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Predictive Control of Nano-positioning Stage Using
Recurrent-neural-network-based Inversion Model
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Abstract— The system modeling accuracy directly affects the
performance of inversion-based control techniques, especially
for applications on nonlinear systems, such as piezo actuators.
In this paper, we propose to use recurrent neural network
(RNN) for modeling the system nonlinearity and thus generat-
ing the inversion model for real-time control of piezo actuators.
Considering the computation efficiency, one issue of using RNN
inversion model is that the low frequency dynamics of the
system may not be captured as the length of the training
set for training RNN should be kept short to reduce the
training time and the number of parameters in RNN. Thus,
we propose to use a second order linear system embedded
with an error term (LME) to account for the unmodeled low
frequency dynamics, and a predictive controller based on LME
is designed to improve the tracking performance. Therefore, the
proposed approach combines RNN and LME to achieve high
precision control. The proposed approach was experimentally
demonstrated and compared with other control approaches
through implementation on a commercial piezo actuator.

I. INTRODUCTION

Precision motion control of piezo actuators (PEAs) is
essential to nanoscale characterizations and fabrication appli-
cations, such as scanning probe microscope, micro-forming,
and adaptive optics [1]-[5]. However, it is challenging to
achieve this goal due to the nonlinearities existing in a PEA
system, such as creep effect and hysteresis [6]. For example,
broadband control (i.e., control over a large bandwidth in
frequency domain) of PEA is challenging as it is difficult to
accurately model the rate-dependent hysteresis [6]. There-
fore, the system nonlinearities must be accounted for in the
PEA control.

To account for the nonlinearities, one efficient approach
is to use inversion dynamics. The use of an inversion
model simplifies the process of controller design assuming
the system nonlinearity can be mostly eliminated by the
inversion model. For example, inversion models measured
in frequency domain have been used in iterative learning
control, such as inversion-based iterative learning control
(IIC) and modeling-free inversion-based iterative feedfor-
ward control (MIIFC) in high precision PEA control for
repetitive tasks [7], [8]. Also, repetitive control tools have
been proposed by taking into account the nonlinearities [9]—-
[11]. Although ILC and repetitive control can achieve high
precision tracking of PEAs, their application is restricted by
the assumption that the operations are strictly repetitive. To
relax this requirement, ILC-based model predictive control

approaches that allow small variations to exist between
iterations have been developed [12]-[14]. It had been shown
that the control accuracy is limited by the variation between
iterations which implies that these ILC approaches are still
far from real-time tracking. Thus, more accurate inversion
models have been developed in real-time PEA control. In
[15], an inversion model based on the ferromagnetic material
hysteresis was cascaded to the PEA for predictive control.
Prandtl-Ishlinskii hysteresis inversion model was used on a
dual-stage [10]. Inversion model based on Prandtl-Ishlinskii
operator was also applied to reduce the hysteresis effect
[16], [17]. However, the highest control frequency achieved
by the existing inversion models are reported to be around
100Hz. Both the modeling accuracy and bandwidth limited
the existing inversion models for tracking high bandwidth
trajectories. Precision inversion model with high bandwidth
is still unavailable.

To improve the modeling bandwidth, neural networks have
been proposed to model the system dynamics recently [18]—
[20]. Feedforward neural network (FNN) has been used for
modeling PEA system dynamics [18], [19]. However, it’s
not trained with time series input and the controller based
on FNN may require high-speed hardware to implement
when the parameters of the FNN are too much. Therefore,
in this work, we propose to use recurrent neural network
(RNN) to model the PEA inversion dynamics, called RNNinv
later. Compared to FNN, the input to RNNinv is a time
series thus the order of input sequence is accounted for. One
challenge in using RNNinv is the training part: if the training
set contains too many low frequency signals the length of
the training set will be too long such that the computation
burden is significantly heavy. However, RNNinv may not
capture the low frequency inversion dynamics accurately if
the length of the training set is limited. To address this
issue, the trained RNNinv will be cascaded to the PEA
system and a second order linear system embedded with
an error term (LME) is designed to handle the PEA low
frequency dynamics unmodeled by the RNNinv. Predictive
control based on the LME will be implemented to improve
the tracking performance in low frequency region. Since the
proposed method does not assume any nonlinearity of the
system, this framework (RNNinv+LME) can be adapted to
control other nonlinear systems as well.

The advantages of the proposed RNNinv+LME frame-
work are threefold. First, compared to the neural network
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the LME and the predictive controller, both of which are
linear. Second, the bandwidth of the RNNinv is much higher
than existing inversion models. Another advantage of using
RNNinv is that the modeling accuracy can be further im-
proved with more complex neural networks without worrying
about the computation issue, thus higher controlling perfor-
mance can be achieved. For demonstration, the proposed
RNNinv+LME framework was implemented to control the
displacement of a PEA stage, and the control performance
was compared with that of a PID controller and even MIIFC
to demonstrate that the real-time control accuracy achieved
by RNNinv+LME is comparable or even better than that of
iterative learning control.

II. RNNINV

The structure of RNNinv is same as that used in [21] and
is expressed in the following equation.

X1 = tanh(Wyxy + By +Blu(r),k) 0

Y(r)k = Waxy + B3 ’
where the sizes of Wi, By, B;, W, and By are N XN, N x 1,
Nx1,1xN and 1 x 1, respectively. Suppose the output (i.e.,
trajectory) of the PEA system is Y subject to the drive
input Uy, an ideal inversion model with input ¥(;) should
output ¥(,;s) such as that |[Y(,, — Upy|| < € for any € >
0. Therefore, the pair (¥(;),Uy)) can be used to train the
RNNinv (i.e., to obtain the parameters W;, B>, By, W, and
B3 in Eq.(1)). Next, we present how to construct the training
set (Y(5),Uss)) of the RNNinv.

To construct the training set (Y;),U(;s)), we need to design
the time series Y, that considers both the frequency and
amplitude dependent behavior of PEAs. In this work, the
method developed in [21] is used. Then, the Uy, can be
obtained by applying ILC approaches on the PEA with Y
as the desired trajectory [8], [13].

Once the (Y(),Uy)) pair is determined, the RNN-based
inversion model (RNNinv) parameters can be obtained
through the training process by solving the following op-
timization problem.

1 = o _Y ¢
W|7321:%111:1W27B3 7= W) = Yol

subject to : xgy1 = tanh(Wixx + Ba + B1y ;) 1) @)
Y(rs) k = Waxy + B3

X0 = [0707 70]Ta k= 152a3a”' aL

where U(ts) = [u(ls),l yU(15),2)" a”(ls),L]T’
Yoo = DastoYis) Yasyr)  and Y9 =
[y(rts),l »Y(rts), 2> 7y(rts),L]T' L is the length of the time
series.

III. LME-BASED PREDICTIVE CONTROL

A. LME

The obtained PEA RNNinv model will be cascaded to
the plant forming a new system H as shown in Fig. 1. As
the RNNinv model may not accurately capture the PEA low

frequency dynamics when the length of the training set is
limited for the concern of computation efficiency, the LME
represented by Eq. (3) below is proposed to account for the
low frequency dynamics of H,

Nk+1 = Aenk +Beﬁk + Geék

A 3)
i = CeMi

where 4, is the input to the LME, é; = i, — ¥ is the model
output error with y; as the actual PEA output. The sizes
of A., B., G, and C, are 2x2, 2x 1, 2x1 and 1 x 2,
respectively. The error term can be regarded as a feedback
term. Suppose the output of IHE is Y(,S> subject to the designed
Yis) the output of the LME Y(;;) should be nearly the same
as Y. Similar to the RNNinv, the parameters of LME
can be obtained through solving the following optimization
problem.

A min J1=[[Y1s) = ¥is)l|
subject t0: Mir1 = AeNk + BeY i)k + Gék

N

Yies) k1 = Cet’kﬂ . @)
€ =Yy k — Yoo k

Mo = [0,0]"

20=0, k=0,1,---

Furthermore, to avoid high frequency disturbance to be fed
into the feedback loop, a low pass filter (LPF) is cascaded
to the LME to remove the ultra-high frequency dynamics.
Suppose the LPF can be represented as

Bir1 = ABi + B 5)
%k =CpB .

Since system Eq. (3) is connected to Eq. (5), we have
Zy = tlx. Thus the two models can be regarded as the “plant

model” shown next.

=
N
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Fig. 1: Generate training set (¥(;,),
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Fig. 2: Schematic block diagram of the proposed
RNNinv+LME framework.
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where u; is the input. The block diagram of the entire

proposed RNNinv+LME framework is schematically shown
in Fig. 2.

(6)

B. State Estimator

To estimate the state ¢, a Kalman filter is used and in

each estimation the error can be computed with the predicted
and measured output. The state estimator of LME based on
Kalman filter is as follows [22]:
A Step 1. Initialize initial state (]30_ , prediction error variance
Fy.
OStep 2. Update Kalman gain: K = P, C(CP, C" +R)™!
where R is the variance of measurement noise.

Step 3. Update state estimate o = d;,; + K. (x quSk* ),
&y = yx —C¢, where yi is the measured output.

Step 4. Error variance P, = (I — K; —C)P.

Step 5. State prediction: (ﬁk_ﬂ = Ay + Buy + Géy, P =
(A — GC)P(A — GC)T + Q, where Q is the variance of
process noise.

C. Predictive Control

With the PEA low frequency dynamics modeled by the
LME, we design a predictive controller based on the plant
model represented by Eq. (6) for output tracking. Given the
current state ¢y and input uy, the outputs of the system H in
the future N, steps can be predicted as

YP =G, +HV, + Fuy, @)
with
[ Fri1 CA Ujet 1
_ V42 CA2 Ujei2
Yp - : ¥ Gp - PN ’ up -
E i :
_yk+N,; Npx1 CA™ Npx1 Uk+N, Nex1
0 0 ... 0
CB 0 ... 0
H =
N,—2 N,—3
[cAN 2B cAN» 3B Ny,
[ Iy %N, CB
0o ... 01 CAB
V = . . . . ’ F =
Ny—1
L 0 ... 01 (Np—Ne)XNe NpxN, CA™™'B Npx1

where N, is the control horizon satisfying 1 < N, < N,
IN.xn, 18 an identity matrix. The future inputs &, will be
computed in each sample time through minimizing the cost
function below,

J=(Y?—R,)" (Y? —R,) + pu T T,

(8)
=W (pI'T+V'"H"HV)U, +2U V' H"E+E"E
with
1 -1 0
0 1 0
r= _
0 0 0 0
In Eq. 8), Ry = [res1,7ks2, s TN 5 Thane] | is the

reference signal, p is the weighting coefficient and E =
Gp¢r + Fu, — Rp,. Hence, the optimization problem can be
written as

: 1 T T
mlpn J= Eﬂp‘{'ﬂp—kg i,
44| < £,
¥ =pr''T+Vv'H'HV
g=V"H" (G +Fu; —R,)

S.t.

©))

where i_lp is a constant vector.

IV. EXPERIMENT RESULTS AND DISCUSSION

The proposed RNNinv+LME framework was implemented
on a piezo actuator (Nano-OP30, Mad City Labs) with the
maximum displacement of 30um to track various trajectories
and the results were compared with that of a PID feedback
controller. Also, to further evaluate the accuracy of the pro-
posed method, the tracking results were compared with one
ILC approach—MIIFC—to demonstrate that the proposed
real-time control approach was able to reach the control
precision as high as that of the off-line control technique
[8].

The experiment setup is shown in Fig. 3. All the signals
were acquired by the data acquisition system (NI PCle-
6353, National Instruments), which was installed in the
workstation (Intel Xeon W-2125, RAM 32GB). The con-
troller was designed in MATLAB Simulink (MathWorks,
Inc.) environment. The sampling frequency in the experiment
was set to 10kHz.

A. Obtain the RNNinv Model

To generate ¥(;5), 100 points in the f-A plane were com-
puted using k-means algorithms [21]. Before implementing
the algorithm, 5000 points were randomly generated to
cover the space in the given range (frequency: 0-350Hz,
amplitude: 0-4.5V). Then the generated Y, was set as
the desired trajectory to be tracked by the PEA through
MIIFC, and the corresponding U (i.e., the converged drive
input to the PEA calculated by MIIFC) was obtained. A 9"
order RNNinv was trained with the generated (¥, Uy,)) by
solving the optimization problem in Eq. (2), which has been
extensively investigated by the neural network community.
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Fig. 4: (a) Comparison of RNNinv output Y{,); for 12Hz
signal and desired output U;, (b) modeling error. (c)
Comparison of RNNinv output ¥{,)3 for 200Hz signal and
desired output U3, (d) modeling error.

B. Evaluating the Modeling Accuracy of RNNinv

To evaluate the modeling accuracy of the RNNinv, four
signals U; including sinusoidal trajectories (with frequencies
of 12Hz, 120Hz and 200Hz, and amplitude of 2.5V) and I';
represented by

Ty (r) = [0.8sin(275¢ + 1.57) +0.43sin (27501 )+

10
0.125in(27120¢ + 1.27) +0.3sin(27180¢ + )] /1.3 (10

were used to drive the piezo actuator, respectively. Thus four
time series pairs, i.e., (U;,Y;), i = 1,2,3,4 were obtained,
where Y;s are the corresponding PEA outputs, respectively.
To evaluate the the modeling accuracy, the RNNinv output
Y(;); subject to each input ¥; was compared with U; (the
difference is called modeling error below), respectively.

As an example, Fig. 4 shows the comparison results
for sinusoidal signal with frequencies of 12Hz and 200Hz,
respectively. It can be seen that the modeling error for 12Hz
signal is about four times larger than that of 200Hz. In Table
I, the standard deviations for all the four cases are presented,
which shows that the RNNinv modeling accuracy is very
high for all cases except the lowest frequency one. Since
I';(¢) contains both the high frequency and low frequency
signals, it is not surprising that the modeling error is in

between of the other cases. Thus, it is clear that when
the length of the training set is limited for the concern
of computation efficiency, the RNNinv may not accurately
capture the PEA low frequency dynamics. To improve the
modeling accuracy, we can either use more complex RNN
(thus more parameters) and/or include more low frequency
sinusoidal signals in ¥{;,), both of which will greatly increase
the computation burden in the training process. Therefore,
using a second order LME to model the PEA low frequency
dynamics becomes a much better alternative considering the
linear model is quite computationally efficient.

In addition, the effectiveness of the RNN in eliminating
system nonlinearity such as hysteresis was verified. The
hysteresis curves (see Fig. 5) were measured using different
sinusoidal drive voltages with the frequencies of 30Hz,
120Hz and 200Hz, respectively, for the original PEA system
and RNNinv cascaded with the PEA. The displacement range
generated was about 35% of the total PEA maximum dis-
placement. It can be seen that the PEA hysteresis is both rate-
dependent and amplitude-dependent. However, by cascading
the proposed RNNinv, hysteresis at all measured frequencies
and amplitudes were effectively removed. Therefore, the
PEA hysteresis nonlinearity was effectively accounted for
by the RNNinv.

C. Tracking Performance Comparison

In this section, the control performance of the proposed
RNNinv+LME framework is demonstrated. The desired PEA
trajectories used were sinusoidal signals (with the frequen-
cies of 30Hz, 100Hz 200Hz, and amplitude of 6im) and
I' = 3I";. First, the proposed method is compared with that
only using the RNNinv to show the necessity of the LME
and the predictive controller. Then it is compared with
a PID feedback controller. Since MIIFC has been proven
in achieving high precision PEA control, it is chosen as
the benchmark to evaluate the accuracy of the proposed
framework.

For the predictive controller, N, and N, were chosen to
be 40 and 20, respectively. The tracking errors E,,,s and
Eqax were computed as that in [8]. Table II shows tracking
errors for all the approaches. Figs. 6-8 show the tracking
performance in time domain for the desired trajectories of
100Hz sinusoidal signal and I, respectively.

RNNinv+LME vs. RNNinv When tracking trajectories
contained low frequency dynamics, RNNinv+LME outper-
formed RNNinv. For example, in Table II, the tracking errors
of RNNinv+LME for 30Hz signal and I" signal are less
that 50% of those of RNNinv. This is because LME can
model the low frequency dynamics and the error term could
also eliminates the tracking error contributed by the low
frequency part, which is clearly shown in Fig. 6(d): part
of the low frequency error was removed by RNNinv+LME.

TABLE I: Standard deviations of modeling error for different
signals.

12Hz
0.171

120Hz
0.023

Signal
Std (V)

200Hz Tj(1)
0.022  0.06
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Fig. 5: Measured displacement vs. input voltage curves at the frequency of (a) 30Hz, (b) 120Hz, (c) 200Hz to the PEA
alone and the RNNinv+PEA system, respectively.

However, since LME cannot handle the high frequency
dynamics, it did not improve the tracking performance when
tracking 100Hz and 200Hz signals as can be seen from Table
IT and Fig. 6(b). Furthermore, the LME could negatively
influence the control performance at high frequencies. In
Table II, the tracking error of RNNinv for 200Hz signal
is very low, which indicates that the RNNinv could model
the high frequency inversion dynamics accurately. Thus the
tracking errors of RNNinv+LME in this case might be
induced by the LME: tracking errors of RNNinv+LME are
about three times larger than that of RNNinv for 200Hz
signal. Therefore, by incorporating LME, the overall control
performance is still improved, especially for tasks covering
a large frequency span with somewhat downgrading in high
frequency part.

TABLE II: Tracking performance comparison of RN-
Ninv+LME, RNNinv, PID, and MIIFC.

Ref. Error RNNinv+LME  RNNinv PID MIIFC

30Hz E;pns(%) 0.93 2.41 2.69 2.01
Epax(%) 0.43 1.68 2.29 1.21

100Hz Epns(%) 1.71 1.64 9.19 1.81
Eppax(%) 1.29 1.19 7.93 1.18

200Hz E\ins(%) 4.12 1.37 19.29 1.69
Eax(%) 3.27 0.54 16.61 1.11

r E,nx(%) 2.14 3.92 4.81 2.23
Epax(%) 1.06 1.28 3.30 1.16

RNNinv+LME vs. PID PID as one popular real-time
tracking technique works for low frequency tasks but as
the frequency increases the control performance gets worse.
According to Table II, RNNinv+LME decreased the tracking
errors by at least 50% for all the cases compared to PID.
The performance difference is more obvious as the frequency
increases. Moreover, the tracking errors in time domain in
Fig. 7 verifies the superiority of the proposed method over
PID.

RNNinv+LME vs. MIIFC For the MIIFC, the converged
tracking results were chosen. From Table II, it can be seen
that RNNinv+LME outperformed MIIFC when tracking low
frequency trajectories—the tracking error is about half of that
of MIIFC for 30Hz signal, and has comparable accuracy with
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Fig. 6: (a) Comparison of the tracking results for 100Hz
sinusoidal signal using RNNinv and RNNinv+LME, (b) the
corresponding tracking error. (c) Comparison of the
tracking results for I" signal using RNNinv and
RNNinv+LME, and (d) the corresponding tracking error.

MIIFC at “middle” frequency range, i.e., tracking 100Hz
signal and I" signal, which is more straightforward in Fig.
8. Although there is a surge in the tracking error for high
frequency trajectory tracking (i.e., 200Hz), RNNinv is still
better than MIIFC. Overall, even compared to the MIIFC—
an off-line control approach, the proposed method can still
achieve similar or even better control accuracy in real-time.

Note that although the RNNinv can model the nonlineari-
ties of the PEA system, it does not assume any nonlinearities
of the system in advance, thus it is expected to model any
nonlinearities with enough parameters in theory. On the other
hand, the LME overcomes the issue caused by the limited
length of the training set. Therefore, the RNNinv+LME
framework is expected to have broader application in output
tracking of other systems. As for future work, the stability
of the RNNinv will be investigated.

V. CONCLUSION

In this paper, we integrated RNNinv and LME to realize
precision control of the PEAs. The RNNinv accounts for the
high frequency dynamics and nonlinearities of the system.
To remedy the inaccuracy in low frequency dynamics mod-
eling, LME-based predictive control is used to improve the
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Fig. 7: (a) Comparison of the tracking results for 100Hz
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corresponding tracking error. (c) Comparison of the
tracking results for I" signal using PID and RNNinv+LME,
and (d) the corresponding tracking error.
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Fig. 8: (a) Comparison of the tracking results for 100Hz
sinusoidal signal using MIIFC and RNNinv+LME, (b) the
corresponding tracking error. (c) Comparison of the
tracking results for I" signal using MIIFC and
RNNinv+LME, and (d) the corresponding tracking error.

tracking accuracy for low frequency tasks. The experiment
results have demonstrated the effectiveness of the proposed
method. Although the LME introduced tracking error for
high frequency trajectory tracking, the overall performance
is improved. It is expected the RNNinv+LME framework for
output tracking could be extended to solving output tracking
problem of other systems with more complicated dynamics.

ACKNOWLEDGMENT

This work was supported by the National Science Founda-
tion (NSF) (CMMI-1634592 and CMMI-1751503) and Iowa
State University.

REFERENCES

[1] Z. Xu, K. Kim, Q. Zou, and P. Shrotriya, “Broadband measurement of
rate-dependent viscoelasticity at nanoscale using scanning probe mi-
croscope: Poly (dimethylsiloxane) example,” Applied Physics Letters,
vol. 93, no. 13, p. 133103, 2008.

[2]

[3

—

[4]

[5

—

[6]

[7

—

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[171

(18]

[19]

[20]

[21]

(22]

7769

J. Ren and Q. Zou, “High-speed adaptive contact-mode atomic force
microscopy imaging with near-minimum-force,” Review of Scientific
Instruments, vol. 85, no. 7, p. 073706, 2014.

Y. Tian, D. Zhang, and B. Shirinzadeh, “Dynamic modelling of
a flexure-based mechanism for ultra-precision grinding operation,”
Precision Engineering, vol. 35, no. 4, pp. 554-565, 2011.

P. Liu, P. Yan, and H. Ozbay, “Design and trajectory tracking control
of a piezoelectric nano-manipulator with actuator saturations,” Me-
chanical Systems and Signal Processing, vol. 111, pp. 529-544, 2018.
F. Qin, D. Zhang, D. Xing, D. Xu, and J. Li, “Laser beam pointing
control with piezoelectric actuator model learning,” IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 2017.

G. M. Clayton, S. Tien, K. K. Leang, Q. Zou, and S. Devasia, “A
review of feedforward control approaches in nanopositioning for high-
speed spm,” Journal of dynamic systems, measurement, and control,
vol. 131, no. 6, p. 061101, 2009.

S. Tien, Q. Zou, and S. Devasia, “Iterative control of dynamics-
coupling-caused errors in piezoscanners during high-speed afm op-
eration,” IEEE Transactions on Control Systems Technology, vol. 13,
no. 6, pp. 921-931, 2005.

K.-S. Kim and Q. Zou, “A modeling-free inversion-based itera-
tive feedforward control for precision output tracking of linear
time-invariant systems,” IEEE/ASME Transactions on Mechatronics,
vol. 18, no. 6, pp. 1767-1777, 2013.

C.-Y. Lin and Y.-C. Liu, “Precision tracking control and constraint han-
dling of mechatronic servo systems using model predictive control,”
IEEE/ASME Transactions on Mechatronics, vol. 17, no. 4, pp. 593—
605, 2012.

Y. Shan and K. K. Leang, “Dual-stage repetitive control with
prandtl-ishlinskii hysteresis inversion for piezo-based nanoposition-
ing,” Mechatronics, vol. 22, no. 3, pp. 271-281, 2012.

Y. Shan and K. K. Leang, “Accounting for hysteresis in repetitive
control design: Nanopositioning example,” Automatica, vol. 48, no. 8,
pp. 1751-1758, 2012.

B. Altin, J. Willems, T. Oomen, and K. Barton, “Iterative learning
control of iteration-varying systems via robust update laws with
experimental implementation,” Control Engineering Practice, vol. 62,
pp. 3645, 2017.

S. Xie and J. Ren, “Note: Precision control of nano-positioning stage:
An iterative learning-based model predictive control approach,” Review
of Scientific Instruments, vol. 89, no. 7, p. 076103, 2018.

S. Xie and J. Ren, “High-speed afm imaging via iterative learning-
based model predictive control,” Mechatronics, vol. 57, pp. 86-94,
2019.

Y. Cao, L. Cheng, X. Chen, and J. Peng, “An inversion-based model
predictive control with an integral-of-error state variable for piezoelec-
tric actuators,” IEEE/ASME Transactions on Mechatronics, vol. 18,
no. 3, pp. 895-904, 2013.

M. Edardar, X. Tan, and H. K. Khalil, “Sliding-mode tracking control
of piezo-actuated nanopositioners,” in 2012 American Control Confer-
ence (ACC), pp. 3825-3830, IEEE, 2012.

M. Al Janaideh, S. Rakheja, and C.-Y. Su, “An analytical generalized
prandtl-ishlinskii model inversion for hysteresis compensation in
micropositioning control,” IEEE/ASME Transactions on mechatronics,
vol. 16, no. 4, pp. 734-744, 2011.

L. Cheng, W. Liu, Z.-G. Hou, J. Yu, and M. Tan, “Neural-network-
based nonlinear model predictive control for piezoelectric actuators,”
IEEE Transactions on Industrial Electronics, vol. 62, no. 12, pp. 7717-
7727, 2015.

W. Liu, L. Cheng, Z.-G. Hou, J. Yu, and M. Tan, “An inversion-
free predictive controller for piezoelectric actuators based on a dy-
namic linearized neural network model,” IEEE/ASME Transactions on
Mechatronics, vol. 21, no. 1, pp. 214-226, 2016.

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural networks, vol. 2, no. 5,
pp. 359-366, 1989.

S. Xie and J. Ren, “Recurrent-neural-network-based predictive control
of piezo actuators for precision trajectory tracking,” in 2019 Annual
American Control Conference (ACC), pp. 3795-3800, IEEE, 2019.
R. G. Brown, P. Y. Hwang, et al., Introduction to random signals and
applied Kalman filtering, vol. 3. Wiley New York, 1992.

Authorized licensed use limited to: lowa State University. Downloaded on June 26,2020 at 17:22:56 UTC from IEEE Xplore. Restrictions apply.



