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Abstract— Precise real-time trajectory tracking of piezo ac-
tuators (PEAs) is essential to high-precision systems and ap-
plications. However, most current real-time control techniques
for PEAs are based on linear models and suffer significantly
from modeling uncertainty. In this paper, we propose a network
(RNN)-based predictive control technique for real-time PEA
trajectory tracking. Specifically, a RNN is trained to model the
nonlinear dynamics of the PEA system. Considering the length
of the RNN training set is limited, a second order linear model
embedded with an error term (LME) is proposed to model
the PEA low frequency dynamics. Moreover, an unscented
Kalman filter is designed to estimate the states of the nonlinear
model. Then the nonlinear model consisting of the RNN and
the LME are used for nonlinear predictive control based on
gradient descent algorithm. To solve the optimization problem
in the nonlinear predictive control, a method for analytically
calculating the gradient of the cost function is developed as
well. To verify the effectiveness of the proposed approach,
experiments were conducted on a nano piezo actuator. The
results demonstrated that the proposed method can achieve
high precision output tracking of PEAs in real time.

I. INTRODUCTION

Owing to its fast response and mechanical stability, piezo

actuators (PEAs) have been broadly used in high-precision

systems and applications, such as atomic force microscope

[1], [2], microforming [3] and adaptive optics [4]. However,

it is the nonlinearities such as creep effect, hysteresis and

mechanical vibration that make it difficult to realize precision

control of PEAs in real time, especially when operated at

high speed. Various control efforts have been made to solve

this issue. For repetitive tasks, iterative learning control (ILC)

and repetitive control are very effective in precision output

(i.e., trajectory) tracking [5]–[7]. Recently, ILC algorithms

aiming for tracking varying trajectories are proposed [8]–

[10]. Although the ILC approaches can realize high precision

output tracking, they are not capable of achieving real-time

trajectory tracking of PEAs as the convergence of these

approaches can only be reached through iterations during

the applications [8], [9], [11]. Real-time output tracking (i.e.,

trajectory tracking without iterations), of PEAs still remains

challenging.

Real-time control techniques have been applied for output

tracking of PEAs. In [12], the dynamics of a PEA was

identified with linear model and controlled with model

predictive control (MPC). However, as the frequency of the
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trajectories to be tracked increases, the effect of nonlineari-

ties (creep effect and hysteresis) becomes more pronounced

which directly results in significant increase of the tracking

error. Also, sliding mode control (SMC) based on linear

model of PEAs has been developed [13]. Compared to

MPC, SMC is more robust to the modeling uncertainties and

disturbances. However, the system nonlinearities affect the

control bandwidth of SMC significantly [13]. Moreover, the

SMC induces the problem of chattering [14].

To improve the tracking performance, the nonlinearities

and disturbances (i.e., creep effect, hysteresis and mechanical

vibration) have been taken into account. For instance, based

on the physical behavior of PEAs, a lot of models are

proposed to model the hysteresis and creep effects, such as

Domain wall model, Duhem model, and Prandtl-Ishlinskii

model [15]–[17]. These models can be used to obtain the

inversion model of PEAs which may help to remove the

nonlinearities and then control algorithms such as MPC,

feedback control and SMC can be applied [18]–[20]. Again,

the performances of these inversion model-based approaches

are directly affected by the modeling accuracy. Considering

the modeling uncertainty, robust control tools such as H∞

and adaptive control are developed to control the PEAs [21],

[22]. However, the control bandwidth is rather limited due

to the stability problem [21], [22].

Recently, neural network has been proposed in output

tracking applications of PEAs [23]. In [23], feedforward

neural network (FNN) is proposed to model the dynamics

of PEAs. However, the problem with FNN is that the input

to FNN is not treated as time series in the training process

although the sequence of input can affect the behavior of

PEAs greatly [23]. In contrast to FNN, recurrent neural

network (RNN) is designed to deal with time series and

was proved to be a universal approximator in modeling

dynamical systems [24]. Therefore, in this paper, we propose

a RNN-based approach to achieve accurate output tracking of

PEAs. Specifically, a RNN is trained to accurately capture the

nonlinear dynamics of the PEA system. However, due to the

limited length of the RNN training set in real applications,

the PEA low frequency behaviors may not be fully captured.

Thus, a second order linear model embedded with an error

term (LME) is proposed for modeling the residual dynamics

(i.e., low frequency dynamics) [25]. Then a nonlinear predic-

tive controller and an unscented Kalman filter are designed to

work with this PEA dynamic model to achieve precise output

tracking. The proposed control technique was implemented

on a nano piezo positioning stage for experimental validation.
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II. SYSTEM IDENTIFICATION

A. Recurrent Neural Network (RNN) Structure

The RNN used in this study, consisting of an input layer

(solid circles), a hidden layer (circles), and an output layer

(dashed circles), is shown in Fig. 1. u(r),k and y(r),k denote

the input u(r) and output y(r) at the sampling instant k,

respectively. xk = [xk,1,xk,2, · · · ,xk,N ]
T is the state vector of

the RNN system. The activation functions of the hidden layer

g(x) and output layer h(x) are designed as g(x) = tanh(x)
and h(x) =Wx+b, respectively, where W is a 1-by-N matrix.

Thus, the RNN in Fig. 1 can be represented by the following

nonlinear state space equation as

xk+1 = tanh(W1xk +B2 +B1u(r),k)

y(r),k =W2xk +B3

, (1)

where the dimensions of W1, B2, B1, W2 and B3 are N×N,

N × 1, N × 1, 1×N and 1× 1, respectively. Unlike FNN

which is essentially a “nonlinear autoregressive-moving-

average with exogenous inputs” model and takes the past

inputs and outputs as input to the network, RNN only needs

the current input u(r),k to generate output signal [23]. Suppose

U(ts) is any given time series (i.e., drive voltage) and Y(ts) is

the corresponding output time series (i.e., displacement) of

a PEA system, the output of the RNN Y(rts) subject to input

U(ts) should be equal to Y(ts) if the RNN can accurately model

the PEA system dynamics, i.e., ||Y(ts)−Y(rts)|| < ε for any

ε > 0. Therefore, the RNN can be trained (i.e., obtaining the

parameters W1, B2, B1, W2 and B3 in Eq. (1)) by solving

the following optimization problem using a pre-designed

time series input U(ts) and the measured corresponding PEA

system output Y(ts).

min
W1,B2,B1,W2,B3

J(r) = ||Y(ts)−Y(rts)||

subject to : xk+1 = tanh(W1xk +B2 +B1U(ts),k)

Y(rts),k =W2xk +B3

x0 = [0,0, · · · ,0]T ,k = 1,2,3, · · · ,L

, (2)

where U(ts) = [U(ts),1,U(ts),2, · · · ,U(ts),L]
T ,

Y(ts) = [Y(ts),1,Y(ts),2, · · · ,Y(ts),L]T and Y(rts) =
[Y(rts),1,Y(rts),2, · · · ,Y(rts),L]

T . Next, we present how to

design U(ts).

B. Construction of Training Set for RNN

There are various ways to construct U(ts). Here, we choose

sinusoidal signals as building blocks to form U(ts). Define

S( f ,A) = A(sin(2π f t + 3π
2
)+1), t ∈ [0, 1/ f ], i.e., S( f , A) is

a sinusoidal signal with amplitude A and frequency f in a

period. In practice, t will be sampled, thus S(A, f ) is a time

series. Then U(ts) can be written as

U(ts) =
∪

( fi, Ai)∈Ω

S( fi, Ai),

where Ω is a set consisting of ( fi, Ai) pairs, and
∪

denotes

concatenation. Therefore, each ( fi, Ai) pair represents a point

in the f −A plane. Suppose U(ts) consists of N1 sinusoidal

z−1
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z−1
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Fig. 1. Recurrent neural network

signals with fi ∈ [0, f̄ ] and Ai ∈ [0, Ā]. Obviously, the optimal

training set should consist of all the ( fi, Ai) pairs in the

given ranges, which is unpractical. Here we expect to find

N1 ( fi, Ai) pairs to achieve the highest modeling accuracy

(i.e., a suboptimal approach). Finding the suboptimal U(ts)

is equivalent to locating N1 points in the f −A plane such

that any point ( f j, A j) in the plane can be represented by

the nearest point ( fk, Ak) (one of the N1 points) and the

distance between ( f j, A j) and ( fk, Ak) is minimized. The

solution to selecting the N1 ( fi, Ai) points can be obtained

using k-means algorithm [26]. In practice, we can randomly

generate enough number of points in the f −A plane to cover

all the possibilities as the behavior of PEAs is frequency

and displacement range dependent. Note that this method

of choosing U(ts) is not trivial in the sense that the weight

of f and A can vary. For example, if frequency is more

important for the PEA output tracking tasks, we can scale

the f axis by multiplying a factor 10 to f , thus the signal

with frequency 10 and amplitude 1 corresponds to (100, 1)
instead of (10, 1) in the f − A plane. Moreover, some

frequency components are better to be avoided (such as the

resonance frequency of the piezo actuator) when designing

U(ts) by removing the points with fis close to them.

C. Linear Model Embedded with an Error Term (LME)

It is worth to note that for S( f , A), the smaller f is,

the longer the time series S( f , A) will be. For example,

if f = 1Hz and the sampling frequency is 10kHz, the length

of time series is 10,000 to cover the entire period of this

sinusoidal signal. From Eq. (2), it can be seen that increase

of the length of time series leads to increase of the number

of constrains, which implies that either more complex RNN

is needed or the modeling accuracy will decrease. Therefore,

the long time series should be avoided considering the

modeling accuracy and the computation efficiency of Eq. (2).

On the other hand, even if a lot of high frequency sinusoidal

signals are to be included in U(ts), the length of U(ts) will

not be affected too much. Therefore, the above method

of constructing U(ts) may lead to that the low frequency

dynamics of PEAs cannot be entirely captured. In addition,

the drift effect of PEAs (usually in very low frequency range)
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is hard to be modeled with RNN alone. Therefore, to address

the aforementioned issues, we proposed to use the following

linear model embedded with an error term (LME) to capture

the residual dynamics (i.e., the dynamics not captured by

RNN) including the low frequency dynamics and drift.

ηk+1 = Aeηk +Beu(l),k +Gêk

ŷk =Ceηk

, (3)

where u(l),k is the input to the LME, êk = yk − ŷk is the

model output error with yk the PEA system output [25]. The

dimensions of Ae, Be, G and Ce are 2×2, 2×1, 2×1 and 1×
2, respectively. Suppose the output of RNN (with parameters

from the solution of Eq. (2)) is Y(rts) subject to the input

U(ts) as shown in Fig. 2, then it is expected that the output

of LME Ŷ(ts) will be very close to Y(ts) with the input Y(rts).

Similar to the training of RNN, parameters in this LME will

be determined through solving the following optimization

problem with Y(rts) and Y(ts).

min
Ae,Be,G,Ce

J1 = ||Y(ts)− Ŷ(ts)||

subject to : ηk+1 = Aeηk +BeY(rts),k +Gêk

Ŷ(ts),k+1 =Ceηk+1

êk+1 = Y(ts),k+1− Ŷ(ts),k+1

η(0) = [0,0]T

ê0 = 0,k = 0,1, · · ·

, (4)

where Ŷ(ts) = [Ŷ(ts),1,Ŷ(ts),2, · · · ,Ŷ(ts),L]T . Before training, Y(rts)

and Y(ts) are known and Y(ts) is the same as that in Eq. (2).

D. Combine RNN and LME

Since the modeled dynamics in RNN and LME is limited

by the frequency range of the training set, a low pass filter

(LPF) is cascaded to the PEA model (i.e., RNN+LME) to

avoid instability induced by ultra-high frequency dynamics.

Suppose the LPF is formulated as

βk+1 = Āβk + B̄uk

zk = C̄βk

. (5)

With u(r),k = zk and u(l),k = y(r),k, Eqs. (1), (3), and (5) can

be combined as the following nonlinear model,

φk+1 =





βk+1

xk+1

ηk+1



= F(φk,uk) = F(





βk

xk

ηk



 ,uk)

=





Āβk + B̄uk

tanh(W1xk +B2 +B1C̄βk)
Aeηk +BeW2xk +BeB3



+





0

0

G



 êk

ŷk =H(φk) =
[

0 0 Ce

]





βk

xk

ηk





, (6)

where uk is the input to the nonlinear model. The block

diagram of the model represented by Eq. (6) is shown in

Fig. 3, i.e., the “Plant Model” in the dash box.

RNN LME

u(r),k y(r),k ŷk

Fig. 2. Use RNN and LME to model the system dynamics

III. NONLINEAR PREDICTIVE CONTROL

The control scheme of the predictive controller based on

the above system model (Eq. (6)) is shown in Fig. 3. Since

the system model is nonlinear and the states are unavailable

through measurement, a state estimator is designed to esti-

mate the states during the tracking process. In this work,

we choose unscented Kalman filter (UKF) over extended

Kalman filter (EKF).

A. Nonlinear Estimator

In EKF, the nonlinear dynamics function is linearized

at the current point (first order linearization) in each

estimation and the conventional Kalman filter algorithms

can be implemented. However, the approximation error

through linearization may increase as the nonlinearity at the

linearization point is severe. Instead, such an issue can be

avoided in UKF as UKF generates a series of sample points

which will be propagated through the nonlinear dynamics

function, then the covariance matrix can be computed from

the sampling points [27]. For the system model Eq. (6),

the error term êk is calculated before each estimation and

updated at each sample instant. The estimation steps for the

UKF used in this study are as follows:

Step 1: Initialize the parameters at k = 0

φ̂0 =E[φ0]

P0 =E[(φ0− φ̂0)(φ0− φ̂0)]
T

ê−0 =0

(7)

Step 2: Generate sampling points (sigma points):

χk−1 =[φ̂k−1 φ̂k−1 + γ
√

Pk−1 φ̂k−1− γ
√

Pk−1]

k =1,2,3, · · ·
(8)

State Estimator

Plant

(LPF+PEA system)

LME RNN LPF

Predictive Controller

uk

φk

yk

rk
Plant Model

Fig. 3. Block diagram of the controller
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Step 3: Time update:

χk|k−1 =[F(χ1,k−1,uk−1), · · · ,F(χ2N+1,k−1,uk−1)]

φ̂−k =
2N+1

∑
i=1

Wm(i)χi,k|k−1

P−k =
2N+1

∑
i=1

Wc(i)[χi,k|k−1− φ̂−k ][χi,k|k−1− φ̂−k ]T +Rv

Yk|k−1 =[H(χ1,k|k−1), · · · ,H(χ2N+1,k|k−1)]

ŷ−k =
2N+1

∑
i=1

Wm(i)Yi,k|k−1

(9)

Step 4: Measurement update and calculation of the error

term:

Pδyδy
=

2N+1

∑
i=1

Wc(i)[Yi,k|k−1− ŷ−k ][Yi,k|k−1− ŷ−k ]
T +Rn

Pδφ δy
=

2N+1

∑
i=1

Wc(i)[χi,k|k−1− φ̂−k ][Yi,k|k−1− ŷ−k ]

Kk =Pδφ δy
P−1

δyδy

φ̂k =φ̂−k +Kk(yk− ŷ−k )

Pk =P−k −KkPδyδy
K T

k

ê−k =yk− ŷ−k

(10)

Note that
√

Pk−1 is the square root of a matrix and

can be calculated with Cholesky factorization, i.e., Pk−1 =√
Pk−1

√
Pk−1

T
. Rv and Rn are the process and measurement

noise covariance matrices, respectively. γ is a constant scalar,

Wm and Wc are (2N+1)×1 vectors determined by the order

of the system, N, Wm(i) is the ith element of Wm. χi,k|k−1 is

the ith column of matrix χk|k−1. The readers are referred to

[27] for how to choose γ , Wm and Wc.

B. Predictive Controller

For the nonlinear predictive control, the following opti-

mization problem is to be solved and the input uk for the

next sample time can be obtained from the solution.

min
U

J = (Ŷ f −R f )T (Ŷ f −R f )+ρU f T
DT DU f

D =











1 −1 0 . . . 0

0 1 −1 . . . 0
...

...
...

. . .
...

0 0 0 0 0











(11)

where U f = [uk,uk+1, · · · ,uk+Nc−1]
T ,

Ŷ f = [ŷk+1, ŷk+2, · · · , ŷk+Nh
]T and R f =

[rk+1,rk+2, · · · ,rk+Nc
, · · · ,rk+Nc

]TNh×1 are the future inputs,

predicted outputs, and the reference (i.e., desired trajectory),

respectively, with Nh the prediction horizon and Nc the

control horizon. Notice that the current state φk and the

previous input uk−1 are known when solving Eq. (11).

Here we do not consider the constrains to the input for

simplicity, but they can be incorporated later. Since the

system dynamics is nonlinear, the objective function J
cannot be written in the quadratic form as linear model

predictive control. As an example, we choose gradient

descent method to solve the unconstrained optimization

problem (i.e., Eq. (11)).

Next, we show how to analytically compute the gradient
∂J
∂U

. By using the analytical method, it is not only more

precise without considering the increment ∆, but also more

computationally efficient.

Let E = (Ŷ f −R f )T (Ŷ f −R f ), then the key to compute
∂J
∂U

is to compute ∂E
∂U

since calculation of the derivative of

the other term is trivial. E can be expressed as

E =
Nh

∑
i=1

E2
i = (ŷk+1− rk+1)

2 +(ŷk+2− rk+2)
2 + · · ·

+(ŷk+Nh
− rk+Nc

)2 = (Ceηk+1− rk+1)
2

+(Ceηk+2− rk+2)
2 + · · ·+(Ceηk+Nh

− rk+Nc
)2

. (12)

Thus, ∂E
∂U f can be written as

∂E

∂U f
=













∂E
∂uk
∂E

∂uk+1

...
∂E

∂uk+Nc−1













=



















∂E2
1

∂uk
+

∂E2
2

∂uk
+

∂E2
3

∂uk
+ · · ·+

∂E2
Nh

∂uk

∂E2
2

∂uk+1
+

∂E2
3

∂uk+1
+ · · ·+

∂E2
Nh

∂uk+1

...

∂E2
Nc

∂uk+Nc−1
+ · · ·+

∂E2
Nh

∂uk+Nc−1



















.

(13)

Next, we show how to compute ∂E
∂uk

and the rest follows.

Note that φk = [βk,xk,ηk]
T and uk−1 are known. With Eq.

(6), we have

∂E2
1

∂uk

= 2E1Ce

∂ηk+1

∂uk

= 2E1Ce

∂ (Aeηk +BeW2xk +BeB3)

∂uk

= 0.

(14)

Thus
∂ηk+1

∂uk
= 0. Since

∂xk+1

∂uk

=
∂ tanh(W1xk +B2 +B1C̄βk)

∂uk

= 0, (15)

then

∂E2
2

∂uk

=2E2Ce

∂ηk+2

∂uk

= 2E2Ce

∂ (Aeηk+1 +BeW2xk+1 +BeB3)

∂uk

=0.
(16)

Then
∂ηk+2

∂uk
= 0. Similarly,

∂E2
3

∂uk

=2E3Ce

∂ηk+3

∂uk

= 2E3Ce

∂ (Aeηk+2 +BeW2xk+2 +BeB3)

∂uk

=2E3CeBeW2
∂xk+2

∂uk

.

(17)

With βk+1 = Āβk + B̄uk, we have

∂xk+2

∂uk

=
∂ tanh(W1xk+1 +B2 +B1C̄βk+1)

∂uk

=
∂ tanh(Xk+1,k)

∂Xk+1,k

∂Xk+1,k

∂uk

=
∂ tanh(Xk+1,k)

∂Xk+1,k
B1C̄B̄,

(18)

where Xk+1,k = W1xk+1 +B2 +B1C̄βk+1. Therefore,
∂E2

3

∂uk
is

computed with Eqs.(17) and (18). At the same time, the
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resulting
∂ηk+3

∂uk
,

∂xk+2

∂uk
and

∂βk+1

∂uk
can be used to compute

∂E2
4

∂uk
which is

∂E2
4

∂uk

= 2E4Ce(Ae

∂ηk+3

∂uk

+BeW2
∂xk+3

∂uk

). (19)

Note that
∂xk+3

∂uk
is related to

∂xk+2

∂uk
and

∂βk+1

∂uk
with

∂xk+3

∂uk

=
∂ tanh(W1xk+2 +B2 +B1C̄βk+2)

∂uk

=
∂ tanh(Xk+2,k)

∂Xk+2,k
·W1

∂xk+2

∂uk

·B1C̄Ā
∂βk+1

∂uk

.

(20)

Therefore,
∂xk+i+1

∂uk
can be calculated from the previous cal-

culation of
∂xk+i

∂uk
.

Once the derivative can be computed, the gradient descent

method can be implemented with

U f (m+1)←U f (m)
+δ (m) ∂J

∂U f (m)
, (21)

where m is the iteration number and δ m is the step length at

mth step. In practice, we keep m < 15 or smaller to improve

the computation efficiency.

IV. EXPERIMENT RESULTS AND DISCUSSION

For experimental validation, a PEA (Nano-OP30, Mad

City Labs) was controlled with the proposed method to track

given trajectories and the performance was compared with

that of a PID controller. The experiment setup is shown

in Fig. 4. All the signals were collected and generated

through a data acquisition system (NI PCIe-6353, National

Instruments) which was installed in the workstation (Intel

Xeon W-2125, RAM 32GB). The controller was designed

using MATLAB Simulink (MathWorks, Inc.).

The sampling frequency was chosen as 10kHz. A second

order LPF with cutoff frequency of 1kHz was used. A 20th

order RNN was chosen to model the system. To generate

the training set for RNN, we set the frequency range to 0-

400Hz and the amplitude range to 0-3.5µm, thus 100 ( fi,Ai)
pairs were used to construct U(ts). Note that the chosen

amplitude range was about 45% of the total displacement

range of this PEA, at which the nonlinear hysteresis effect

was quite significant—to demonstrate the efficacy of the

proposed approach in dealing with PEA nonlinear dynamics.

The generated training set is shown in Fig. 5.

The proposed RNN-based predictive control (RNNPC)

was then applied on the PEA to track given trajectories which

included sinusoidal trajectories with frequencies of 30Hz,

100Hz, 200Hz, and a Γ signal as below.

Γ(t) = [0.8sin(2π5t +1.5π)+0.43sin(2π50t)+

0.12sin(2π120t +1.2π)+0.3sin(2π180t +π)]/1.3+1.2.
(22)

The parameters for the predictive controller were Nh = 8 and

Nc = 6. The tracking errors Emax and Erms were computed

as did in [7].

The tracking performances of RNNPC and PID are com-

pared in Table I. As shown in Table I, the proposed method

Nano-piezo stage

BNC

Nano-Drive Controller

Workstation with DAQ

Fig. 4. Experimental setup
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Fig. 5. Designed input U(ts) for training RNN.

reduced the tracking error including both Erms and Emax by

at least 50% for all trajectories tracked. Specifically, when

tracking low frequency trajectories (30Hz, 100Hz and Γ), the

tracking errors of the proposed approach are mostly less than

2%, which implies that the proposed system identification

method—RNN+LME can precisely model the nonlinear PEA

system. The tracking results in time domain for 100Hz

sinusoidal signal and Γ are shown in Fig. 6, which again

verified the effectiveness of the proposed method. The error

increased when tracking high frequency trajectory: Erms and

Emax were both more than 6% when tracking the 200Hz

desired trajectory, but were still 8% though (see Table I)

much less than that of PID results. This downgrade of

performance when tracking higher frequency trajectories is

caused by the limited prediction and control horizon (Nh = 8

and Nc = 6) chosen in the predictive controller. The tracking

accuracy can be greatly improved by using bigger Nh and

Nc, however, that will increase the computation burden

greatly. Therefore, to improve the tracking accuracy at higher

frequency range, faster hardware such as field-programmable

gate array (FPGA), should be used. Overall, the tracking

accuracy of RNNPC, as a real-time control approach is

satisfying.
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TABLE I

TRACKING PERFORMANCE COMPARISON OF PID AND RNNPC WHEN

TRACKING DIFFERENT TRAJECTORIES.

Refs. 30Hz 100Hz 200Hz Γ

Error(%) Erms Emax Erms Emax Erms Emax Erms Emax

RNNPC 0.39 1.27 1.74 2.32 6.31 7.48 0.69 1.82

PID 2.29 2.69 7.93 9.19 16.61 19.29 3.30 4.81
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Fig. 6. (a) comparison of the tracking results for 100Hz sinusoidal signal
using PID and RNNPC, (b)the tracking error, (c) comparison of the tracking
results for Γ signal using PID and RNNPC, (d) the tracking error,

V. CONCLUSION

In this paper, we proposed a RNN-based predictive control

(RNNPC) approach to achieve accurate real-time trajectory

tracking of PEAs. Implementation of RNNPC to a PEA

showed that the proposed method can achieve high tracking

accuracy when the desired trajectory spanned over a broad

frequency range. In addition, anything system which can be

modeled by the RNN can be controlled with the proposed

method.
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