of HVR is computed in line 14 considering both
integrated buck VRs and LDOs. Our experimental study shows
that the resistive loss caused by PCB/package parasitics may
not be negligible, which is considered in line 15. Following a
similar procedure, Nopline,off and the off-chip power efficiency
are determined in lines 16-18. The overall system power
efficiency at the current value of Vi off is the product of the
efficiencies of all stages as in line 19. Finally, the combination
of the value of Vyy,off and the corresponding Nopline,off that
maximizes the system efficiency is chosen as the optimal
control of the off-chip buck VRs for this T,g cycle.

B. On-Chip Switching VR Control

Once the slowly changing variables Vout off and Nonline,off

are determined for each T cycle, Vo o and ND:I}HR,DD per

Inputs: .
Workload current estimations I, for each T,,, cycle.
Voltage sensor readings Viensor for each T, cycle.

1: for each power domain 7 do
2 if 3_stage. HV R == True then
3 V) on =V +alP/18),
4 else © @
T %
5: Vtmt,on = Vdd
= Gl @
T T
7 Iop@,cm = LUTJ??t (Vc!ut,offg Vout,on)
8 N(E:Bﬁne,on = I}j) /Itg;})t,on
9:  if MachineLearningOption == True then
10: Vcs;l on = MachineLearning (SppN, Vs(;,l sor)
11: end if
12: end for

13: Return {Vout on; Nontine,on }

domain are updated for each finer temporal cycle T,, by
calling VR_ON_OPT shown in Algorithm 2. We follow a flow
similar to VR_OFF_OPT to determine Ny o, in lines 2-8.
However, if the ML is enabled, the final Vo(ﬂ,un is fine-tuned by
the ML module with the consideration of fine-grained spatial

workload distribution, described next.

V. MACHINE LEARNING ENABLED ADAPTION

One key objective of voltage regulation is to deliver power
to on-die devices with ensured power integrity, e.g., without
dropping the worst case voltage from the on-chip power grids
below a preset level. Power supply noise hotspots are created
due to the nonuniform spatial distribution of workload on-
chip. To make things even worse, the locations of hotspots can
shift during runtime. Such effects can significantly impact the
on-die supply noise. Thus, the output voltage of each on-chip
switching VR cluster, which is the final point of two-stage
voltage regulation, and also the input voltage to the distributed
LDO network in the case of three-stage HVR, shall be adapted
with the considerations of fine-grained spatial workload distri-
bution. However, predicting such spatial workload distribution
for the purpose of PDN adaptation is a challenging problem.

Recently, ML has been received a significant amount of
interest for power system design. For instance, noise-sensor-
based ML techniques [32], [33] have been developed to detect
voltage emergencies within functional blocks. Different from
these works, we leverage ML to directly learn the optimal
control policy based on the fine-grained spatial workload
distribution predicted from a small number of distributed
voltage noise sensors. This enables a very desirable end-to-
end ML solution that can lead to additional energy and power
integrity benefits.

A. Machine Learning Problem Formulation

We first formulate the ML problem. For a power domain,
denote the output voltage of the corresponding on-chip switch-
ing VR (buck) cluster Vou on. By exploiting the correlation
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Fig. 11. Demonstration of ML module and voltage sensors.

between voltage drops at different nodes in the power grids
(including sensor locations) and the distribution of workload,
an ML model can directly learn the optimal control variable
Vuouptfon using the voltage sensor readings as input features.
Here, Vc?uptt,on is defined as the minimum Vyuon value such
that the worst case supply voltage across the entire power grids
does not fall below a preset safety voltage level. By leveraging
the fine-grained spatial information of workload distribution,
Vout,on €an be set in a more accurate way, achieving improved
power efficiency and quality. An ML model is used to learn
the following mapping:

- —+ opt
SPDN; Vsensor — Vout,on

(6)

where f’sensor is the worst case voltage values sensed by the
voltage sensors during an on-chip VR control cycle Tg,. S’pDN
includes the PDN configurations such as control variables
under which the voltage sensor values are measured. The
training samples can be collected by circuit simulation by
sweeping Vouron Within a certain range to obtain the target
Ve under the same workload. Fig. 11 illustrates the ML

out,on
module and voltage sensors in a power domain.

B. Machine Learning Algorithm

We integrate our ML module (accelerator) on-chip to enable
fast real-time workload-aware adaption. Such ML module
must come with sufficient accuracy, low area/power overhead,
and should incur low processing latency to enable HVR adap-
tation at fine temporal granularity. In this work, we adopted
a recently developed sparse Bayesian-based ML algorithm,
namely, sparse relevance kernel machine (SRKM) [34], [35]
as the ML algorithm. As a kernel machine, SRKM predicts
the target value y of a new input vector x using N training
samples X;

N
y(x;w) =D w; - K(x, X;) @)

i=1

where K(x,X;) is the kemel function, and w =
[wy, wa, ..., wN]T is the vector of sample weights. It should
be noted that for the system with analog/mixed-signal circuits,
such as the PDN under this study containing a large number
of active VRs, SRKM utilizes a nonlinear kernel function
that can well capture the nonlinear mapping from voltage
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Fig. 12. (a) Proposed on-chip SRKM accelerator. (b) Layout of an SRKM
accelerator with parallelism parameter equaling 8.

sensor readings and PDN configurations to the optimal control
variable as illustrated earlier.

Applying the above nonlinear regression model for all ¥
training samples gives { = ® - w 4 e, where ® is an N x N
matrix defined by ®(i, j) = K(x;,x;), t is the vector of
the N target values, and e is the error vector. Similar to the
relevance vector machine (RVM), the SRKM model is treated
as probabilistic, whereby the model parameters w are consid-
ered as random variables, which are optimally inferred in the
training process. It has been demonstrated the advantages of
SRKM for a variety of applications in [34] and [35]. Unlike
the widely adopted support vector machine (SVM) and RVM,
SRKM can achieve sparsity in both the (training) sample
and (parameter) feature space. For each sample and feature,
a weight parameter is learned from the training process to
signify the significance of the sample/feature with respect to
the prediction of the target value. SRKM produces sparser
models with improved accuracy compared to SVM and RVM,
and offers a built-in mechanism to filter out redundant samples
and features based upon quantitative weight information. The
resulted sparse model is very appealing for achieving low
processing latency and hardware overhead in our application.
More details about SRKM can be found in [34] and [35].

C. SRKM Accelerator

Following (7), we propose an on-chip SRKM predictor
design in Fig. 12(a). It only utilizes simple arithmetics such as
ADD and MUL/DIV, and a 1-D LUT for the exponential cal-
culation. The model parameters obtained from offline training
are stored using a small amount of on-chip memory. The entire
design is based on fixed-point 24-bit operation and only intro-
duces a small quantization error of 2.2 mV evaluated under
4000 samples. By exploiting the rich parallelisms embedded
in (7), we explore SRKM modules of different degree of paral-
lelisms using a standard 45-nm CMOS technology. The main
hardware results are summarized in Table III, demonstrating
a good tradeoff between processing latency, power, and area
overhead. The layout of the SRKM hardware with eight-way
parallelism is shown in Fig. 12(b).

In our work, we train an SRKM model offline based
on 2000 training samples collected from circuit simulation.
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TABLE III

HARDWARE RESULT FOR SRKM ACCELERATOR
WITH DIFFERENT PARALLELISM

. Area Power | Laten
Parallelism (mm?) | @mW) | (as) cy
1 0.410 17.94 506
4 0.860 3577 176
8 1.322 66.18 121
12 2.179 96.45 103

TABLE IV

PROCESSOR CONFIGURATION

# Cores 4 vdd IV
Frequency 1.8GHz@45nm | Imax/Pmax | 25A/25W
Branch Predictor | 2K entries Core area 40.4mm?
ALU/MUL/FPU 6/2/6 I/D-TLB 48/64 entires
Load/Store buffer | 32 ROB size 192

32KB, 2-way, Shared 2MB,
L1ID:Cachs 2-cycle laten}(r:y T2 Cade 20-cycle latency

It achieves a normalized mean square error (NMSE) of 4.3e-3,
demonstrating excellent prediction accuracy. As mentioned
earlier, the trained SRKM model is mapped to a hardware
accelerator for efficient runtime application. It should be
noted that the proposed overall control scheme does not
need additional software support except the offline SRKM
model training. At runtime, all the decision-making of control
variables will be processed through light-weighted hardware
such as simple arithmetics, precomputed LUTs storing VRs’
characteristics, and the SRKM hardware accelerator for work-
load prediction.

VI. EXPERIMENTAL EVALUATIONS
A. Experimental Sefup

1) Multicore Processor Model and Power Analysis:
We use the full-system multicore simulator GEMS5 [36] to
generate runtime statistics with the granularity of 100 ns and
then feed them into the power analysis tool McPAT [37] to
produce realistic workload current traces. The 45-nm four-core
processor model illustrated in Table IV is evaluated using the
PARSEC benchmark suite [38]. The total die area including
on-chip VRs is estimated as 286.4 mm? by MCcPAT and
PowerSoC [28]. The peak workload current per core is 25 A.
Each core is divided into 11 functional blocks. The current
workload of each block, derived from MCcPAT, is evenly
distributed within the block to load the PDN.

2) Power Delivery Network: To enable the comparison
across different PDN architectures, we consider the widely
used two-stage PDN shown in Fig. 2(b) with on-chip/off-
chip buck VRs as the reference. The main structure of the
reference system is similar to the three-stage HVR except
that the centered on-chip buck converters are used as the
last voltage processing stage instead of the distributed LDO
network. We adopt a PCB/package/power grid model similar
to [39], which is derived based on Pentium 4 processor, for
both PDNs. The effects of packaging and long power routing
are included in the power model of PDNs. Considering the
feasibility of circuit-level simulation, the on-chip power grids
of the PDN are modeled using an RC network with more than
3000 nodes. As the on-chip decoupling capacitance (decap) is
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highly correlated with the voltage noises, we scale the total
amount of decap Cycqp by keeping a similar Cyccap/ Imax ratio
as in [39], where I,,.x is the maximum load current.

In the regulation chain of each PDN, a cluster of 5 off-chip
buck VRs is used to drive 5 on-chip buck clusters with
each cluster containing four identical on-chip VRs. In three-
stage HVR, each on-chip VR cluster further drives a network
of 250 on-chip LDOs for each core (power domain). The
topology from [30] is adopted for on-chip LDOs with maxi-
mum 100-mA load capability. The off-chip and on-chip buck
converters are designed using PowerSoC [28], which finds
the key design parameters such as switching frequency, filter
inductance, and size of MOS switches under a static nominal
load condition. Considering the on-chip buck converters are
the final regulation stage in the two-stage reference PDN, they
are designed with more emphasis on regulation performance
at the cost of more energy loss. As a result, the on-chip buck
VRs of the two-stage PDN operate at 291 MHz, while those of
the three-stage HVR operate at 107 MHz. The area of on-chip
buck VRs for two-stage and three-stage PDNs are 15 mm?
and 13.75 mm?, respectively. The area of on-chip LDOs for
three-stage PDN is 1.25 mm?. Clearly, the total area budget
of on-chip VRs (including LDOs) is set to 15 mm? for both
PDNs for a fair comparison.

3) Control Scheme Sefup: The on-chip and off-chip
VR control periods T,, and Tog are set to 1 and 100 us,
respectively, to suit the response times of the considered
on-chip and off-chip switching VRs.

As shown in Algorithm 2, the ML-enabled control scheme
takes the voltage sensor readings as input to predict the optimal
output voltage of on-chip switching VRs. However, obtaining
the voltage sensor readings for each PARSEC benchmark
during runtime through the simulation of our complex PDN
model is prohibitively computationally expensive. To speed up
the evaluation process, we once again leverage ML but for the
purpose of fast estimation of voltage sensor readings. We train
another SRKM model offline which performs the following

mapping:
®)

where fbh,ck (n) and fblock (n—1) are the block-level workloads
at the current and past 100ns time steps, representing the
fine-grained workload transition, i’msor(n) is the worst case
voltage sensor readings caused by the corresponding transi-
tions. Based on the traces of ﬁmsm (n), the worst case voltage
sensor readings for each control cycle T,, can be computed
as the input to the ML module. Similar to the online SRKM
module in Section V, the PDN state variables §pDN are
included as part of the input features for this offline SRKM
model to estimate Viensor(n). Trained with 4000 samples, this
offline SRKM model is very accurate and achieves an average
NMSE of 1.52e—4.

§PDN » fblock (n)s j'bluck (}‘1 - 1) - ‘_"}sensor(n)

B. Online Machine Learning Overhead

The area and power overhead of the proposed ML-enabled
HVR adaptation comes from the voltage sensors and
SRKM accelerators. The voltage sensors can be implemented
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TABLE V

ADDITIONAL AREA AND POWER OVERHEAD (%). AREA IS NORMALIZED
TO THE ORIGINAL ON-DIE AREA. POWER IS NORMALIZED TO
HALF OF THE PEAK POWER

Area Avg. er
Amount overhead ovegrhg;?
Voltage sensors 40 0.419% 0.166%
SRKM accelerators | 4 2.126% 0.051%
Total - 2.545% 0.217%

based on low-power high-speed analog-to-digital converters
(ADCs) [40], [41]. The ADC design in [41] is considered to
estimate the sensor cost. In our study, ten voltage sensors and
a compact SRKM accelerator are placed in each core. The ML
calculation is the major latency in the control loop. To avoid
large performance degradation and achieve good responsive-
ness to workload change, the SRKM latency is expected
to be much smaller than the on-chip control window size
Ton (e.g., 1 us). Considering the tradeoffs among processing
latency and hardware overhead as in Table III, we choose the
SRKM accelerator with parallelism equaling eight to achieve a
satisfactory short latency with a moderate hardware overhead.
As summarized in Table V, the proposed ML approach only
incurs an overhead of 2.5% on area and 0.2% on power but
comes with great benefits.

C. Power Integrity and Adaptive Control

1) Power Integrity: We examine the power quality of sev-
eral adaptive PDNs through detailed circuit-level simulation.
Verilog-A models with PWM control are used to model the
on-chip buck converters based on design parameters obtained
from PowerSoC. The ideal voltage source is used for the
off-chip VRs since they have little impact on power supply
noise. The complexity of our PDN model with a large number
of VRs causes significant simulation challenge. It takes around
112 h to simulate a 100-us segment of benchmark workload
with four threads on an Intel Xeon E5-2697A processor at
2.60 GHz. We select a 100-us workload segment from each
PARSEC benchmark, forming a workload simulation set. This
set contains a representative worst case workload segment
from the fluidanimate benchmark and random segments from
other benchmarks, serving as typical workload conditions.
As described in Section IV, our control algorithm supports
both two-stage and three-stage PDNs and also provides two
options with and without ML module. This creates four adap-
tive PDNs and they are simulated based on the aforementioned
workload simulation set.

In modern processors, multiple factors such as clock gating
and workload variation can lead to unpredictable supply volt-
age noises. Once the worst case voltage droop exceeds an oper-
ating margin (10% of the nominal V44 in this study), voltage
emergency (VE) will happen and may cause timing violations.
Although designing a static PDN based on worst case load
scenario can guarantee the robustness with a large voltage
safety margin, the power efficiency significantly degrades.
Instead, more aggressive voltage margins can be used in mod-
ern designs to reduce the power consumption greatly and allow
rare occurrences of VEs by fail-safe mechanisms such as the
rolling-back recovery [42] or adaptive frequency tuning [43].
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Average number of VEs per power domain for each benchmark

In our study, we assume the processor is equipped with such a
mechanism to recover from the rare events of VEs. The count
of VEs is used as a metric for power quality.

Fig. 13 plots the average count of VEs per power domain
under the workload segment of different PARSEC bench-
marks. On average VE only occurs about once in each power
domain for all PDNs. In other words, all PDNs have the
same power integrity level. Under this equal power quality
condition, we will compare these PDNs in terms of energy
efficiency in Section VI-D.

2) Case Study for Adaptive Control: Next, we use two
simulation examples of the adaptive three-stage HVR systems
with and without ML module to shed some light on how the
proposed control policies adapt to the workload change and
the benefits brought by ML. Fig. 14(a) shows the transient
waveforms based on fluidanimate. Such workload segment
represents a worst case scenario since the total load current
suddenly increases to the maximum 25-A peak current from
light-load condition. The fast and large load variations as such
tend to cause a considerable amount of power supply noise,
imposing a significant regulation challenge. The resulting
worst voltage Vpg in the entire on-chip power grids is plotted.
The dashed line indicates the supply voltage level under which
VE is considered to happen. It can be seen that the system
armored with ML can more accurately set the output voltage
of the on-chip buck converters Vyy. That is, V,y that is further
fine-tuned by the proposed ML module becomes lower under
lighter load conditions, reducing the energy loss of the LDO
networks. On the other hand, V,,; can be quickly increased in
response to the arrival of heavier workloads. The number of
online on-chip buck converters Nypjine is also well adapted to
the workload variation for energy saving.

Fig. 14(b) shows a more typical workload example from
the streamcluster benchmark. The corresponding power trace
exhibits periodic behavior resulted from a for loop in the
program. Although no VE happens in both PDNs, it is evident
that the ML solution further improves energy efficiency due
to lower values of V.

D. Overall Energy Evaluation

1) Energy Comparison: The overall energy efficiencies of
different PDN architectures with various control schemes are
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Fig. 14. Transient circuit simulation waveforms of the adaptive three-stage
HVR running (a) fluidanimate benchmark and (b) streamcluster benchmark.

compared. We name all considered PDNs in Fig. 15 (top).
There are four three-stage PDNs denoted by 3-S1-3-54 with
different control policies. Take the 3-S4 PDN with config-
uration three-stage Nonline,on/off- Vout,on/off (ML) for example.
The configuration means that the system utilizes a three-stage
HVR PDN architecture, enables the tuning of the number
of online VRs, output voltage of both on-chip and off-chip
switching VRs, and it integrates the ML module. The first
3-S1 system indicates a static three-stage PDN with no run-
time adaptation. Similarly, we have four different PDNs with
two-stage architecture. We highlight several observations from
Fig. 15.
1) Without any adaptive control, the static 3-S1 outper-
forms 2-S1 with an energy reduction of 4.0% on average.
On the other hand, with a complete control scheme,
3-S4 shows up to 5.0% energy reduction over 2-54.
It demonstrates the potential of leveraging HVR to
improve energy and performance tradeoffs.
2) The 2-82 adopts a simple control scheme similar to [17]
by tuning the number of online on-chip/off-chip buck
VRs in the two-stage PDN. It is observed that it reduces
the energy by 8.5% over the static 2-S1. However,
adding Vo off into 2-S3 can bring in an additional
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2.1% energy saving on average, since such a scheme
captures more interdependency among the regulation
chain. By comparing 2-S4 with 2-83, the proposed ML
module offers up to 4.1% reduction of system energy by
utilizing the spatial workload distribution information.

3) The highest energy efficiency is achieved by the pro-
posed ML enabled adaptive 3-S4 system. The 3-54 sys-
tem reduces the total system energy dissipation by up
to 17.9% and 12.2% on average compared to the static
3-S1. Compared with the conventional static 2-S1, our
3-S4 with runtime control reduces system energy by up
to 23.9% and 15.7% on average.

Fig. 16 further decomposes the energy consumption for
2-S81, 2-54, 3-S1, and 3-S4 systems. It is observed that,
in general, the processor in the two-stage HVR consumes
less energy compared to that of the two-stage PDN. That is
because the distributed LDO network enhances the supply
noise suppression and thus enables lower supply voltage
while maintaining the same power integrity, demonstrating the
benefit of HVR in voltage regulation. By setting the output
voltage of on-chip buck VRs in a more accurate way, the use of
ML module significantly improves the LDO’s power efficiency
in the three-stage HVR system while reducing the processor’s
energy consumption in the two-stage system. With full consid-
eration of the energy interdependency in the regulation chain,
the proposed control policy achieves a near-optimal overall
power efficiency by carefully trading off power loss at different
stages.

2) Impact of Control Granularity: As discussed earlier,
great benefits of adaptive control may be achieved at the
finest possible temporal granularity by tracking the workload
more closely. To demonstrate the same, Fig. 17(a) shows the
corresponding power loss increments for the 3-S4 system by
applying coarser on-chip control granularities. Enlarging Tg,
from 1 to 10 s and 100 us, the total power loss increases by
up to 5% and 10%, respectively, demonstrating the benefits
of fine-grained adaptive control. However, it is observed
in Fig. 17(b) that even with a coarser Ty, significant power
reduction can still be achieved over the static 3-S1 system,
demonstrating the effectiveness of the proposed adaptive HVR
over a wide range of control granularity.

VII. RELATED WORK

Recently, various power management techniques [3],
[10]-[13] have been proposed to save power and improve the
overall processor’s performance at the system and architecture
level. For example, [3] explores the benefits of fast DVFS at
submicrosecond time scale using on-chip switching regulators.
And [13] proposes an adaptive guard-banding approach to
dynamically adapt chip clock frequency and voltage based
on timing-margin measurements at runtime. Different from
these DVFS techniques which target the optimization of
processor’s power and performance, this work explores the
energy reduction opportunity in the PDN which delivers
energy to the processor.

At the circuit level, several works have investigated the
benefits of workload-aware PDN designs. Optimizing toward
the single-stage PDN, as shown in Fig. 3(a) [18], consolidates
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Fig. 16. Detailed energy breakdown for four different PDNs.

multiple power domains with the same supply voltage level
to share a single off-chip inductor-based buck VR to avoid
low conversion efficiency at light-load condition. In the same
spirit, [16] proposes to reconfigure the PDN by combining the
output of multiple VRs when the workload demand exceeds
the peak current of a single VR. Targeting a two-stage PDN
using both off-chip and on-chip switching VRs as shown
in Fig. 3(b), a workload-aware QPM scheme is proposed
in [17] to dynamically adjust the number of active on-chip and
off-chip switching VRs at multiple granularities according to
the chip-level runtime workload. However, these PDN recon-
figuration techniques are all based on the core- or chip-level
workload estimations without considering on-chip distributed
LDOs and finer grained spatial workload distribution which
can significantly impact on-chip supply noise. In addition, they
do not consider the interdependencies among different power
stages during power efficiency optimization. As discussed in
this paper, the optimal tradeoff between power efficiency and
quality can be best achieved with a systematic and joint con-
sideration of all the related factors. For example, different from
the adaptive control policy applied to the off-chip VRs as pro-
posed in [17], this work sets the number of off-chip buck VRs
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along with other voltage processing stages to maximize the
overall system power efficiency by considering interdependen-
cies across the entire voltage processing chain. In addition, one
additional control variable, i.e., the output voltage of off-chip
VR stage, is considered in this work to make the proposed
control scheme more comprehensive, bringing 2.1% overall
system energy reduction on average. We also show the poten-
tial benefits of the three-stage heterogeneous PDN with mul-
tiple VR topologies with complementary characteristics over
the conventional two-stage PDN with a single VR topology.
Finally, the use of ML and voltage sensors to directly learn
the control policy considering the spatial on-chip workload
distribution presents excellent new opportunities. Our results
demonstrate the great potential in leveraging the rich het-
erogeneity and optimization opportunities in multistage HVR
systems for improved power efficiency and quality tradeoffs.

VIII. CONCLUSION

Targeting multistage HVR systems, this paper develops
comprehensive workload-aware control policies acting at mul-
tiple temporal granularities based on complimentary charac-
teristics of on-chip and off-chip VRs. The considered control
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Fig. 17.  Impact of different control granularities on the power loss

of 3-S4 PDN. (a) Total loss increment compared to Toy = 1 us. (b) Total
loss reduction over static 3-S1 PDN.

variables are jointly optimized to improve the overall power
efficiency according to important interdependencies existing
in the regulation chain. Our control policies are further sup-
ported with an integrated machine-learning module to cope
with fine-grained spatial distributions of workload, achieving
further improved power quality and efficiency. We show that
the proposed adaptive HVR and control policies reduce system
energy by up to 17.9% and 23.9% over a static three-stage
HVR and conventional two-stage PDN, respectively.
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