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ABSTRACT: The use of machine learning in chemistry is on the rise for the
prediction of chemical properties. The input feature representation or
descriptor in these applications is an important factor that affects the accuracy
as well as the extent of the explored chemical space. Here, we present the
periodic table tensor descriptor that combines features from Behler—
Parrinello’s symmetry functions and a periodic table representation. Using
our descriptor and a convolutional neural network model, we achieved 2.2
kcal/mol and 94 meV/atom mean absolute error for the prediction of the
atomization energy of organic molecules in the QM9 data set and the
formation energy of materials from Materials Project data set, respectively.
We also show that structures optimized with a force field derived from this

modelcan be used as input to predict the atomization energies of molecules at density functional theory level. Our approach extends
the application of Behler—Parrinello’s symmetry functions without a limitation on the number of elements, which is highly promising

for universal property calculators in large chemical spaces.

B INTRODUCTION

Finding a new material with the desired properties for any
industrial application is a difficult endeavor owing to the large
materials search space.' > Researchers have traditionally
approached this problem based on the domain knowledge
and chemical intuition.””® However, the laborious nature of this
approach limits the rate of discovery of new materials and the
extent of the chemical space explored.”” The introduction of
high-throughput methods in both theoretical and experimental
studies as a result of modern supercomputers, advanced
algorithms, and robotics streamlines the identification of new
promising materials for a wide variety of applications.
However, the material search space remains too large to be
explored using these tools within a reasonable time.®
Fortunately, the use of high throughput methods has created
large amounts of readily available chemical data such as
Materials Project,9 Aflowlib,"* OQMD,"" and so forth. For an
extensive list, see Rinke and co-workers.” In addition, there are
open-source software such as DScribe,'”” RDKit'® that can
calculate descriptors used for machine learning on chemical
data. These data sets can be used to create predictive machine
learning models to further accelerate the discovery of new
materials. This approach has led to several works such as
spectroscopic properties,14 prediction of spectroscopic proper-
ties,">'® inverse design,'”'° material discovery,20 catalyst
design,m’22 synthesis,”** structure elucidation,” and so forth.
A recent example of this emerging approach was the use of
machine learning to identify compositions of Co—V—Zr
ternary systems that can form metallic glass.” The experi-
ment-theory synergy lead to the identification of two new
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composition spaces with the potential to form metallic glasses.
However, despite the rapid advances in the machine learning
field, applying it to chemical spaces remains a challenge
because of the need of descriptors that can encode the
information about the chemical identities and local chemical
environment to the machine learning model. Such a descriptor
also needs to be invariant with respect to translation, rotation,
and permutation in order to create a one-to-one mapping
between any given structure and its fingerprint.”>’

For machine learning in the chemical spaces, many
descriptors have proposed either based on the prior knowledge
of the chemical space under study (e.g., ionization potential,”®
d-band center,” d-band filling factor,” etc.) or completely
engineered from scratch such as Coulomb Matrix,””*" Bag of
Bonds,** Partial Radial Distribution Function,®® and so forth.
These descriptors have been applied to data sets containing
molecular and/or solid systems. For example, Rupp used a
Coulomb matrix as a feature to predict atomization energies of
organic molecules.”* However, the length of the descriptor
increases with the number of atoms. Smith et al. used modified
Behler—Parrinello symmetry functions to predict the energy of
organic molecules down to a root mean squared error (RMSE)
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of 1.3 kcal/mol, which is near to chemical accuracy (<1 kcal/
mol).”> The descriptor used in this work represents the local
chemical environment using two and three body Gaussian
functions; hence the size will not change for a given number of
elements. For systems with several elements, however, the
descriptor size increases drastically, requiring the training of a
large number of parameters. Janet and Kulik used size,
electronegativity, and connectivity of atoms using revised
auto correlation functions as the input to predict atomization
energies of organic molecules with a mean absolute error
(MAE) of 6 kcal/mol.*® This approach was applied only to
molecules and not to solid materials. For materials/solids,
Zhou et al. used machine-learned atom vectors as the input to
predict the formation energies with a RMSE of 150 meV/atom
for elpasolites.”” Jha et al. used the elemental composition as
the input to predict the enthalpy of formation for over a
quarter of a million compounds with a MAE of 50 meV/atom
using a deep neural network model.”® Atom vectors introduced
by Zhou et al. and the elemental composition descriptor used
by Jha et al. encode the compositional information and hence
are not suitable for polymorphs. Jain and Bligaard used space
group and Wyckoff-species matrix as representation to predict
the formation energy with a MAE of 0.07 eV/atom using an
universal—atomic position independent descriptor.”” How-
ever, the approach was not tested for molecules. Faber et al.
used similarity between query and training crystals as the
descriptor to predict the formation energies of two million
elpasolites with only ABC,Dy crystal structures with a MAE of
100 meV/atom.® Zheng et al. used periodic table representa-
tion (PTR) to predict the enthalpy of formation for full-
Heusler X,YZ type materials using a convolutional neural
network (CNN) achieving a RMSE of 7 meV/ atom.”® These
works focused on crystalline materials with specific lattices and
were not tested for other systems.

Although these descriptors achieve low prediction errors, the
applicability of these descriptors to a unified chemical space
containing molecules and materials (periodic and amorphous)
is limited. For example, in order to study the effect of
molecular properties on the adsorption in porous solids, one
needs a flexible, universal descriptor that can represent
molecules and materials (periodic and amorphous).”' Thus,
the development of a universal chemical descriptor has the
potential to remove the chemical space exploration constraints
imposed by a specific descriptor. To this end, two unified
descriptor-network approaches, have been already proposed to
predict properties for both molecules and materials, SchNet
and MEGNet. The former was developed by Schiitt and co-
workers and uses continuous-filter convolutional layers on
learned atom embeddings,42 and the latter uses atomic, bond,
and state attributes as the input to a graph network composed
of residual blocks to predict the desired properties.”> Here, we
propose a new periodic table tensor (PTT) descriptor,
combining features from Behler—Parrinello’s symmetry
functions™ and PTR of Zheng et al.*’

B METHODS

PTT Descriptor. In the Behler—Parrinello scheme,
Gaussian functions with different parameters and cutoff radius
are employed to describe the local atomic environment to a
neural network, which predicts the total energy as a sum of
atomic energies.** The two-body (G*) and three body (G*)
symmetry functions (eqs 1 and 2, respectively) describe the

radial and angular distribution of neighbor atoms within a
cutoff radius
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where R; is the distance between atom i and j, Ry is the
distance between atom i and k, Ry is the distance between
atom j and k, N is the total number of neighbor atoms, f. is the
cutoff function, #, {, and A are Gaussian parameters, and
R; R
O = cos 1(13,7:)'

The symmetry functions for different element combinations
are stored in a predefined order to create the atomic
environment vector (AEV). The main disadvantage of this
approach is that any change in the order of the AEV elements
requires the model to be trained from scratch. Furthermore, in
order to describe all the elements in the periodic table, the
length of the AEV becomes a limiting factor as it is directly
related with the number of parameters of the neural network to
be trained. On the contrary, PTT descriptor uses features from
both PTR and symmetry functions to create a descriptor that
can work with any number of elements. Although the initial
dimensions of this approach leads to a descriptor with a larger
dimension, the number of neural network parameters to be
trained can be reduced by using CNN, as demonstrated in this
work.

Periodic Table Tensor. For machine learning, the order by
which the information is presented in the descriptors should be
maintained consistent for all samples. In Behler—Parrinello’s
implementation, this is maintained by placing the symmetry
functions in a predefined order, for example, (G G2 G ..
G} G, G, Gy .., G, where each G is uniquely specified
by one element and one Gaussian parameter, 77, and each Gj4 is
uniquely specified by two elements and three Gaussian
parameters, (77, & 1). Examples of G and G;* for a system
with C and H are presented in Table 1.

The Behler—Parrinello’s descriptor vector (AEV) con-
structed using the functions listed in Table 1 will look like
(G2 Gy G G2 G, Gy, GyY G,*), as shown in Figure la.
In PTT, the radials (G?) and angulars (G;') are stored
separately with a table of dimensions 7 X 32 as the basic

Table 1. Gaussian Functions and Parameters for a System
Containing H and C

G2 element, 7 G# elements, 7, §, A
G,? H, 0.01 G,* H, C, 0.001, 2, 1
G’ C, 0.01 G,* C, C,0.001,2,1
Gy’ C, 0.1 G, H, H, 0.01, 4, -1
G} H, 0.1 G} H, C, 0.01, 4, —1
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Figure 1. (a) AEV constructed for the example symmetry functions
described in Table 1 using the Behler—Parrinello approach, (b) RT,
and (c) AT proposed in this work for a water molecule. For clarity,
only two values with same Gaussian parameters from radial and ATs
are shown.

building block, based on the 7 rows and 32 columns (18
columns for the main group elements plus the 14 columns for
the corresponding to the lanthanides and actinides) in the
periodic table. The G,> and G, values are stored in a 7 X 32
matrix, where G,> is placed in row 1 and column 1 (cell
address: 1, 1) corresponding to the hydrogen’s position in the
periodic table, and G, is placed in row 2 and column 28 (cell
address: 2, 28) corresponding to the carbon’s position (see
Figure 1b). G,* and G,” are placed in a single 7 X 32 matrix
because their Gaussian parameter is the same (7 = 0.01).
However, G;* and G,* are placed in separate the 7 X 32 matrix
(because their 7 = 0.1) at positions corresponding to C (cell
address: 2, 28) and H (cell address: 1, 1), respectively. Then,
the two 7 X 32 matrices will be stacked to form a 7 X 32 X 2
tensor, which we refer to as the radial tensor (RT).

For the three body functions, G/, the positions depend on
two elements and Gaussian parameters. Hence, we use a three-
dimensional tensor to store the values, where the first two
dimensions (x, y) corresponds to the position of the first
element (in the periodic table) and the third dimension (z)
corresponds to the atomic number of the second element.

Hence, we allocate a tensor of shape 7 X 32 X 118 for each
unique set of Gaussian parameters (1, {, 1) (Figure 1c). For
example, G,* will be placed in a cell addressed by 1, 1, 6. The
numbers, 1 and 1 correspond to the row and column numbers
in the periodic table for the element H. The number 6
correspond to the atomic number of C. Likewise, G,* will be
placed in a cell with address (2, 28, 6). Similarly, G;* and G,*
will be placed in another 7 X 32 X 118 tensor because the
Gaussian parameters are different from those of G,* and G,"
Finally, the two 7 X 32 X 118 matrices will be stacked to give a
tensor of dimensions, 7 X 32 X 236, which we refer to as the
angular tensor (AT). The advantage of this approach is that for
a given set of Gaussian parameters, the dimensions of RT and
AT will remain the same regardless of the number of elements.
In this work, we used 16 radial functions (G*) and 8 angular
functions (G*). The Gaussian parameters used for these
functions are given in Table SI.

Convolutional Neural Network. It is apparent that
training a feed forward neural network using this large
descriptor will require optimizing a large number of weights.
However, since the final dimension of RT and AT resembles
that of an image with several color channels, we use a CNN to
reduce the number of parameters. The CNN was constructed
with two parallel convolutional layer blocks (one for RT and
one for AT) as depicted in Figure 2. The hyperparameters,
namely, convolution kernel size, number of convolution filters,
dense layer structure, batch size, and activation function were
optimized by training on 2048 organic molecules and their
energies. The models were trained using the Adam optimizer
with an initial learning rate of 0.001 until the loss on the
validation set did not decrease for 100 epochs. From the
results, the hyperparameters with the lowest loss for the
evaluation set was selected for further studies. For hyper-
parameter optimization, a validation set containing 256 organic
molecules was used for all other training, 10% of the respective
data set was for validation.

B RESULTS AND DISCUSSION

During the training, we noticed that our model was overfitting,
and to avoid that, a dropout layer with a rate of 0.3 was added
before the dense layers. The results of this hyperparameter
optimization are given in the Supporting Information (Table
S2) and the selected hyperparameters are tabulated in Table 2.
The 1 X 1 kernel was found to be the optimum value for this
network. Because the layers of the image-like input feature
tensors (RT and AT) have information about a particular
chemical environment (e.g., distribution of C—C bonds and
distribution of H—C—H bonds), the 1 X 1 convolution

Convolutional Layers

« T

AT

-

Dense Layers

v
Dropout(0.3)

=

Figure 2. Network architecture of the CNN model showing the three parallel blocks each containing convolutional layers, concatenation of outputs
from convolutional blocks, and the dense layers. This scheme is repeated for each element.
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Table 2. Optimized Hyperparameters of PTT—CNN

hyperparameter optimum value
convolution kernels 1x1%°
number of convolution filters (16, 4)**
dense layers (32, 32)
batch size 16
activation function ReLu
optimizer Adam
learning rate 0.001

“Radial block. bAngular block.

reduces the dimension and represents the information at a
lower dimension. Using the optimized hyperparameters, we
trained the final models with full training sets and the loss
curve for the models trained using the training sets of QM9
(107,098), Materials Data set (64,264), QM7-FF (Force Field
coordinates, 5680), and QM7-DFT density functional theory
(DFT, coordinates, 5680) are given in Figure SI. From the
optimized network structure, we calculated the number of
neural network parameters for the Behler—Parrinello’s model
and our model for a data set containing 85 elements. For the
PTT—CNN approach, including the parameters for con-
volution layers, the number of parameters per element is
73,993 whereas, for the reference Behler—Parrinello method as
implemented in AMP by Peterson and Khorshidi, it is
980,321.* This shows the advantage of utilizing CNN to
reduce the number of parameters. To evaluate the performance
of the proposed universal descriptor, we applied it to a
Materials Database collected from the Materials Project,
QM9***” molecular database, and a subset of GDB-13 data
set containing 7,102 organic molecules optimized using a
Force Field and their energies evaluated using DFT.**

Materials Database. For materials/solids, we collected the
Materials Project data set used by Chen et al.*® From this,
structures containing elements that are poorly represented
(less than 10 occurrence) in the dataset (Kr, He, Ar, and Ne)
were removed. The formation energies of the materials in the
data set were multiplied by the number of atoms present in the
structure for training and then divided by the same number
during inference. The resulting materials data set contains 85
chemical elements and 67,830 entries. The data set was
randomly split into training, evaluation, and test sets with 80,
10, and 10 percent of the original data set. This split resulted in
54,264, 6783, and 6783 entries in training, evaluation, and test
set, respectively. Our PTT—CNN model predicts the
formation energy for structures in the test set with a MAE of
94 meV/atom which is less compared to the MAE between the
DFT and experimental value'' (Figure 3). The MAE for
structures containing one to seven elements were calculated
and the results are shown in Table S3. Among the materials in
the test set, the MAE decreases with an increasing number of
elements up to five elements (MAE is 37 meV/atom) and then
increases to 54 and 61 meV/atom for structures with six and
seven elements, respectively.

Molecular Database. For molecules, we used the QM9
data set which contains geometric, energetic, and thermody-
namic properties of organic molecules. From this, we removed
molecules containing only {CN}, {C,F,N}, {CF}, {HN},
{H,0}, and {N,O} as these combinations occur less than 10
times in the data set (Table SS). The atomization energy of the
molecules was used for training the models. The resulting
organic data set contains S chemical elements and 133,873
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Figure 3. Parity plot showing the predicted and true formation
energies for the structures in the test set of Materials Data set.

entries. This data set was randomly split into a training set with
107,098 entries, an evaluation set with 13,388 entries, and a
test set with 13,387 entries corresponding to 80, 10, and 10
percent of the cleaned data set. In addition, to evaluate the
influence of training data set size on the accuracy of prediction,
we split the training set with 107,098 entries into five smaller
data sets containing 2,048, 5,120, 10,240, 25,600, and 51,200
entries. Then, we trained different models using the
aforementioned training sets with different sizes. The results
are presented in Figure 4 and it shows that the MAE decreases
with the increasing training set size until 25,600 and then the
change is minimal.

10
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Figure 4. Change of MAE with training set size (from QM9).

Our PTT—CNN model predicts the total energy of the test
set with a MAE of 2.2 kcal/mol when trained using the full
training set with 107,098 entries. This error is greater than the
chemical accuracy, 1 kcal/mol (Figure S, left). However, the
absolute error is within chemical accuracy (<1 kcal/mol) for
31% of the structures, below 3 kcal/mol for over 74% of the
structures, and just only 0.9% of the structures have an
absolute error above 10 kcal/mol (Figure S, right).

To further analyze the performance of the proposed
descriptor, a subset of 625 structural isomers of C,H,;,0,
from the test set were extracted. The MAE for the isomer
subset is 2.2 kcal/mol. The parity plots of structures containing
3-, 4, 5-, and 6-membered rings are given in Figures $2—S9 in

https://dx.doi.org/10.1021/acs.jcim.9b00835
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Figure 6. Structural isomers of C;H,,0, of four different structural families: cyclopentene with an alcohol and aldehyde groups, furan heterocycle
and an aldehyde group, cyclic ketone with an alcohol group, and lactone heterocycle. Relative energy to the most stable isomer using the PTT—
CNN model are also shown, while the relative DFT energies are shown in parentheses. Only the four more stable isomers are shown. All energies

are in kcal/mol.

the Supporting Information section. For isomers with similar
functional groups such as cyclopentenes with an alcohol and
aldehyde groups, furan heterocycles with aldehyde functional
groups, cyclic ketones with an alcohol groups, and lactones, the
PTT—CNN model predicts the correct minimum energy
structure as DFT (Figure 6). Furthermore, the lowest energy
structure predicted by the PTT—CNN model among the 625

1932

isomers is the same as expected from the DFT energies (DFT:
—1894.64 kcal/mol, PTT—CNN: —1893.96 kcal/mol).
Molecular Database with Coordinates Optimized by
Force Field (QM7). The descriptor used in this work is
calculated from optimized structures. However, obtaining the
optimized structures is computationally time intensive. Hence,
it would be interesting to see the accuracy of energies
predicted using structures optimized by inexpensive methods

https://dx.doi.org/10.1021/acs.jcim.9b00835
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such as force fields. Hence, we used force field-optimized
coordinates of 7102 organic molecules curated from GDB data
set by Rupp.”*** From this, we removed one structure that
only contained C and N atoms. Then, we split the
aforementioned datas et into training, evaluation, and test set
containing 5680, 710, and 711 entries (80, 10, and 10% of
7101), respectively. In order to assess the effect of structure
optimization method, we trained two models: one with the
force field-optimized coordinates (QM7-FF) and second
model with DFT-optimized coordinates (QM7-DFT). In
both cases, the energy obtained from DFT calculation was
used as the target. After training, the MAE on the test set was
found to be 3.6 kcal/mol for both models. This shows that the
coordinates obtained using an inexpensive force field can be
used to get energies corresponding to a higher-level theory.
A summary of the error of predictions on Materials Data
sets, QM9 and QM7 data sets is indicated in Table 3. Although

Table 3. Comparison of Prediction Errors

prediction error on the test set

formation energy of energy of energy of
materials molecules molecules QM7FF
model (meV/atom) (kcal/mol) (kcal/mol)
SchNet 35 0.44 not available
MEGNet 28 0.23 not available
PTT-CNN 94 2.2 3.6

our errors are higher than the results achieved by SchNet and
MEGNet models on similar data sets, this work introduces a
new descriptor-model which gives a single framework to access
the unified chemical space. This enables the proposed
approach to be used as an universal property calculator in
large chemical spaces including molecular and solid systems. In
addition, because PTT incorporates the coordinates of the
atoms, hence it can be successfully used to study the energy
differences in isomers. We also show that the coordinates
obtained from force fields can be used as the input to predict
the energies at a higher-level theory such as DFT without
sacrificing the accuracy. Furthermore, the PTT approach is not
restricted to chemical descriptors based on Behler—Parrinello’s
symmetry functions, and it can be easily adapted to other
chemical descriptors that describe the local atomic environ-
ment.

Bl CONCLUSIONS

In conclusion, this work demonstrates that our proposed PTT
descriptor—CNN is able predict the energies of both
molecular and solid systems. Using the proposed approach,
we extend the use of Behler—Parrinello descriptors for systems
with an arbitrary number of elements. Our approach takes
advantage of a CNN to reduce the neural network parameters
to be trained allowing the use of the PTT—CNN to large
chemical spaces. In future studies, we will study performance of
our model for databases containing several millions of
calculations such as open quantum database, the Materials
Project, the Novel Materials Discovery, or the Aflow.
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