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Recurrent-Neural-Network-Based Predictive
Control of Piezo Actuators for Trajectory Tracking

Shengwen Xie and Juan Ren

Abstract—Precise trajectory tracking of piezo actuators
(PEAs) in real time is essential to high-precision systems
and applications. However, the real-time tracking accuracy
is rather limited as the PEA cannot be accurately modeled
over large bandwidth and displacement range due to its
nonlinearities. In this article, we propose to use recurrent-
neural-network (RNN) to model the PEA system and de-
velop a nonlinear predictive controller for PEA trajectory
tracking. Considering the computation efficiency, first, an
RNN is trained to model the nonlinear dynamics of the
PEA system at high-frequency range. Then, a second-order
linear model is proposed to account for the PEA low-
frequency dynamics. Therefore, the PEA dynamics is mod-
eled by the nonlinear model consisting of the RNN and the
linear model, which is further used for nonlinear predictive
control of the displacement. To increase the prediction ac-
curacy, an unscented Kalman filter is designed to estimate
the states of the nonlinear model. The nonlinear predictive
control problem is solved based on a gradient descent al-
gorithm, in which a method for analytically calculating the
gradient of the cost function is developed. The proposed
technique was experimentally implemented on a nano piezo
stage for demonstration and its performance was compared
with that of a PID controller. The accuracy of an iterative
learning control approach was used as a benchmark for
comparison as well. The results showed that high precision
trajectory tracking of PEAs in real time can be achieved
using the proposed technique.

Index Terms—Nonlinear predictive control, output track-
ing, recurrent neural network (RNN).

I. INTRODUCTION

O
WING to the fast response and mechanical stability,

piezo actuators (PEAs) have been broadly used in high-

precision systems and applications [1], such as scanning probe

microscope [2], [3], microforming [4], and adaptive optics [5].

The tracking accuracy is critical for these applications. For
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example, high precision tracking control of PEAs is needed to

realize compliance inside the robot’s structure [6]. Also, the

performance of atomic force microscope (AFM) will be greatly

downgraded if the AFM scanner PEAs fail to track the sample

surface profile in topography imaging and/or the AFM probe-

sample interaction force cannot track the predefined excitation

force accurately in AFM mechanical characterization [7]–[9].

However, it is not trivial to achieve precision control of PEAs

in real time, especially when operated at high speed due to the

system nonlinearities, such as creep effect and hysteresis [1].

Significant efforts have been made to address this challenge.

Iterative learning control (ILC) and repetitive control are very

effective in precision output (i.e., trajectory) tracking when the

tasks are repetitive [10]–[12]. Recently, ILC algorithms aiming

for tracking varying trajectories are presented as well [8], [13],

[14]. Although high-precision trajectory control can be realized

using ILC-based approaches, they are not suitable for real-time

control of PEAs as the convergence of these approaches can

only be reached through iterations [8], [13], [14]. Real-time

output tracking (i.e., trajectory tracking without iterations) of

PEAs still remains challenging. Real-time control techniques

have been developed for output tracking of PEAs. For example,

the dynamics of a PEA was identified with a linear model

and controlled with a model predictive controller (MPC) [15].

However, as the operation frequency increases, effect of the

system nonlinearities (such as the creep effect and hysteresis)

becomes more pronounced which directly results in significantly

increased trajectory tracking error. Sliding mode control (SMC)

based on linear model of PEAs has been developed as well [16].

Compared to MPC, SMC is more robust to the modeling un-

certainties and disturbances. However, the control bandwidth

of SMC is quite limited due to the system nonlinearities [16].

Moreover, SMC can also cause the problem of chattering [17].

Therefore, real-time PEA control methods based on linear

models are limited as well, and the system nonlinearities and

uncertainties must be taken into account.

New approaches have been developed to address the con-

trol issues raised by the nonlinearities and disturbances (e.g.,

creep effect, hysteresis, and mechanical vibration). A feedback-

linearized inverse feedforward approach to control the PEAs

in the atomic force microscope has been proposed [18], where

the hysteresis and creep effects are accounted for using the

high-gain feedback control, and the mechanical vibration is

addressed using feedforward control [18]. Moreover, at higher

operation speed, an inversion model is used to improve the

accuracy. As a result, the tracking performance is significantly
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affected by the accuracy of the inversion model [18]. Based on

the physical behavior of PEAs, a lot of models are proposed

to model the hysteresis and creep effects, such as Domain wall

model, Duhem model, and Prandtl–Ishlinskii model [19]–[22].

These models can be used to obtain an inversion model of

PEAs which may help to eliminate the effects of system non-

linearities and then real-time control algorithms such as MPC,

feedback control, and SMC can be applied [23]–[25]. However,

the performances of these inversion model-based approaches

are directly affected by the modeling accuracy. Considering

the modeling uncertainty, robust control tools, such as H∞ and

adaptive control are developed as well [26], [27]. However, the

control bandwidth is rather limited due to the stability issue

[26], [27].

Recently, neural networks have been proposed in output track-

ing applications of PEAs [28], [29]. For example, the feedfor-

ward neural network (FNN) has been proposed to model the

dynamics of PEAs [28], [29]. However, one issue with the FNN

is that the input to FNN is not treated as time series in the training

process although the sequence of input can affect the behaviors

of PEAs greatly [28]. Other types of neural networks like wavelet

neural network [30], neural network with radial basis [31], [32],

and recurrent neural network with residue compensation [33]

are also proposed for PEA control. In addition, predictors based

on neural networks are also proposed to estimate the nonlinear

dynamics of time-delay-free dynamic system [34]. However,

the bandwidth of the modeled dynamics is restricted to less

than 100 Hz and no efficient methods of generating the data

set for the neural network training over a large bandwidth

have been presented. In contrast to FNN, an RNN is designed

to deal with time series [35]. One advantage of the RNN is

that it can be represented using nonlinear state space models,

thus many nonlinear control tools can be then adopted [35].

Moreover, the RNN has been proved to be a universal ap-

proximator in modeling dynamical systems [36]. Therefore,

in this article, we propose an RNN-based predictive control

framework (RNN+LME) to achieve accurate output tracking

of PEAs. Specifically, an RNN is trained to accurately capture

the nonlinear dynamics of the PEA system. However, due to the

limited length of the RNN training set and available computation

resources in real applications, the PEA low frequency behaviors

may not be fully captured. Thus, a second-order linear model

embedded with an error term (LME) is proposed for modeling

the residual dynamics (i.e., low frequency dynamics) [37]. Then

a nonlinear predictive controller and an unscented Kalman filter

(UKF) are designed to work with this PEA dynamic model

(i.e., the nonlinear model consisting of the RNN and LME) to

achieve precise output tracking. The proposed technique was

experimentally applied on a nano piezo stage for demonstration

and its performance was compared with that of a PID controller

and an ILC approach.

The main contribution of this article is the development of

RNN+LME predictive control framework. First, generation of

data for system identification is an open problem, effective

approaches for data generation of PEA systems have not been

reported yet. In this article, we propose an effective method

Fig. 1. Recurrent neural network.

for generating the training set data by considering both the

amplitude and frequency domains. Second, to remedy the com-

putation inefficiency in modeling low-frequency dynamics of

using RNN, LME is incorporated. Third, a practical solver

is proposed for the nonlinear predictive control based on the

gradient descent algorithm. As the RNN+LME framework does

not assume any form of the nonlinearities, the integration of

RNN and LME provides a flexible framework for solving a series

of output tracking problem.

II. SYSTEM IDENTIFICATION

A. Recurrent Neural Network (RNN) Structure

The RNN used in this article, consisting of an input layer

(solid circles), a hidden layer (circles), and an output layer

(dashed circles), as shown in Fig. 1. u(r),k and y(r),k denote the

input u(r) and output y(r) at the sampling instant k, respectively.

xk = [xk,1, xk,2, . . . , xk,N ]T is the state vector of the RNN sys-

tem. The activation functions of the hidden layer g(x) and output

layerh(x) are designed as g(x) = tanh(x) andh(x)=Wx+ b,
respectively, where W is a 1-by-N matrix. Thus, the RNN in

Fig. 1 can be represented by the following nonlinear state-space

equation as

xk+1 = tanh(W1xk +B2 +B1u(r),k)

y(r),k = W2xk +B3 (1)

where the dimensions of W1, B2, B1, W2, and B3 are N ×N ,

N × 1, N × 1, 1 ×N , and 1 × 1, respectively. Unlike the

FNN which is essentially a “nonlinear autoregressive-moving-

average with exogenous inputs” model and takes the past inputs

and outputs as inputs to the network, the RNN only needs the

current input u(r),k to generate the output signal [28]. Suppose

U(ts) is any given time series (i.e., drive voltage) and Y(ts) is

the corresponding output time series (i.e., displacement) of a

PEA system, the output of the RNN, Y(rts), subject to the input

U(ts) should equal Y(ts) if the RNN can accurately model the

PEA system dynamics, i.e., ||Y(ts) − Y(rts)|| < ε for any ε > 0.

Therefore, the RNN can be trained [i.e., to obtain the parameters

W1, B2, B1, W2, and B3 in (1)] by solving the following

optimization problem using a predesigned time series inputU(ts)
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and the corresponding PEA system output Y(ts) measured.

min
W1,B2,B1,W2,B3

J(r) = ||Y(ts) − Y(rts)||

subject to : xk+1 = tanh(W1xk +B2 +B1U(ts),k)

Y(rts),k = W2xk +B3

x0 = [0, 0, . . . , 0]T , k = 1, 2, 3, . . . , L (2)

where U(ts) = [U(ts),1, U(ts),2, . . . , U(ts),L]
T , Y(ts) = [Y(ts),1,

Y(ts),2, . . . , Y(ts),L]
T and Y(rts) = [Y(rts),1, Y(rts),2, . . . ,

Y(rts),L]
T . L is the length of the time series. Next, we present

how to design U(ts).

B. Training Set Construction for RNN

There are various ways to construct U(ts). Here, we choose

sinusoidal signals as building blocks to form U(ts). Define

S(f,A) = A(sin(2πft+ 3π
2
) + 1), t ∈ [0, 1/f ], i.e., S(f,A)

is a sinusoidal signal in one period with amplitude A and

frequency f . In practice, t will be sampled, thus S(A, f) is a

time series. Then U(ts) can be written as

U(ts) =
⋃

(fi,Ai)∈Ω
S(fi, Ai) (3)

where Ω is a set consisting of (fi, Ai) pairs, and
⋃

denotes

concatenation. Therefore, each (fi, Ai) pair represents a point in

the f −A plane. SupposeU(ts) consists ofN1 sinusoidal signals

with fi ∈ [0, f̄ ] and Ai ∈ [0, Ā]. Ideally, the optimal training

set should consist of all the (fi, Ai) pairs in the wanted ranges,

however this is impractical. Here we expect to find N1 (fi, Ai)
pairs to achieve the highest modeling accuracy (i.e., a suboptimal

approach). Finding the suboptimalU(ts) is equivalent to locating

N1 points in the f −A plane such that any point (fj , Aj) in the

plane can be represented by the nearest point (fk, Ak) (one of

the N1 points) and the distance between (fj , Aj) and (fk, Ak)
is minimized. The solution to selecting the N1 (fi, Ai) points

can be obtained using the k-means algorithm [38].

In practice, we can randomly generate a large number of points

in the f −A plane to cover all the possibilities as the behaviors

of PEAs is frequency and displacement range dependent. Note

that this method of choosing U(ts) is not trivial in the sense that

the weights of f and A can vary. For example, if frequency is

more important for the PEA tracking tasks, we can scale the f
axis by multiplying a factorα to f , thus the signal with frequency

q and amplitude 1 corresponds to (qα, 1) instead of (q, 1) in the

f −A plane. Moreover, some frequency components are better

to be avoided (such as the resonance frequency of the piezo

actuator) when designing U(ts) by removing the points with fis
close to them, which will be explained with an example in the

experiment part.

C. Linear Model Embedded With an Error Term (LME)

It is worthwhile to note that for S(f,A), the smaller f is,

the longer the time series S(f,A) will be, e.g., fs/f sampling

points are needed to cover the entire period of this sinusoidal

signal, where fs is the sampling frequency. From (2), it can be

Fig. 2. Block diagram of RNN+LME for modeling the PEA system.

seen that increase of the time series length leads to the increase

of the number of constraints, which implies that either a more

complex RNN is needed or the modeling accuracy will decrease.

Therefore, long time series should be avoided considering the

modeling accuracy and the computation efficiency of (2). On the

other hand, even if a lot of high frequency sinusoidal signals are

to be included inU(ts), the length ofU(ts) will not be affected too

much. Therefore, the above method of constructing U(ts) may

result in that the low-frequency dynamics of PEAs cannot be

entirely captured. In addition, the drift effect of PEAs (usually

in very low frequency range) is hard to be modeled with RNN

alone. Therefore, to address this issue, we proposed to use the

following linear model embedded with an error term (LME) to

deal with the residual dynamics (i.e., the PEA dynamics not

captured by RNN) including the low-frequency dynamics and

drift (see Fig. 2)

ηk+1 = Aeηk +Beu(l),k +Gêk

ŷk = Ceηk
(4)

where u(l),k is the input to the LME, also the RNN output (see

Fig. 2), êk = yk − ŷk is the model output error with yk the PEA

system output [37]. The error term can act as a feedback term.

The dimensions of Ae, Be, G, and Ce are 2 × 2, 2 × 1, 2 × 1,

and 1 × 2, respectively. Suppose the output of the RNN [with

parameters solved from (2)] is Y(rts) subject to the input U(ts),

then it is expected that the output of the LME Ŷ(ts) will be equal

to Y(ts) (i.e., the actual output of the PEA) subject to the input

Y(rts), thus we can minimize the difference ||Y(ts) − Ŷ(ts)|| to

obtain the LME parameters. Similar to the training of the RNN,

the parameters in LME will be determined through solving the

following optimization problem with Y(rts) and Y(ts)

min
Ae,Be,G,Ce

J1 = ||Y(ts) − Ŷ(ts)||

subject to : ηk+1 = Aeηk +BeY(rts),k +Gêk

Ŷ(ts),k+1 = Ceηk+1

êk+1 = Y(ts),k+1 − Ŷ(ts),k+1

η(0) = [0, 0]T

ê0 = 0, k = 0, 1, · · · (5)

where Ŷ(ts) = [Ŷ(ts),1, Ŷ(ts),2, . . . , Ŷ(ts),L]
T . Before training,

Y(rts) and Y(ts) are known and Y(ts) is the same as that in (2).

D. Combine RNN and LME

Since the modeled dynamics in the RNN and the LME is

limited by the frequency range of the training set, a low pass

filter (LPF) is connected to the PEA model (i.e., RNN+LME) to

avoid instability induced by ultra-high frequency dynamics and
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Fig. 3. Block diagram of the proposed RNN+LME. rk is the reference
signal (i.e., the desired trajectory).

disturbances. Suppose the LPF is formulated as

βk+1 = Āβk + B̄ûk

zk = C̄βk. (6)

With u(r),k = zk and u(l),k = y(r),k, (1), (4), and (6) can be

combined as the following nonlinear model:

φk+1 =

⎡

⎢

⎣

βk+1

xk+1

ηk+1

⎤

⎥

⎦
= F (φk, ûk) = F

⎛

⎜

⎝

⎡

⎢

⎣

βk

xk

ηk

⎤

⎥

⎦
, ûk

⎞

⎟

⎠

=

⎡

⎢

⎣

Āβk + B̄ûk

tanh(W1xk +B2 +B1C̄βk)

Aeηk +BeW2xk +BeB3

⎤

⎥

⎦
+

⎡

⎢

⎣

0

0

G

⎤

⎥

⎦
êk

ŷk = H(φk) =
[

0 0 Ce

]

⎡

⎢

⎣

βk

xk

ηk

⎤

⎥

⎦
(7)

where ûk is the input to the nonlinear model. The block diagram

of the model represented by (7) is shown in Fig. 3, i.e., the “Plant

Model” in the dash box. Note that the dynamics of the LPF, such

as phase delay, is already included in (6), and thus in (7).

III. NONLINEAR PREDICTIVE CONTROL

The control scheme of the predictive controller based on the

above system model (7) is shown in Fig. 3.

A. Nonlinear Estimator

Since the system model is nonlinear and the states are un-

available through measurement, a state estimator—the UKF is

designed to estimate the states during the tracking process in

this article.

In the extended Kalman filter, the nonlinear dynamics func-

tion is linearized at the current point (first order linearization) in

each estimation and the conventional Kalman filter algorithms

can be implemented. However, the approximation error through

linearization may increase if the nonlinearity at the linearization

point is significant [39]. Instead, such an issue can be avoided in

the UKF which generates a series of sample points propagated

through the nonlinear dynamics function, then the covariance

matrix can be computed from the sampling points [39]. For the

system model (7), the error term êk is calculated before each

estimation and updated at each sample instant. The estimation

steps for the UKF used in this article are as follows:

Step 1: Initialize the parameters at k = 0

φ̂0 = E[φ0]

P0 = E[(φ0 − φ̂0)(φ0 − φ̂0)]
T

ê−0 = 0. (8)

Step 2: Generate sampling points (sigma points)

χk−1 = [φ̂k−1φ̂k−1 + γ
√

Pk−1φ̂k−1 − γ
√

Pk−1]

k = 1, 2, 3, . . . . (9)

Step 3: Time update

χk|k−1 = [F ( χ1,k−1, uk−1), . . . , F ( χ2N+1,k−1, uk−1)]

φ̂−
k =

2N+1
∑

i=1

Wm(i) χi,k|k−1

P−
k =

2N+1
∑

i=1

Wc(i)[ χi,k|k−1 − φ̂−
k ][ χi,k|k−1 − φ̂−

k ]
T +Rv

Yk|k−1 = [H( χ1,k|k−1), . . . , H( χ2N+1,k|k−1)]

ŷ−k =
2N+1
∑

i=1

Wm(i)Yi,k|k−1. (10)

Step 4: Measurement update and calculation of the error term

Pδyδy =
2N+1
∑

i=1

Wc(i)[Yi,k|k−1 − ŷ−k ][Yi,k|k−1 − ŷ−k ]
T +Rn

Pδφδy =
2N+1
∑

i=1

Wc(i)[ χi,k|k−1 − φ̂−
k ][Yi,k|k−1 − ŷ−k ]

Kk = PδφδyP
−1
δyδy

φ̂k = φ̂−
k + Kk(yk − ŷ−k )

Pk = P−
k − KkPδyδyK T

k

ê−k = yk − ŷ−k .
(11)

Note that
√
Pk−1 is the square root of a matrix and can be calcu-

lated with Cholesky factorization, i.e., Pk−1 =
√
Pk−1

√
Pk−1

T
.

Rv and Rn are the process and measurement noise covariance

matrices, respectively. γ is a constant scalar, Wm and Wc are

(2N + 1)× 1 vectors determined by the order of the system,

N , Wm(i) is the ith element of Wm. χi,k|k−1 is the ith column

of matrix χk|k−1. The readers are referred to [39] for how to

choose γ, Wm, and Wc.

B. Predictive Controller

For the nonlinear predictive control, the following optimiza-

tion problem is to be solved at each sampling point and the PEA
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system drive input uk for the next sample time can be obtained

from the solution

min
U

J = (Ŷ f −Rf )T (Ŷ f −Rf ) + ρUfTDTDUf

D =

⎡

⎢

⎢

⎢

⎢

⎣

1 −1 0 . . . 0

0 1 −1 . . . 0

...
...

...
. . .

...

0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

(12)

where Uf =[uk, uk+1, . . . , uk+Nc−1]
T , Ŷ f =[ŷk+1, ŷk+2, . . . ,

ŷk+Nh
]T and Rf = [rk+1, rk+2, . . . , rk+Nc

, . . . , rk+Nc
]TNh×1

are the future inputs, predicted outputs, and the desired tra-

jectory), respectively, with Nh the prediction horizon and Nc

the control horizon. Notice that the current state φk and the

previous input uk−1 are known when solving (12). Here we

do not consider the constraints to the input for simplicity, but

they can be incorporated later. Since the system dynamics is

nonlinear, the objective function J cannot be written in the

quadratic form as in linear model predictive control [40]. As an

example, we choose the gradient descent method to solve the

unconstrained optimization problem [i.e., (12)].

Next, we show how to analytically compute the gradient
∂J
∂U

instead of using the numerical method as shown in (13). By

using the analytical method, it is not only more precise without

considering the increment ∆, but also more computationally

efficient [41]. However, the following numerical method can be

used to verify the analytic result:

∂J

∂uk+i
= lim

∆→0

J (uk+i +∆)− J (uk+i −∆)

2∆
. (13)

Let E = (Ŷ f −Rf )T (Ŷ f −Rf ), then the key to compute
∂J
∂U

is to compute ∂E
∂U since calculation of the derivative of the other

term is trivial. E can be expressed as

E =

Nh
∑

i=1

E2
i = (ŷk+1 − rk+1)

2 + (ŷk+2 − rk+2)
2

+ · · ·+ (ŷk+Nh
− rk+Nc

)2 = (Ceηk+1 − rk+1)
2

+ (Ceηk+2 − rk+2)
2 + · · ·+ (Ceηk+Nh

− rk+Nc
)2.
(14)

Thus, ∂E
∂Uf can be written as

∂E

∂Uf
=

⎡

⎢

⎢

⎢

⎢

⎣

∂E
∂uk

∂E
∂uk+1

...
∂E

∂uk+Nc−1

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂E2
1

∂uk
+

∂E2
2

∂uk
+

∂E2
3

∂uk
+ · · ·+ ∂E2

Nh

∂uk

∂E2
2

∂uk+1
+

∂E2
3

∂uk+1
+ · · ·+ ∂E2

Nh

∂uk+1

...
∂E2

Nc

∂uk+Nc−1
+ · · ·+ ∂E2

Nh

∂uk+Nc−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (15)

Next, we show how to compute ∂E
∂uk

and the rest follows. Note

that φk = [βk, xk, ηk]
T and uk−1 are known at the sampling

instant k. With (7), we have

∂E2
1

∂uk
= 2E1Ce

∂ηk+1

∂uk

= 2E1Ce
∂(Aeηk +BeW2xk +BeB3)

∂uk
= 0. (16)

Thus
∂ηk+1

∂uk
= 0. Since

∂xk+1

∂uk
=

∂ tanh(W1xk +B2 +B1C̄βk)

∂uk
= 0 (17)

then

∂E2
2

∂uk
= 2E2Ce

∂ηk+2

∂uk

= 2E2Ce
∂(Aeηk+1 +BeW2xk+1 +BeB3)

∂uk
= 0. (18)

Then
∂ηk+2

∂uk
= 0. Similarly

∂E2
3

∂uk
= 2E3Ce

∂ηk+3

∂uk

= 2E3Ce
∂(Aeηk+2 +BeW2xk+2 +BeB3)

∂uk

= 2E3CeBeW2

∂xk+2

∂uk
. (19)

With βk+1 = Āβk + B̄uk, we have

∂xk+2

∂uk
=

∂ tanh(W1xk+1 +B2 +B1C̄βk+1)

∂uk

=
∂ tanh(Xk+1,k)

∂Xk+1,k

∂Xk+1,k

∂uk
=

∂ tanh(Xk+1,k)

∂Xk+1,k
B1C̄B̄

(20)

where Xk+1,k = W1xk+1 +B2 +B1C̄βk+1. Therefore,
∂E2

3

∂uk
is

computed by (19) and (20). At the same time, the resulting
∂ηk+3

∂uk
,

∂xk+2

∂uk
and

∂βk+1

∂uk
can be used to compute

∂E2
4

∂uk
which is

∂E2
4

∂uk
= 2E4Ce

(

Ae
∂ηk+3

∂uk
+BeW2

∂xk+3

∂uk

)

. (21)

Note that
∂xk+3

∂uk
is related to

∂xk+2

∂uk
and

∂βk+1

∂uk
with

∂xk+3

∂uk
=

∂ tanh(W1xk+2 +B2 +B1C̄βk+2)

∂uk

=
∂ tanh(Xk+2,k)

∂Xk+2,k
·W1

∂xk+2

∂uk
·B1C̄Ā

∂βk+1

∂uk
. (22)

Therefore,
∂xk+i+1

∂uk
can be calculated from the previous calcula-

tion of
∂xk+i

∂uk
.

Once the derivative can be computed, the gradient descent

method can be implemented with

Uf (m+1) ← Uf (m)
+ δ(m) ∂J

∂Uf (m)
(23)
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where m is the iteration number and δm is the step length at

mth step. In practice, we keepm < 15 or smaller to improve the

computation efficiency. The above process can be summarized

as shown in Algorithm 1.

Remark 1: Note that
∂J

∂Uf (m) is normalized to be a unit vector.

To keep m < 15, one approach is to use different step lengths

at each iteration with the step length decreasing. For example,

e−m can be used to tune the step length. Other approaches such

as backtracking line search can be applied alternatively [42].

Remark 2: We use “time complexity” to measure the effi-

ciency of the algorithm, which denotes the number of operations

to run the algorithm. For example, the time complexity of the

matrix multiplication W1xk is Θ(2N 2) (i.e., N 2 multiplications

and N 2 additions), which dominates the running time at each

iteration, thus the running time is Θ(4NhNcN
2) for the nu-

merical method [i.e., (13)] and Θ(2(Nh −Nc/2)NcN
2) for the

proposed method. Thus the computational efficiency is reduced

by 1 − 2(Nh−Nc/2)NcN
2

4NhNcN 2 = 1
2
+ Nc

4Nh
, which is up to 75% when

Nc ≈ Nh.

In sum, the proposed controller can be implemented through

the following three steps in one sample time.

Step 1: With the previous state φk−1 and output of the PEA

yk−1, use (8)–(11) to estimate the current state φk.

Step 2: With the current state φk and the previous input

uk−1, call Algorithm 1 to compute the next input

uk which is the output of Algorithm 1.

Fig. 4. RNN+LME experimental setup.

Step 3: Apply the computed input uk to the system and

repeat Steps 1–3.

Remark 3: Note that the dynamics of the LPF, such as the

phase delay, will not affect the tracking performance since the

LPF dynamics has been modeled in (6) and thus considered by

the predictive controller.

IV. EXPERIMENT RESULTS AND DISCUSSION

The proposed RNN+LME was implemented on a PEA (Nano-

OP30, Mad City Labs) for demonstration. Fig. 4 shows the

experiment setup. The displacement range of OP30 is 0–30 µm.

All the signals were acquired through a data acquisition sys-

tem (NI PCIe-6353, National Instruments) which was installed

in the workstation (Intel Xeon W-2125, RAM 32 GB). The

proposed RNN+LME was designed using MATLAB Simulink

(MathWorks, Inc.). The sampling frequency was set to 10 kHz.

A. Training Set for RNN

To implement the k-means algorithm, 7000 points (blue dots

in Fig. 5(a)) were randomly generated in the f −A plane. 120

(f,A) points (red solid circles) were selected as illustrated in

Fig. 5(a). The resulting training set U(ts) generated by concate-

nating all the sinusoidal signals (defined by the 120 (f −A)
points as (3)) is shown in Fig. 6. As aforementioned, this method

of generating the RNN training set is flexible in the sense that

constraints can be taken into account. For example, assuming

that 1000 Hz is the resonant frequency of the PEA and the

amplitude should decrease as the frequency increases to protect

the PEA, these two constraints can be conveniently accounted

for through controlling the distributions of the blue dots (see

Fig. 5(b)) with the frequency range assumed to be 0–1.2 kHz.

Then the training set can be generated using k-means algorithm

(red dots) in Fig. 5(b).

B. Accuracy of the RNN, LME, and the State Estimator

We trained the RNN in the range of 0–330 Hz as the sampling

frequency of our physical platform is set to 10 kHz. The RNN

was generated using the training set shown in Fig. 6 (The RNN

parameters are included in the supplementary material). Then,

the RNN was tested to predict the PEA hysteresis for sinusoidal

ÈÉÊËÌÍÎÏÐÑ ÒÎÓÐÔÕÐÑ ÉÕÐ ÒÎÖÎÊÐÑ ÊÌ× ØÌÙÚ ÛÊÚÊÐ ÜÔÎÝÐÍÕÎÊÞß àÌÙÔÒÌÚÑÐÑ ÌÔ áÚÞ âãäâåâå ÚÊ æç×èâ×æâ Üéê ëÍÌÖ Øììì íîÒÌÍÐß ïÐÕÊÍÎÓÊÎÌÔÕ ÚîîÒÞß
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Fig. 5. U(ts) generated using k-means algorithm: (a) without constraints, and (b) with constraints: PEA resonant frequency at 1 kHz and

monotonically decreasing amplitude versus frequency relation. Red dots represent the k-means algorithm selection results.

Fig. 6. Generated time series U(ts) for RNN training according to the

selected (f,A) points in Fig. 5(a).

signals with different frequencies and amplitudes, see Fig. 7. The

obtained RNN can model the hysteresis accurately for signals

of high frequencies, as shown in Fig. 7(b) and (c). The modeling

error increases as the frequency goes down to 5 Hz as shown in

Fig. 7(a). This verifies the limitations of the RNN in modeling

low-frequency dynamics, and demonstrates that it is necessary

to integrate RNN and LME together for accurate PEA system

modeling.

Furthermore, to evaluate the modeling accuracy of RNN in

the time domain, the outputs of the obtained RNN model are

compared with the actual PEA outputs for different input sig-

nals. Specifically, four inputs including sinusoidal signals with

frequencies of 5, 120, and 320 Hz and a Γ signal shown below

were tested. To highlight the efficacy of the proposed approach,

the frequency components of these inputs were not overlapping

with that in the training set.

Γ(t) = [0.8 sin(2π5t+ 1.5π) + 0.43 sin(2π50t)

+ 0.12 sin(2π120t+ 1.2π) + 0.3 sin(2π180t+ π)]/1.3.

(24)

TABLE I
STANDARD DEVIATIONS OF MODELING ERRORS OF RNN AND RNN+LME

Feeding the same inputU to the actual PEA system and RNN,

we obtained the outputs from the real system Y1 and RNN Y2.

Thus the modeling error is E = Y1 − Y2. Standard deviations of

the modeling errorsE are presented in Table I. It can be seen that

the RNN modeling error increases as the frequency of the signal

decreases. The standard deviation increased about 50% for the

5 Hz signal compared to that of high frequency signals—120 and

320 Hz. The modeling results were plotted in Fig. 8, which is in

accordance with the data in Table I.

With the obtained RNN model, the unmodeled dynamics of

PEA is accounted for with the proposed LME model whose

parameters are determined through solving the optimization

problem (5). The LME model is as follows:

ηk+1 =

[

1.5288 1.6862

−0.2775 0.1252

]

ηk +

[

−0.7033

−2.1788

]

u(l),k

+

[

−2.0581

2.1707

]

êk

yk =
[

−0.6450 0.0548

]

ηk. (25)

Similarly, the modeling accuracy of RNN+LME is evaluated

as shown in Fig. 8 and Table I. As shown in Table I, the

integration of RNN+LME has improved the modeling accuracy

significantly, especially at low frequency region. In addition,

compared to using RNN alone, RNN+LME is very effective in

removing the offset. Since the offset can be tuned to be very

small before the experiment, the errors shown in Table I are

ðñòóôõö÷øù úöûøüýøù ñýø úöþöòøù òôÿ Aô�� �ò�òø �üö�øõýöò�� �ô�üúô�ùøù ôü ��� 	
�	�	� �ò 
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Fig. 7. Comparison of the RNN modeled PEA hysteresis (in blue) versus the experimentally measured results (in red) at the frequencies of
(a) 5 Hz, (b) 120 Hz, and (c) 320 Hz with different displacement ranges.

Fig. 8. Outputs of RNN+LME, RNN and PEA for (a) 5 Hz, (c) 120 Hz,
and (e) 320 Hz sinusoidal inputs, and the corresponding modeling errors
(b), (d), and (f), respectively.

computed with the offset being removed. Note that the modeling

error increased a little bit for 320 Hz as the high frequency

portion might be affected by LME. Nevertheless, the overall

improvement of RNN+LME over RNN is significant.

Moreover, the performance of the estimator was also tested by

comparing the actual output and the predicted output for 5 and

200 Hz sinusoidal inputs, respectively, as shown in Fig. 9. It

is clear that the state estimator proposed in this RNN+LME

framework can accurately predict the PEA output with the

prediction error less than 2%.

C. Simulation Results

To show the effect ofNh andNc on the tracking performance,

predictive controllers with different (Nh, Nc)s were simulated

to track a 320 Hz sinusoidal trajectory based on the obtained

RNN model. The tracking results are shown in Fig. 10, which

Fig. 9. Actual output and predicted output of the estimator for
(a) 5 Hz and (c) 320 Hz sinusoidal inputs, and the corresponding
prediction errors (b) and (d), respectively.

Fig. 10. (a) Tracking results of predictive controllers with different
(Nh, Nc) parameters and (b) tracking errors.

clearly shows that the tracking error decreases as Nh and Nc

increase. Table II presents the computed tracking errors. Note

that Emax and Erms are calculated as shown in the following:

Emax
∆
=

||r(·)− y(·)||∞
||r(·)||∞

, Erms
∆
=

||r(·)− y(·)||2
||r(·)||2

. (26)

where r(·) and y(·) are complex vectors obtained through dis-

crete Fourier transform of the corresponding signals. As shown

��������� !�"�#$� �$� !�%��� ��& '�() *�)�� +#�,��$��-. /�(#!�) � �# 0)- 1231414 )� 56&71&51 +89 :��% ';;; <=!���. >�$���"���#$ )==!-.
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TABLE II
TRACKING PERFORMANCE OF THE DESIGNED PREDICTIVE CONTROLLERS

WITH DIFFERENT (Nh,Nc)S WHEN 200 HZ SINUSOIDAL SIGNAL WAS

USED AS THE REFERENCE TRAJECTORY IN SIMULATION

TABLE III
TRACKING PERFORMANCE COMPARISON OF RNN+LME,

RNN, PID, AND MIIFC

in Table II, the tracking error of the predictive controller de-

creased more than 70% by increasing the prediction and control

horizons from (8, 6) to (10, 8). On the other hand, large Nh and

Nc imply that much higher computation power is needed. In the

experiment part, we chose (8, 6) considering the speed of the

hardware thus a downgrade of the tracking performance of the

predictive controller was expected.

D. Tracking Performance Comparison

Both LPFs in Fig. 3 were chosen as fourth-order Butterworth

LPFs with the cutoff frequency of 1.5 kHz. Five trajectories—

sinusoidal signals with frequencies of 5, 30, 100, and 200 Hz, the

aforementionedΓ [see (24)], and a stair-case signal were tracked.

Apart from the proposed RNN+LME, three other methods were

applied. First, to verify the necessity of LME in the proposed

approach, we designed the predictive controller without LME

(called “RNN” in the rest). The second method is PID which has

been popular in PEA control. Moreover, since ILC proved to be

very accurate in output tracking through repetitively performing

the same task, one ILC-based approach—e.g., modeling-free

inversion-based iterative feedforward control (MIIFC) [12], was

chosen for comparison as well. Although it is unfair to com-

pare the proposed real-time control framework with the offline

controller—MIIFC, the tracking performance of MIIFC was

used as a benchmark to demonstrate that the proposed real-time

control can achieve similar (or even better) control accuracy

when compared to an offline controller.

The calculated tracking errors are shown in Table III and the

comparisons in time domain are presented in Fig. 11, where the

proposed method RNN+LME are compared with RNN, PID,

and MIIFC, respectively.

RNN+LME versus RNN: As seen in Table III, the tracking

errors for all trajectories of RNN+LME are lower than that of

RNN, which indicates that adding LME could indeed improve

the tracking performance. In particular, RNN+LME decreased

the tracking errors Erms and Emax by at least 59.4% and 71.3%,

respectively for the 5 and 30 Hz sinusoidal trajectories, the im-

provements of which were much more significant than the other

cases. This is because the tracking error caused by unmodeled

low-frequency dynamics was accounted for by LME. On the

other hand, the improvement for high frequency signal tracking

(e.g., 200 Hz signal) is not so obvious implying that LME does

not contribute to high-frequency modeling. In Fig. 11(d), the

tracking errors of RNN+LME and RNN have similar trends

showing that the tracking error for high-frequency dynamics was

not removed through the LME. Therefore, the issue of RNN

for capturing low-frequency dynamics can be solved through

incorporating the LME, in which the error term can act as a

feedback term.

RNN+LME versus PID: RNN+LME outperforms PID for

almost all the trajectories as can be seen in Table III and Fig. 11

except for 5 Hz sinusoidal signal. PID is relatively effective for

tracking low frequency trajectories such as the 30 Hz sinusoidal

signal, however, RNN+LME could further decrease theErms and

Emax by about 52.8% and 83.0% compared to PID, respectively.

When tracking high frequency signal, such as the 200∼Hz

sinusoidal trajectory, RNN+LME decreased the Erms and Emax

errors by at least 60.0% with respect to the performance of PID,

respectively. Fig. 11 also confirms the superiority of RNN+LME

over PID.

RNN+LME versus MIIFC: MIIFC has proven to achieve

accurate output tracking by repeating the same tasks several

times [12]. In this experiment, the MIIFC tracking results of

the 8th iteration, where MIIFC has converged, were chosen

for comparison. The data in Table III show that RNN+LME

was comparable (or even better for some cases) with MIIFC

when the frequency of the trajectory was not too high, which

can also be seen in Fig. 11. When tracking the 30 Hz sinusoidal

signal, the tracking errors Erms and Emax of RNN+LME were

about 36.8% and 67.8% less than that of MIIFC, but increased

about 28.2% and 47.5% for the 100 Hz case. When tracking the

stair-case signal, it seems that RNN+LME is not as good as that

of MIIFC as shown in Fig. 11. This is because the frequency

components of the stair-case trajectory exceed the modeling

bandwidth of RNN+LME. However, since the high frequency

part only accounts for a small portion of the entire trajectory,

the tracking result is actually close to that of MIIFC as shown in

Table III. Because the low-frequency dynamics is dominated

in Γ, it is reasonable that RNN+LME tracked Γ better than

MIIFC. Considering the PEA high frequency dynamics has been

modeled by the RNN accurately as demonstrated by Figs. 7, 8,

and Table I, the main reason of the tracking errors increase for

high frequency trajectories is that the chosen Nh and Nc were

too small. By increasing Nh and Nc, the tracking accuracy can

be improved, which has been verified by the simulation results

(Fig. 10). The factor restricting using large Nh and Nc is the

?@BCDEFGHI JFKHLMHI @MH JFNFBHI BDO PDQR SBRBH TLFUHEMFBVW XDQLJDRIHI DL YRV Z[\Z]Z] RB ^_O`ZO^Z Tab cEDN Pddd efJDEHW gHMBEFKBFDLM RffJVW
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Fig. 11. Comparison of the tracking results of RNN+LME, RNN, PID, and MIIFC for (a) 100 Hz sinusoidal trajectory, (b) Γ, and (c) stair-case
trajectory. (b), (e), and (f) are the corresponding tracking errors, respectively.

computation burden. As Algorithm 1 shows that much of the

computations lie in the matrix multiplications, one solution is to

implement the algorithm in faster hardware platforms such as

platform based on FPGA.

In summary, the experiment results demonstrated the effi-

cacy of the proposed method. Applications in which motion

control of PEAs is required will benefit significantly from the

improvement on the tracking accuracy from the proposed frame-

work. For example, PEAs are used to generate friction force in

human-robot interaction [6]. Precise force tracking control of

PEAs is needed for the desired damping behaviors. Another

important application is AFM as the AFM scanner motion is

completely driven by the PEAs [7], [8], [43]. As the sample

topography is often irregular in amplitude and frequency, the

nonlinear dynamics of the PEAs will be excited during AFM

topography scanning, especially at high speed. In such case,

the PID feedback controller widely used in commercial AFMs

becomes inadequate. In addition, in AFM material mechanical

characterization, the AFM probe-sample interaction force needs

to track the predesigned excitation force [9], [44], otherwise, the

samples can be damaged if the force is not precisely controlled,

especially for delicate samples (e.g., living biological materi-

als) [45], [46]. Although ILC-based approaches can achieve

high tracking accuracy, iterations should be avoided on deli-

cate samples. Therefore, the tracking accuracy achieved by the

proposed technique becomes essential for AFM-related appli-

cations. Furthermore, note that the proposed method does not

assume the exact form of nonlinearities, it can be conveniently

employed to other nonlinear systems, i.e., not limited to PEA

systems.

V. CONCLUSION

In this article, we proposed an RNN-based predictive control

approach (RNN+LME) to achieve accurate real-time trajectory

tracking of PEAs. An RNN cascaded with an LME was proposed

to model the nonlinear dynamics of the PEAs, and the UKF

was developed to estimate the states of the nonlinear model.

A nonlinear predictive controller, was designed to work with

the PEA model, and the optimal input from the controller to

the PEA was calculated by using the gradient descent method

to solve the optimization problem and the analytical method to

compute the gradient was derived as well. Implementation of the

proposed approach on a PEA showed that it can achieve high

tracking accuracy when the desired trajectory spanned in a broad

frequency range.

For future work, the modeling bandwidth needs to be further

enlarged with other types of RNNs. Also, we will work on miti-

gating the effect of the mechanical vibrations through modeling

the vibration dynamics or introducing adaptive control laws to

reject the disturbances. Finally, how the reference signal will

affect the tracking error quantitatively will be investigated.
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