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Abstract— The system modeling accuracy directly affects the
performance of inversion-based control techniques, especially
for applications on nonlinear systems, such as piezo actuators.
In this paper, we propose to use recurrent neural network
(RNN) for modeling the system nonlinearity and thus generat-
ing the inversion model for real-time control of piezo actuators.
Considering the computation efficiency, one issue of using RNN
inversion model is that the low frequency dynamics of the
system may not be captured as the length of the training
set for training RNN should be kept short to reduce the
training time and the number of parameters in RNN. Thus,
we propose to use a second order linear system embedded
with an error term (LME) to account for the unmodeled low
frequency dynamics, and a predictive controller based on LME
is designed to improve the tracking performance. Therefore, the
proposed approach combines RNN and LME to achieve high
precision control. The proposed approach was experimentally
demonstrated and compared with other control approaches
through implementation on a commercial piezo actuator.

I. INTRODUCTION

Precision motion control of piezo actuators (PEAs) is

essential to nanoscale characterizations and fabrication appli-

cations, such as scanning probe microscope, micro-forming,

and adaptive optics [1]–[5]. However, it is challenging to

achieve this goal due to the nonlinearities existing in a PEA

system, such as creep effect and hysteresis [6]. For example,

broadband control (i.e., control over a large bandwidth in

frequency domain) of PEA is challenging as it is difficult to

accurately model the rate-dependent hysteresis [6]. There-

fore, the system nonlinearities must be accounted for in the

PEA control.

To account for the nonlinearities, one efficient approach

is to use inversion dynamics. The use of an inversion

model simplifies the process of controller design assuming

the system nonlinearity can be mostly eliminated by the

inversion model. For example, inversion models measured

in frequency domain have been used in iterative learning

control, such as inversion-based iterative learning control

(IIC) and modeling-free inversion-based iterative feedfor-

ward control (MIIFC) in high precision PEA control for

repetitive tasks [7], [8]. Also, repetitive control tools have

been proposed by taking into account the nonlinearities [9]–

[11]. Although ILC and repetitive control can achieve high

precision tracking of PEAs, their application is restricted by

the assumption that the operations are strictly repetitive. To

relax this requirement, ILC-based model predictive control
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approaches that allow small variations to exist between

iterations have been developed [12]–[14]. It had been shown

that the control accuracy is limited by the variation between

iterations which implies that these ILC approaches are still

far from real-time tracking. Thus, more accurate inversion

models have been developed in real-time PEA control. In

[15], an inversion model based on the ferromagnetic material

hysteresis was cascaded to the PEA for predictive control.

Prandtl-Ishlinskii hysteresis inversion model was used on a

dual-stage [10]. Inversion model based on Prandtl-Ishlinskii

operator was also applied to reduce the hysteresis effect

[16], [17]. However, the highest control frequency achieved

by the existing inversion models are reported to be around

100Hz. Both the modeling accuracy and bandwidth limited

the existing inversion models for tracking high bandwidth

trajectories. Precision inversion model with high bandwidth

is still unavailable.

To improve the modeling bandwidth, neural networks have

been proposed to model the system dynamics recently [18]–

[20]. Feedforward neural network (FNN) has been used for

modeling PEA system dynamics [18], [19]. However, it’s

not trained with time series input and the controller based

on FNN may require high-speed hardware to implement

when the parameters of the FNN are too much. Therefore,

in this work, we propose to use recurrent neural network

(RNN) to model the PEA inversion dynamics, called RNNinv

later. Compared to FNN, the input to RNNinv is a time

series thus the order of input sequence is accounted for. One

challenge in using RNNinv is the training part: if the training

set contains too many low frequency signals the length of

the training set will be too long such that the computation

burden is significantly heavy. However, RNNinv may not

capture the low frequency inversion dynamics accurately if

the length of the training set is limited. To address this

issue, the trained RNNinv will be cascaded to the PEA

system and a second order linear system embedded with

an error term (LME) is designed to handle the PEA low

frequency dynamics unmodeled by the RNNinv. Predictive

control based on the LME will be implemented to improve

the tracking performance in low frequency region. Since the

proposed method does not assume any nonlinearity of the

system, this framework (RNNinv+LME) can be adapted to

control other nonlinear systems as well.

The advantages of the proposed RNNinv+LME frame-

work are threefold. First, compared to the neural network

approaches that have been used for system dynamics identifi-

cation [18], [19], the computation burden is greatly mitigated

since the control in low frequency region is handled by
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the LME and the predictive controller, both of which are

linear. Second, the bandwidth of the RNNinv is much higher

than existing inversion models. Another advantage of using

RNNinv is that the modeling accuracy can be further im-

proved with more complex neural networks without worrying

about the computation issue, thus higher controlling perfor-

mance can be achieved. For demonstration, the proposed

RNNinv+LME framework was implemented to control the

displacement of a PEA stage, and the control performance

was compared with that of a PID controller and even MIIFC

to demonstrate that the real-time control accuracy achieved

by RNNinv+LME is comparable or even better than that of

iterative learning control.

II. RNNINV

The structure of RNNinv is same as that used in [21] and

is expressed in the following equation.

xk+1 = tanh(W1xk +B2 +B1u(r),k)

y(r),k =W2xk +B3

, (1)

where the sizes of W1, B2, B1, W2 and B3 are N ×N, N ×1,

N×1, 1×N and 1×1, respectively. Suppose the output (i.e.,

trajectory) of the PEA system is Y(ts) subject to the drive

input U(ts), an ideal inversion model with input Y(ts) should

output Y(rts) such as that ||Y(rts) −U(ts)|| < ε for any ε >
0. Therefore, the pair (Y(ts),U(ts)) can be used to train the

RNNinv (i.e., to obtain the parameters W1, B2, B1, W2 and

B3 in Eq.(1)). Next, we present how to construct the training

set (Y(ts),U(ts)) of the RNNinv.

To construct the training set (Y(ts),U(ts)), we need to design

the time series Y(ts) that considers both the frequency and

amplitude dependent behavior of PEAs. In this work, the

method developed in [21] is used. Then, the U(ts) can be

obtained by applying ILC approaches on the PEA with Y(ts)
as the desired trajectory [8], [13].

Once the (Y(ts),U(ts)) pair is determined, the RNN-based

inversion model (RNNinv) parameters can be obtained

through the training process by solving the following op-

timization problem.

min
W1,B2,B1,W2,B3

J = ||U(ts)−Y(rts)||

subject to : xk+1 = tanh(W1xk +B2 +B1y(ts),k)

y(rts),k =W2xk +B3

x0 = [0,0, · · · ,0]T , k = 1,2,3, · · · ,L

, (2)

where U(ts) = [u(ts),1,u(ts),2, · · · ,u(ts),L]
T ,

Y(ts) = [y(ts),1,y(ts),2, · · · ,y(ts),L]
T and Y(rts) =

[y(rts),1,y(rts),2, · · · ,y(rts),L]
T . L is the length of the time

series.

III. LME-BASED PREDICTIVE CONTROL

A. LME

The obtained PEA RNNinv model will be cascaded to

the plant forming a new system H as shown in Fig. 1. As

the RNNinv model may not accurately capture the PEA low

frequency dynamics when the length of the training set is

limited for the concern of computation efficiency, the LME

represented by Eq. (3) below is proposed to account for the

low frequency dynamics of H,

ηk+1 = Aeηk +Beûk +Geêk

ŷk =Ceηk

, (3)

where ûk is the input to the LME, êk = ȳk − ŷk is the model

output error with ȳk as the actual PEA output. The sizes

of Ae, Be, Ge and Ce are 2 × 2, 2 × 1, 2 × 1 and 1 × 2,

respectively. The error term can be regarded as a feedback

term. Suppose the output of H is Ȳ(ts) subject to the designed

Y(ts), the output of the LME Ŷ(ts) should be nearly the same

as Ȳ(ts). Similar to the RNNinv, the parameters of LME

can be obtained through solving the following optimization

problem.

min
Ae,Be,G,Ce

J1 = ||Ŷ(ts)− Ȳ(ts)||

subject to : ηk+1 = Aeηk +Bey(ts),k +Gêk

Ŷ(ts),k+1 =Ceηk+1

êk = Ȳ(ts),k − Ŷ(ts),k

η0 = [0,0]T

ê0 = 0, k = 0,1, · · ·

. (4)

Furthermore, to avoid high frequency disturbance to be fed

into the feedback loop, a low pass filter (LPF) is cascaded

to the LME to remove the ultra-high frequency dynamics.

Suppose the LPF can be represented as

βk+1 = Āβk + B̄uk

z̄k = C̄βk

. (5)

Since system Eq. (3) is connected to Eq. (5), we have

z̄k = ûk. Thus the two models can be regarded as the “plant

model” shown next.

RNNinv PEA

Y(ts) Ȳ(ts)

H

Fig. 1: Generate training set (Y(ts),Ȳ(ts)) for LME

identification.

State Estimator

LPF RNNinv PEA

LME LPF

Predictive Controller

uk

φk

yk

rkPlant Model

H

Fig. 2: Schematic block diagram of the proposed

RNNinv+LME framework.
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φk+1 =

[

βk+1

ηk+1

]

=

[

Ā 0

BeC̄ Ae

]

φk

+

[

B̄

0

]

uk +

[

0

Ge

]

êk

=Aφk +Buk +Gêk

ŷk =
[

0 Ce

]

φk =Cφk

, (6)

where uk is the input. The block diagram of the entire

proposed RNNinv+LME framework is schematically shown

in Fig. 2.

B. State Estimator

To estimate the state φk, a Kalman filter is used and in

each estimation the error can be computed with the predicted

and measured output. The state estimator of LME based on

Kalman filter is as follows [22]:

Step 1. Initialize initial state φ̂−
0 , prediction error variance

P̂−
0 .

Step 2. Update Kalman gain: Kk = P−
k C(CP−

k CT +R)−1

where R is the variance of measurement noise.

Step 3. Update state estimate φ̂k = φ̂−
k +Kk(ȳk −Cφ̂−

k ),
êk = ȳk −Cφ̂−

k where ȳk is the measured output.

Step 4. Error variance Pk = (I −Kk −C)P−
k .

Step 5. State prediction: φ̂−
k+1 = Aφ̂k +Buk +Gêk, P−

k+1 =
(A − GC)Pk(A − GC)T + Q, where Q is the variance of

process noise.

C. Predictive Control

With the PEA low frequency dynamics modeled by the

LME, we design a predictive controller based on the plant

model represented by Eq. (6) for output tracking. Given the

current state φk and input uk, the outputs of the system H in

the future Np steps can be predicted as

Ȳ p = Gpφk +HVUp +Fuk, (7)

with

Ȳ p =











ŷk+1

ŷk+2

...

ŷk+Np











Np×1

, Gp =









CA

CA2

. . .
CANp









Np×1

, Up =











uk+1

uk+2

...

uk+Nc











Nc×1

H =











0 0 . . . 0

CB 0 . . . 0
...

...
. . .

...

CANp−2B CANp−3B . . . 0











Np×Np

V =











INc×Nc






0 . . . 0 1
...

. . .
...

...

0 . . . 0 1







(Np−Nc)×Nc











Np×Nc

, F =











CB

CAB
...

CANp−1B











Np×1

where Nc is the control horizon satisfying 1 ≤ Nc ≤ Np,

INc×Nc is an identity matrix. The future inputs Up will be

computed in each sample time through minimizing the cost

function below,

J = (Ȳ p −Rp)
T (Ȳ p −Rp)+ρUT

p Γ
T

ΓUp

= U
T
p (ρΓ

T
Γ+V T HT HV )Up +2UT

p V T HT E +ET E
(8)

with

Γ =











1 −1 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 0 0











.

In Eq. (8), Rp = [rk+1,rk+2, · · · ,rk+Nc
, · · · ,rk+Nc

]T is the

reference signal, ρ is the weighting coefficient and E =
Gpφk +Fuk −Rp. Hence, the optimization problem can be

written as

min
Up

J =
1

2
U

T
p ΨUp +gT

Up

s.t. |Up| ≤ Ūp

Ψ = ρΓ
T

Γ+V T HT HV

g =V T HT (Gφk +Fuk −Rp)

(9)

where Ūp is a constant vector.

IV. EXPERIMENT RESULTS AND DISCUSSION

The proposed RNNinv+LME framework was implemented

on a piezo actuator (Nano-OP30, Mad City Labs) with the

maximum displacement of 30µm to track various trajectories

and the results were compared with that of a PID feedback

controller. Also, to further evaluate the accuracy of the pro-

posed method, the tracking results were compared with one

ILC approach—MIIFC—to demonstrate that the proposed

real-time control approach was able to reach the control

precision as high as that of the off-line control technique

[8].

The experiment setup is shown in Fig. 3. All the signals

were acquired by the data acquisition system (NI PCIe-

6353, National Instruments), which was installed in the

workstation (Intel Xeon W-2125, RAM 32GB). The con-

troller was designed in MATLAB Simulink (MathWorks,

Inc.) environment. The sampling frequency in the experiment

was set to 10kHz.

A. Obtain the RNNinv Model

To generate Y(ts), 100 points in the f-A plane were com-

puted using k-means algorithms [21]. Before implementing

the algorithm, 5000 points were randomly generated to

cover the space in the given range (frequency: 0-350Hz,

amplitude: 0-4.5V). Then the generated Y(ts) was set as

the desired trajectory to be tracked by the PEA through

MIIFC, and the corresponding U(ts) (i.e., the converged drive

input to the PEA calculated by MIIFC) was obtained. A 9th

order RNNinv was trained with the generated (Y(ts),U(ts)) by

solving the optimization problem in Eq. (2), which has been

extensively investigated by the neural network community.
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Nano-piezo stage

BNC

Nano-Drive Controller

Workstation with DAQ

Fig. 3: Experimental setup.
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Fig. 4: (a) Comparison of RNNinv output Y(r)1 for 12Hz

signal and desired output U1, (b) modeling error. (c)

Comparison of RNNinv output Y(r)3 for 200Hz signal and

desired output U3, (d) modeling error.

B. Evaluating the Modeling Accuracy of RNNinv

To evaluate the modeling accuracy of the RNNinv, four

signals Ui including sinusoidal trajectories (with frequencies

of 12Hz, 120Hz and 200Hz, and amplitude of 2.5V) and Γ1

represented by

Γ1(t) = [0.8sin(2π5t +1.5π)+0.43sin(2π50t)+

0.12sin(2π120t +1.2π)+0.3sin(2π180t +π)]/1.3
(10)

were used to drive the piezo actuator, respectively. Thus four

time series pairs, i.e., (Ui,Yi), i = 1,2,3,4 were obtained,

where Yis are the corresponding PEA outputs, respectively.

To evaluate the the modeling accuracy, the RNNinv output

Y(r)i subject to each input Yi was compared with Ui (the

difference is called modeling error below), respectively.

As an example, Fig. 4 shows the comparison results

for sinusoidal signal with frequencies of 12Hz and 200Hz,

respectively. It can be seen that the modeling error for 12Hz

signal is about four times larger than that of 200Hz. In Table

I, the standard deviations for all the four cases are presented,

which shows that the RNNinv modeling accuracy is very

high for all cases except the lowest frequency one. Since

Γ1(t) contains both the high frequency and low frequency

signals, it is not surprising that the modeling error is in

between of the other cases. Thus, it is clear that when

the length of the training set is limited for the concern

of computation efficiency, the RNNinv may not accurately

capture the PEA low frequency dynamics. To improve the

modeling accuracy, we can either use more complex RNN

(thus more parameters) and/or include more low frequency

sinusoidal signals in Y(ts), both of which will greatly increase

the computation burden in the training process. Therefore,

using a second order LME to model the PEA low frequency

dynamics becomes a much better alternative considering the

linear model is quite computationally efficient.

In addition, the effectiveness of the RNN in eliminating

system nonlinearity such as hysteresis was verified. The

hysteresis curves (see Fig. 5) were measured using different

sinusoidal drive voltages with the frequencies of 30Hz,

120Hz and 200Hz, respectively, for the original PEA system

and RNNinv cascaded with the PEA. The displacement range

generated was about 35% of the total PEA maximum dis-

placement. It can be seen that the PEA hysteresis is both rate-

dependent and amplitude-dependent. However, by cascading

the proposed RNNinv, hysteresis at all measured frequencies

and amplitudes were effectively removed. Therefore, the

PEA hysteresis nonlinearity was effectively accounted for

by the RNNinv.

C. Tracking Performance Comparison

In this section, the control performance of the proposed

RNNinv+LME framework is demonstrated. The desired PEA

trajectories used were sinusoidal signals (with the frequen-

cies of 30Hz, 100Hz 200Hz, and amplitude of 6µm) and

Γ = 3Γ1. First, the proposed method is compared with that

only using the RNNinv to show the necessity of the LME

and the predictive controller. Then it is compared with

a PID feedback controller. Since MIIFC has been proven

in achieving high precision PEA control, it is chosen as

the benchmark to evaluate the accuracy of the proposed

framework.

For the predictive controller, Np and Nc were chosen to

be 40 and 20, respectively. The tracking errors Erms and

Emax were computed as that in [8]. Table II shows tracking

errors for all the approaches. Figs. 6-8 show the tracking

performance in time domain for the desired trajectories of

100Hz sinusoidal signal and Γ, respectively.

RNNinv+LME vs. RNNinv When tracking trajectories

contained low frequency dynamics, RNNinv+LME outper-

formed RNNinv. For example, in Table II, the tracking errors

of RNNinv+LME for 30Hz signal and Γ signal are less

that 50% of those of RNNinv. This is because LME can

model the low frequency dynamics and the error term could

also eliminates the tracking error contributed by the low

frequency part, which is clearly shown in Fig. 6(d): part

of the low frequency error was removed by RNNinv+LME.

TABLE I: Standard deviations of modeling error for different

signals.

Signal 12Hz 120Hz 200Hz Γ1(t)

Std (V) 0.171 0.023 0.022 0.06
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Fig. 5: Measured displacement vs. input voltage curves at the frequency of (a) 30Hz, (b) 120Hz, (c) 200Hz to the PEA

alone and the RNNinv+PEA system, respectively.

However, since LME cannot handle the high frequency

dynamics, it did not improve the tracking performance when

tracking 100Hz and 200Hz signals as can be seen from Table

II and Fig. 6(b). Furthermore, the LME could negatively

influence the control performance at high frequencies. In

Table II, the tracking error of RNNinv for 200Hz signal

is very low, which indicates that the RNNinv could model

the high frequency inversion dynamics accurately. Thus the

tracking errors of RNNinv+LME in this case might be

induced by the LME: tracking errors of RNNinv+LME are

about three times larger than that of RNNinv for 200Hz

signal. Therefore, by incorporating LME, the overall control

performance is still improved, especially for tasks covering

a large frequency span with somewhat downgrading in high

frequency part.

TABLE II: Tracking performance comparison of RN-

Ninv+LME, RNNinv, PID, and MIIFC.

Ref. Error RNNinv+LME RNNinv PID MIIFC

30Hz
Erms(%) 0.93 2.41 2.69 2.01

Emax(%) 0.43 1.68 2.29 1.21

100Hz
Erms(%) 1.71 1.64 9.19 1.81

Emax(%) 1.29 1.19 7.93 1.18

200Hz
Erms(%) 4.12 1.37 19.29 1.69

Emax(%) 3.27 0.54 16.61 1.11

Γ
Ermx(%) 2.14 3.92 4.81 2.23

Emax(%) 1.06 1.28 3.30 1.16

RNNinv+LME vs. PID PID as one popular real-time

tracking technique works for low frequency tasks but as

the frequency increases the control performance gets worse.

According to Table II, RNNinv+LME decreased the tracking

errors by at least 50% for all the cases compared to PID.

The performance difference is more obvious as the frequency

increases. Moreover, the tracking errors in time domain in

Fig. 7 verifies the superiority of the proposed method over

PID.

RNNinv+LME vs. MIIFC For the MIIFC, the converged

tracking results were chosen. From Table II, it can be seen

that RNNinv+LME outperformed MIIFC when tracking low

frequency trajectories—the tracking error is about half of that

of MIIFC for 30Hz signal, and has comparable accuracy with
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Fig. 6: (a) Comparison of the tracking results for 100Hz

sinusoidal signal using RNNinv and RNNinv+LME, (b) the

corresponding tracking error. (c) Comparison of the

tracking results for Γ signal using RNNinv and

RNNinv+LME, and (d) the corresponding tracking error.

MIIFC at “middle” frequency range, i.e., tracking 100Hz

signal and Γ signal, which is more straightforward in Fig.

8. Although there is a surge in the tracking error for high

frequency trajectory tracking (i.e., 200Hz), RNNinv is still

better than MIIFC. Overall, even compared to the MIIFC—

an off-line control approach, the proposed method can still

achieve similar or even better control accuracy in real-time.

Note that although the RNNinv can model the nonlineari-

ties of the PEA system, it does not assume any nonlinearities

of the system in advance, thus it is expected to model any

nonlinearities with enough parameters in theory. On the other

hand, the LME overcomes the issue caused by the limited

length of the training set. Therefore, the RNNinv+LME

framework is expected to have broader application in output

tracking of other systems. As for future work, the stability

of the RNNinv will be investigated.

V. CONCLUSION

In this paper, we integrated RNNinv and LME to realize

precision control of the PEAs. The RNNinv accounts for the

high frequency dynamics and nonlinearities of the system.

To remedy the inaccuracy in low frequency dynamics mod-

eling, LME-based predictive control is used to improve the
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Fig. 7: (a) Comparison of the tracking results for 100Hz

sinusoidal signal using PID and RNNinv+LME, (b) the

corresponding tracking error. (c) Comparison of the

tracking results for Γ signal using PID and RNNinv+LME,

and (d) the corresponding tracking error.
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Fig. 8: (a) Comparison of the tracking results for 100Hz

sinusoidal signal using MIIFC and RNNinv+LME, (b) the

corresponding tracking error. (c) Comparison of the

tracking results for Γ signal using MIIFC and

RNNinv+LME, and (d) the corresponding tracking error.

tracking accuracy for low frequency tasks. The experiment

results have demonstrated the effectiveness of the proposed

method. Although the LME introduced tracking error for

high frequency trajectory tracking, the overall performance

is improved. It is expected the RNNinv+LME framework for

output tracking could be extended to solving output tracking

problem of other systems with more complicated dynamics.
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