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Abstract We present results and conjectures on the connection between the
convexity of a neural code and the canonical form of its ideal. The connection
is established through properties of the Grobner basis of the neural ideal and
the uniqueness of its reduced form. An efficient algorithm for identifying neural
codes with unique reduced Grobner bases is introduced.
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1 Introduction and background
Humans and animals perceive their surroundings based on previous encoun-

ters. Their brains have to store information about those encounters to be ac-
cessed in the future, and the way this information is stored and processed is the

Kaitlyn Phillipson
Department of Mathematics, St. Edward’s University, Austin, TX 78704,
E-mail: kphillip@stedwards.edu

Elena S. Dimitrova

Department of Mathematics, California Polytechnic State University, San Luis Obispo, CA
93407,

E-mail: edimitro@calpoly.edu

Molly Honecker

School of Mathematical and Statistical Clemson University, Clemson University, Clemson,
SC 29634,

E-mail: mhoneck@clemson.edu

Jingzhen Hu
Department of Mathematics, Duke University, Durham, NC 27708,
E-mail: jingzhen.hu@duke.edu

Qingzhong Liang
Department of Mathematics, Duke University, Durham, NC 27708,
E-mail: gingzhong.liang@duke.edu



2 Kaitlyn Phillipson et al.

subject of active research in neuroscience. Great strides have also been made
towards a mathematical understanding of the brain. For example, the theory
of neural codes studies how the brain represents external stimulation. These
codes are extracted from stereotyped stimulus-response maps, associating to
each neuron a convex receptive field. An important problem confronted by the
brain is to infer properties of a represented stimulus space without knowledge
of the receptive fields, using only the intrinsic structure of the neural code. To
understand how the brain does this, one must first determine what stimulus
space features can be extracted from neural codes.

In this paper, we study neural codes through an algebraic object called
a neural ideal which was introduced in [CIVCY13] to better understand the
combinatorial structure of neural codes. More specifically, we focus on convex
neural codes (and their corresponding ideals) since they have been observed
experimentally in brain activity. In Section 2 we begin with a survey on what
is known so far about convex neural codes. In Section 3 we discuss the struc-
ture of neural ideals and their Grobner bases. We then introduce results on
the connection between the canonical form of a neural ideal and its reduced
Grobner basis, suggesting that neural ideals which have a unique reduced
Grobner bases are of particular interest. Thus, in Section 4, we introduce a
method for identifying neural codes with unique Grobner bases. These results
suggest a conjecture, stated in Section 5, that provides a characterization of
convex neural codes based on their Grobner bases.

We first review some terminology and results here (see [CIVCY13]). Given
a neural code C written as a set of binary strings of length n (alternatively,
it can be written as subsets of [n]), we can construct the ideal of polynomials
that vanish on C":

Ic :=={p € Fylzy,...,z,) : p(c) =0 for all c € C}, (1)

where Fo is the finite field of two elements (0 and 1), and Fo[zq, ..., 2,] is the
polynomial ring in n variables with coefficients in F,. Note that since 0% = 0
and 12 = 1, I always contains the set of Boolean relations B = (xf —T; 11 €

[n]).
We can construct a generating set for the rest of the elements of I, via
indicator functions: Given a codeword v € F?, define

Py = H T; H (1+z;).
v, =1 ;=0
Note that p,(v) = 1 and p,(c) = 0 for ¢ # v. From these functions, we can
build the neural ideal of C":
Jo = {py:veFF\C)

Note that Ic = B+ J¢ ([CIVCY13]). The functions p, that generate Jo
are examples of pseudo-monomials: these are polynomials f € Fa[z1,...,z,]
of the form

[ =25 H(l + xj);

JET
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where z, := [[,c, z; and 0,7 C [n] with o N7 = 0.

1€E0
Given an ideal J C Fa[xq,...,2,], a pseudo-monomial f € J is minimal
if there does not exist another pseudo-monomial g € J with deg(g) < deg(f)
and f = hg for some h € Falx1,...,2z,]. We define the canonical form of Jo

to be the set of all minimal pseudo-monomials of J¢, denoted CF(J¢). For
any neural code C, the set CF(J¢) is a generating set for the neural ideal Je.
The canonical form CF(J¢) can be constructed algorithmically from the code
C (see [PYK*+16],[CTVCY13]).

Ezample 1 Given the code C = {000,100,110,101,001,111}, there are two
elements in F3 that are not in C: 010 and 011. From these, we construct the
neural ideal:

JC = <£L’2(1 + £L’1)(1 + xg),LBQSCg(]. + 561)>

The canonical form is CF(J¢) = {x2(1+x1)}. Observe that if a codeword
¢ satisfies 22(1 + 1) = 0, then whenever neuron 2 is firing (22 = 1), we must
have neuron 1 firing, as well (z; = 1).

2 Convexity of neural codes

We will now investigate combinatorial codes arising from covers of a stimulus
space. Let X be a topological space. A collection of non-empty open sets
U={Uy,U,,...,U,}, U; C X, is called an open cover. Given an open cover
U, the code of the cover is the neural code defined as:

cuy={occ: U\ |J U #0}.

i€o j€[n]\o

Given a combinatorial code C', we say that C' is realized by an open cover
U if C =C(U). If C can be realized by U, where U = {Uq,...,U,} with each
U; a convex subset of R?, then C' is a convex code with geometric realization
U.

Not all combinatorial codes are convex. For example, the code C' = {(), 1, 2,13, 23}
cannot be realized with convex sets, as the set Us is the disjoint union of open
sets U1 NU3 and Uy NUs, forcing it to be disconnected (and thus, non-convex).
A complete condition for convexity is still unknown; we summarize here the
known results.

Note that in the previous example the relationship in the receptive fields
forced the non-convexity of one of the sets, and the presence of the single
codeword 3 would eliminate this topological inconsistency. This is an example
of a local obstruction to convexity, instrinsic to the combinatorial structure of
the code itself.

Definition 1 ([CGJ*17]) Let C = C(U) be a code on n neurons, with U =
{U1,...,U,} arealization of C. Let U, = ﬂ U;. A receptive field relationship

i€o
(RF relationship) of C is a pair (o, 7) corresponding to the set containment
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U, < J Ui,
1ET
where 0 20, coNT =0, and U, NU; # O for all i € 7. A receptive field
relationship is minimal if no single neuron from ¢ or 7 can be removed without
destroying the containment.

In general, we can detect local obstructions via the simplicial complex of
a code. Given a code C, its simplicial complex is A(C) := {c C [n] : 0 C
¢ for some ¢ € C}. For a simplicial complex A, the restriction of A to o is the
simplicial complex A, :={w € A :w C o}. For any o € A, the link of o in
Ais Lky,(A)={weA:cnNw=0,0 Uw € A}.

Definition 2 ([CGJ"17]) Let (o, 7) be a receptive field relationship, and let
A = A(C). We say that (o,7) is a local obstruction of C if 7 # @ and
Lk, (A|sur) is not contractible.

Note that in C' = {0,1,2,13,23}, (o,7) = ({3},{1,2}) is a receptive field
relationship (Us C Uy U Us), and Lks(Al123) = {1,2}, which is disconnected
(and thus, not contractible).

Notice that the simplicial complex of a code C' is defined by its maximal
codewords. A maximal codeword o of a code C'is maximal under inclusion in C.
A code is maz intersection-complete if it is closed under taking all intersections
of its maximal codewords.

We can now state necessary and sufficient conditions for convexity:

Proposition 1 For a neural code C':

1. If C is maz intersection-complete, then C is convex.
2. If C is convex, then C has no local obstructions.

Part 1 of Proposition 1 is due to [CGIK19], while Part 2 is due to [CGJT17]
as a consequence of the Nerve Lemma.

The converses of Part 1 and Part 2 of Proposition 1 hold for n < 4
(see [CGJT17]); however, these statements fail for n > 5. An example of a
convex code which is not max intersection-complete can be seen via C1 =
{123,124, 145,14,12} in Figure 1. An example of a non-convex code which has
no local obstructions was found in [LSWI17], which is code
C4 = {2345,123,134,145,13,14,23,34,45,3,4,0}. The case for n = 5 neu-
rons has also been fully classified; see [GP19].

3 Structure of the neural ideal

We now turn to a discussion relating convexity to the structure of the neural
ideal. As we saw in Example 1 in Section 1, the canonical form encodes minimal
descriptions of the relationships between the sets U;. The following lemma
given in [CIVCY13] generalizes this observation:
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145 | 14 | 124 | 12 | 123

Fig. 1: Convex realization of C'1.

Lemma 1 Let C = C(U) be a neural code on n neurons with neural ideal Jc .
Foro,7 € [n] witho N7t =0, 2, [[;c, (1 + ;) € Jo if and only if (0,7) is an
RF relationship (i.e., Uy € U;e, Uj-)-

Moreover, x5 1., (14+x;) € CF(Jc) if and only if (o, 7) is a minimal RF
relationship.

JET

From Example 1, the minimal pseudo-monomial zo(1 4+ x1) gives us the
minimal relationship Uy C Uj.

3.1 Grobner Basis of a Neural Ideal

The canonical form CF(J¢) is a particular generating set for Jo that gives
information about the structure of the sets U;. Another well-known generating
set for a polynomial ideal is a Grobner basis.

Given an ideal in a polynomial ring R = k[z1,...,z,] and a monomial
ordering < on R, we can let LT (I) denote the ideal generated by the leading
terms of elements in I. If G is a finite subset of I whose leading terms generate
LT (I), then G is a Grébner basis for I. A Grébner basis for I is always a
generating set for the ideal I. A Grobner basis G is reduced if, given any
element f € G, f has leading coefficient 1 and no term of f is divisible by
the leading term of any g € G with g # f. We often also talk about marked
reduced Grobner bases to emphasize that the leading term of each polynomial
in a Grobner basis is distinguished. For a given monomial order <, the marked
reduced Grobner basis exists and is unique.

A universal Grobner basis for an ideal I is a Grobner basis that is a Grobner
basis with respect to any monomial order. The universal Grébner basis G of
an ideal I is the union of all reduced Grobner bases of I. Since the set of all
reduced Grobner bases is finite, the universal Grébner basis always exists and
is unique.

If a set is a Grobner basis, it is not necessarily a reduced Grobner basis
nor a universal Grobner basis. However, it was shown in [GPK T 18] that if the
canonical form is a Grobner basis, then it is in fact the universal Grobner basis
for Jeo. This result leads to the following proposition:

Proposition 2 [GPK" 18] Let C be a neural code with neural ideal Jo. The
following are equivalent:
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1. The canonical form of Jo is a Grobner basis of Jc.
2. The canonical form of Jo is the universal Grébner basis of Je.
8. The universal Grobner basis of Jo consists of pseudo-monomials.

In particular, this gives a way to certify that the canonical form is not a
Grobner basis: If, for a given term order, the reduced Grobner basis contains
polynomials which are not pseudo-monomials, this implies that the canonical
form is not a a Grobner basis.

The following proposition refines Proposition 2 by replacing its second
statement with “The canonical form of Jo has a unique marked reduced Grébner
basts.”

Proposition 3 Let C be a code and Jo its neural ideal. CF(J¢) is a Grobner
basis if and only if Jo has a unique marked reduced Grobner basis.

Proof In [DHRS19], it is shown that an ideal has a unique marked reduced
Grobner basis if and only if all marked reduced Grobner basis generators
are factor-closed, i.e., the non-leading terms of each polynomial divide its
leading term. Furthermore, in [GPK™ 18] the authors prove that if the universal
Grobner basis of Jo consists solely of pseudo-monomials, then its canonical
form is a Grobner basis. Since over s all polynomials that are factor-closed
and square-free are pseudo-monomials, the result follows.

Notice that by Proposition 3, the goal of classifying codes whose neural
ideals have canonical forms that are Grobner bases becomes identical to clas-
sifying codes whose ideals of points (or neural ideals) have unique marked
reduced Grobner basis. In Section 4 we present an efficient algorithm for test-
ing whether a code has a neural ideal with a unique marked reduced Grébner
basis.

Lemma 2 If there is a pseudo-monomial f € CF(Jc) whose leading term
is divisible by any term of another pseudo-monomial g € CF(J¢), then the
canonical form is not a Grobner basis for Jo for any monomial order.

Proof If f € CF(J¢) has leading term that is divisible by a term of another
pseudo-monomial g € CF(J¢), then the canonical form cannot be a reduced
Grobner basis, which by Proposition 2 implies that it is not a Grébner basis.

We will utilize this fact in the next subsection.

3.2 Canonical form and Grobner bases of Jo

Recall from Section 2 that if a code has a local obstruction, then it is not con-
vex. Since the canonical form C'F(J¢) encodes information about the minimal
relationships between the sets U;, the canonical form can be used to detect
certain local obstructions in the code. The following definition was introduced
in [CGJT19).
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Definition 3 A local obstruction (o, ) is CF-detectable if there exists a local
obstruction (¢/,7') with ¢’ C ¢ and 7 C 7 such that (¢, 7’) is a minimal RF
relationship.

The next proposition connects the convexity of C' to the Grobner basis of
Jo.

Proposition 4 Given a code C, if C' has a CF-detectable local obstruction,
then the canonical form of Jo is not a Grobner basis.

Proof By Theorem 5.4 in [CGJT19], if C has a CF-detectable local obstruction,
then there exist 0,7 C [n],7 # 0 with x5 [[,c. (1 + ;) € CF(J¢) and zo2, €
Jo. Since z,x; is a pseudo-monomial in Jo and CF(Jo) is a generating set
for Je, there exists z, € CF(J¢) with @ C o U7, so the canonical form is not
a Grobner basis by Proposition 5.

Thus, if a code C has a CF-detectable local obstruction, C' is both not
convex and its canonical form is not a Grobner basis for Jg.

Proposition 5 Let C' be a neural code with neural ideal Jo and canonical
form CF(Jg). If there exist two distinct pseudo-monomials f = x5 [[;c.(1 +
z;) and g = zo [[;c5(1+ ;) € CF(Jc) withaUB C o UT, then the canonical
form CF(Jc) is not a Grébner basis of Jo.

Proof For any monomial order, the leading term of f is z,2, while the leading
term of g is zo7g. Since a U 8 C o U T implies that z,zg divides z,2,, by
Lemma 2 we have that the canonical form is not a Grébner basis.

Unfortunately, the converse of Proposition 5 fails as the following example
shows.

Ezample 2 The code

C = {0,1,2,3,4,5,134, 1234, 234,1235, 125, 13, 15, 23, 25, 14, 24, 235, 135, 1245, 35, 123, 12345}
has canonical form CF(J¢) = {xszs(1+21)(1+22), x122(1+23) (1+25), vazs(1+

x1), z4w5(1 + x9)}, with leading terms xqTox3xy, T1T2X325, T1T4T5, ToLeTs,

none of which are divisible by the others. However, the universal Grobner ba-

sis of Jo has the polynomial z4(z129 + 123 + ox3 + 2324 + 23 + T5), which

is not a pseudo-monomial. Thus, by Proposition 2, the canonical form of this

code is not a Grobner basis.

We do have the following partial converse to Proposition 5:

Proposition 6 Let C be a neural code with canonical form CF(J¢o). If, for all
minimal pseudomonomials ¥ [[;c, (1 + ;) and zo [[;c5(1 + ;) € CF(Jo),
we have (c UT) N (U B) =0, then CF(Jc) is a Grébner basis for Je.

Proof Let g = x5 [[;c,(1+a;) and h = 24 [[;c5(1 + ;) € CF(Jc). Since the
leading terms of g and h are z,2, and z,x respectively, if (cUT)N(aUB) = 0,
then the leading terms of g and h are relatively prime. By Proposition 4
in [CLO15], this guarantees that the S-polynomial of g and h has standard
representation. Since this is true for any pair of pseudo-monomials, this shows
that CF(J¢) is a Grobner basis for Jo by Theorem 3 in [CLO15].
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Note that the hypothesis of Proposition 6 is not a necessary condition for
the canonical form to be a Grébner basis, as will be seen in Examples 3 and 4.
We now give several examples of convex and non-convex codes with their

canonical forms and universal Grobner bases G. The labeling of the codes
follow the classification given in [GP19].

Ezample 3 The code C4 = {2345,123,134,145,13,14,23, 34,45, 3,4, 0} is non-
convex, non-max intersection complete, with no local obstructions (see [LSW17]).
It has canonical form CF(C4) = {z5(1 + z4), T12224, T2x4(1 + z5),22(1 +
x3), T1T2x5, T123T5, T3T5(1 + x2), 21 (1 + 23)(1 + 24)}. The universal Grobner
basis is G(C4) = {1295, 112924, 25 (22 + 3), 25(1 + 24), 22 (1 + z3), 21 (1 +
x3)(1 + z4), T123%5, Toxs + T325, o (24 + 25)}.

It was shown in [LSW17] that adding either the codeword 1 or the code-
words 234 and 345 to C'4 would make it convex. Upon adding 1, the universal
Grobner basis and the canonical form lose pseudo-monomials, but G still does
not equal the canonical form. Adding the codewords 234 and 345 instead makes
the canonical form equal to the Grobner basis: CF = {z1x2x5, 12224, T123T5, T5(1+
x4),22(1 + x3),21(1 + 23)(1 4+ 24) }. Note that it is still not max-intersection
complete.

Ezample 4 The code C22 = {145,124,135,235,125,123,234, 35,1, 23,15,
25,5,13,2,24,3,14,12} is convex with geometric realization in R3 and not
max-intersection complete (see [GP19]). The universal Grobner basis and
the canonical form are the same: CF(C22) = {xox425, 21222325, x324(1 +
.%'2), T3T4T5, $4$5(1 + 1‘1), .’)34(1 + .’)31)(1 + .%‘2)}

4 Identifying neural codes with unique marked reduced Grébner
bases

Based on Proposition 3, the goal of classifying codes whose neural ideals
have canonical forms that are Grobner bases becomes identical to classify-
ing codes whose ideals of points have unique marked reduced Grébner basis.
In this section we outline a method for testing whether a neural ideal has a
unique marked reduced Grobner basis. We begin with two relevant definitions
from [BOTO3].

Definition 4 A staircase is a set A C N¢ of nonnegative integer vectors such
that u < v € A (coordinatewise) implies u € A. The staircase of exponent
vectors of standard monomials of an ideal I is called an initial staircase.

Definition 5 A staircase A is basic for an ideal I if the congruence classes
modulo I of the monomials z¥ with v € A form a vector space basis for
Zp[ze, ..., zq]/1.

As we will see in Proposition 7, if we want to find out whether I(V') has
a unique marked reduced Grébner basis, we just need to check whether I(V)
has a unique basic staircase.
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Definition 6 Given a staircase S on n variables and number of points m, let
as = (ag, - ,a%) be an n-dimensional vector, where o, = 0 if S has zeros
for all points in its ith direction. Otherwise ay = 1. We use Y ag to denote
the summation of all entries in ag, and call it the dimension of S.

Ezxample 5 The following two examples illustrate the concept of staircase di-
mension which is needed for the algorithm at the end of this section.

1. Let S = {(0,0),(0,1),(0,2),(0,3)}. Then ag = (0,1) and > ag = 1.
2. If $ = {(0,0,0),(0,0,1),(0,1,0),(1,0,0)}, then ag = (1,1,1) and > ag =
3.

We now construct the following matrix. Let A = {u!,... 4"} be an r-subset
of Z' and let V = {v',...,v"} be an s-subset of Z7. The evaluation matriz

X(2*,V) is the s-by-r matrix whose element in position (4,7) is a? (v?), the
evaluation of %" at v'.

Ezample 6 Let Ay = {(0,0),(1,0)}, A2 = {(0,0),(0,1)},and V = {(2,0), (0,1)}

be subsets of Z3. Then X(z*1,V) = E (2)] and X(z*2,V) = E (1)]
Theorem 1 ([BOTO03]) Let A and V be subsets of Zyy. Then A is basic for
I(V) if and only if X(z*, V) is invertible.

An initial staircase must be basic, while a basic staircase might not be ini-
tial; however, if (V') has a unique initial staircase (and thus a unique reduced
Grobner basis), then I(V') has a unique basic staircase. The following lemma
is found in [DHSZ19] without proof.

Lemma 3 Let 2,27 be monomials with x® t 2°. There exists a weight vector
v and monomial order <. such that P =y .

Proof Let x® { z%. As x* { 2%, aj > B; for some coordinate j. Take v to be a
vector in R™ with a sufficiently large rational value in entry j and square roots
of distinct prime numbers elsewhere such that v -« > - 3. Then the entries
of v are linearly independent over Q and so v defines a weight order. Define
=< to be the monomial order weighted by . It follows that P <y %

Proposition 7 ([DHSZ19]) An ideal I(V') has a unique initial staircase if
and only if I(V') has a unique basic staircase.

Proof Follows directly from Proposition 2.2 in [BOT03] and Lemma 3.

Based on Proposition 7, if we want to find out whether I(V') has a unique
marked reduced Grébner basis, we just need to check if there exist a unique
staircase A C Zj such that X(a*, V) is invertible.

The above paragraph is the basis of the following method we propose for
identifying if a set of points has an ideal with a unique marked reduced Groébner
basis: Given a set of points V', the algorithm goes over all possible staircases
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with |V elements and checks if the corresponding evaluation matrix is invert-
ible. Notice that no Grébner basis computation is required. Unfortunately,
finding all staircases is equivalent to the NP-complete integer partitioning
problem [Hay02] but there are pseudo-polynomial time dynamic programming
solutions. For example, one can use the Sherman-Morrison formula [SM50]:
Given an invertible matrix A € R™*" and two column vectors u,v € R",
A +uvT is invertible if and only if 1 4+ v7 A=y # 0.

The following algorithm is based on the theory summarized in this section.
Its goal is to identify data sets V' C Z7 of fixed size, dimension, and finite
field cardinality having an ideal with a unique marked reduced Grobner basis.
Before we present it, we need one last definition.

Definition 7 ([DHSZ19]) For Vi,V, C Zy with |[Vi| = [Va|, we say Vi is
a linear shift of Vs, if there exists ¢ = (¢1,---,¢n) : Zy — Zy such that
¢(Vi) = Vo and for each i € {1,--- ,n}, ¢:i(z;) = a;z; + b; : Zp, — Zp, with
a; € (Z,\{0}) and b; € Z,,.

The linear shift is a bijection between two data sets, defining an equivalence
relation. We note that by a “good” representative of an equivalence class E
we mean one of the data sets with smallest total Euclidean distance to the
origin among all data sets in F.

4.1 Data preparation

Input: n (dimension), p (characteristic of finite field), m (number of
points in the data set)
Purpose: Prepare the data for use in the main iterations
Steps:
1. Generate all staircases {S} and their corresponding dimensions {as}.
2. For each S, calculate all evaluation matrices {X(x°,S5)} and their
inverses {X(x%,5)"!}.

Note: Since {X(z“,9)} is a square Vandermonde matrix and S is a set of

distinct points, {X(z*, S)} is invertible.
3. Find “good” representatives {Fy}, for all the equivalence classes.

Note: The number of staircases has an upper bound of O(m(log m)"~!) [BOT03].

4.2 Main iterations

Input: {S}, {as}, {X(2%,9)}, {X(2®, 9) "'}, {Ed}.
Output: Good representatives of equivalence classes in which an ideal
of the data sets have unique reduced Grobner bases.
Create a list called storage to store all the previous results
for ¢ € {Eg} do
create an empty vector called flag = [ ]
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for S € {S} do
if ¢ and S are only different in one point then
compute D = X(z*,¢) — X(z%, 9)
decompose D = uv”, where u,v € )" are two column vectors
if 1+0TX(2%,9)"'u=0¢€ Z, then
flag.append (False)
else
flag.append(True)
end if
else if > ag < n and storage has the result of ¢ such that ¢ have
exactly the same value of ¢ at non-zero entries in ag then
flag.append(the previous result)
else if det(X(z”,¢)) # 0 € Z, then
flag.append(True)
else
flag.append(False)
end if
if there are two Trues in flag then
use storage to store flags
break the inside loop
end if
end for
use storage to store flags
if flag has only one T then
print /¢
end if
end for

5 Discussion and future work

We explored convex neural codes by considering the canonical forms and
Grobner bases of their ideals. While we still do not have a complete algebraic
characterization of convex codes, the results we presented lead us to believe
that there is a strong connection between convexity of a code and the number
of the marked reduced Grébner bases of its ideal. In particular, it would seem
that the relations among the U; from Definition 1 cannot be too “contradic-
tory” for the canonical form of a neural ideal to be a Grébner basis. From the
comparisons and computations of canonical forms and Grobner bases for con-
vex and non-convex codes thus far, the authors make the following conjecture
to strengthen Proposition 4:

Conjecture 1 Given a neural code C with neural ideal Jo, if the canonical
form CF(J¢) is a Grobner basis, then the code C' is convex.

Notice that in light of Proposition 3, the above conjecture can also be
stated as “Given a neural code C' with neural ideal Jo, if Jo has a unique
marked reduced Grobner basis, then the code C is convex.”
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In addition, Section 4 of [GPK T 18] gives three examples of families of codes
whose canonical forms are Grobner bases, which we can verify will always be
convex codes, thus further suggesting that Conjecture 1 is worth future work:

1. C is a simplicial complex: then C' is intersection complete, so C' is convex.

2. C is the singleton C = {(c1,...,¢n)}. Then U; = X for ¢; =1, and U; = 0)
for ¢; = 0. If X is chosen to be convex, then the code will be convex.

3. C is missing one codeword from [n]. If 11---1 € C, then C is convex (see
[CGIT17]). I C = {0,1}™\{11---1}, then C is a simplicial complex, which
is convex by (1).

In [DHSZ19] we characterize geometrically a family of codes whose ideals
have a unique marked reduced Grébner basis and the codes above are in that
family. By Proposition 3, the above conjecture would imply that all codes in
the family are convex which remains to be verified. Furthermore, in [DHRS19],
we show that if the neural ideal of a code has a unique marked reduced Grobner
basis, so does the neural ideal of its complement. It remains to be verified if
convex codes whose neural ideals have unique marked reduced Grébner bases
always have convex complements.
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