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Recurrent-Neural-Network-Based Predictive
Control of Piezo Actuators for Trajectory Tracking

Shengwen Xie

Abstracit—Precise trajectory tracking of piezo actuators
(PEAs) in real time is essential to high-precision systems
and applications. However, the real-time tracking accuracy
is rather limited as the PEA cannot be accurately modeled
over large bandwidth and displacement range due to its
nonlinearities. In this article, we propose to use recurrent-
neural-network (RNN) to model the PEA system and de-
velop a nonlinear predictive controller for PEA trajectory
tracking. Considering the computation efficiency, first, an
RNN is trained to model the nonlinear dynamics of the
PEA system at high-frequency range. Then, a second-order
linear model is proposed to account for the PEA low-
frequency dynamics. Therefore, the PEA dynamics is mod-
eled by the nonlinear model consisting of the RNN and the
linear model, which is further used for nonlinear predictive
control of the displacement. To increase the prediction ac-
curacy, an unscented Kalman filter is designed to estimate
the states of the nonlinear model. The nonlinear predictive
control problem is solved based on a gradient descent al-
gorithm, in which a method for analytically calculating the
gradient of the cost function is developed. The proposed
technique was experimentally implemented on a nano piezo
stage for demonstration and its performance was compared
with that of a PID controller. The accuracy of an iterative
learning control approach was used as a benchmark for
comparison as well. The results showed that high precision
trajectory tracking of PEAs in real time can be achieved
using the proposed technique.

Index Terms—Nonlinear predictive control, output track-
ing, recurrent neural network (RNN).

I. INTRODUCTION

WING to the fast response and mechanical stability,
piezo actuators (PEAs) have been broadly used in high-
precision systems and applications [1], such as scanning probe
microscope [2], [3], microforming [4], and adaptive optics [5].
The tracking accuracy is critical for these applications. For
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example, high precision tracking control of PEAs is needed to
realize compliance inside the robot’s structure [6]. Also, the
performance of atomic force microscope (AFM) will be greatly
downgraded if the AFM scanner PEAs fail to track the sample
surface profile in topography imaging and/or the AFM probe-
sample interaction force cannot track the predefined excitation
force accurately in AFM mechanical characterization [7]-[9].
However, it is not trivial to achieve precision control of PEAs
in real time, especially when operated at high speed due to the
system nonlinearities, such as creep effect and hysteresis [1].
Significant efforts have been made to address this challenge.
Iterative learning control (ILC) and repetitive control are very
effective in precision output (i.e., trajectory) tracking when the
tasks are repetitive [10]-[12]. Recently, ILC algorithms aiming
for tracking varying trajectories are presented as well [8], [13],
[14]. Although high-precision trajectory control can be realized
using ILC-based approaches, they are not suitable for real-time
control of PEAs as the convergence of these approaches can
only be reached through iterations [8], [13], [14]. Real-time
output tracking (i.e., trajectory tracking without iterations) of
PEAs still remains challenging. Real-time control techniques
have been developed for output tracking of PEAs. For example,
the dynamics of a PEA was identified with a linear model
and controlled with a model predictive controller (MPC) [15].
However, as the operation frequency increases, effect of the
system nonlinearities (such as the creep effect and hysteresis)
becomes more pronounced which directly results in significantly
increased trajectory tracking error. Sliding mode control (SMC)
based on linear model of PEAs has been developed as well [16].
Compared to MPC, SMC is more robust to the modeling un-
certainties and disturbances. However, the control bandwidth
of SMC is quite limited due to the system nonlinearities [16].
Moreover, SMC can also cause the problem of chattering [17].
Therefore, real-time PEA control methods based on linear
models are limited as well, and the system nonlinearities and
uncertainties must be taken into account.

New approaches have been developed to address the con-
trol issues raised by the nonlinearities and disturbances (e.g.,
creep effect, hysteresis, and mechanical vibration). A feedback-
linearized inverse feedforward approach to control the PEAs
in the atomic force microscope has been proposed [18], where
the hysteresis and creep effects are accounted for using the
high-gain feedback control, and the mechanical vibration is
addressed using feedforward control [18]. Moreover, at higher
operation speed, an inversion model is used to improve the
accuracy. As a result, the tracking performance is significantly
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affected by the accuracy of the inversion model [18]. Based on
the physical behavior of PEAs, a lot of models are proposed
to model the hysteresis and creep effects, such as Domain wall
model, Duhem model, and Prandtl-Ishlinskii model [19]-[22].
These models can be used to obtain an inversion model of
PEAs which may help to eliminate the effects of system non-
linearities and then real-time control algorithms such as MPC,
feedback control, and SMC can be applied [23]-[25]. However,
the performances of these inversion model-based approaches
are directly affected by the modeling accuracy. Considering
the modeling uncertainty, robust control tools, such as H,, and
adaptive control are developed as well [26], [27]. However, the
control bandwidth is rather limited due to the stability issue
[26], [27].

Recently, neural networks have been proposed in output track-
ing applications of PEAs [28], [29]. For example, the feedfor-
ward neural network (FNN) has been proposed to model the
dynamics of PEAs [28], [29]. However, one issue with the FNN
is that the input to FNN is not treated as time series in the training
process although the sequence of input can affect the behaviors
of PEAs greatly [28]. Other types of neural networks like wavelet
neural network [30], neural network with radial basis [31], [32],
and recurrent neural network with residue compensation [33]
are also proposed for PEA control. In addition, predictors based
on neural networks are also proposed to estimate the nonlinear
dynamics of time-delay-free dynamic system [34]. However,
the bandwidth of the modeled dynamics is restricted to less
than 100 Hz and no efficient methods of generating the data
set for the neural network training over a large bandwidth
have been presented. In contrast to FNN, an RNN is designed
to deal with time series [35]. One advantage of the RNN is
that it can be represented using nonlinear state space models,
thus many nonlinear control tools can be then adopted [35].
Moreover, the RNN has been proved to be a universal ap-
proximator in modeling dynamical systems [36]. Therefore,
in this article, we propose an RNN-based predictive control
framework (RNN+LME) to achieve accurate output tracking
of PEAs. Specifically, an RNN is trained to accurately capture
the nonlinear dynamics of the PEA system. However, due to the
limited length of the RNN training set and available computation
resources in real applications, the PEA low frequency behaviors
may not be fully captured. Thus, a second-order linear model
embedded with an error term (LME) is proposed for modeling
the residual dynamics (i.e., low frequency dynamics) [37]. Then
anonlinear predictive controller and an unscented Kalman filter
(UKF) are designed to work with this PEA dynamic model
(i.e., the nonlinear model consisting of the RNN and LME) to
achieve precise output tracking. The proposed technique was
experimentally applied on a nano piezo stage for demonstration
and its performance was compared with that of a PID controller
and an ILC approach.

The main contribution of this article is the development of
RNN+LME predictive control framework. First, generation of
data for system identification is an open problem, effective
approaches for data generation of PEA systems have not been
reported yet. In this article, we propose an effective method

Fig. 1. Recurrent neural network.

for generating the training set data by considering both the
amplitude and frequency domains. Second, to remedy the com-
putation inefficiency in modeling low-frequency dynamics of
using RNN, LME is incorporated. Third, a practical solver
is proposed for the nonlinear predictive control based on the
gradient descent algorithm. As the RNN+LME framework does
not assume any form of the nonlinearities, the integration of
RNN and LME provides a flexible framework for solving a series
of output tracking problem.

[I. SYSTEM IDENTIFICATION
A. Recurrent Neural Network (RNN) Structure

The RNN used in this article, consisting of an input layer
(solid circles), a hidden layer (circles), and an output layer
(dashed circles), as shown in Fig. 1. u, ,, and y(,.) 5, denote the
input u(,.) and output y,y at the sampling instant k, respectively.
Tk = [Th1, Tk, .., Tk N| T is the state vector of the RNN sys-
tem. The activation functions of the hidden layer g () and output
layer h(z) are designed as g(z) = tanh(z) and h(z) =Wz + b,
respectively, where W is a 1-by-N matrix. Thus, the RNN in
Fig. 1 can be represented by the following nonlinear state-space
equation as

Ty = tanh(Wyzp + By + 31U(T)7k)
Yer)k = Waxyp + B3 (1)

where the dimensions of Wy, B,, By, W, and Bz are N x N,
Nx1, Nx1, 1 x N, and 1 x 1, respectively. Unlike the
FNN which is essentially a “nonlinear autoregressive-moving-
average with exogenous inputs” model and takes the past inputs
and outputs as inputs to the network, the RNN only needs the
current input u,.) 5 to generate the output signal [28]. Suppose
U(ts) 1s any given time series (i.e., drive voltage) and Y4 is
the corresponding output time series (i.e., displacement) of a
PEA system, the output of the RNN, Y{,.;,), subject to the input
U(ts) should equal Y(;) if the RNN can accurately model the
PEA system dynamics, i.e., [|Y{ss) — Y{(yts)|| < € forany e > 0.
Therefore, the RNN can be trained [i.e., to obtain the parameters
Wi, By, By, W, and Bj in (1)] by solving the following
optimization problem using a predesigned time series input U )
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and the corresponding PEA system output Y(;) measured.

i = ||Yus) — Y,
W],B2I7%111,1W2,Bz J(T) H (22) (rtS)H

subject to :  xpy1 = tanh(Wyizg 4 By 4 BiUps) 1)

Yires)w = Wazp + Bs
o =1[0,0,...,0/T, k=1,2,3,....L (2)

where Urs) = [Ugs), 1 Ugts) 2y - > Uges) ] Yis) = [Yies) 1
}/(ts),Za ) }/(ts),L]T and Y—(rts) = [Yv(rts),l ) Y—(rts),% R
Yirts), )%, L is the length of the time series. Next, we present
how to design Uys).

B. Training Set Construction for RNN

There are various ways to construct U(;). Here, we choose
sinusoidal signals as building blocks to form Uj,. Define
S(f,A) = A(sin(2n ft+ )+ 1),t € [0,1/f], i.e., S(f,A)
is a sinusoidal signal in one period with amplitude A and
frequency f. In practice, ¢ will be sampled, thus S(A, f) is a
time series. Then U(;,) can be written as

U s 4) (3)

(fi, Ai)e

Uis) =

where ) is a set consisting of (f;, A;) pairs, and | denotes
concatenation. Therefore, each (f;, A;) pair represents a point in
the f — Aplane. Suppose U;s) consists of N} sinusoidal signals
with f; € [0, f] and A; € [0, A]. Ideally, the optimal training
set should consist of all the (f;, A;) pairs in the wanted ranges,
however this is impractical. Here we expect to find Ny (f;, 4;)
pairs to achieve the highest modeling accuracy (i.e., a suboptimal
approach). Finding the suboptimal U ;) is equivalent to locating
N, points in the f — A plane such that any point (f;, A;) in the
plane can be represented by the nearest point ( fx, Ax) (one of
the N} points) and the distance between (f;, A;) and (f, Ax)
is minimized. The solution to selecting the Ny (f;, A;) points
can be obtained using the k-means algorithm [38].

Inpractice, we can randomly generate a large number of points
in the f — A plane to cover all the possibilities as the behaviors
of PEAs is frequency and displacement range dependent. Note
that this method of choosing Uy is not trivial in the sense that
the weights of f and A can vary. For example, if frequency is
more important for the PEA tracking tasks, we can scale the f
axis by multiplying a factor «c to f, thus the signal with frequency
¢ and amplitude 1 corresponds to (ga, 1) instead of (g, 1) in the
f — A plane. Moreover, some frequency components are better
to be avoided (such as the resonance frequency of the piezo
actuator) when designing U(;,) by removing the points with f;s
close to them, which will be explained with an example in the
experiment part.

C. Linear Model Embedded With an Error Term (LME)

It is worthwhile to note that for S(f, A), the smaller f is,
the longer the time series S(f, A) will be, e.g., fs/f sampling
points are needed to cover the entire period of this sinusoidal
signal, where f; is the sampling frequency. From (2), it can be

U(r) k

— > RNN : >

LME

Fig. 2. Block diagram of RNN+LME for modeling the PEA system.

seen that increase of the time series length leads to the increase
of the number of constraints, which implies that either a more
complex RNN is needed or the modeling accuracy will decrease.
Therefore, long time series should be avoided considering the
modeling accuracy and the computation efficiency of (2). On the
other hand, even if a lot of high frequency sinusoidal signals are
to be included in Uy, the length of U ;) will not be affected too
much. Therefore, the above method of constructing U,y may
result in that the low-frequency dynamics of PEAs cannot be
entirely captured. In addition, the drift effect of PEAs (usually
in very low frequency range) is hard to be modeled with RNN
alone. Therefore, to address this issue, we proposed to use the
following linear model embedded with an error term (LME) to
deal with the residual dynamics (i.e., the PEA dynamics not
captured by RNN) including the low-frequency dynamics and
drift (see Fig. 2)

Ni+1 = Aenie + Beuqy x + Géy, @
Ok = Ceng

where u(;) . is the input to the LME, also the RNN output (see
Fig. 2), é; = yi, — U, is the model output error with y;, the PEA
system output [37]. The error term can act as a feedback term.
The dimensions of A., B., G,and C, are 2 x 2,2 x 1,2 x 1,
and 1 x 2, respectively. Suppose the output of the RNN [with
parameters solved from (2)] is Y{;.+5) subject to the input U ),
then it is expected that the output of the LME Y(ts) will be equal
to Y(4) (i.e., the actual output of the PEA) subject to the input
Y(rts), thus we can minimize the difference ||Y(;,) — ff(ts) [| to
obtain the LME parameters. Similar to the training of the RNN,
the parameters in LME will be determined through solving the
following optimization problem with Y.,y and Y{;,)

i =Yy — Y,
2B, = e =Yieoll
subject to : M1 = Aelp + BeY(ris)kx + Gég

Viesy o1 = Celigr

Ers1 = Yooy b1 — Yius) b1

n(0) = [0,0]"

éo=0,k=0,1,--- (%)
where Y(ts) = [}A’(ts)’l,ff(ts)’z,...,ff(tS)’L]T. Before training,
Y(rts) and Yy, are known and Yy, is the same as that in (2).

D. Combine RNN and LME

Since the modeled dynamics in the RNN and the LME is
limited by the frequency range of the training set, a low pass
filter (LPF) is connected to the PEA model (i.e., RNN+LME) to
avoid instability induced by ultra-high frequency dynamics and
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Uy Ve matrix can be computed from the sampling points [39]. For the
> LPF > PEA T system model (7), the error term éj, is calculated before each
estimation and updated at each sample instant. The estimation
State Estimator steps for the UKF used in this article are as follows:
” Step 1: Initialize the parameters at k = 0
....................................... J(ﬁk (50 — Eléo
<—{LMEB—{RNNB——HPFR— g A A
............... Plant Model. ... |_ne Py = El(¢o = ¢0)(¢0 — 60)]"
Predictive Controller ¢ =0. (8)
Fig. 3. Block diagram of the proposed RNN+LME. r;, is the reference Step 2: Generate sampling points (sigma points)

signal (i.e., the desired trajectory).

disturbances. Suppose the LPF is formulated as
Br1 = APy + By
2, = OB (6)

With w) . = 21 and uy i = Y,k (1), (4), and (6) can be
combined as the following nonlinear model:

[ Bt Br
i1 = |zt | = F(op,tx) = F | x|, s
| Tk+1 Mk
A,Bk + By, 0
= tanh(Wlxk+B2+B1€’5k) + 0| éx
i Aeng + BeWhay, + BeBs G
Br
Ok = H(¢x) = [O 0 Ce] Ty (7)
Nk

where 4y, is the input to the nonlinear model. The block diagram
of the model represented by (7) is shown in Fig. 3, i.e., the “Plant
Model” in the dash box. Note that the dynamics of the LPF, such
as phase delay, is already included in (6), and thus in (7).

IIl. NONLINEAR PREDICTIVE CONTROL

The control scheme of the predictive controller based on the
above system model (7) is shown in Fig. 3.

A. Nonlinear Estimator

Since the system model is nonlinear and the states are un-
available through measurement, a state estimator—the UKF is
designed to estimate the states during the tracking process in
this article.

In the extended Kalman filter, the nonlinear dynamics func-
tion is linearized at the current point (first order linearization) in
each estimation and the conventional Kalman filter algorithms
can be implemented. However, the approximation error through
linearization may increase if the nonlinearity at the linearization
point is significant [39]. Instead, such an issue can be avoided in
the UKF which generates a series of sample points propagated
through the nonlinear dynamics function, then the covariance

K1 = [r—10k-1 + Y/ Poc19r—1 — v/ Pii]

k=1,2,3,.... ©)
Step 3: Time update

Aik—1 = [F(ie—1,uk-1), -, F(an1,6-1, Uk—1)]

) 2N+1
O = Z Wiy,

2N+1

3

D1 = [HO k1), - -

i) Xi Jk|k—1

D) K k-1 — éﬁ][%i,k\kq - éE]T + R,

s H(oN+1,kk—1)]

2N+1

Uy = Z W (1) kj1o—1- (10)

Step 4: Measurement update and calculation of the error term

2N+1
Ps,s, = Z We(D)Z, k1 = 51 Pie—1 — G317 + Ra

2N+1
Ps.s,

y Z We(d)]
=1
% = P5<f>5y P5:,151,

Ok = O + Ky — Uy )
b, = PI; _%Péy‘sy’%/kT

Xislot — Op) [Pkt — Ui )

€ =Yk~ Y-

(11)
Note that v/ Pj;_ is the square root of a matrix and can be calcu-
lated with Cholesky factorization, i.e., Pr_1 = v/Pi_1v/Pr_1 T
R, and R,, are the process and measurement noise covariance
matrices, respectively. v is a constant scalar, W,, and W, are
(2N + 1) x 1 vectors determined by the order of the system,
N, Wy, (i) is the ith element of W,. x; xjr—1 is the ith column
of matrix yyx—;. The readers are referred to [39] for how to
choose v, W,,, and W..

B. Predictive Controller

For the nonlinear predictive control, the following optimiza-
tion problem is to be solved at each sampling point and the PEA
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system drive input uy, for the next sample time can be obtained
from the solution

min 7 = (V! — ROT(V! — RY) + pu!" DT DU/
1 -1 0 ... O
o 1 -1 ... 0
D= (12)

where Uf [uk, U415+ - - ,ukJrNC,l]T, }A/f = [gk+l7 ngrz, Ceey
yk+N;L] and R/ = [Tk+]7rk+27.'.7rk+NU’...’rk+NC}%hX1
are the future inputs, predicted outputs, and the desired tra-
jectory), respectively, with N}, the prediction horizon and N,
the control horizon. Notice that the current state ¢, and the
previous input ug_; are known when solving (12). Here we
do not consider the constraints to the input for simplicity, but
they can be incorporated later. Since the system dynamics is
nonlinear, the objective function _# cannot be written in the
quadratic form as in linear model predictive control [40]. As an
example, we choose the gradient descent method to solve the
unconstrained optimization problem [i.e., (12)].

Next, we show how to analytically compute the gradient %
instead of using the numerical method as shown in (13). By
using the analytical method, it is not only more precise without
considering the increment A, but also more computationally
efficient [41]. However, the following numerical method can be
used to verify the analytic result:

oy — lim (i + A) = (upqi — A).

8uk+i A—=0 2A (13)

Let E = (Y — RNT (Y ! — R/), then the key to compute %
is to compute g—g since calculation of the derivative of the other
term is trivial. E' can be expressed as

h
E= ZEf = (Jrt1 — Tk+1)2 + (Y2 — rk+2)2
i=1

+ ot G, — TN’ = (Cenpsr — Thar)’

2 2
+ (Cenigz — rrg2)” + -+ (CeMrgny, — TheN.)-
(14)
OF .
Thus, SUF can be written as
r OF
8uk
oOF
oF B Oup 41
U7 :
oF
LOuk 4+ Ne1
[ o2 | 0B | O} OBy,
Ouy + Ouy + au t+et ?uk
OE2 OE} T 9By,
_ Oup 11 Oupyy Oupyy (15)
aEZNc + + BE%V}L
OUk 4 Ne-1 OUk 4 N1

Next, we show how to compute and the rest follows. Note
that ¢ = Bk, 71, k|7 and uk_l are known at the sampling

instant k. With (7), we have

OE? OMpe41
— =2FC,
8uk ! 8uk
0(A, B W B.B
—opyc, QA B £ BBy )
8uk
Thus dg(’;*‘ = 0. Since
0T k41 _ dtanh(Wixy, + By + B1CBy) —0 (17)
duy, Ouy,
then
OF3 042
—= =2F
8uk ZCE 8uk
A, B. B.B
_ gy, QA £ BWari 1 + BeBa) g
8uk
Then 242 = 0. Similarly
0E3? OMpe+3
—= =2F5C, -
8uk 3 8uk
B O(Aenis2 + BWhxyys + BeBs3)
8uk
0
= 2550, ByW, 22K+ (19)
auk
With /Bk;Jr] = Aﬂk + Buk, we have
OTpa2 _ dtanh(Wixpy1 + By + B1CBry)
Ouy, Ouy,
_ 8tanh(%k+17k) 6%]€+17k _ 8tanh(%k+l’k)B]C_'B
8%k+l,k a’LLk ac%k+l,k
(20)

where 2,41, = Wixpy1 + By + B1CBy.41. Therefore, gEg is

computed by (19) and (20). At the same time, the resulting = 87”‘“
% and 8/3 ’“*‘ can be used to compute 7 O] - which is
.
OE? 0 0
25 _ope, (A9 L pw, 28 (o)
Ouy, Ouy, Jug
Note that 2254 s related to 22542 and 2251 with
U Uk Uk
3£Uk+3 _ atanh(Wlkarz + By + Blcﬂk+2)
ouyg, Ouy,
O tanh(.%; 0 0
_ Otanh(Zyiok) w, 0% g e g Okt Blﬁ»l )
0Zt2,k Uy Uk

aTk+1+l

Therefore D can be calculated from the previous calcula-

tion of 2 a
Once the derivative can be computed, the gradient descent
method can be implemented with

7D 4 gom _9F

eyl
6Uf(m)

(23)
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Algorithm 1: Compute the Optimal Input.

Input: Current state ¢; and previous PEA drive input

Up_1.
Output: PEA drive input for next step u.
1m<+1
2 while m < 15 do
3 [k
4 while | <N, +k do
5 ¢ < F(¢u,ur)
6 Calculate %ﬁim, E_,=Cen —r4q and
Brs1-
7 [—1+1
j+<0
while j <N.—1 do
10 for n=j+3 to N, — 1 do
1 Calculate zlj"*' with aﬁ"*' :Aa‘)ﬁ"‘
9xk+ “k Ukt j
12 Calculate a‘#i_l with Eq. (22)
J
13 Calculate % with
J
Mitj 4 OMitjo1 Ixpp 1
3u1‘+] — e 8u:J +B.W> ¢9u/‘jr
14 Calculate a +E 41Ce 32’;’
J
15 j—j+1
o7 . IE
16 Compute f(m) using 8uk+_,-'
17 usmt grm 4 g ff)
f m
18 m<—m+1

where m is the iteration number and 0™ is the step length at
mth step. In practice, we keep m < 15 or smaller to improve the
computation efficiency. The above process can be summarized
as shown in Algorithm 1.

Remark 1: Note that Uf 5 isnormalized to be a unit vector.
To keep m < 15, one approach is to use different step lengths
at each iteration with the step length decreasing. For example,
e~ can be used to tune the step length. Other approaches such
as backtracking line search can be applied alternatively [42].

Remark 2: We use “time complexity” to measure the effi-
ciency of the algorithm, which denotes the number of operations
to run the algorithm. For example, the time complexity of the
matrix multiplication Wz is ©(2N?) (i.e., N> multiplications
and N? additions), which dominates the running time at each
iteration, thus the running time is © (4N, N.N?) for the nu-
merical method [i.e., (13)] and ©(2(N}, — N./2)N.N?) for the
proposed method. Thus the computational efficiency is reduced
by 1 — 2(Np—N:/2)N.N*

4N, N, N?
]VC ~ N h-
In sum, the proposed controller can be implemented through
the following three steps in one sample time.
Step 1: With the previous state ¢5_; and output of the PEA
Yk—1, use (8)—(11) to estimate the current state ¢y.

Step 2:  With the current state ¢ and the previous input
ug—1, call Algorithm 1 to compute the next input
uy which is the output of Algorithm 1.

= % + 4]1\\];;1 , which is up to 75% when

8

e
Nano-piezo stage

{{\ T

Nano-Drive-Controller

Fig. 4. RNN+LME experimental setup.

Step 3:  Apply the computed input uy to the system and
repeat Steps 1-3.

Remark 3: Note that the dynamics of the LPF, such as the
phase delay, will not affect the tracking performance since the
LPF dynamics has been modeled in (6) and thus considered by
the predictive controller.

IV. EXPERIMENT RESULTS AND DISCUSSION

The proposed RNN+LME was implemented on a PEA (Nano-
OP30, Mad City Labs) for demonstration. Fig. 4 shows the
experiment setup. The displacement range of OP30 is 0-30 pm.
All the signals were acquired through a data acquisition sys-
tem (NI PCIe-6353, National Instruments) which was installed
in the workstation (Intel Xeon W-2125, RAM 32 GB). The
proposed RNN+LME was designed using MATLAB Simulink
(MathWorks, Inc.). The sampling frequency was set to 10 kHz.

A. Training Set for RNN

To implement the k-means algorithm, 7000 points (blue dots
in Fig. 5(a)) were randomly generated in the f — A plane. 120
(f, A) points (red solid circles) were selected as illustrated in
Fig. 5(a). The resulting training set U,y generated by concate-
nating all the sinusoidal signals (defined by the 120 (f — A)
points as (3)) is shown in Fig. 6. As aforementioned, this method
of generating the RNN training set is flexible in the sense that
constraints can be taken into account. For example, assuming
that 1000 Hz is the resonant frequency of the PEA and the
amplitude should decrease as the frequency increases to protect
the PEA, these two constraints can be conveniently accounted
for through controlling the distributions of the blue dots (see
Fig. 5(b)) with the frequency range assumed to be 0—1.2 kHz.
Then the training set can be generated using k-means algorithm
(red dots) in Fig. 5(b).

B. Accuracy of the RNN, LME, and the State Estimator

We trained the RNN in the range of 0-330 Hz as the sampling
frequency of our physical platform is set to 10 kHz. The RNN
was generated using the training set shown in Fig. 6 (The RNN
parameters are included in the supplementary material). Then,
the RNN was tested to predict the PEA hysteresis for sinusoidal
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Fig. 6. Generated time series U, for RNN training according to the
selected (f, A) points in Fig. 5(a).

signals with different frequencies and amplitudes, see Fig. 7. The
obtained RNN can model the hysteresis accurately for signals
of high frequencies, as shown in Fig. 7(b) and (c). The modeling
error increases as the frequency goes down to 5 Hz as shown in
Fig. 7(a). This verifies the limitations of the RNN in modeling
low-frequency dynamics, and demonstrates that it is necessary
to integrate RNN and LME together for accurate PEA system
modeling.

Furthermore, to evaluate the modeling accuracy of RNN in
the time domain, the outputs of the obtained RNN model are
compared with the actual PEA outputs for different input sig-
nals. Specifically, four inputs including sinusoidal signals with
frequencies of 5, 120, and 320 Hz and a I signal shown below
were tested. To highlight the efficacy of the proposed approach,
the frequency components of these inputs were not overlapping
with that in the training set.

I(t) = [0.8 sin(275t + 1.57) 4 0.43 sin(2750¢)

+0.12sin(27120t + 1.27) + 0.3 sin (27180t 4 )] /1.3.
(24)

TABLE |
STANDARD DEVIATIONS OF MODELING ERRORS OF RNN AND RNN+LME

Signal SHz  120Hz 320Hz I(v
SD (um)/RNN 0214  0.091 0.067  0.189
SD (um)/RNN+LME  0.020  0.065 0.145  0.025

Feeding the same input U to the actual PEA system and RNN,
we obtained the outputs from the real system Y, and RNN Y;.
Thus the modeling error is ' = Y| — Y. Standard deviations of
the modeling errors E are presented in Table I. It can be seen that
the RNN modeling error increases as the frequency of the signal
decreases. The standard deviation increased about 50% for the
5 Hz signal compared to that of high frequency signals—120 and
320 Hz. The modeling results were plotted in Fig. 8, which is in
accordance with the data in Table I.

With the obtained RNN model, the unmodeled dynamics of
PEA is accounted for with the proposed LME model whose
parameters are determined through solving the optimization
problem (5). The LME model is as follows:

15288 16862)  [-0.7033
p— u
M= 00775 01252 T | Z2.1788] YO
—2.0581] _
ek
2.1707
Uk = |—0.6450 0.0548] - (25)

Similarly, the modeling accuracy of RNN+LME is evaluated
as shown in Fig. 8 and Table I. As shown in Table I, the
integration of RNN+LME has improved the modeling accuracy
significantly, especially at low frequency region. In addition,
compared to using RNN alone, RNN+LME is very effective in
removing the offset. Since the offset can be tuned to be very
small before the experiment, the errors shown in Table I are
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(b), (d), and (f), respectively.

computed with the offset being removed. Note that the modeling
error increased a little bit for 320 Hz as the high frequency
portion might be affected by LME. Nevertheless, the overall
improvement of RNN+LME over RNN is significant.

Moreover, the performance of the estimator was also tested by
comparing the actual output and the predicted output for 5 and
200 Hz sinusoidal inputs, respectively, as shown in Fig. 9. It
is clear that the state estimator proposed in this RNN+LME
framework can accurately predict the PEA output with the
prediction error less than 2%.

C. Simulation Results

To show the effect of NV}, and [V, on the tracking performance,
predictive controllers with different (N, N.)s were simulated
to track a 320 Hz sinusoidal trajectory based on the obtained
RNN model. The tracking results are shown in Fig. 10, which

Comparison of the RNN modeled PEA hysteresis (in blue) versus the experimentally measured results (in red) at the frequencies of
(a) 5 Hz, (b) 120 Hz, and (c) 320 Hz with different displacement ranges.

@ . (B) 0,05
g g
5 5 o
i) =
a2 w
o -0.05
0 0.2 0.4 0 0.2 0.4
8 Time(s) g Time(s)
c
() () 04
€6 €
2 = 0
o 4 S
i) =
Qo w -0.1
0 0.2
0 4 6 8 0 2 4 8 8
Time(ms) Time(ms)
‘ Actual Output = = = Predicted Output‘
Fig. 9. Actual output and predicted output of the estimator for

(a) 5 Hz and (c) 320 Hz sinusoidal inputs, and the corresponding
prediction errors (b) and (d), respectively.
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Fig. 10. (a) Tracking results of predictive controllers with different
(Np, N.) parameters and (b) tracking errors.

clearly shows that the tracking error decreases as Ny, and NN,
increase. Table II presents the computed tracking errors. Note
that E.x and Fyn are calculated as shown in the following:

IrOllee 7™ ()2

where r(-) and y(-) are complex vectors obtained through dis-
crete Fourier transform of the corresponding signals. As shown
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TABLE Il
TRACKING PERFORMANCE OF THE DESIGNED PREDICTIVE CONTROLLERS
WITH DIFFERENT (NN}, N.)S WHEN 200 HZ SINUSOIDAL SIGNAL WAS
USED AS THE REFERENCE TRAJECTORY IN SIMULATION

(Nw,Ne) — (8,6)  (10.8)  (15,12)
Std 0.011 0.002  5.380e-4
Ems(%) 0526 0143 0.026
Emax(%) 0948  0.196  0.046
TABLE Il

TRACKING PERFORMANCE COMPARISON OF RNN+LME,
RNN, PID, AND MIIFC

Ref. Error RNN+LME RNN PID MIIFC
Eims (%) 0.89 1.93 0.20 1.92
S5Hz
Enmax(%) 0.47 1.26 0.10 1.05
30Hz Eins (%) 1.27 3.13 2.69 2.01
Emax(%) 0.39 1.36 2.29 1.21
3 X . .
100 Hz Eims (%) 2.32 4.00 9.19 1.81
Emax(%) 1.74 2.89 7.93 1.18
E, 4 .84 19.2 1.
200Hz rms (%) 7.48 9.8 9.29 69
Emax(%) 6.31 8.42  16.61 1.11
r Ems (%) 1.82 2.11 4.81 2.23
Enmax(%) 0.69 1.08 3.30 1.16
. Ems (%) 2.38 3.49 4.07 1.50
stair
Enax(%) 1.00 2.01 0.35 1.19

in Table II, the tracking error of the predictive controller de-
creased more than 70% by increasing the prediction and control
horizons from (8, 6) to (10, 8). On the other hand, large N}, and
N, imply that much higher computation power is needed. In the
experiment part, we chose (8, 6) considering the speed of the
hardware thus a downgrade of the tracking performance of the
predictive controller was expected.

D. Tracking Performance Comparison

Both LPFs in Fig. 3 were chosen as fourth-order Butterworth
LPFs with the cutoff frequency of 1.5 kHz. Five trajectories—
sinusoidal signals with frequencies of 5, 30, 100, and 200 Hz, the
aforementioned I' [see (24)], and a stair-case signal were tracked.
Apart from the proposed RNN+LME, three other methods were
applied. First, to verify the necessity of LME in the proposed
approach, we designed the predictive controller without LME
(called “RNN” in the rest). The second method is PID which has
been popular in PEA control. Moreover, since ILC proved to be
very accurate in output tracking through repetitively performing
the same task, one ILC-based approach—e.g., modeling-free
inversion-based iterative feedforward control (MIIFC) [12], was
chosen for comparison as well. Although it is unfair to com-
pare the proposed real-time control framework with the offline
controlle—MIIFC, the tracking performance of MIIFC was
used as a benchmark to demonstrate that the proposed real-time
control can achieve similar (or even better) control accuracy
when compared to an offline controller.

The calculated tracking errors are shown in Table III and the
comparisons in time domain are presented in Fig. 11, where the

proposed method RNN+LME are compared with RNN, PID,
and MIIFC, respectively.

RNN+LME versus RNN: As seen in Table III, the tracking
errors for all trajectories of RNN+LME are lower than that of
RNN, which indicates that adding LME could indeed improve
the tracking performance. In particular, RNN+LME decreased
the tracking errors E,g and Ei,, by at least 59.4% and 71.3%,
respectively for the 5 and 30 Hz sinusoidal trajectories, the im-
provements of which were much more significant than the other
cases. This is because the tracking error caused by unmodeled
low-frequency dynamics was accounted for by LME. On the
other hand, the improvement for high frequency signal tracking
(e.g., 200 Hz signal) is not so obvious implying that LME does
not contribute to high-frequency modeling. In Fig. 11(d), the
tracking errors of RNN+LME and RNN have similar trends
showing that the tracking error for high-frequency dynamics was
not removed through the LME. Therefore, the issue of RNN
for capturing low-frequency dynamics can be solved through
incorporating the LME, in which the error term can act as a
feedback term.

RNN+LME versus PID: RNN+LME outperforms PID for
almost all the trajectories as can be seen in Table IIT and Fig. 11
except for 5 Hz sinusoidal signal. PID is relatively effective for
tracking low frequency trajectories such as the 30 Hz sinusoidal
signal, however, RNN+LME could further decrease the F, s and
Fnax by about 52.8% and 83.0% compared to PID, respectively.
When tracking high frequency signal, such as the 200~Hz
sinusoidal trajectory, RNN+LME decreased the Eiy,s and Fiyax
errors by at least 60.0% with respect to the performance of PID,
respectively. Fig. 11 also confirms the superiority of RNN+LME
over PID.

RNN+LME versus MIIFC: MIIFC has proven to achieve
accurate output tracking by repeating the same tasks several
times [12]. In this experiment, the MIIFC tracking results of
the 8th iteration, where MIIFC has converged, were chosen
for comparison. The data in Table III show that RNN+LME
was comparable (or even better for some cases) with MIIFC
when the frequency of the trajectory was not too high, which
can also be seen in Fig. 11. When tracking the 30 Hz sinusoidal
signal, the tracking errors E;ns and Ep,,x of RNN+LME were
about 36.8% and 67.8% less than that of MIIFC, but increased
about 28.2% and 47.5% for the 100 Hz case. When tracking the
stair-case signal, it seems that RNN+LME is not as good as that
of MIIFC as shown in Fig. 11. This is because the frequency
components of the stair-case trajectory exceed the modeling
bandwidth of RNN+LME. However, since the high frequency
part only accounts for a small portion of the entire trajectory,
the tracking result is actually close to that of MIIFC as shown in
Table III. Because the low-frequency dynamics is dominated
in I', it is reasonable that RNN+LME tracked I' better than
MIIFC. Considering the PEA high frequency dynamics has been
modeled by the RNN accurately as demonstrated by Figs. 7, 8,
and Table I, the main reason of the tracking errors increase for
high frequency trajectories is that the chosen N;, and N, were
too small. By increasing N;, and N, the tracking accuracy can
be improved, which has been verified by the simulation results
(Fig. 10). The factor restricting using large N}, and N, is the
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Fig. 11.

Comparison of the tracking results of RNN+LME, RNN, PID, and MIIFC for (a) 100 Hz sinusoidal trajectory, (b) I', and (c) stair-case

trajectory. (b), (e), and (f) are the corresponding tracking errors, respectively.

computation burden. As Algorithm 1 shows that much of the
computations lie in the matrix multiplications, one solution is to
implement the algorithm in faster hardware platforms such as
platform based on FPGA.

In summary, the experiment results demonstrated the effi-
cacy of the proposed method. Applications in which motion
control of PEAs is required will benefit significantly from the
improvement on the tracking accuracy from the proposed frame-
work. For example, PEAs are used to generate friction force in
human-robot interaction [6]. Precise force tracking control of
PEAs is needed for the desired damping behaviors. Another
important application is AFM as the AFM scanner motion is
completely driven by the PEAs [7], [8], [43]. As the sample
topography is often irregular in amplitude and frequency, the
nonlinear dynamics of the PEAs will be excited during AFM
topography scanning, especially at high speed. In such case,
the PID feedback controller widely used in commercial AFMs
becomes inadequate. In addition, in AFM material mechanical
characterization, the AFM probe-sample interaction force needs
to track the predesigned excitation force [9], [44], otherwise, the
samples can be damaged if the force is not precisely controlled,
especially for delicate samples (e.g., living biological materi-
als) [45], [46]. Although ILC-based approaches can achieve
high tracking accuracy, iterations should be avoided on deli-
cate samples. Therefore, the tracking accuracy achieved by the
proposed technique becomes essential for AFM-related appli-
cations. Furthermore, note that the proposed method does not
assume the exact form of nonlinearities, it can be conveniently
employed to other nonlinear systems, i.e., not limited to PEA
systems.

V. CONCLUSION

In this article, we proposed an RNN-based predictive control
approach (RNN+LME) to achieve accurate real-time trajectory
tracking of PEAs. An RNN cascaded with an LME was proposed
to model the nonlinear dynamics of the PEAs, and the UKF
was developed to estimate the states of the nonlinear model.
A nonlinear predictive controller, was designed to work with
the PEA model, and the optimal input from the controller to
the PEA was calculated by using the gradient descent method
to solve the optimization problem and the analytical method to
compute the gradient was derived as well. Implementation of the
proposed approach on a PEA showed that it can achieve high
tracking accuracy when the desired trajectory spanned in a broad
frequency range.

For future work, the modeling bandwidth needs to be further
enlarged with other types of RNNs. Also, we will work on miti-
gating the effect of the mechanical vibrations through modeling
the vibration dynamics or introducing adaptive control laws to
reject the disturbances. Finally, how the reference signal will
affect the tracking error quantitatively will be investigated.
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