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The strong bending of polymers is poorly understood. We propose a general quantitative

framework of polymer bending that includes both the weak and strong bending regimes

on the same footing, based on a single general physical principle. As the bending

deformation increases beyond a certain (polymer-specific) point, the change in the

convexity properties of the effective bending energy of the polymer makes the harmonic

deformation energetically unfavorable: in this strong bending regime the energy of

the polymer varies linearly with the average bending angle as the system follows the

convex hull of the deformation energy function. For double-stranded DNA, the effective

bending deformation energy becomes non-convex for bends greater than ∼ 2◦ per

base-pair, equivalent to the curvature of a closed circular loop of ∼ 160 base pairs.

A simple equation is derived for the polymer loop energy that covers both the weak

and strong bending regimes. The theory shows quantitative agreement with recent

DNA cyclization experiments on short DNA fragments, while maintaining the expected

agreement with experiment in the weak bending regime. Counter-intuitively, cyclization

probability (j-factor) of very short DNA loops is predicted to increase with decreasing

loop length; the j-factor reaches its minimum for loops of ≃ 45 base pairs. Atomistic

simulations reveal that the attractive component of the short-range Lennard-Jones

interaction between the backbone atoms can explain the underlying non-convexity of

the DNA effective bending energy, leading to the linear bending regime. Applicability of

the theory to protein-DNA complexes, including the nucleosome, is discussed.

Keywords: polymer bending, DNA, convex hull, deformation, cyclization, j-factor

1. INTRODUCTION

Deformation of polymers is ubiquitous, elastic properties of these macromolecules are crucial
for their dynamics. Biopolymers are abundant in nature and play vital roles in many biological
processes [1–4], which not only depend upon the polymer structure, but also on its physical
properties [5–7]. Among biopolymers, DNA stands out as a case of its own. Understanding DNA
deformation is crucial for the mechanistic grasp of vital cellular functions, such as packaging of
DNA compactly into viral capsids, chromatin compaction, formation of protein/DNA complexes
and regulation of gene expression [2, 8]. An all-important example of DNAdeformation, relevant to
a variety of biological processes that depend on its elastic properties, is DNA looping, which occurs
in many prokaryotic [9] and eukaryotic [10] systems. A number of regulatory proteins can loop
DNA into various bent conformations, critical for regulation ofmany biological processes involving
DNA [11].Most notably, DNA is strongly bent in the nucleosome [12, 13], which is the fundamental
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unit of genome packing: accessibility to genomic information
in eukaryotes is modulated by the strength of DNA-protein
association [14, 15]. Note that the majority of eukaryotic
genomic DNA (75–80%) is packed tightly into nucleosomes [10].
Nanostructures made directly of DNA [16] or those that
use DNA as a scaffold [17], can be influenced [18] by its
mechanical properties on short length scales, providing yet
another impetus to understand the strong bending regime
of the DNA. Experimental evidence on cyclization of DNA
fragments shorter than ∼100 base-pairs points to the fact
that strongly bent DNA—most relevant from a biological
perspective—is considerably more flexible than expected from
established models (worm-like chain) that work well within the
weak bending regime. Yet, despite decades of experimental and
theoretical effort, the story of how this very important polymer
behaves under deformation is far from complete, with new
developments abound [19–35]. A snapshot of the current state
and the relevant terminology are briefly reviewed below.

Bending flexibility of a polymer is conventionally quantified
in terms of its persistence length, Lp, a length scale below which
the polymer behaves more or less like a rigid rod. Specifically,
Lp is defined as length of the polymer segment over which the
time-averaged orientation of the polymer becomes uncorrelated;
for fragments smaller than Lp, the thermal fluctuation alone is
not enough to induce significant (∼ 1 rad) bending [36]. Here
we use this definition of Lp to qualitatively separate the two
bending regimes: if no significant bending is observed on length
scales shorter than Lp, the polymer can be deemed weakly bent;
otherwise the bending is assumed to be strong. For double-
stranded DNA, a variety of experimental techniques [37–42],
revealed that Lp ≈ 150 bp or 500 Å. Based on the Lp value and the
above definition of strong bending, we conclude that most of the
DNA in eukaryotes is strongly bent. Indeed, since the nucleosome
contains a stretch of double-stranded DNA of ∼ 150 bp looped
almost twice, the DNA in this complex can be considered as
strongly bent.

Response of DNA to mechanical stress has been studied
extensively [2, 8, 37, 40, 42–60], leading to a consensus
in modeling the weak bending regime. Arguably the most
widely used simplified model of DNA bending is the worm-
like chain (WLC) model. In the original WLC [42, 61], the
polymer is modeled as a continuous, isotropic elastic rod
with its deformation energy being a quadratic function of the
deformation angle. In the discrete version of WLC model, the
bending energy of the polymer consisting ofN segments of length
l is given by:

Echain =

N−1
∑

i

1

2
kBT

Lp

l
θ2i (1)

where θi is the angle between two consecutive segments (see
inset of Figure 1). While this simplistic model lacks some
features of the real DNA, such as sequence dependence of its
local mechanical properties, it nevertheless captures the key
physics of weak polymer bending, which explains why the
model is robust and is widely adopted to interpret experiment.
Various theoretical models of DNA bending, including those that

explicitly account for the sequence-dependence [62–65], were
consequently developed that also assumed harmonic (quadratic)
angular deformation energy of DNA. There is very little doubt
that the Hookean, “elastic rod” models accurately describe many
polymers in the weak bending regime [1], including the double-
stranded DNA [42, 54]. Indeed, lowest order term of a Taylor
series expansion of any well-behaved function around its local
minimum is quadratic, which means that for small deviations
from equilibrium, the response function can be considered
harmonic. However, by the same logic it should be expected that
beyond a certain threshold the bending energy may no longer
be approximated by the quadratic term alone; investigations of
possible influence of non-harmonic terms on the mechanical
properties of double-stranded DNA is a relatively new area.
Historically, only very large fragments (hundreds to thousands of
base-pairs) were investigated [37, 38], which are well-described
by the WLC regardless of what happens on short length-
scales [48].

However, within the last decade or so, the prevailing view of
DNA as a Hookean polymer was challenged by experiments that
were able to investigate the flexibility of DNA on scales smaller
than several Lp. Counter-intuitively, small DNA fragments
(≈ 100 bp) were found to have much higher probability
of cyclization (spontaneous formation of loops) than that
predicted by the WLC theory [52]. This discovery sparked a
debate, including subtle issues related to the interpretation of
critical cyclization experiments themselves [35]. The controversy
surrounding the DNA softening at short length scales remains
unresolved, despite much effort. What is particularly puzzling
is that strongly bent DNA appears less rigid than the DNA
in the Hookean regime. Some of the follow-up experimental
and theoretical work supports the validity of WLC even for
tightly bent DNA [20, 42, 66], while others still show that short,
strongly bent DNA is much more flexible [19, 48, 67, 68] than
previously thought, in a manner that can not be described by
a harmonic model [48]. A number of theoretical models have
been proposed to account for the unexpectedly high flexibility
of strongly bent double-stranded DNA. One popular model
[69]—the meltable WLC or MWLC—postulated that the extra
flexibility stems from formation of small local “bubbles” of single
stranded DNA, which is much softer than the double helix.
However, the degree of softening provided by the mechanism
was later found [70] to be inadequate to fully explain the
very sharp bends in DNA observed experimentally; in atomistic
simulations, negative super-coiling was required to induce such
bubbles in DNA mini-circles [71]. An early model [72], put
forward well before the unusual DNA flexibility was discovered
experimentally, suggested that the energy of a bent double-
helix could be lowered by formation of sharp, ∼ 90◦ kinks
that maintain the Watson-Crick pairing along the helix. Sharp
kinks were indeed observed in a pioneering atomistic simulation
[53] some 30 years later, but subsequent improvements in the
simulation methodology indicated that these were only induced
at a high bend angle equivalent to those occurring in circles of
just 45 base-pairs [73], while experimental softening of the DNA
is seen experimentally for circles as large as ∼ 106 base-pairs
[19]. Sharp kinks in double-stranded DNA can be introduced
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FIGURE 1 | Two different forms for a bending energy profile of a homopolymer. Shown is the (effective) bending energy per bending site E(θ ). If the profile is purely

convex down (black curve), the minimal energy conformations of the polymer is uniform bending (all sites are identically bent). If the function has a non-convex region

(blue curve), non-uniform bending is more energetically favorable. In this case the total energy of the system follows the convex hull of the energy curve (red line).

empirically into the WLC model, e.g., by adding freely-bending
hinge elements to the WLC chain, leading to a kinkable WLC,
or KWLC [49]. A non-linear empirical bending potential that
allows for the possibility of∼ 90◦ kinks in double-stranded DNA
was recently proposed [20], but its physical origins, the critical
value of the DNA curvature at which the kink occurs, and the
corresponding energy gain remained unknown [20]. At the same
time, a purely linear empirical bending potential was shown [48]
to describe the softer DNA seen in AFM experiments, although
the origin of the linear regime and its parameters (e.g., critical
bend angle where the linear regime begins) remained unclear.
Are the kinking and the linear regime just two manifestations of
a deeper underlying principle?

In summary, the nature of the effective bending energy
of double-stranded DNA in the strong bending regime, and
importantly, the precise connection to the observed softening
of the polymer is not fully clear. The influence of mechanical
constraints on this connection remains unexplored. It is unclear
which aspects of the DNA structure and interactions at atomic
level are sufficient to explain the softening of strongly bent DNA.
The authors find it hard to believe that very special models are
needed to describe strong bending of the DNA; rather it is more
likely that the curious case of the DNA is just a special case of a
broader underlying theory applicable to all polymers. This work
is an attempt to develop the backbone of one such a theory.

In this work we propose, and verify against available
experiment, a unified theoretical description of polymer bending
that treats the weak and strong bending regimes on the same
footing, guided by a simple physical principle. The proposed
framework does not rely on ad-hoc postulates; instead, it shows

how the apparent softening of strongly bent DNA follows
naturally from a specific mathematical property of the bending
energy. Simulations suggest an atomistic explanation for the
specific shape of the bending energy function.

2. METHODS

2.1. DNA Bending Energy From
Experimental Data
A statistically significant, diverse set of several hundred
PDB structures of protein-DNA complexes was investigated
previously in reference [42]. The probability distribution of the
experimental DNA bending angles (more than 10,000 values) was
used in reference [42] to approximate the bending energy E(θ)
[per base pair] as a fourth order polynomial: E(θ) = 203.1θ2 −
552.7θ3 + 416.8θ4 (where θ is in radians and E(θ) is in units
of kT). Here we use this E(θ) to represent the experimental
effective bending energy of the double-stranded DNA, blue line
in Figure 4.

2.2. Atomistic MD Simulations of Closed
DNA Loops
To avoid end effects, and make a close connection with DNA
cyclization experiments, we employed closed DNA circles to
estimate their effective bending energy E(θ) per base pair. DNA
circles of various sizes, from 50 to 400 bp, were generated using
NAB [74] (AmberTools) for sequence poly(dA).poly(dT), helical
repeat of h = 10 bp, and other parameters of B-DNA as specified
in NAB. We deliberately chose this simple, uniform sequence
to focus on the basic physics of DNA deformation. The range
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of circle sizes was determined by (1) the ability to simulate
meaningful time-scales (large circles), and (2) the limitations of
NAB software to construct highly bent structures (small circles).
To minimize torsional stress, only circles with an integer number
of helical repeats were constructed.

All of the atomistic MD simulations were performed within
AMBER-12 package, using ff99bsc0 force-field. The Generalized
Born (GB-HCT, AMBER option igb=1) implicit solvation model
was used to treat solvation effects, including the effects of 0.145M
of monovalent salt. No long-range cut-off was employed. The
model’s performance in atomistic simulations of DNA, including
studies of its deformation [51], is well-established [75]. Two
critical advantages of the implicit solvation approach over the
more traditional explicit solvation [76] treatment made the
implicit solvation the method of choice in this work. These
advantages are the superior simulation efficiency for large DNA
structures [77] and the straightforward manner in which their
energies, including free energy of solvent re-arrangement, can be
estimated [75] within the implicit solvation framework.

All DNA circles were initially minimized for 1,000 steps with
“P” atoms constrained to the original positions with a force
constant of 1.0 kcal/mol/Å2 to enforce the circular shape. Each
system was then heated to 300 K and equilibrated for 100 ps with
the same restraints as for the minimization. Shake was used to
constrain the hydrogen atoms; we employed 2 fs time-step for
the atomistic simulations. Finally, we generated 1 ns long MD
trajectory for each circle at 300K, with “P” atoms also restrained
with a force constant of 0.1 kcal/mol/Å2, sufficient to support
the near perfect circular shape of the fragment, but allowing
for local re-arrangements. The energies and their components,
including the electrostatic, VDW, bond, etc. were saved every 20
fs, and averaged over the whole trajectory. The relatively short
simulation time allowed us to simulate even the largest of the
circles; it is justified by the use of the strong positional restraints,
which permit only local, very fast structural re-arrangements. For
smaller circles we verified that increasing the simulation time by
an order of magnitude had negligible effect on the computed
averages. In Figures 6, 7, the energy per bp was computed as
the difference between per bp potential energies of the given
circle and the largest circle simulated, in which the DNA was
virtually unbent.

2.3. Coarse-Grained Simulations of DNA
Loops
ESPResSo [78] was used to create and simulate coarse-grained
closed loops of DNA of different sizes, from 6 to 600 bp
long. A single bead of the appropriate mass represents one
base-pair of B-DNA; the bead-bead distance was set to 3.3
Å, corresponding to the average distance between base pairs
in canonical DNA. The bonds between the beads were made
virtually inextensible (very large coefficient of the quadratic bond
stretching energy); the bond angle potential (effective bending
energy) between neighboring beads was defined to have the
same form as in Figure 4, that is correspond to the bending
potential inferred from the experimental data [42]. No further
bead-bead interactions or constraints on the loop geometry

were imposed. The loops were simulated at T = 300K to
generate 100,000 snapshots for each loop size. The resulting
bend angle distributions are shown in Figures 2, 3. Steepest
descent minimization of the last snapshot from each distribution
was used to obtain the “energy minimized” data points shown
in Figure 4.

2.4. Coarse-Grained Simulations of
Confined DNA Fragments
2.4.1. Protein-DNA Complex
ESPResSo [78] was used to create and simulate a 20 bead long
fragment of “DNA” bound to a spherical charged “protein”
(Figure 8). The beads and their interactions were set up as
described above, with the following modifications. The end beads
were not linked to create a loop. Each bead carried a unit
charge qs = −1 (atomic units); The bead charges interacted
only with a positive charge Q of the “protein,” represented by a
spherical impenetrable constraint of radius R. In addition, two
impenetrable walls were placed above and below the charge Q
to minimize out-of-plane bending of the “DNA.” The confining
charge Q was varied from 10 to 1,000, effectively sampling two
orders of magnitude of confinement strength (defined here as
|Q/qs|). The constraint radius Rwas also varied to sample various
curvature values of the “protein,” and thus various total bending
angles of the confined “DNA,” Figure 8.

2.4.2. A Nucleosome Model
For the nucleosome model, the system described above was
modified to mimic the confinement of DNA around realistic
histone core. The DNA fragment size was increased to 147 bp,
and non-bonded interactions between monomers were turned
on for an additional realism [79]. The fragment was confined
around a cylinder of fixed diameter R ≃ 100Å, and the walls were
placed ∼50Å apart (approximate dimensions of the nucleosome
complex [79]).

3. RESULTS AND DISCUSSION

3.1. The Proposed Unified Framework of
Polymer Bending
We begin with a useful analogy from classical thermodynamics
that connects system’s stability to convex properties of its
governing potential. For example, for a system to be stable
against a macroscopic fluctuation in energy, the entropy of the
system as a function of energy, S(E), must be concave (non-
convex). Any chord connecting two points on a graph of S(E)
must lie below the curve itself in order to satisfy the second
law of thermodynamics (maximum S). Conversely, the inverse
function E(S) must be convex. If, however, E(S) is not convex
over some region, the system phase-separates once this region
is reached, with the properties of the two phases corresponding
to the end points of the convex hull of the non-convex region.
The actual, physical average energy of the system follows the
convex hull, whichmakes the energymanifestly convex. This very
general reasoning, with appropriate choice of the perturbation
coordinate and potential, is applicable to phase transition of
single species polymers (Flory-Huggins Theory [80]), as well
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FIGURE 2 | Non-convex bending energy function leads to bi-modal distribution of bending angles. Shown are angular probability distributions at 300 K resulting from

a realistic non-convex bending potential (Figure 4) used here in coarse-grained simulations of DNA closed loops of variable size. As the loop size (indicated in the top

right corner) decreases, the average bending angle per base pair increases. When the average angle falls into the convex hull range, the angular distribution becomes

bi-modal with peaks at θa and θb, corresponding to the weakly and strongly bent states, respectively. Fractional occupancy of both of these states of bending is

shown in the inset as a function of the average bend angle θ̄ . Squares: occupancy of the weakly bent state. Circles: occupancy of the strongly bent state, which can

be interpreted as a “kink.” Out-of-plane motion likely affects angular probability distribution of the largest (600 bp) loop, which may explain the shift, compared to

expectation, of the position of the corresponding distribution peak.

FIGURE 3 | Examples of a 60- base-pair (left) and 80- base-pair (right) loop conformations at 300 K corresponding to the non-convex bending potential of Figure 4.

The conformational ensembles were generated via coarse-grained simulations of DNA closed loops.

as to stretching of polymers [21] and other materials [81].
Here we use the analogy to develop a general framework that
describes polymer response to bending, weak and strong, on the
same footing.

Consider a polymer chain made of N ≫ 1 inextensible,
identicalmonomer segments with effective bending deformation
energy E(θi) for each bending site, where θi is the angle between
two successive segments (see inset of Figure 1). Here we assume

that the effective E(θ) takes into account all the interactions,
short- and long- range, between the monomers. For notational
simplicity, in what follows we ignore the difference between N
and N − 1 for large N. The total energy of the polymer is
Echain =

∑N
i E(θi), and without loss of generality we assume

no intrinsic bends, i.e., E(0) = 0. Just like in WLC, we assume
isotropic bending energy, which is a reasonable assumption for
DNA fragments longer than 2 helical repeats or 20 bp [20]. For
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FIGURE 4 | DNA effective bending energy E(θ ) (per bp) extracted from the probability distribution [42] of DNA bends that naturally occur in protein-DNA complexes

(blue line), and the average energy of unrestrained DNA closed loops simulated via coarse-grained MD with the same E(θ ) (crosses). Green symbols: energy minimized

(simulated annealing) loops. Black symbols: loops simulated at T=300K. In both cases, the average loop energy as a function of average bend angle θ̄ = θ follows the

convex hull of E(θ ). The small deviation of the T = 300 K points from the convex hull are a result of ensemble average sampling and insignificant out-of-plane bending

seen in the simulation.

the moment, we further assume no torsional degrees of freedom.
In order to induce an average non-zero bend in the chain, the
polymer must be constrained, and the problem of finding the
equilibrium polymer conformation is reduced to minimizing
Echain, subject to the specific constraint of the problem. Here we
assume that entropic effects are relatively small at length scales
of interest (. Lp)—an assumption that we explicitly confirm
below by numerical experiments. We begin by considering a very
special case of a uniformly bent polymer—constrained to have the
same constant curvature along the entire chain. By construction,
such a polymer consists of identically bent segments with each
bending angle θi equal to the average deformation angle, θ̄ =

N−1 ∑N
i θi, and its total energy is NE(θ̄). Uniformly bent DNA

circles at atomic resolution will be used further in this work to
analyze physical origins of the specific shape of E(θ̄).

Next, consider a more realistic situation where the polymer
bending is enforced by a much less restrictive constraint: that the
sum of the bend angles between the monomers remains constant,
α =

∑N
i θi = const. Note that this constraint alone does not

fully define the geometry of the polymer. A closed planar loop,
with the first and last segments linked, is a relevant example for
which the constraint is satisfied;

∑N
i θi = 2π , from elementary

geometry of polygons (see also the Supplementary Material).
Mathematically, the problem of finding the minimum energy
conformation of the polymer is that of energy minimization
under the specific constraint:

Echain = NE(θ̄) = min
∑N

i=1 θi=Nθ̄=α

{

N
∑

i

E(θi)} (2)

where wemake a clear distinction between E , which is the average
bending energy per bending site in the minimum energy state of
the polymer, and E corresponding to the uniform bending. Using
Lagrangemultipliers, Equation (2) can be reduced tomin{E(θ1)+
· · ·+E(θN)−λ(θ1+· · ·+θN−α)}. Differentiating with respect to
θi gives a set of equations ∂θiE(θi) − λ = 0 (for all i) which leads
to a set of equalities ∂θ1E(θ1) = ∂θ2E(θ2) = · · · = ∂θNE(θN). For a
convex functional form of E(θ), ∂θE(θ) monotonically increases
with θ , and therefore the equalities are satisfied only if θ1 =

θ2 = · · · = θN : the polymer is always uniformly bent, that is
each segment is bent through the same angle θ = θ̄ and E(θ̄) =
E(θ̄). However, for a non-convex function, such as one shown
in Figure 1, there can be more than one value of θ that satisfies
∂θ1E(θ1) = ∂θ2E(θ2) = · · · = ∂θNE(θN): ∂θiE(θa) = ∂θiE(θb) for
some θa < θb.

Of special importance are θa and θb that mark the beginning
and the end of the convex hull of E(θ)—the segment of a straight
line tangent to the non-convex function at two points, such
that for any argument between these two points the value of
the function at the argument is greater than that of the convex
hull line at the same argument (Figure 1). For bend angles θ̄

in the convex hull interval, θa < θ̄ < θb, a uniformly bent
chain is no longer the stable minimum energy conformation
of the polymer. Instead, the stable minimum is achieved when
the distribution of bend angles is bi-modal: each segment is
bent through one of the two bending angles θa or θb. To see
how this “phase separation” comes about, consider a uniformly
bent conformation of a polymer with just two sites, and let
us investigate its stability to perturbation. A perturbation 1θ

that reduces the bend angle at one site means that the other
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bending site must increase its bend angle by 1θ in order for the
total bend to remain unchanged, that is to satisfy the constraint
Nθ̄ = const. This perturbation changes the total energy Echain by
E(θ̄ + 1θ) + E(θ̄ − 1θ) − 2E(θ̄). If E(θ) is a convex function
(e.g., the black curve in Figure 1), the perturbed system will
have a higher energy than in the initial uniformly bent case.
This is because, by definition, a convex curve always lies below
its chords, so that 2E(θ̄) < E(θ̄ + 1θ) + E(θ̄ − 1θ). Thus,
the perturbation leads to an increase in system’s energy, which
implies that the system was at a stable equilibrium. Therefore,
the minimum energy conformation of a polymer with a convex
effective bending energy is always that of a uniformly bent chain.
However, if the function E(θ) has a non-convex region (e.g., the
blue curve in Figure 1), then for any θ̄ in that region, and 1θ

that does not take the system outside of it, 2E(θ̄) > E(θ̄ +1θ)+
E(θ̄ − 1θ), which means it is possible to lower the energy of
the polymer further by non-uniform bending. Namely, one site is
now bent through θ̄−1θ , and the other through θ̄+1θ , with the
new value of the average chain energy per site, 1

2Echain falling on
the midpoint of the line (dashed red line in Figure 1) connecting
the two new bending states on the energy curve. The longer the
chord connecting the two perturbed states at θ̄ −1θ and θ̄ +1θ ,
the larger the energy gain 2E(θ̄) − E(θ̄ + 1θ) − E(θ̄ − 1θ)
due to the non-uniform bending, for as long as the chord is
completely below the E(θ) curve. The largest energy gain, and
thus lowest possible Echain, is achieved for the limiting chord that
is the convex hull of E(θ)—the line segment tangent to the non-
convex function at two points, such that between these two points
the value of the function is greater than that at any point of the
line segment. For this limiting case, θ̄ − 1θ = θa, θ̄ + 1θ = θb.

Thus, one clear and testable consequence of non-convexity
of the bending potential (Figure 1), is that the corresponding
distribution of polymer bend angles becomes bi-modal once the
average bending angle θ̄ is within the convex hull region. A weak
enough bending is always uniform, for as long as the average
bend angle θ̄ is below θa. As the average bend angle becomes
just slightly larger than θa, most of the segments are still bent
weakly through θa, but a small fraction becomes strongly bent
through θb. As the constraint forces the system to bend further,
the fraction of the strongly bent segments increases linearly with
θ̄ , until, eventually all the segments are strongly bent through
θb. Beyond that point the system re-enters the uniform bending
regime again. Here we confirm this expectation quantitatively
(Figure 2), within a coarse-grained DNA model with one bead
per bp (see “Methods”). Specifically, we have analyzed angular
distribution of different sized loops, from 6 to 600 bp long. The
corresponding probability distributions of bend angles for each
loop size are shown in Figure 2, with examples of structures from
these distributions presented in Figure 3. Note that for a large,
but finiteN≫1, the predictions in Figure 2 should be interpreted
as applicable to the entire conformational ensemble of bent loops;
in particular, the predicted linear dependence of the fractions
of strongly and weakly bent fragments apply to the ensemble
averages. For a given value of θ̄ , between θa and θb, one observes
a distribution of tightly bent fragments among the loops, a given
loop can have none or more than one; bent conformations we
have observed in our simulations are qualitatively consistent with

the above picture. In this work we are not pursuing a detailed
analysis of many “structural” consequences of the proposed
model; we hope to revisit this issue in the future. In what follows
we focus on the energy aspects of the model, which can be tested
against DNA cyclization experiments.

We begin by deriving an explicit expression for E(θ) for θa <

θ̄ < θb. In the minimum energy conformation, let 0 < p < 1
represent the fraction of all the bending sites that are in the state
θb and 1−p the fraction of the remaining sites in the state θa. The
total bending angle in terms of θa and θb is then given by Npθb +
N(1− p)θa = Nθ̄ = α, and the bending energy per monomer in
the non-convex region is E(θ̄) = pE(θb)+(1−p)E(θa). Rewriting
p = (θ̄ − θa)/(θb − θa), we arrive at

E(θ̄) =
θ̄ − θa

θb − θa
(E(θb)− E(θa))+ E(θa) (3)

Therefore, in the non-convex region, the actual polymer energy
per bending site, E(θ̄) corresponding to the stable minimum
energy state, is a linear function of the average deformation θ̄ .
Clearly, E(θ̄) < E(θ̄) within the convex hull interval (Figure 1).

To arrive at a general theory that can account for both
the weak and strong bending regimes simultaneously, we use
the form of Equation (3) for the strong bending regime,
while retaining WLC for the weak bending. In the proposed
Energy Convex Hull(ECH) model, the average per segment (e.g.,
per base-pair) bending energy is described by an everywhere
differentiable piece-wise polynomial function: quadratic WLC
(Equation 1) for θ̄ < θa, and a linear function—convex hull of
E(θ)—for θa < θ̄ < θb:

E(θ̄) =











1
2kBTLpθ̄

2 if θ̄ ≤ θa

kBTLpθa(θ̄ − 1
2θa) if θa < θ̄ < θb

(4)

where Lp is the accepted persistence length, well-established for
the weak bending regime; here it is dimensionless, expressed
in terms of the number of bending sites (e.g., number of base
pairs for DNA loops). In this work we are not interested in the
extreme strong bending regime θ̄ > θb, since for the DNA this
regime would correspond to loops smaller than 10 bp. Such small
loops are likely physically impossible due to steric constraints,
and are much smaller than those observed in cyclization studies
[19, 82]. Thus, the only key parameter that ECH theory inherits
from the input effective bending energy, E(θ) in Figure 4, is the
value of θa, which enhances robustness of the theory to inevitable
imperfections [42] of the input bending energy profile. For
example, a uniform re-scaling E(θ) → λE(θ) would leave the x-
coordinates θa and θb of the convex hull double-tangent segment
unchanged because the derivatives would be re-scaled by the
same λ. Further discussion of the robustness of ECHmodel to its
parameters can be found below and in Supplementary Material.

3.2. Bending of a Circular Loop, Weak, and
Strong
While many different types of constraints can be physically
realized, one of the most important ones is the closed loop
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constraint, which is also used in DNA cyclization experiments
[40, 42, 52], critical [49] for investigating the strong bending
regime. Consider the case of a single closed loop α =
∑N

i θi = 2π . From Equation (4), the total bending energy
of a closed loop of total length L (here L = number of base
pairs in the loop, corresponding to N in Equation 2) is given by
Eloop = E(θ̄) L. Since θ̄ = α

L = 2π
L , the bending energy of the

loop is:

Eloop(L) =















2π2kBT
Lp
L if L > 2π

θa

kBTLpθa

(

2π − 1
2Lθa

)

if 2π
θb

< L < 2π
θa

(5)

The crucial difference betweenWLC and ECH is for small loops.
Within WLC, the energy cost of bending a straight rod into a
circular ring grows without a bound as the loop size decreases,
consistent with a macroscopic intuition that a long rubber rod is
much easier to bend into a circle than a short one. In contrast,
within ECH the loop bending energy approaches a constant for
small loop sizes.

Note that, where defined, the new function Eloop depends
explicitly on just one new parameter: θa—lower boundary of the
non-convex domain. In other words, as long as θb is large enough,
its value does not affect Eloop. Although we tacitly assumed the
loop to be confined to a 2D plane to simplify the derivations, our
unconstrained coarse-grained simulations of closed loops at 300
K demonstrate (Figure 4), that the assumption has little effect on
our key conclusions.

3.3. Application to Double-Stranded DNA
The preceding discussion was not restricted to the case of DNA:
non-uniform, two-state bending, and the corresponding linear
bending regime can be a feature of any polymer. However,
since DNA is an important example from various perspectives,
and since it exhibits tight looping in many different biological
systems, we will focus on double-stranded DNA for the rest
of the study. An effective bending energy (per bp) calculated
from a statistical analysis of experimental PDB structures of
DNA-protein complexes [42] is shown in Figure 4. This effective
bending energy function has a non-convex region, and thus
a convex hull, the end points of which are θa = 2.2◦ and
θb = 35.8◦ (0.038 and 0.62 rad, respectively in Equation 5),
corresponding to fragment lengths of L ∼ 160 and ∼ 10 bp,
respectively for DNA closed loops. As a numerical example,
the bending energy of a 50 bp circular loop is ∼ 54kBT
within WLC vs. ∼ 30kBT within ECH. Coarse-grain molecular
dynamics simulations at 300 K demonstrate that a polymer with
this effective bending energy between monomers exhibits all of
the key features discussed above (Figures 2, 4). For large loop
sizes the bending angles are small (weak bending)—the system
samples the convex (harmonic) region of the energy function
(Figure 4), and the distribution of bend angles is uni-modal.
However, as the loop size decreases, the average angle per bending
site θ̄ increases, eventually crossing the θa threshold. Once this
happens, the energy of the system per bending site increases

linearly with θ̄ , and the distribution of bend angles becomes bi-
modal (Figure 2), until the system reaches the upper boundary of
the convex hull at θb.

3.4. Comparison With DNA Cyclization
Experiments
Most experimental cyclization results are expressed [42, 52] in
terms of the Jacobson-Stockmayer j-factor, which estimates the
probability that a linear polymer of length L forms a closed
loop by joining its cohesive ends [40, 83]. Here we use the well-
established [84, 85] Shimada-Yamakawa formula for the j-factor
of a closed loop:

j(L) ≃
k

L3p

(

Lp

L

)5

exp

(

−
Eloop

kBT
+

L

4Lp

)

(6)

where 1
L3p

(

Lp
L

)5
exp

(

L
4Lp

)

accounts for the entropic contribution

[85], from possible looping geometries, and exp
(

−
Eloop

kBT

)

is the

energy penalty of bending the DNA fragment to form the loop
of optimal geometry. We note that k in the above expression
depends, in a complex manner, on the loop closing geometry,
but can be expected to remain invariant over a relatively short
range of loop lengths L, within the same experiment. The
same procedure (see the Supplementary Material), is used to
obtain the best fit for k for both ECH and WLC, thus the
details subsumed in k effectively “cancel out” in the comparison,
which allows us to focus on qualitative, orders-of-magnitude,
differences between the two theories. While Monte-Carlo
based numerical approaches to computing j-factor exist [23,
25, 85], in this proof-of-concept work we prefer a closed-
form analytical expression, which can be easily explored in
various regimes. For loop sizes within our range of interest
(Figure 5), the Shimada-Yamakawa formula was shown [85] to
approximate the corresponding numerical estimate fairly closely.
To make a direct connection with cyclization experiments
for non-integer numbers of helical repeats, we modulate the
torsionally independent loop energy from Equation (6) with
cos(2πL/h), where we assumed the helical repeat h = 10
bp per turn. The agreement with the cyclization experiment is
robust with respect to the precise value of the helical repeat (see
Supplementary Material). This form of the modulating factor is
adopted from reference [84] to account for the periodic variation
of the j-factor due to the torsional component of the energy [84].
This simple way of accounting for non-integer numbers of helical
repeats is appropriate [25] for the type of cyclization experiment
[19] we use as reference [25]; the approach is sufficient for
the purpose of testing key predictions of ECH vs. WLC, its
simplified nature does not affect the comparison with the over-
all (envelope, average) behavior [49] of experimental j-factors (see
also Table 1 below). We use Eloop(L) defined in Equation (5) for

ECH and Eloop(L) = 2π2kBT
Lp
L for all L in the case of WLC.

The proposed ECHmodel andWLC are compared with the most
recent experiment [19] in Figure 5.

As seen from Figure 5, ECH leads to a noteworthy agreement
with the cyclization experiment, while the j-factors predicted by
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FIGURE 5 | DNA cyclization j-factors computed using the proposed ECH model (green line) and WLC (blue line) are compared with recent experiment [19] (red dots,

L > 60 bp). Experimental values of persistence length, Lp = 150 bp and θa = 2.2◦ (Figure 4) were used; the value of k in Equation (6) was obtained independently for

each model as best fit against two experimental data points for fragment length L = 101 and 106 bp (see Supplementary Material). The envelopes of the j-factor

(brown dashed lines) for ECH and WLC are shown in the inset. Predicted envelope for ECH j-factor has a minimum near 45 bp. The experimental data points L = 50

and L = 40 bp were shared by Taekjip Ha (see reference [19]) in private communication to assess model performance after the model had been constructed.

TABLE 1 | j-factor ratios, J(L1)/J(L2), predicted using ECH and WLC models

compared with experiment [19].

L1(bp) L2(bp) Experiment ECH WLC

40 50 1.50 0.993 1.12×10−6

71 101 1.51×10−1 2.01×10−1 3.08×10−6

80 101 2.17×10−1 3.28×10−1 6.10×10−4

90 101 3.56×10−1 5.59×10−1 3.73×10−2

conventional WLC are off by several orders of magnitude in the
strong bending regime (WLC is known to work well in the weak
bending regime where it coincides with ECH by construction).
The agreement of ECH with the experiment is robust to the
value of its key input parameter θa, see below and SI. The
ratio of j-factors for various loop lengths—independent of k in
Equation (6)—is predicted to be within 50% of the experiment,
while the corresponding WLC predictions are up to six orders
of magnitude off (Table 1). Note that ratios of j-factors at integer
values of helical repeats can be predicted directly from Equation
(6), which does not contain the oscillatory components.

3.4.1. Cyclization of Very Short Loops
Counter-intuitively, the predicted envelope function for ECH j-
factor, which is essentially Equation (6), has a minimum. While
the minimum is rather broad (see the inset of Figure 5), it is
well-defined and occurs at

L =
5

1
4Lp

+
Lpθ2a
2

(7)

Using the value of Lp = 150 bp and θa = 2.2◦, the minimum of
j-factor is found at L ≃ 45 bp. No such minimum exists in the
WLC case in the range of L of interest to us.

For loops even smaller than L ≃ 45 bp, the j-factor begins
to increase, whereas for WLC j-factor decreases sharply for
small loops. This completely counter-intuitive behavior of the
cyclization probability for very tight loops predicted by ECH
is borne out by experiment (Figure 5); its physical origin is
explained below. The two experimental points at L = 50 and L =
40, which qualitatively support the counter-intuitive prediction
of the theory, were not available to us until after the ECH
framework was fully developed and tested against published data
[19] for larger circles. The over-all variation of the j-factor as
a function of the loop length for both models is governed by
an interplay between the entropic and the mechanical bending
energy costs Eloop(L) of forming the loop. For small loops, the
entropic penalty of forming the loop decreases with the loop
size L; however, Eloop(L) ∼ Lp/L → ∞ for L → 0 within
WLC, which leads to the steep decrease in the over-all cyclization
probability (Figure 5). Note that the ∼ L−1 divergence of
WLC bending energy for small L is independent of the loop
closure geometry [86, 87], including the “teardrop” not explicitly
considered here. In contrast, ECH loop energy, Equation (5),
approaches a constant for small L, which explains why the
corresponding j-factor reaches a minimum and then begins
to increase for small enough L (Figure 5). This very different
qualitative behavior of WLC and ECH j-factors for small loops
can be used as a discriminating experimental test of these two
models. The existence of the minimum of j-factor for short loop
sizes can be used to discriminate between models (e.g., references
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[25, 35, 48, 49, 69]), that account for the DNA softening at
short length scales; the predicted minimum value of the j-factor
can be used to further discriminate between those models that
exhibit the minimum. For example, both KWLC [49] and a
recent version [23] ofMWLC predict a j-factorminimum, but the
loop sizes at which the minima occur appear to be substantially
different from the ∼ 45 base pairs predicted by ECH. At the
same time, a coarse-grained model [35] designed around basic
structural, mechanical, and thermodynamic properties of single-
and double-stranded DNA reveals a minimum in the j-factor at
around∼ 45 base-pairs.While the absolute value of the predicted
j-factor depends on exactly how the experiment is interpreted
[35], the position of theminimum appears robust to these details.

Within the proposed ECH framework of polymer bending,
the central role is played by convexity properties of the effective
bending energy between individual monomers. For the DNA,
we used the energy profile inferred from statistical analysis of
experimental structures of protein-DNA complexes (Figure 4)—
the energy has a clear non-convex region, responsible for the
“softer,” linear bending mode of short DNA loops. The same
general considerations will hold for any effective bending energy
that has a distinct non-convex region regardless of its origin [25],
including a kinkableWLCpotential [20]. Thus, even though ECH
explains experimental results perceived to be in contradiction
with WLC, there is no fundamental contradiction between the
new framework and the conceptual basis of WLC.

3.5. Origin of the Non-convex Bending
Energy of DNA
To investigate, qualitatively, the physical origin of the non-
convexity of the DNA effective bending energy we employed
all-atom Molecular Dynamic (MD) simulations of uniformly
bent DNA circles of a wide range of sizes, from small to very
large, corresponding to almost unbent DNA (see “Methods”).
Specifically, we examined the average bending energy per base
pair. The total bending energy profile obtained from these
simulations is shown in Figure 6, while its breakdown into
components of different physical origin is given in Figure 7. One
can clearly see a prominent non-convex region, in qualitative
agreement with the experiment (Figure 4). The key parameter
θa ≈ 1.5◦ from the MD simulations, which is not all that
different from the value of 2.2◦ inferred from the experimental
data (Figure 4). Some discrepancy is likely due to sequence
effects [35, 88–90], force-field issues [91, 92], or the fact that the
experiment-based potential in Figure 4 may itself deviate from
reality to some extent, as noted in the original publication [42].
Importantly, the use of MD-derived θa = 1.5◦ in Equations
(5) and (6) results (see Supplementary Material), in virtually
the same close agreement with the cyclization experiment we
have seen Figure 5, which is based on θa = 2.2◦ derived from
experiment. This insensitivity of the prediction of ECH to the
value of its key input parameter points again to robustness of
the proposed framework. Variations in the DNA sequence may
alter the range of bending angles over which the convex hull
exists; however, a recent study [35] suggests that changing the
sequence from the uniform one used here to the one employed in

FIGURE 6 | The effective DNA bending energy, per base pair, as a function of

the bending angle θ , inferred from all-atom MD simulations of uniformly bent

DNA circles of variable lengths (50–400 bp). The statistical error bar is smaller

than the symbol size. For reference, a WLC fit for small angle bends (up to

≈ 3.5◦, dashed line) is shown; the fit yields a persistence length of 58.2 nm

(≈ 172 bp), reasonably close to the experimental value of ≈ 50 nm (≈ 150 bp).

experiments of reference [19] has an effect of only about a factor
of four on the j-factor, while not affecting the over-all shape of the
j-factor dependence on the DNA loop size.

Regarding the physical origin of the non-convex effective
bending energy of double-stranded DNA, the following
qualitative conclusions can be made from the MD-based analysis
of the DNA bending (Figure 7). For small bending angles, the
total energy is reasonably well-approximated by a quadratic
function. However, once the bending reaches the transition
angle θa, the VDW energy decreases at a rate faster than the
increase of the other terms combined (Figure 7), which results
in a non-convex region of the total energy, Figure 6. It is this
sharp decrease in the VDW contribution that gives rise to
the existence of a non-convex region in the DNA bending
energy. Further analysis (inset in Figure 7), reveals that it is
the attractive component of the VDW interactions between
DNA backbone atoms (backbone-backbone), rather than base
stacking, that is critical to the counter-intuitive sharp decrease
in the total bending energy (see Supplementary Material for
further atomistic details). The key role of the backbone-backbone
VDW term suggests that it is the overall structure of DNA, rather
than sequence details, that is responsible for the existence
of the convex hull in the polymer’s effective bending energy.
Further analysis is needed to reveal which specific aspects of
the DNA structure are necessary and sufficient for the existence
of a non-convex region in the effective bending energy. In this
respect, we can infer from recent modeling studies [25, 93] that
asymmetry of the DNA with respect to bending toward major vs.
minor groove can lead to non-convex effective bending energy.

It is worth mentioning that local “bubbles” of broken WC
bonds do not occur in our atomistic MD simulations of DNA
circles in which the uniform bending is deliberately enforced
by constraints on the phosphorous atoms (see “Methods”). Yet,
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FIGURE 7 | Physical components of the (total) effective DNA bending energy from Figure 6. The original range of bend angles is reduced for clarity. The energies are

per base pair, inferred from all-atom MD simulations of uniformly bent DNA circles of variable lengths (50–400 bp). The main contribution to the non-convexity of the

bending energy comes from the Van der Waals (VDW) interactions. The backbone-backbone part of these interactions contribute the most to the non-convexity due

to a sharp increase in the attractive energy component for 3◦ < θ < 4◦, as shown in the inset. For reference, a WLC fit for the small angle bends (up to ≈ 3.5◦, gray

dashed line) is shown.

these simulations yield a non-convex profile of the DNA bending
energy (Figure 6), which, as we have demonstrated, always leads
to the existence of linear “soft” bending regime. Thus, the
simulations suggest that local DNA meltingmay not be necessary
to explain the high flexibility of strongly bent DNA and the stark
deviation of experimental j-factors from WLC predictions. We
stress that we do not rule out “bubbles” of broken WC bonds in
actual sharply bent DNA [24, 69]; but we predict that if WC bond
breaking were suppressed experimentally, the qualitative picture
of sharply bent DNA being softer than weakly bent would still
hold, albeit less pronounced. The experimental j-factors would
still deviate from WLC in a way qualitatively similar to what is
currently observed in experiment (Figure 5). In particular, we
predict that measured j-factor would still reach a minimum for
small circles. An analogy can be made here with the physics
behind the DNA overstretching plateau [94, 95], where the
polymer extension occurs at constant force, and the stretching
energy grows linearly with the polymer extension. This peculiar
regime can be explained [21] via the same main argument used
in the current work—the existence of a non-convex region in the
polymer deformation energy. In the case of DNA overstretching,
experiments have demonstrated convincingly [96] that WC bond
breaking is not required for the existence of the characteristic
plateau on the force-extension diagram.

At the same time, quantitative details could be different if
WC bond breaking were suppressed. Note that the effective
loop bending energy of ECH theory in Figure 5 comes from a
statistical analysis of real protein-DNA complexes. Consequently,
the ECH effective energy with parameters used in that figure,

θa = 2.2◦ and θb = 35.8◦, implicitly accounts for broken WC
bonds, and other effects [33], if these occur in the DNA of the
complexes. Note that these effects have been suppressed in all-
atom MD simulations leading to Figure 6, which, along with
inevitable force-field deficiencies, may explain why θb value that
could be inferred from Figure 6 would be different from the
experiment-based one from Figure 4. Fortunately, as long as θb
is large enough, it has no effect on ECH predictions with respect
to j-factor, which further supports the notion that ECH is rather
robust to details of the bending potential.

3.6. Beyond Closed Loops: A Protein-DNA
“Complex”
The proposed framework is based on one main assumption:
despite constraints, the polymer chain is still free to explore
sufficient conformational space to search for minimum energy.
So far, we focused on DNA loops because of direct connection to
key cyclization experiments; the single constraint

∑N
i θi = α =

2π is minimally restrictive. However, other realistic scenarios of
DNA bending, notably in protein-DNA complexes, may involve
different types of constraints that can confine the polymer
strongly enough to potentially violate the main assumption to
various degrees. Here we investigate to which extent our main
conclusion—deformation energy of strongly bent DNA follows
the convex hull of E(θ)—may still hold in a model of protein-
DNA complex (Figure 8 and “Methods” for details). As an
example of a protein-DNA complex we choose the nucleosome
[12], the fundamental repeating unit of chromatin compaction in
eukaryotes, which we model here at two levels of coarse-graining.
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FIGURE 8 | Polymer bending in a “protein-DNA complex” model with variable strength of polymer confinement and curvature (see “Methods”). The red circle

represents the cylindrical charged core of the “protein” to which the oppositely charged “DNA” (black chain) is attracted. Under weak confinement, the system follows

the convex hull of the effective E(θ ), while approaching E(θ ) (red dashed line) itself for strong confinement. Shown is the average energy per bead against the average

bending angle θ , at different confinement strengths governed by the ratio |Q/qs| of the confining charge Q to the opposite charge qs of the confined polymer. The

intrinsic bending of the polymer is described by (experimental) E(θ ) from Figure 4.

Briefly, a negatively charged polymer (the “DNA,” monomer
charge qs) is is allowed to wrap around a charged disk (the
“nucleosome core,” charge Q); the “core” is made impenetrable
to the “DNA.” Further, the “DNA” is not allowed to slide off
the “core” sideways, which is achieved through an application
of appropriate positional restraints. In the simulation we vary
the total positive charge Q of the cylindrical “nucleosome core”
to modulate the electrostatic attraction of the negatively charged
polymer to the “core,” which in turn modulates the degree of the
polymer confinement. In the limit of very strong confinement
(|Q/qs| → ∞), the polymer is forced to be confined to a circular,
uniformly bent path on the surface of the cylindrical core, and
has very few degrees of freedom left to explore in this regime,
solid red line in Figure 8. The average bending energy in this
case follows the given functional form of E(θ) (red dashed line
in Figure 8), and ECH clearly does not apply. As we decrease
the confinement strength, the polymer is allowed to assume non-
uniform bending conformations while lowering its total bending
energy. The effective bending energy per monomer begins to
approach the convex hull (solid green and blue lines), making
ECH more applicable. In the case of the weakest confinement
(solid purple line), the polymer is still loosely bound to the core,
but is allowed to relax almost completely. This is the limiting case
described by our ECH model: the resulting energy per monomer
follows the convex hull fairly closely.

We argue that it is this low confinement regime, where ECH is
relevant, that describes the real nucleosome [13]. To substantiate
the connection to the nucleosome, we provide a qualitative
analysis of the corresponding energetics of the DNA binding. To
this end, we model a “variable confinement nucleosome” by a

coarse-grained 147-bp DNA fragment placed next to a cylinder
with relative dimensions of the actual histone core [79] (see
Methods); as the core charge Q is increased, the whole fragment
starts to wrap around the cylinder once the confinement strength
is |Q/qs| ∼ 90. At this value of the DNA confinement, the
energy cost of pulling away a fragment of ∼ 20 bp in our
model is ≈ 10kBT, which is qualitatively comparable to ≈ 6kBT
estimated from experiment [2] as the energy needed to pull
away a DNA fragment of the same length in the case of actual
nucleosome. Moreover, even for higher degrees of confinement,
up to |Q/qs| ≃ 200 (≃ 20kBT to pull away a 20 bp fragment), the
corresponding blue lines in Figure 8 still approximate the convex
hull, and so ECH is still likely applicable, at least qualitatively.
Needless to say, applicability of ECH to protein-DNA complexes
will require further rigorous analysis.

4. CONCLUSION

It is now well-established that slightly bent DNA behaves like an
elastic rod—the deformation energy is a quadratic (harmonic)
function of the deformation. However, recent experiments
demonstrated that strong bending of small DNA fragments could
no longer be described within this classical model.

Here we have proposed a novel framework for bending
of polymers, which is based on the consideration of convex
properties of the effective bending energy between successive
monomers. Within the framework, the bending energy is
harmonic for small bends, but once the average deformation
reaches the convex hull of the effective bending energy function,
a “phase transition” to the strongly bent regime occurs, in which
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the system’s energy is a linear function of the average bending
angle. In this regime, which persists for as long as the average
deformation is within the convex hull interval, the two states of
bending co-exits: some segments are bent weakly, while others
are bent strongly, with the proportion of the latter increasing with
the increased average bend (e.g., shorter loops). The transition
point from the harmonic to the linear bending regime occurs
at the beginning of the convex hull segment—this point plays
a special role in the new theory. These general considerations
are expected to hold for any polymer with an effective bending
energy that has a distinct non-convex region, regardless of
its origin.

For generic “sequence-averaged” double-stranded DNA
considered here, we conclude that the effective bending
deformation energy becomes non-convex for strong bends
greater than ∼ 2◦/bp, which corresponds to circular loops
shorter than ∼ 160 bp. The conclusion about the DNA bending
energy being non-convex relies on an analysis of a large number
of experimental protein-DNA complexes, and is consistent
with the shape of the bending energy inferred from atomistic
MD simulations. The simulations also yield a qualitatively
similar value for the bend angle that marks the onset of
the linear bending regime. Further, atomistic simulations of
DNA circles reveal that attractive short-range Lennard-Jones
interactions between the backbone atoms can explain the
underlying non-convexity of the DNA effective bending energy,
leading to the linear bending regime. We use MD simulations
only for general reasoning, which is robust to details of the
simulation protocol.

In this work our focus is the main principle; future
refinements of the ECH theory may be able to account for
details not considered here, such as sequence dependence of
the DNA bending energy, the influence of torsional stress
and supercoiling, etc. We have also just barely touched upon
structural consequences of ECH, such as the number and
distribution of “kinks” in tightly bent DNA. A detailed analysis
of these features will likely lead to additional experimentally
verifiable predictions of the theory. Likewise, we have derived
specific mathematical expressions for bending under only one
type of constraint; other relevant types of constraints need to be
considered in more detail to complete the theory. Based on our
analysis, the key conceptual features of ECH will likely hold.

The new theory does not contradict the conceptual basis of the
classical models of DNA bending, such as WLC, but also agrees
with recent experimental cyclization data on strongly bent small
DNA circles [19]. A completely counter-intuitive prediction
that cyclization probability reaches a minimum for very small
loops has proved to be qualitatively consistent with additional
experimental data points, not available to us when we made the
prediction. We believe that the novel general framework can
be used to analyze, at least conceptually, many other scenarios
of strong polymer bending, and should help interpret future
experimental observations.
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