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Abstract We present results and conjectures on the connection between the
convexity of a neural code and the canonical form of its ideal. The connection
is established through properties of the Gröbner basis of the neural ideal and
the uniqueness of its reduced form. An efficient algorithm for identifying neural
codes with unique reduced Gröbner bases is introduced.
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Gröbner basis · Convexity

1 Introduction and background

Humans and animals perceive their surroundings based on previous encoun-
ters. Their brains have to store information about those encounters to be ac-
cessed in the future, and the way this information is stored and processed is the
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subject of active research in neuroscience. Great strides have also been made
towards a mathematical understanding of the brain. For example, the theory
of neural codes studies how the brain represents external stimulation. These
codes are extracted from stereotyped stimulus-response maps, associating to
each neuron a convex receptive field. An important problem confronted by the
brain is to infer properties of a represented stimulus space without knowledge
of the receptive fields, using only the intrinsic structure of the neural code. To
understand how the brain does this, one must first determine what stimulus
space features can be extracted from neural codes.

In this paper, we study neural codes through an algebraic object called
a neural ideal which was introduced in [CIVCY13] to better understand the
combinatorial structure of neural codes. More specifically, we focus on convex
neural codes (and their corresponding ideals) since they have been observed
experimentally in brain activity. In Section 2 we begin with a survey on what
is known so far about convex neural codes. In Section 3 we discuss the struc-
ture of neural ideals and their Gröbner bases. We then introduce results on
the connection between the canonical form of a neural ideal and its reduced
Gröbner basis, suggesting that neural ideals which have a unique reduced
Gröbner bases are of particular interest. Thus, in Section 4, we introduce a
method for identifying neural codes with unique Gröbner bases. These results
suggest a conjecture, stated in Section 5, that provides a characterization of
convex neural codes based on their Gröbner bases.

We first review some terminology and results here (see [CIVCY13]). Given
a neural code C written as a set of binary strings of length n (alternatively,
it can be written as subsets of [n]), we can construct the ideal of polynomials
that vanish on C:

IC := {p ∈ F2[x1, . . . , xn] : p(c) = 0 for all c ∈ C}, (1)

where F2 is the finite field of two elements (0 and 1), and F2[x1, . . . , xn] is the
polynomial ring in n variables with coefficients in F2. Note that since 02 = 0
and 12 = 1, IC always contains the set of Boolean relations B = 〈x2

i − xi : i ∈
[n]〉.

We can construct a generating set for the rest of the elements of IC , via
indicator functions: Given a codeword v ∈ F2, define

ρv :=
∏

i:vi=1

xi

∏

j:vj=0

(1 + xj).

Note that ρv(v) = 1 and ρv(c) = 0 for c 6= v. From these functions, we can
build the neural ideal of C:

JC := 〈ρv : v ∈ Fn
2 \ C〉

Note that IC = B + JC ([CIVCY13]). The functions ρv that generate JC
are examples of pseudo-monomials: these are polynomials f ∈ F2[x1, . . . , xn]
of the form

f = xσ

∏

j∈τ

(1 + xj),
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where xσ :=
∏

i∈σ xi and σ, τ ⊆ [n] with σ ∩ τ = ∅.
Given an ideal J ⊂ F2[x1, . . . , xn], a pseudo-monomial f ∈ J is minimal

if there does not exist another pseudo-monomial g ∈ J with deg(g) < deg(f)
and f = hg for some h ∈ F2[x1, . . . , xn]. We define the canonical form of JC
to be the set of all minimal pseudo-monomials of JC , denoted CF (JC). For
any neural code C, the set CF (JC) is a generating set for the neural ideal JC .
The canonical form CF (JC) can be constructed algorithmically from the code
C (see [PYK+16],[CIVCY13]).

Example 1 Given the code C = {000, 100, 110, 101, 001, 111}, there are two
elements in F3

2 that are not in C: 010 and 011. From these, we construct the
neural ideal:

JC = 〈x2(1 + x1)(1 + x3), x2x3(1 + x1)〉

The canonical form is CF (JC) = {x2(1+x1)}. Observe that if a codeword
c satisfies x2(1 + x1) = 0, then whenever neuron 2 is firing (x2 = 1), we must
have neuron 1 firing, as well (x1 = 1).

2 Convexity of neural codes

We will now investigate combinatorial codes arising from covers of a stimulus
space. Let X be a topological space. A collection of non-empty open sets
U = {U1, U2, . . . , Un}, Ui ⊂ X, is called an open cover. Given an open cover
U , the code of the cover is the neural code defined as:

C(U) = {σ ⊆ [n] :
⋂

i∈σ

Ui \
⋃

j∈[n]\σ

Uj 6= ∅}.

Given a combinatorial code C, we say that C is realized by an open cover
U if C = C(U). If C can be realized by U , where U = {U1, . . . , Un} with each
Ui a convex subset of Rd, then C is a convex code with geometric realization
U .

Not all combinatorial codes are convex. For example, the code C = {∅, 1, 2, 13, 23}
cannot be realized with convex sets, as the set U3 is the disjoint union of open
sets U1∩U3 and U2∩U3, forcing it to be disconnected (and thus, non-convex).
A complete condition for convexity is still unknown; we summarize here the
known results.

Note that in the previous example the relationship in the receptive fields
forced the non-convexity of one of the sets, and the presence of the single
codeword 3 would eliminate this topological inconsistency. This is an example
of a local obstruction to convexity, instrinsic to the combinatorial structure of
the code itself.

Definition 1 ([CGJ+17]) Let C = C(U) be a code on n neurons, with U =

{U1, . . . , Un} a realization of C. Let Uσ =
⋂

i∈σ

Ui. A receptive field relationship

(RF relationship) of C is a pair (σ, τ) corresponding to the set containment



4 Kaitlyn Phillipson et al.

Uσ ⊆
⋃

i∈τ

Ui,

where σ 6= ∅, σ ∩ τ = ∅, and Uσ ∩ Ui 6= ∅ for all i ∈ τ. A receptive field
relationship is minimal if no single neuron from σ or τ can be removed without
destroying the containment.

In general, we can detect local obstructions via the simplicial complex of
a code. Given a code C, its simplicial complex is ∆(C) := {σ ⊆ [n] : σ ⊆
c for some c ∈ C}. For a simplicial complex ∆, the restriction of ∆ to σ is the
simplicial complex ∆|σ := {ω ∈ ∆ : ω ⊂ σ}. For any σ ∈ ∆, the link of σ in
∆ is Lkσ(∆) = {w ∈ ∆ : σ ∩ w = ∅, σ ∪ w ∈ ∆}.

Definition 2 ([CGJ+17]) Let (σ, τ) be a receptive field relationship, and let
∆ = ∆(C). We say that (σ, τ) is a local obstruction of C if τ 6= ∅ and
Lkσ(∆|σ∪τ ) is not contractible.

Note that in C = {∅, 1, 2, 13, 23}, (σ, τ) = ({3}, {1, 2}) is a receptive field
relationship (U3 ⊆ U1 ∪ U2), and Lk3(∆|123) = {1, 2}, which is disconnected
(and thus, not contractible).

Notice that the simplicial complex of a code C is defined by its maximal
codewords. Amaximal codeword σ of a code C is maximal under inclusion in C.
A code is max intersection-complete if it is closed under taking all intersections
of its maximal codewords.

We can now state necessary and sufficient conditions for convexity:

Proposition 1 For a neural code C:

1. If C is max intersection-complete, then C is convex.
2. If C is convex, then C has no local obstructions.

Part 1 of Proposition 1 is due to [CGIK19], while Part 2 is due to [CGJ+17]
as a consequence of the Nerve Lemma.

The converses of Part 1 and Part 2 of Proposition 1 hold for n ≤ 4
(see [CGJ+17]); however, these statements fail for n ≥ 5. An example of a
convex code which is not max intersection-complete can be seen via C1 =
{123, 124, 145, 14, 12} in Figure 1. An example of a non-convex code which has
no local obstructions was found in [LSW17], which is code
C4 = {2345, 123, 134, 145, 13, 14, 23, 34, 45, 3, 4, ∅}. The case for n = 5 neu-
rons has also been fully classified; see [GP19].

3 Structure of the neural ideal

We now turn to a discussion relating convexity to the structure of the neural
ideal. As we saw in Example 1 in Section 1, the canonical form encodes minimal
descriptions of the relationships between the sets Ui. The following lemma
given in [CIVCY13] generalizes this observation:
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145 14 124 12 123

Fig. 1: Convex realization of C1.

Lemma 1 Let C = C(U) be a neural code on n neurons with neural ideal JC .
For σ, τ ∈ [n] with σ ∩ τ = ∅, xσ

∏
j∈τ (1 + xj) ∈ JC if and only if (σ, τ) is an

RF relationship (i.e., Uσ ⊆
⋃

j∈τ Uj .).
Moreover, xσ

∏
j∈τ (1+xj) ∈ CF (JC) if and only if (σ, τ) is a minimal RF

relationship.

From Example 1, the minimal pseudo-monomial x2(1 + x1) gives us the
minimal relationship U2 ⊆ U1.

3.1 Gröbner Basis of a Neural Ideal

The canonical form CF (JC) is a particular generating set for JC that gives
information about the structure of the sets Ui. Another well-known generating
set for a polynomial ideal is a Gröbner basis.

Given an ideal in a polynomial ring R = k[x1, . . . , xn] and a monomial
ordering < on R, we can let LT<(I) denote the ideal generated by the leading
terms of elements in I. If G is a finite subset of I whose leading terms generate
LT<(I), then G is a Gröbner basis for I. A Gröbner basis for I is always a
generating set for the ideal I. A Gröbner basis G is reduced if, given any
element f ∈ G, f has leading coefficient 1 and no term of f is divisible by
the leading term of any g ∈ G with g 6= f . We often also talk about marked
reduced Gröbner bases to emphasize that the leading term of each polynomial
in a Gröbner basis is distinguished. For a given monomial order <, the marked
reduced Gröbner basis exists and is unique.

A universal Gröbner basis for an ideal I is a Gröbner basis that is a Gröbner
basis with respect to any monomial order. The universal Gröbner basis Ĝ of
an ideal I is the union of all reduced Gröbner bases of I. Since the set of all
reduced Gröbner bases is finite, the universal Gröbner basis always exists and
is unique.

If a set is a Gröbner basis, it is not necessarily a reduced Gröbner basis
nor a universal Gröbner basis. However, it was shown in [GPK+18] that if the
canonical form is a Gröbner basis, then it is in fact the universal Gröbner basis
for JC . This result leads to the following proposition:

Proposition 2 [GPK+18] Let C be a neural code with neural ideal JC . The
following are equivalent:
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1. The canonical form of JC is a Gröbner basis of JC .
2. The canonical form of JC is the universal Gröbner basis of JC .
3. The universal Gröbner basis of JC consists of pseudo-monomials.

In particular, this gives a way to certify that the canonical form is not a
Gröbner basis: If, for a given term order, the reduced Gröbner basis contains
polynomials which are not pseudo-monomials, this implies that the canonical
form is not a a Gröbner basis.

The following proposition refines Proposition 2 by replacing its second
statement with “The canonical form of JC has a unique marked reduced Gröbner
basis.”

Proposition 3 Let C be a code and JC its neural ideal. CF(JC) is a Gröbner
basis if and only if JC has a unique marked reduced Gröbner basis.

Proof In [DHRS19], it is shown that an ideal has a unique marked reduced
Gröbner basis if and only if all marked reduced Gröbner basis generators
are factor-closed, i.e., the non-leading terms of each polynomial divide its
leading term. Furthermore, in [GPK+18] the authors prove that if the universal
Gröbner basis of JC consists solely of pseudo-monomials, then its canonical
form is a Gröbner basis. Since over F2 all polynomials that are factor-closed
and square-free are pseudo-monomials, the result follows.

Notice that by Proposition 3, the goal of classifying codes whose neural
ideals have canonical forms that are Gröbner bases becomes identical to clas-
sifying codes whose ideals of points (or neural ideals) have unique marked
reduced Gröbner basis. In Section 4 we present an efficient algorithm for test-
ing whether a code has a neural ideal with a unique marked reduced Gröbner
basis.

Lemma 2 If there is a pseudo-monomial f ∈ CF (JC) whose leading term
is divisible by any term of another pseudo-monomial g ∈ CF (JC), then the
canonical form is not a Gröbner basis for JC for any monomial order.

Proof If f ∈ CF (JC) has leading term that is divisible by a term of another
pseudo-monomial g ∈ CF (JC), then the canonical form cannot be a reduced
Gröbner basis, which by Proposition 2 implies that it is not a Gröbner basis.

We will utilize this fact in the next subsection.

3.2 Canonical form and Gröbner bases of JC

Recall from Section 2 that if a code has a local obstruction, then it is not con-
vex. Since the canonical form CF (JC) encodes information about the minimal
relationships between the sets Ui, the canonical form can be used to detect
certain local obstructions in the code. The following definition was introduced
in [CGJ+19].
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Definition 3 A local obstruction (σ, τ) is CF-detectable if there exists a local
obstruction (σ′, τ ′) with σ′ ⊂ σ and τ ′ ⊂ τ such that (σ′, τ ′) is a minimal RF
relationship.

The next proposition connects the convexity of C to the Gröbner basis of
JC .

Proposition 4 Given a code C, if C has a CF-detectable local obstruction,
then the canonical form of JC is not a Gröbner basis.

Proof By Theorem 5.4 in [CGJ+19], if C has a CF-detectable local obstruction,
then there exist σ, τ ⊂ [n], τ 6= ∅ with xσ

∏
i∈τ (1 + xi) ∈ CF (JC) and xσxτ ∈

JC . Since xσxτ is a pseudo-monomial in JC and CF (JC) is a generating set
for JC , there exists xα ∈ CF (JC) with α ⊂ σ ∪ τ , so the canonical form is not
a Gröbner basis by Proposition 5.

Thus, if a code C has a CF-detectable local obstruction, C is both not
convex and its canonical form is not a Gröbner basis for JC .

Proposition 5 Let C be a neural code with neural ideal JC and canonical
form CF (JC). If there exist two distinct pseudo-monomials f = xσ

∏
i∈τ (1 +

xi) and g = xα

∏
j∈β(1+xj) ∈ CF (JC) with α∪β ⊆ σ∪ τ , then the canonical

form CF (JC) is not a Gröbner basis of JC .

Proof For any monomial order, the leading term of f is xσxτ while the leading
term of g is xαxβ . Since α ∪ β ⊆ σ ∪ τ implies that xαxβ divides xσxτ , by
Lemma 2 we have that the canonical form is not a Gröbner basis.

Unfortunately, the converse of Proposition 5 fails as the following example
shows.

Example 2 The code
C = {∅, 1, 2, 3, 4, 5, 134, 1234, 234, 1235, 125, 13, 15, 23, 25, 14, 24, 235, 135, 1245, 35, 123, 12345}
has canonical form CF (JC) = {x3x4(1+x1)(1+x2), x1x2(1+x3)(1+x5), x4x5(1+
x1), x4x5(1 + x2)}, with leading terms x1x2x3x4, x1x2x3x5, x1x4x5, x2x4x5,
none of which are divisible by the others. However, the universal Gröbner ba-
sis of JC has the polynomial x4(x1x2 + x1x3 + x2x3 + x3x4 + x3 + x5), which
is not a pseudo-monomial. Thus, by Proposition 2, the canonical form of this
code is not a Gröbner basis.

We do have the following partial converse to Proposition 5:

Proposition 6 Let C be a neural code with canonical form CF (JC). If, for all
minimal pseudomonomials xσ

∏
i∈τ (1 + xi) and xα

∏
j∈β(1 + xj) ∈ CF (JC),

we have (σ ∪ τ) ∩ (α ∪ β) = ∅, then CF (JC) is a Gröbner basis for JC .

Proof Let g = xσ

∏
i∈τ (1+xi) and h = xα

∏
j∈β(1+xj) ∈ CF (JC). Since the

leading terms of g and h are xσxτ and xαxβ respectively, if (σ∪τ)∩(α∪β) = ∅,
then the leading terms of g and h are relatively prime. By Proposition 4
in [CLO15], this guarantees that the S-polynomial of g and h has standard
representation. Since this is true for any pair of pseudo-monomials, this shows
that CF (JC) is a Gröbner basis for JC by Theorem 3 in [CLO15].
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Note that the hypothesis of Proposition 6 is not a necessary condition for
the canonical form to be a Gröbner basis, as will be seen in Examples 3 and 4.
We now give several examples of convex and non-convex codes with their
canonical forms and universal Gröbner bases Ĝ. The labeling of the codes
follow the classification given in [GP19].

Example 3 The code C4 = {2345, 123, 134, 145, 13, 14, 23, 34, 45, 3, 4, ∅} is non-
convex, non-max intersection complete, with no local obstructions (see [LSW17]).
It has canonical form CF (C4) = {x5(1 + x4), x1x2x4, x2x4(1 + x5), x2(1 +
x3), x1x2x5, x1x3x5, x3x5(1 + x2), x1(1 + x3)(1 + x4)}. The universal Gröbner

basis is Ĝ(C4) = {x1x2x5, x1x2x4, x5(x2 + x3), x5(1 + x4), x2(1 + x3), x1(1 +
x3)(1 + x4), x1x3x5, x2x4 + x3x5, x2(x4 + x5)}.

It was shown in [LSW17] that adding either the codeword 1 or the code-
words 234 and 345 to C4 would make it convex. Upon adding 1, the universal
Gröbner basis and the canonical form lose pseudo-monomials, but Ĝ still does
not equal the canonical form. Adding the codewords 234 and 345 instead makes
the canonical form equal to the Gröbner basis: CF = {x1x2x5, x1x2x4, x1x3x5, x5(1+
x4), x2(1 + x3), x1(1 + x3)(1 + x4)}. Note that it is still not max-intersection
complete.

Example 4 The code C22 = {145, 124, 135, 235, 125, 123, 234, 35, 1, 23, 15,
25, 5, 13, 2, 24, 3, 14, 12} is convex with geometric realization in R3 and not
max-intersection complete (see [GP19]). The universal Gröbner basis and
the canonical form are the same: CF (C22) = {x2x4x5, x1x2x3x5, x3x4(1 +
x2), x3x4x5, x4x5(1 + x1), x4(1 + x1)(1 + x2)}.

4 Identifying neural codes with unique marked reduced Gröbner
bases

Based on Proposition 3, the goal of classifying codes whose neural ideals
have canonical forms that are Gröbner bases becomes identical to classify-
ing codes whose ideals of points have unique marked reduced Gröbner basis.
In this section we outline a method for testing whether a neural ideal has a
unique marked reduced Gröbner basis. We begin with two relevant definitions
from [BOT03].

Definition 4 A staircase is a set λ ⊆ Nd of nonnegative integer vectors such
that u ≤ v ∈ λ (coordinatewise) implies u ∈ λ. The staircase of exponent
vectors of standard monomials of an ideal I is called an initial staircase.

Definition 5 A staircase λ is basic for an ideal I if the congruence classes
modulo I of the monomials xv with v ∈ λ form a vector space basis for
Zp[x1, . . . , xn]/I.

As we will see in Proposition 7, if we want to find out whether I(V ) has
a unique marked reduced Gröbner basis, we just need to check whether I(V )
has a unique basic staircase.
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Definition 6 Given a staircase S on n variables and number of points m, let
αS = (α1

S , · · · , α
n
S) be an n-dimensional vector, where αi

S = 0 if S has zeros
for all points in its ith direction. Otherwise αi

S = 1. We use
∑

αS to denote
the summation of all entries in αS , and call it the dimension of S.

Example 5 The following two examples illustrate the concept of staircase di-
mension which is needed for the algorithm at the end of this section.

1. Let S = {(0, 0), (0, 1), (0, 2), (0, 3)}. Then αS = (0, 1) and
∑

αS = 1.
2. If S = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)}, then αS = (1, 1, 1) and

∑
αS =

3.

We now construct the following matrix. Let λ = {u1, . . . , ur} be an r-subset
of Zn

p and let V = {v1, . . . , vs} be an s-subset of Zn
p . The evaluation matrix

X(xλ, V ) is the s-by-r matrix whose element in position (i, j) is xuj

(vi), the

evaluation of xuj

at vi.

Example 6 Let λ1 = {(0, 0), (1, 0)}, λ2 = {(0, 0), (0, 1)}, and V = {(2, 0), (0, 1)}

be subsets of Z2
3. Then X(xλ1 , V ) =

[
1 2
1 0

]
and X(xλ2 , V ) =

[
1 0
1 1

]
.

Theorem 1 ([BOT03]) Let λ and V be subsets of Zn
p . Then λ is basic for

I(V ) if and only if X(xλ, V ) is invertible.

An initial staircase must be basic, while a basic staircase might not be ini-
tial; however, if I(V ) has a unique initial staircase (and thus a unique reduced
Gröbner basis), then I(V ) has a unique basic staircase. The following lemma
is found in [DHSZ19] without proof.

Lemma 3 Let xα, xβ be monomials with xα - xβ. There exists a weight vector
γ and monomial order ≺γ such that xβ ≺γ xα.

Proof Let xα - xβ . As xα - xβ , αj > βj for some coordinate j. Take γ to be a
vector in Rn with a sufficiently large rational value in entry j and square roots
of distinct prime numbers elsewhere such that γ · α > γ · β. Then the entries
of γ are linearly independent over Q and so γ defines a weight order. Define
≺γ to be the monomial order weighted by γ. It follows that xβ ≺γ xα.

Proposition 7 ([DHSZ19]) An ideal I(V ) has a unique initial staircase if
and only if I(V ) has a unique basic staircase.

Proof Follows directly from Proposition 2.2 in [BOT03] and Lemma 3.

Based on Proposition 7, if we want to find out whether I(V ) has a unique
marked reduced Gröbner basis, we just need to check if there exist a unique
staircase λ ⊆ Zn

p such that X(xλ, V ) is invertible.
The above paragraph is the basis of the following method we propose for

identifying if a set of points has an ideal with a unique marked reduced Gröbner
basis: Given a set of points V , the algorithm goes over all possible staircases
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with |V | elements and checks if the corresponding evaluation matrix is invert-
ible. Notice that no Gröbner basis computation is required. Unfortunately,
finding all staircases is equivalent to the NP-complete integer partitioning
problem [Hay02] but there are pseudo-polynomial time dynamic programming
solutions. For example, one can use the Sherman-Morrison formula [SM50]:
Given an invertible matrix A ∈ Rn×n, and two column vectors u, v ∈ Rn,
A+ uvT is invertible if and only if 1 + vTA−1u 6= 0.

The following algorithm is based on the theory summarized in this section.
Its goal is to identify data sets V ⊆ Zn

p of fixed size, dimension, and finite
field cardinality having an ideal with a unique marked reduced Gröbner basis.
Before we present it, we need one last definition.

Definition 7 ([DHSZ19]) For V1, V2 ⊂ Zn
p with |V1| = |V2|, we say V1 is

a linear shift of V2, if there exists φ = (φ1, · · · , φn) : Zn
p → Zn

p such that
φ(V1) = V2 and for each i ∈ {1, · · · , n}, φi(xi) = aixi + bi : Zp → Zp with
ai ∈ (Zp\{0}) and bi ∈ Zp.

The linear shift is a bijection between two data sets, defining an equivalence
relation. We note that by a “good” representative of an equivalence class E
we mean one of the data sets with smallest total Euclidean distance to the
origin among all data sets in E.

4.1 Data preparation

Input: n (dimension), p (characteristic of finite field), m (number of
points in the data set)
Purpose: Prepare the data for use in the main iterations
Steps:
1. Generate all staircases {S} and their corresponding dimensions {αS}.
2. For each S, calculate all evaluation matrices {X(xS , S)} and their

inverses {X(xS , S)−1}.
Note: Since {X(xS , S)} is a square Vandermonde matrix and S is a set of
distinct points, {X(xS , S)} is invertible.

3. Find “good” representatives {E`}, for all the equivalence classes.

Note: The number of staircases has an upper bound ofO(m(logm)n−1) [BOT03].

4.2 Main iterations

Input: {S}, {αS}, {X(x
S , S)}, {X(xS , S)−1}, {E`}.

Output: Good representatives of equivalence classes in which an ideal
of the data sets have unique reduced Gröbner bases.

Create a list called storage to store all the previous results
for ` ∈ {E`} do
create an empty vector called flag = [ ]
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for S ∈ {S} do
if ` and S are only different in one point then

compute D = X(xS , `)− X(xS , S)
decompose D = uvT , where u, v ∈ Fm

p are two column vectors

if 1 + vTX(xS , S)−1u = 0 ∈ Zp then
flag.append(False)

else
flag.append(True)

end if
else if

∑
αS < n and storage has the result of `′ such that `′ have

exactly the same value of ` at non-zero entries in αS then
flag.append(the previous result)

else if det(X(xS , `)) 6= 0 ∈ Zp then
flag.append(True)

else
flag.append(False)

end if
if there are two Trues in flag then

use storage to store flags
break the inside loop

end if
end for
use storage to store flags
if flag has only one T then
print `

end if
end for

5 Discussion and future work

We explored convex neural codes by considering the canonical forms and
Gröbner bases of their ideals. While we still do not have a complete algebraic
characterization of convex codes, the results we presented lead us to believe
that there is a strong connection between convexity of a code and the number
of the marked reduced Gröbner bases of its ideal. In particular, it would seem
that the relations among the Ui from Definition 1 cannot be too “contradic-
tory” for the canonical form of a neural ideal to be a Gröbner basis. From the
comparisons and computations of canonical forms and Gröbner bases for con-
vex and non-convex codes thus far, the authors make the following conjecture
to strengthen Proposition 4:

Conjecture 1 Given a neural code C with neural ideal JC , if the canonical
form CF (JC) is a Gröbner basis, then the code C is convex.

Notice that in light of Proposition 3, the above conjecture can also be
stated as “Given a neural code C with neural ideal JC , if JC has a unique
marked reduced Gröbner basis, then the code C is convex.”
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In addition, Section 4 of [GPK+18] gives three examples of families of codes
whose canonical forms are Gröbner bases, which we can verify will always be
convex codes, thus further suggesting that Conjecture 1 is worth future work:

1. C is a simplicial complex: then C is intersection complete, so C is convex.
2. C is the singleton C = {(c1, . . . , cn)}. Then Ui = X for ci = 1, and Uj = ∅

for cj = 0. If X is chosen to be convex, then the code will be convex.
3. C is missing one codeword from [n]. If 11 · · · 1 ∈ C, then C is convex (see

[CGJ+17]). If C = {0, 1}n\{11 · · · 1}, then C is a simplicial complex, which
is convex by (1).

In [DHSZ19] we characterize geometrically a family of codes whose ideals
have a unique marked reduced Gröbner basis and the codes above are in that
family. By Proposition 3, the above conjecture would imply that all codes in
the family are convex which remains to be verified. Furthermore, in [DHRS19],
we show that if the neural ideal of a code has a unique marked reduced Gröbner
basis, so does the neural ideal of its complement. It remains to be verified if
convex codes whose neural ideals have unique marked reduced Gröbner bases
always have convex complements.
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International Journal of Algebra and Computation, 28(4):553–571,
2018.

Hay02. B. Hayes. Computing science: The easiest hard problem. American
Scientist, 90(2):113–117, 2002.

LSW17. C. Lienkaemper, A. Shiu, and Z. Woodstock. Obstructions to con-
vexity in neural codes. Advances in Applied Mathematics, 85:31–
59, 2017.

PYK+16. E. Petersen, N. Youngs, R. Kruse, D. Miyata, R. Garcia, and
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