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INTRODUCTION

Abstract

Accurate prognostic prediction using molecular information is a challenging area
of research, which is essential to develop precision medicine. In this paper, we
develop translational models to identify major actionable proteins that are
associated with clinical outcomes, like the survival time of patients. There are
considerable statistical and computational challenges due to the large dimension of
the problems. Furthermore, data are available for different tumor types; hence data
integration for various tumors is desirable. Having censored survival outcomes
escalates one more level of complexity in the inferential procedure. We develop
Bayesian hierarchical survival models, which accommodate all the challenges
mentioned here. We use the hierarchical Bayesian accelerated failure time model
for survival regression. Furthermore, we assume sparse horseshoe prior distribu-
tion for the regression coefficients to identify the major proteomic drivers. We
borrow strength across tumor groups by introducing a correlation structure among
the prior distributions. The proposed methods have been used to analyze data from
the recently curated “The Cancer Proteome Atlas” (TCPA), which contains
reverse-phase protein arrays-based high-quality protein expression data as well as
detailed clinical annotation, including survival times. Our simulation and the
TCPA data analysis illustrate the efficacy of the proposed integrative model, which

links different tumors with the correlated prior structures.
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actionable proteins that are associated with clinical
outcomes, like the survival time of patients.

Accurate prognostic prediction using molecular profiles
is an essential ingredient to develop precision medicine.
Molecular profiling data emerging from high-throughput
technologies can be used to search for new biomarkers
and to develop accurate prognostic tools and predictive
models. In this paper, we used proteomics data to develop
similar translational models for identifying major

Direct analysis of high-dimensional proteomics data
has received widespread attention because it represents a
powerful approach to understand the pathophysiology
and therapy of cancer, which cannot be achieved by
analyses solely driven by genomics or transcriptomics
(Li et al., 2013; Akbani et al., 2014). Baladandayuthapani
et al. (2014) noted that many proteins are regulated by
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posttranslational modifications, such as phosphorylation
or cleavage events, that are not detected by the analysis of
DNA or RNA. Moreover, several studies have also
demonstrated marked discordance between messenger
RNA (mRNA) and protein expression levels, particularly
for genes in kinase signaling and cell cycle regulation
pathways (Shankavaram et al., 2007). It has been
demonstrated recently, in both cancer cell lines and
tumors, that different genetic mutations in the same
signaling pathway can result in significant differences in
the quantitative activation levels of downstream pathway
effectors (Park et al., 2010). These observations support
the suggestion that direct measurements are essential to
measure protein activation. To fulfill this thrust, a new
protein expression data visualization tool has been
generated for 31 types of tumors using reverse-phase
protein arrays (RPPAs) and have been uploaded in a
user-friendly data portal, The Cancer Proteome Atlas
(TCPA; Li et al., 2017).

The primary source of the data motivating our
methodological work comes from this TCPA. The current
data covers more than 7500 tumor samples and signaling
pathways in cancer such as P13K, MAPK, and mTOR. The
31 cancer types include bladder, breast, colon, brain, head
and neck, kidney, lung (adenocarcinoma and squamous
cell carcinoma), rectum, ovarian, and uterine cancers.
Moreover, TCPA presents the tumor cell lines: 439
samples in four cell line sets, including both baseline
and drug-treated cell lines. Figure 1 in Li et al. (2013)
shows a detailed schematic of the TCPA data portal. The
mRNA expression and DNA (copy number) were matched
over large cohorts of well-characterized TCGA patient
tumors. In addition, there is detailed clinical annotation
that includes survival times and clinical subtype/stage
information on the tumor samples. To the best of our
knowledge, this represents the largest collection of cancer
functional proteomics data with parallel genomic, tran-
scriptomic, and clinical data currently available. For a
detailed description of TCPA data portal, we refer the
readers to Li et al. (2013) and the references therein.

The information available in TCPA are collected and
presented for each tumor type, which is likely to be
different and independent across tumor types. A sche-
matic diagram of TCPA data is provided in Table 1. To
accomplish the scientific goal of enhancing the statistical
power of the inference procedure, integration of such
data has been shown extremely useful; we cite Hamid
et al. (2009) for a comprehensive review. For instance,
Daemen et al. (2009) used kernel-based approaches to
integrate the genomics data.

The availability of detailed matched proteomics data
on hundreds of tumors collated by TCPA provides a
major opportunity to develop an integrated picture of
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commonalities, differences, and emergent themes across
tumor lineages. With this aim, we propose to develop
methods to integrate pan-cancer data across tumor
lineages. The overreaching goal of this pan-cancer effort
is to provide a bird’s-eye view of the functional proteome
encompassing multiple tumor lineages, which may help
to suggest potential targets that are applicable to disease
subsets or across diseases. The pan-cancer analysis was
launched by TCGA, which involves integration across
tumor types and organs of origin to gain better analytical
breadth (Weinstein et al., 2013). Our interest in this paper
is to develop a pan-cancer model, which will particularly
link different tumor groups.

Each tumor group in the TCPA data portal consists of
at least 189 proteins. Therefore, we must deal with high-
dimensional statistical analysis after merging the data.
Because of the easy interpretation, one seeks for a
parsimonious model selection strategy, which can be
achieved via several regularization techniques existing in
the literature. For instance, there exist different penalized
regressions, lasso (Tibshirani, 1996) and extensions of
lasso, including adaptive lasso (Zou, 2006), and many
others. The Bayesian variable selection literature is also
rich; stochastic search variable selection (George and
McCulloch, 1993), variable selection with shrinking and
diffusing priors (Narisetty and He, 2014) to name a few.
The prior specification is critical in any Bayesian analysis,
if not essential. Hence, to achieve shrinkage and sparsity
via prior formulation is generally of interest. Toward this
end, Carvalho et al. (2010) proposed shrinkage estimation
via the Horseshoe prior. Other propositions include
Dirichlet-Laplace prior to Bhattacharya et al. (2015).
However, the applications of these shrinkage priors in the
setting of censored data are very limited until now. To
our knowledge, Peltola et al. (2014) provided a compar-
ison study using different shrinkage priors and concluded
in favor of horseshoe prior in terms of the predictive

TABLE 1 The Cancer Proteome Atlas data structure

Tumor Survival time  Measurements of protein
groups of subjects expressions
Tumor 1 ti1 X111, X1215 -5 Xip

b X115 X215 -5 X2p

tnll xnllla xn121, ooy xnlp
Tumor 2 to X112, X1225 «+» Xip

1753 2125 X2225 -+s Xop

tnzz xn212, xnzlly S0 xnzp
Tumor k tk Xi1k> X12ks ---> Xip

bk Xo1ks> X2k ++5 Xop

tnkk Xny1ks> Xny2ks «+s xnkp
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abilities of the models. They considered a parametric
Weibull model on the survival time.

In the settings of survival regressions, the straightfor-
ward implementation of these variable selection techniques
may not be tenable, particularly due to the censored
observations—which require additional sampling methods
from the censored space. For example, Lee and Mallick
(2004) assumed a linear model on the scale parameter of
the Weibull survival regression or assumed a Gamma
process on the Cox proportional hazard model (Cox, 1972),
while Zhang et al. (2018) proposed a Dirichlet process prior
on the accelerated failure time (AFT) model (Miller, 1976).
In addition, following the data augmentation approach of
Tanner and Wong (1984), the censored observations can be
imputed (Bonato et al., 2011). In contrast, the survival
versions of penalized regularizations have also been
discussed; important references include lasso (Tibshirani,
1997) and ridge regression (Li and Luan, 2002) in the
context of Cox model. When developing the AFT model is
of particular interest, then there exist several proposals in
the literature; for example, Huang et al. (2006); Cai et al.
(2009) derived some regularized versions including lasso
and Huang and Ma (2010) discussed bridge regression, and
(Wang and Song, 2011) developed adaptive lasso for AFT
models. Furthermore, Khan and Shaw (2016, 2017)
developed a class of adaptive elastic net techniques and
synthesized techniques for variable selection in AFT
models. However, they did not consider Bayesian settings
in their research.

In this paper, we develop a Bayesian hierarchical AFT
model. Unlike Cox proportional hazard model in which
the covariates act multiplicatively on the hazard function,
the AFT model considers the additive effect of the
covariates on the log of survival responses, which results
in an intuitive linear regression interpretation (Wei,
1992). In addition, when dealing with high-dimensional
proteomics data, it has been reported to have the poor
mixing in the Markov chain Monte Carlo (MCMC) chain
in fitting a Cox model (Sha et al, 2006). In Cox
proportional hazard models, the regression parameters
cannot be integrated out due to unavailability of any
conjugate priors, thus requiring complex MCMC proce-
dures. On the contrary, in our Bayesian log-normal AFT
model, as we show in this article, most of the conditional
distributions are available, and therefore, straightforward
Gibbs sampling can be employed to update the chain.

Although the variable selection techniques described
above have been useful to identify important features in
genomics data, they have not been developed to incorporate
the data integration procedures. On the contrary, the
existing integration methods are not well-examined for
high-dimensional pan-cancer settings for a single platform.
In particular, in the presence of censored data, we observe a

lack of a unified method which can be employed to deal
with all these issues. Toward this end, we propose a
Bayesian hierarchical model which fits a log-normal AFT
model in each group. In addition, to achieve integration
across human tumor groups, we model the mean parameter
of the prior distributions on the coefficients to borrow
strength across groups. To accomplish sparsity via the
shrinkage priors, we place Horseshoe priors (or variants) on
the coefficients. The full methodology has been combined
and implemented in the R package hsaft. The resulting
estimates are shown to be efficient compared to the existing
regression methods run for each tumor group separately. In
the end, selection of the most important proteins for the
TCPA data is done using predictive survival curve. In
particular, we use the Brier score (Brier, 1950) to asses the
predictive performance of our fitted model.

A conceptually related field is multitasked survival
analysis, which was introduced very recently in Li et al.
(2016), Wang et al. (2017), and Liu et al. (2018). Among
these, Wang et al. (2017) proposed a unified framework to
integrate the multiple survival models for multiple tumor
groups and provide a set of output models for each group.
On the contrary, we propose a single model that
accommodates all the tumor groups simultaneously.
Furthermore, they worked with the Cox proportional
hazard model while we employ the Bayesian analysis on
the parametric AFT model.

The remainder of this article is organized as follows. In
Section 2, we discuss the Bayesian log-normal AFT model,
the prior formulation for borrowing strength, the sampling
strategies from the posterior distribution space of the
parameters, and the consistency property of the parameter
estimator. In Section 3 we describe the survival prediction
and the variable selection strategy from the MCMC
samples. To show that the proposed method is superior to
the individual analysis, we present simulation examples in
Section 4. Finally, we illustrate the application of our
proposed technique in TCPA data in Section 5 followed by
a brief discussion in Section 6 to conclude this article.

2 | MODEL

From Table 1, it can be noted that the RPPA-based protein
expression data in TCPA are expressed for several tumors;
for instance, there are three types of kidney tumors, two
types of lung cancers, and so on. The objective is to identify
the major proteins common across the tumor groups, which
explain the survival of the subjects. Essentially, our goal is
to fit a pan-cancer model across multiple types of cancer.
We wish to identify if there is any special characteristic
which is common across these cancers. That way, we also
learn about the presence of any important cancer-specific
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characteristic. Furthermore, by borrowing information
among different cancers, we have a better power to identify
important cancer-specific features.

Toward this goal, we consider r groups of cancers
(or tumors) present in the data. Suppose that the interest
is to make inference on the survival times of subjects
of each cancer from p proteins which are same across all
tumor groups. We use the AFT model, which regresses
the survival time on the covariates. The AFT model
is given by log(ty) = Zf:lxijk Bi + € L= 1,y 1y,
j=1,..,p,k=1,.., r, where i denotes the patient,
j denotes the protein, and k denotes the type of cancer.
Likewise, t;, is the survival time of the ith patient who has
the kth cancer, x;; is the corresponding pth protein
expression in the TCPA data, 8= (B, ..., 5,) is the
vector of regression coefficients, and ¢ is the error vector.
Assumption of € ~N (0, o) gives rise to the log-normal
AFT model, whereas, one could assume other distribu-
tions such as ¢ distribution (Kleinbaum and Klein, 2006).

Letting c; be the censoring time, the observed time
may be denoted by t;; = min(¢y, cx); the corresponding
observed censored indicator is 8y = I {ty < cy}, I{-} being
the censoring indicator. Since the response is right
censored, we follow the data augmentation approach of
Tanner and Wong (1984) to impute the censored data wy,
(see also Bonato et al., 2011), wy, = logt, if ty is event
time; and wy, > logty, if t; is right censored.

21 | Shrinkage prior

Due to the presence of a large number of proteins, we will
carry out a variable selection procedure in this AFT
model to identify the important ones. We consider the
shrinkage priors on the coefficients. In the shrinkage
framework, a scale-mixture representation of the global-
local priors allows parameters to be updated in blocks via
a fairly automatic Gibbs sampler (Bhattacharya et al.,
2016) which makes it convenient for large-scale pro-
blems. Here, we adopt Horseshoe prior (Carvalho et al.,
2010; Peltola et al., 2014). The hierarchical horseshoe
representation for the AFT model is

P
logtix | By, 0* ~ N injkﬁjk, o?
j=1

Bic | Ajies T, 0%~ N(bpj, Ajzkrzcrz), bpj ~ N(O, aﬁ)
Ajk ~ C*(0,1), 7~ C*0,1),
o~ 7m(c?) =1/c?

@

where C*(0, 1) is the truncated Cauchy density given by
f(x) =1/ (1 + x?),x > 0. The conditional distribution
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and posterior computations are discussed in Web
Appendix A.

2.2 |

In the above formulation, a common 7 allows borrowing
strength across different cancer groups and proteins, while
Aj’s provide protein and cancer-specific deviations. In
addition, the different tumor groups do not have the same
number of observations; hence straightforward regression
for each tumor may not reveal the true picture of
dependencies between the response and predictors, which
will be further illustrated in Sections 4 and 5. In order to
resolve this issue, we analyze the whole data together, that
is, we integrate the data in our regression analysis. There
are many advantages to doing so. For instance, it aids
identifying nonobvious relationships existing in the data
(Jansen et al., 2002). Moreover, the interpretation of the
result will be simultaneous and hence more easily under-
standable. In addition, individual regression for each tumor
group may suffer from the lack of a sufficient number of
observations, which we overcome through this type of data
integration. The integration of the data can be done in
several ways and Bayesian hierarchical models are
particularly suitable for this purpose.

In order to take advantage of Bayesian hierarchical
models, a convenient way is to borrow strength via the
prior elicitation and carrying out joint estimation of the
parameters across tumor groups. Ibrahim et al. (2002)
specified a class of hierarchical priors on the regression
coefficients in such a way that the correlation among
covariates (proteins in our case) can be captured and
strength can be borrowed across covariates. However, in
our scenario, we wish to borrow strength across tumor
groups, which can be accomplished by specifying a mean
parameter for the coefficients in Equation (1).

The hyper-prior elicitation in Equation (1) helps us to
create correlation among tumors for a given protein.
The correlation between the kth group and the k’th group
can be derived (Web Appendix G) as follows:

Borrowing strength

%

Corr(By., By) =

- (2)

1
T T
(/lfkrzoz + a}%)z(/ljk,rzaz + 0'1%)2

We note that the correlation formulation depends on
the hyperparameters op, 4, 7, and o. Since 7 and o are
global and are not group-specific, they appear not to
control borrow strength across tumor groups. In contrast,
o3 is present in both the numerator and the denominator
of the right-hand side in Equation (2), so increase in the
value of o} precludes increase in the value of correlation
among proteins for different tumor groups and this is
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further illustrated in Web Appendix C. Nonetheless, it is
the hyperparameter A which helps us to borrow strength
among tumors. Lower the value of Aj-zk, higher will be the
induced correlation. Note that since /ljzk also serves as a
shrinkage factor for the corresponding jth protein for the
kth group, a lower value of /1j2k will lead to declareg the
protein as nonsignificant. Hence, although counter-
intuitive, the maximum borrowing strength among
tumor groups actually happens via nonsignificant pro-
teins. This phenomenon will be observed via the poster-
ior analysis of the correlations in TCPA data in Section 5.

Note that, within each group, an individual indepen-
dent analysis can be carried out simply by setting the
bp, = 0 in (1) which will be referred to as the “local”
method in this paper.

3 | POSTERIOR INFERENCE
FROM MCMC OUTPUT

In the Bayesian settings, the inference is based on the
posterior samples of the MCMC chains. The survival
curve prediction is outlined in the Web Appendix B.
Other inferences proceed as follows.

To assess the variable selection performance in our
simulation experiments, we consider the true-positive
rate (TPR) or sensitivity, which is defined by the
proportion of truly identified variables by an analysis
which was originally present in the model. In contrast,
the false-positive rate (FPR) is given by the proportion of
falsely identified wvariables, which were not present
originally. Plotting the TPR against FPR for varying cut-
offs provides the so-called ratio operating characteristic
(ROC) curve. It may be noted that, under a perfect fit,
TPR should be close to 1 and FPR should be close to 0.
This follows that the greater the area under the curve, the
better is the fit.

The strategies described in the previous discussion
provide convincing ways to compare different methodol-
ogies in simulation studies. Unfortunately, in TCPA data,
we are unaware of the true proteins that are responsible
for explaining the survival of the patients; rather our job
is to exactly to find these to communicate with our
clinical collaborators further. Due to the absence of a
comprehensive path to do the variable selection, we
propose a rank-based approach via a goodness-of-fit
measure. To achieve this we use integrated Brier score
(IBS; Hothorn et al.,, 2006; Bonato et al., 2011; the
definition is provided in Web Appendix J).

We propose the following protein-selection scheme
based on the IBS. The proteins are ordered according to
their absolute value of the posterior means of the

regression parameter estimates. Now a subset of topmost
significant proteins can be used to fit an AFT model and
the corresponding IBS can be calculated. Like forward
selection criteria, if we keep increasing the number of
proteins in the model per their order, the IBS will keep
decreasing. Then the selection of ordered proteins
proceeds until a desired value of IBS. A practical
demonstration is provided in Section 5. We note that
changing the threshold of IBS is equivalent to changing
the threshold value to compute the TPR and FPR when
we know the true model. In this way, depending on the
threshold, we can recover the significant proteins that
are common for more than one cancer group if they are
included using the IBS threshold. For instance, in the
example of tumors in the female body (see Web Appendix
F), the protein DIRAS3 becomes significant for at least
two cancer types, namely breast cancer and ovarian
cancer.

4 | SIMULATION EXAMPLES
In this section, we discuss simulation scenarios to
illustrate the methodologies discussed above. For the
simulation, we consider five groups, each having 80
proteins. The sample sizes of the groups are set to 40, 50,
70, 100, and 120 respectively, so that, the first three
groups have p > n layouts. Furthermore, the total
number of parameters (400) is more than the total
number of observations (380). The covariates are
generated from standard normal distribution indepen-
dently. For the response generation, the o2 is set to 1. The
censoring distribution is assumed to follow a Gamma
distribution. In this way, the censoring rate can be varied
generally by changing the shape and scale parameters
accordingly. We simulate 100 data sets in this manner.
We consider two primary settings. In the first, which
we refer to as Example 1, we generate 3 in the following
manner. We assume the first protein is significant for all
groups. Then the second protein is significant for the first
group only. Similarly, the third, fourth, fifth, and sixth
proteins are significant for the second, third, fourth, and
fifth groups only, respectively. Then we keep replicating
this generation of 8 for every other 10 variables. In order
to make a protein significant, we set the corresponding
B =1. So, for each block of 10 proteins, the data
generating matrix for 8 will look like:

110000000O00O0
1010000000O0
100100000O00O0
1000100000
1000010000
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after which, we assign a random positive or negative sign
on each element.

We fit five different models in the generated data.
Independent AFT regression with horseshoe prior is
fitted for each group. This is referred to as “local.” Then
our proposed model discussed in Section 2.2 is fitted,
which can be referred as “group-corr.” As indicated in
Web Appendix H, we also fit the model that borrows
strength across groups and across proteins simulta-
neously (“all-corr”). In addition to these Bayesian
methods, we apply two penalized cox regressions—lasso
(Tibshirani, 1997; Simon et al., 2011) and adaptive lasso,
“alasso” (Li et al., 2015)—for each group separately.

In the setting of this example, we declare a variable as
significant when the absolute estimated § is more than a
given threshold value. Once the variables are identified
using a given threshold, we can compute the TPR and
FPR. For 100 simulations of this experiment, the mean of
these 100 TPRs and FPRs can be calculated. Now varying
the threshold from a range between 0 and 1 will produce
a series of mean TPRs and FPRs, which can be used to
plot the ROC curve, given in Figure 1, for each method.
One can note that the area under the ROC curves for the
borrowing strength structure is greater than the that due
to other methods, which indicates that whatever thresh-
old is chosen, the variable selection performance of our
proposed methodology remains superior. The area under
the ROC curve (AUC) results are given in Table 2, which
confirm our findings. For the Bayesian analyses, the
posterior means have been calculated using 10000
samples after 5000 burnin. From the ROC plots and the
numerical results, it is evident that correlation structures
actually help to estimate the true parameters.

In Example 2, we generate the simulated data under a
similar set up as in Example 1, however, we consider a
correlation structure among groups. In what follows, we
produce the design matrix in a manner such that the

1.00 /4_/_/_/‘ 1.00
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rows of two different tumor groups are highly correlated
with correlation 0.8. We plot the ROC curves in Figure 2
and report the AUC values for these ROC’s in Table 3.
Table 3 exhibits consistent performances of all methods
as in the previous example.

5 | TCPA PROTEIN EXPRESSION
DATA

We apply the methodologies described above in two types
of TCPA data—kidney tumors and tumors in female
bodies. While the first is described below, the second
application is discussed in the Web Appendix F.

There are three types of kidney cancers viz. kidney
chromophobe (KICH), kidney renal clear cell carcinoma
(KIRC), and kidney renal papillary cell carcinoma
(KIRP). According to Linehan and Ricketts (2013), all
types of kidney cancers are different, making it even
more important to characterize each one. In 2017, it is
estimated that there were 63990 new cases of kidney
cancer and 14400 deaths as a result of this disease
(American Cancer Society 2017 report). Chromophobe
(KICH) kidney cancer accounts for 5% of these cancer
cases. In contrast, renal cell carcinoma is the most
common type of kidney cancer, which is broadly
classified into KIRC and KIRP.

The protein data for these tumors have 63, 469, and
215 samples, respectively, with 189 proteins, which
follows that KICH group has a greater number of
proteins than the number of observations whereas the
KIRP consists of nearly the same number of samples and
proteins. In addition, approximately 75.9% of samples are
censored and Web Figure S1 presents group-wise
observed Kaplan-Meir plots.

For finding the significant protein selections asso-
ciated with the survival cancer outcome, these data are

//—/_,_/_/— e
Jui

075- J 075 [}
{ )
Method ‘
x local o«
roup—corr
& 050 “areor & 050~ |
— lasso
alsaao
0.25 0.25
1
0.00 0.00
000 025 050 075 1.00 000 025 050
FPR FPR

0.75

Method Method
local local
group—corr group—corr

—all-corr 0.50 — all-corr

— lasso — lasso
alsaao alsaao

TPR

0.25

0.00

075  1.00 000 025 050 075 1.00
FPR

FIGURE 1 The ROC curves for different methods, from left to right subplots are for varying censoring rates—around 35%, 50%, and

76%, respectively. FPR, false-positive rate; ROC, ratio operating characteristic; TPR, true-positive rate [This figure appears in color in the

electronic version of this article, and any mention of color refers to that version]
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TABLE 2 Area under the ratio operating characteristic curves
plotted in Figure 1

Censoring rate 35% 48% 76%

local 0.659 0.646 0.590
group-corr 0.695 0.689 0.648
all-corr 0.694 0.689 0.648
lasso 0.415 0.406 0.452
alasso 0.632 0.621 0.406

used to apply our methodologies developed in this paper.
In Web Figure S3 we plot the posterior estimates of the
coefficients for a single MCMC chain. We insert the
posterior summary for the group-corr method along with
summary for the regressions run within each tumor
group (local). All proteins have been standardized before
the analyses. For the statistical inference, 20 000 posterior
samples are collected after discarding 10000 burnin
samples.

51 | Protein selection

One of the key goals of the clinical researchers is to
predict the survival times of the individuals, which can be
accomplished by computing the posterior predictive
survival curve. In addition, as mentioned in Section 3,
we aim to select important proteins using this predictive
summary. The mean IBS (defined in Section 3) obtained
from four MCMC chains for group-corr method is 0.168
while the mean IBS for the local method is 0.201, which
implies that the group-corr method has better predictive
ability. It should be mentioned here that IBS due to all-
corr method is same (0.168) as that due to the group-corr
method. So, for simplicity, we restrict ourselves consider-
ing the group-corr method only for the following
discussion.

1.00 - 1.00
0.75 - 0.75
Method
« local «
& 050 - Zacon & 0.50
= — lasso = [/
alsaao
g
0.25 - 0.25 !
0.00 - 0.00 (
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50
FPR FPR

TABLE 3 Area under the ratio operating characteristic curves
plotted in Figure 2, correlated scenario

Censoring rate 35% 56% 76%

local 0.661 0.649 0.597
group-corr 0.712 0.709 0.660
all-corr 0.712 0.708 0.655
lasso 0.377 0.444 0.460
alasso 0.557 0.388 0.418

In particular, parsimonious model selection is desir-
able in the presence of many features and hence sparsity
is assumed in these kinds of analyses because of the easy
interpretation. Toward this end, we identify the top 8
most significant proteins from the posterior estimates of
the group-corr method and use these proteins to run a
simple AFT model with log-normal assumption. This
gives us the IBS as 0.172, which is very close to the IBS of
original fitting with all proteins. So, one can conclude in
favor of these eight proteins explaining maximum
variation present in the data. Again, to confirm our
outcome, we run a similar AFT model 10 times with
randomly selected eight proteins, which results in IBS as
0.331, which is more than the IBS 0.172 due to group-
corr. Since models with lower IBS are preferred, the
variable selection technique using the correlation can be
considered a reliable technique. The selected proteins
are listed in Table 4. The effects of these proteins on
the cancers have been well studied in the literature. For
example, Advani et al. (2015) showed how medication
to CRAF_pS338 improves treatment; Duckworth et al.
(2016) concluded that overexpression of GAB2 promotes
tumor growth; similarly, SF2 has been established as a
critical pathway for human cancer cell survival, dis-
semination, and resistance to drug therapy (Wang et al.,
2014). PCADHERIN, FOXO3A_pS318S321, and DIRAS3

1.00

0.75

group-corr

— all-corr —all-corr

— lasso — lasso
alsaao alsaao

group-corr

075  1.00 000 025 050 075 1.00
FPR

FIGURE 2 The ROC curves for different methods, from left to right subplots are for varying censoring rates—around 35%, 56%, and

76%, respectively, in the presence of correlation. FPR, false-positive rate; ROC, ratio operating characteristic; TPR, true-positive rate [This

figure appears in color in the electronic version of this article, and any mention of color refers to that version]
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TABLE 4 Top 8 proteins selected for kidney cancers

Chain 1 Chain 2
PCADHERIN PCADHERIN
FOXO3A_pS318S321 DIRAS3

DIRAS3 FOXO3A_pS318S321
SF2 RADS51

RADS51 SF2

GAB2 GAB2
HER3_pY1298 BETACATENIN
CRAF_pS338 HER3_pY1298

are the top 3 proteins recovered by all four chains. Not
surprisingly, these are well-known for kidney tumor
growth and invasion (Blaschke et al., 2002; Ni et al., 2014;
Chen et al., 2016).

6 | CONCLUSION
In this paper, we have proposed a Bayesian variable
selection technique which accommodates both high-
dimensional shrinkage and integration of the censored
data. We have only considered the log-normal AFT
model set up. Nonetheless, the extension to any other
distribution is immediate. Furthermore, the use of the
latent variable technique may also make possible
extending this method for high-dimensional Bayesian
Cox regression. Another future research topic will be to
explore borrowing strength from multiple factors effi-
ciently. For instance, Kling et al. (2015) considered the
incorporation of sample sizes with the hope of eliminat-
ing the sample size effects of different groups from the
final inference. One could follow their suggestion to
incorporate similar factor terms in the prior elicitation.
Instead of using an improper prior, a vague Inverse
Gamma prior on ¢? may be more suitable. Another
recommendation could be to integrate out parameters in
obtaining the marginal distributions of wy which will be a
Student’s ¢ distribution by suitably choosing the shape and
rate parameters of inverse gamma prior on ¢? (Sha et al.,
2006). Other suggestions include placing a hyper-prior on o2.
For example, Ibrahim et al. (2002) argued for specifying an
inverse gamma prior would help to borrow strength more.
In contrast, Polson and Scott (2012) recommended a half-
Cauchy prior. Nevertheless, in our set-up, we did not see
much improvement in the estimations using these priors.
Future research is due to explore the impact of
different sample sizes of the tumor groups. Moreover, the
proposed method has been applied solely on two real-
world data sets, and thus the effectiveness of the method
should be thoroughly tested in the future on further
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Chain 3 Chain 4
PCADHERIN PCADHERIN
FOXO3A_pS318S321 DIRAS3

DIRAS3 FOXO3A_pS318S321
RADS51 RADS51

GAB2 SF2

SF2 GAB2

HER3_pY1298 CRAF_pS338

BAK HER3_pY1298

applications. Nonetheless, our contribution toward the
overreaching goal of extracting broad information out of
the RPPA-based data bank TCPA will help to gain a
better understanding of pan-cancer models.
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