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Recurrent-neural-network-based Predictive Control of Piezo Actuators
for Precision Trajectory Tracking

Shengwen Xie! and Juan Ren':

Abstract— Precise real-time trajectory tracking of piezo ac-
tuators (PEAs) is essential to high-precision systems and ap-
plications. However, most current real-time control techniques
for PEAs are based on linear models and suffer significantly
from modeling uncertainty. In this paper, we propose a network
(RNN)-based predictive control technique for real-time PEA
trajectory tracking. Specifically, a RNN is trained to model the
nonlinear dynamics of the PEA system. Considering the length
of the RNN training set is limited, a second order linear model
embedded with an error term (LME) is proposed to model
the PEA low frequency dynamics. Moreover, an unscented
Kalman filter is designed to estimate the states of the nonlinear
model. Then the nonlinear model consisting of the RNN and
the LME are used for nonlinear predictive control based on
gradient descent algorithm. To solve the optimization problem
in the nonlinear predictive control, a method for analytically
calculating the gradient of the cost function is developed as
well. To verify the effectiveness of the proposed approach,
experiments were conducted on a nano piezo actuator. The
results demonstrated that the proposed method can achieve
high precision output tracking of PEAs in real time.

I. INTRODUCTION

Owing to its fast response and mechanical stability, piezo
actuators (PEAs) have been broadly used in high-precision
systems and applications, such as atomic force microscope
[1], [2], microforming [3] and adaptive optics [4]. However,
it is the nonlinearities such as creep effect, hysteresis and
mechanical vibration that make it difficult to realize precision
control of PEAs in real time, especially when operated at
high speed. Various control efforts have been made to solve
this issue. For repetitive tasks, iterative learning control (ILC)
and repetitive control are very effective in precision output
(i.e., trajectory) tracking [S]-[7]. Recently, ILC algorithms
aiming for tracking varying trajectories are proposed [8]-
[10]. Although the ILC approaches can realize high precision
output tracking, they are not capable of achieving real-time
trajectory tracking of PEAs as the convergence of these
approaches can only be reached through iterations during
the applications [8], [9], [11]. Real-time output tracking (i.e.,
trajectory tracking without iterations), of PEAs still remains
challenging.

Real-time control techniques have been applied for output
tracking of PEAs. In [12], the dynamics of a PEA was
identified with linear model and controlled with model
predictive control (MPC). However, as the frequency of the

trajectories to be tracked increases, the effect of nonlineari-
ties (creep effect and hysteresis) becomes more pronounced
which directly results in significant increase of the tracking
error. Also, sliding mode control (SMC) based on linear
model of PEAs has been developed [13]. Compared to
MPC, SMC is more robust to the modeling uncertainties and
disturbances. However, the system nonlinearities affect the
control bandwidth of SMC significantly [13]. Moreover, the
SMC induces the problem of chattering [14].

To improve the tracking performance, the nonlinearities
and disturbances (i.e., creep effect, hysteresis and mechanical
vibration) have been taken into account. For instance, based
on the physical behavior of PEAs, a lot of models are
proposed to model the hysteresis and creep effects, such as
Domain wall model, Duhem model, and Prandtl-Ishlinskii
model [15]-[17]. These models can be used to obtain the
inversion model of PEAs which may help to remove the
nonlinearities and then control algorithms such as MPC,
feedback control and SMC can be applied [18]-[20]. Again,
the performances of these inversion model-based approaches
are directly affected by the modeling accuracy. Considering
the modeling uncertainty, robust control tools such as He.
and adaptive control are developed to control the PEAs [21],
[22]. However, the control bandwidth is rather limited due
to the stability problem [21], [22].

Recently, neural network has been proposed in output
tracking applications of PEAs [23]. In [23], feedforward
neural network (FNN) is proposed to model the dynamics
of PEAs. However, the problem with FNN is that the input
to FNN is not treated as time series in the training process
although the sequence of input can affect the behavior of
PEAs greatly [23]. In contrast to FNN, recurrent neural
network (RNN) is designed to deal with time series and
was proved to be a universal approximator in modeling
dynamical systems [24]. Therefore, in this paper, we propose
a RNN-based approach to achieve accurate output tracking of
PEAs. Specifically, a RNN is trained to accurately capture the
nonlinear dynamics of the PEA system. However, due to the
limited length of the RNN training set in real applications,
the PEA low frequency behaviors may not be fully captured.
Thus, a second order linear model embedded with an error
term (LME) is proposed for modeling the residual dynamics
(i.e., low frequency dynamics) [25]. Then a nonlinear predic-
tive controller and an unscented Kalman filter are designed to
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II. SYSTEM IDENTIFICATION
A. Recurrent Neural Network (RNN) Structure

The RNN used in this study, consisting of an input layer
(solid circles), a hidden layer (circles), and an output layer
(dashed circles), is shown in Fig. 1. u(,); and y(,) denote
the input u() and output y.) at the sampling instant k,
respectively. x; = [x¢1,%2,  + ,Xkn]7 is the state vector of
the RNN system. The activation functions of the hidden layer
g(x) and output layer h(x) are designed as g(x) = tanh(x)
and h(x) = Wx—+ b, respectively, where W is a 1-by-N matrix.
Thus, the RNN in Fig. 1 can be represented by the following
nonlinear state space equation as

X1 = tanh(Wix; + By +Blu(r)7k) )

Y(r)k = Waxi + B3 ’
where the dimensions of W, By, By, W, and B3 are N X N,
Nx1, Nx1, 1 xN and 1 x 1, respectively. Unlike FNN
which is essentially a “nonlinear autoregressive-moving-
average with exogenous inputs” model and takes the past
inputs and outputs as input to the network, RNN only needs
the current input u, ; to generate output signal [23]. Suppose
U(ss) 1s any given time series (i.e., drive voltage) and ¥ is
the corresponding output time series (i.e., displacement) of
a PEA system, the output of the RNN Y, subject to input
U(is) should be equal to ¥ if the RNN can accurately model
the PEA system dynamics, i.e., [|¥(;;) — Y5l < € for any
€ > 0. Therefore, the RNN can be trained (i.e., obtaining the
parameters Wy, B, B;, W, and B3z in Eq. (1)) by solving
the following optimization problem using a pre-designed
time series input Uj;,) and the measured corresponding PEA
system output Y.

min
W1,B2,B1,W,,B3
subject to: xgy1 = tanh(Wixg + Ba + B1U( 1)
Yiris) & = Waxi + B3
x0 = [0,0,---,0]" k=1,2,3,--- L

Iy = ¥es) = Vs Il

v (@

where U(ts) = [U ts),1 7U(tx),2a T U(ts) ,L]T,
Yo = Wus)1:Yus)2o > Yis)Ll and Yy =
(Yiras), 15 Yires) 25 Yyl - Next, we  present how  to

design Uyyy).

B. Construction of Training Set for RNN

There are various ways to construct U;,). Here, we choose
sinusoidal signals as building blocks to form U(;). Define
S(f,A) =A(sin2mft+3E) +1),t € [0, 1/f], i.e., S(f, A) is
a sinusoidal signal with amplitude A and frequency f in a
period. In practice, ¢ will be sampled, thus S(A, f) is a time
series. Then Uy, can be written as

U S(fla Ai)a

(fi, A))EQ

Ugs) =

where Q is a set consisting of (f;, A;) pairs, and |J denotes
concatenation. Therefore, each (f;, A;) pair represents a point
in the f —A plane. Suppose Uy consists of N; sinusoidal

Fig. 1. Recurrent neural network

signals with f; € [0, f] and A; € [0,A]. Obviously, the optimal
training set should consist of all the (f;, A;) pairs in the
given ranges, which is unpractical. Here we expect to find
Ny (f;, A;) pairs to achieve the highest modeling accuracy
(i.e., a suboptimal approach). Finding the suboptimal Uy
is equivalent to locating N; points in the f —A plane such
that any point (fj, A;) in the plane can be represented by
the nearest point (f;, Ax) (one of the N; points) and the
distance between (f;, A;) and (fi, Ax) is minimized. The
solution to selecting the N; (f;, A;) points can be obtained
using k-means algorithm [26]. In practice, we can randomly
generate enough number of points in the f —A plane to cover
all the possibilities as the behavior of PEAs is frequency
and displacement range dependent. Note that this method
of choosing Uy is not trivial in the sense that the weight
of f and A can vary. For example, if frequency is more
important for the PEA output tracking tasks, we can scale
the f axis by multiplying a factor 10 to f, thus the signal
with frequency 10 and amplitude 1 corresponds to (100, 1)
instead of (10, 1) in the f— A plane. Moreover, some
frequency components are better to be avoided (such as the
resonance frequency of the piezo actuator) when designing
U(is) by removing the points with fis close to them.

C. Linear Model Embedded with an Error Term (LME)

It is worth to note that for S(f, A), the smaller f is,
the longer the time series S(f, A) will be. For example,
if f = 1Hz and the sampling frequency is 10kHz, the length
of time series is 10,000 to cover the entire period of this
sinusoidal signal. From Eq. (2), it can be seen that increase
of the length of time series leads to increase of the number
of constrains, which implies that either more complex RNN
is needed or the modeling accuracy will decrease. Therefore,
the long time series should be avoided considering the
modeling accuracy and the computation efficiency of Eq. (2).
On the other hand, even if a lot of high frequency sinusoidal
signals are to be included in Uyy), the length of Uy, will
not be affected too much. Therefore, the above method
of constructing U;;) may lead to that the low frequency
dynamics of PEAs cannot be entirely captured. In addition,
the drift effect of PEAs (usually in very low frequency range)
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is hard to be modeled with RNN alone. Therefore, to address
the aforementioned issues, we proposed to use the following
linear model embedded with an error term (LME) to capture
the residual dynamics (i.e., the dynamics not captured by
RNN) including the low frequency dynamics and drift.

M1 = AeMi + Beu(y 4 + Gé

R 3)
Ve = CeNi

where u(); is the input to the LME, & = y; — Ji is the
model output error with y; the PEA system output [25]. The
dimensions of A., B,, Gand C, are 2x2,2x1,2x1 and 1 x
2, respectively. Suppose the output of RNN (with parameters
from the solution of Eq. (2)) is Y, subject to the input
Ugss) as stlown in Fig. 2, then it is expected that the output
of LME Y,y will be very close to ¥ with the input ¥(,).
Similar to the training of RNN, parameters in this LME will
be determined through solving the following optimization
problem with Y,y and Y.
min
Ae,Be,G,Ce
subject t0: M1 = AeNi + Be¥ (i) & + Gék

)A/(ts),k+l = CeMNi+1 4)
i1 =Y k1 — Yies) et
n(0) = [OvO]T

20=0,k=0,1,---

Ji = [Ys) = Yo ll

where IA/(,S) = [?(IS)J,IA/(,S)_Q, S ,)AQ,S),L}T. Before training, ¥{,)
and Y, are known and Y, is the same as that in Eq. (2).

D. Combine RNN and LME

Since the modeled dynamics in RNN and LME is limited
by the frequency range of the training set, a low pass filter
(LPF) is cascaded to the PEA model (i.e., RNN+LME) to
avoid instability induced by ultra-high frequency dynamics.
Suppose the LPF is formulated as

Bi+1 = APy + Buy
% =CPx '

With u(, ;= zx and ug)x =y % Egs. (1), (3), and (5) can
be combined as the following nonlinear model,

(&)

Brr1 Bx
i1 = | X1 | = F(O,u) = F(| x| i)
| Mie+1 Mk
I AﬁkJrBuk 0
= tanh(W1xk+Bz+Bléﬁk) + 10| é, (6)
| AeNi + BWaxy + BeB3 G
Bx
Ve=H($p)=1[0 0 CoJ |x
Nk

where u; is the input to the nonlinear model. The block
diagram of the model represented by Eq. (6) is shown in
Fig. 3, i.e., the “Plant Model” in the dash box.

U(r)k Y(r),k Yk

RNN > LME

Fig. 2. Use RNN and LME to model the system dynamics
III. NONLINEAR PREDICTIVE CONTROL

The control scheme of the predictive controller based on
the above system model (Eq. (6)) is shown in Fig. 3. Since
the system model is nonlinear and the states are unavailable
through measurement, a state estimator is designed to esti-
mate the states during the tracking process. In this work,
we choose unscented Kalman filter (UKF) over extended
Kalman filter (EKF).

A. Nonlinear Estimator

In EKF, the nonlinear dynamics function is linearized
at the current point (first order linearization) in each
estimation and the conventional Kalman filter algorithms
can be implemented. However, the approximation error
through linearization may increase as the nonlinearity at the
linearization point is severe. Instead, such an issue can be
avoided in UKF as UKF generates a series of sample points
which will be propagated through the nonlinear dynamics
function, then the covariance matrix can be computed from
the sampling points [27]. For the system model Eq. (6),
the error term ¢é; is calculated before each estimation and
updated at each sample instant. The estimation steps for the
UKEF used in this study are as follows:

Step 1: Initialize the parameters at k =0

o =E o)
Py =E[(¢o — d0) (90 — do)]” @)
&y =

Step 2: Generate sampling points (sigma points):

X1 =101 1 +YVPor Gt — v/ Pt

8
k=1,2,3, - ©

Ug Plant
(LPF+PEA system) ¢

> State Estimator
T %
- <—[LMEj]«<—[RNNj«—{LPFl<— |y

| PlantModel e
<—

Predictive Controller

Fig. 3. Block diagram of the controller
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Step 3: Time update:

=1 =[F (X1 h—1w-1), 7, F (XoN+ 151, Ua—1)]

2N+
= Y Wauli)Xikk—1
i=1
N+ R R
P = Z We (@) Xike—1 — O 1 Xisi—1 — ¢ 1" +R, (9
i=1
D1 =H X1 xk-1)>  H(Xons1.005-1)]

N+1
Fe = Y W%k
i=1

Step 4: Measurement update and calculation of the error
term:

2N+l

= ZT We(8) [Xi -1 — o ] (%, k-1 — V)
Hi :P5¢5\~P3:¢15y 1o
O —03{ + (k= ;)

P =P, — HiPs,5, "

ek =Yk _yk

Note that /P,_; is the square root of a matrix and
can be calculated with Cholesky factorization, i.e., P =
VP VP T R, and R, are the process and measurement
noise covariance matrices, respectively. ¥ is a constant scalar,
W,y and W, are (2N + 1) x 1 vectors determined by the order
of the system, N, W,,(i) is the i element of W,,. Xiklk—1 18
the i column of matrix Xkjk—1- The readers are referred to
[27] for how to choose ¥, W,,, and W,.

B. Predictive Controller

For the nonlinear predictive control, the following opti-
mization problem is to be solved and the input u; for the
next sample time can be obtained from the solution.

min ¢ = (?/ —R))! (¥ —R') +pU’ "p’pu’

1 -1 0 ... 0
0 1 -1 0 (11)
D= .
0 0 o 0 O
where U’ = [y i1, st —1]7
Yr = B Sisa Sy’ and R =
[Pkt Thr2 s TN 7rk+Nc]17\;/,><1 are the future inputs,

predicted outputs, and the reference (i.e., desired trajectory),
respectively, with N, the prediction horizon and N, the
control horizon. Notice that the current state ¢, and the
previous input u;_; are known when solving Eq. (11).
Here we do not consider the constrains to the input for
simplicity, but they can be incorporated later. Since the
system dynamics is nonlinear, the objective function ¢
cannot be written in the quadratic form as linear model

predictive control. As an example, we choose gradient
descent method to solve the unconstrained optimization
problem (i.e., Eq. (11)).

Next, we show how to analytically compute the gradient
%{ By using the analytical method, it is not only more
precise without considering the increment A, but also more
computationally efficient.

Let E = (Y7 —RNT(Y/ —RY), then the key to compute
% is to compute 8—E since calculation of the derivative of
the other term is terlal E can be expressed as

Ny
E=Y E' = ($ip1—ri41)” + Gz — re2) > + -+

i=1
. (12)
N 2 2
+ ks, = Tk4N) T = (CeMiey 1 — Tiet1)
2 2
H(CeMir2 = rk42)” + -+ (CeNicsny, — Th4N,)
Thus, 3 / can be written as
_ -
OE} | JE} | 0E2 IEy,
thEk Em + Juy, + Juy, +ot a%k
JE OE} | JE} IEy,
oE _ | P - gy ity T Ity
U7 :
JE 2
AUy N1 aE’%’f R aENh
L gy N1 Ui N—1
(13)

Next, we show how to compute gTEk and the rest follows.

Note that ¢, = [ﬁkaxkank]T
(6), we have

and uy_; are known. With Eq.

0E? d d(A, B, B.B
9B g 0, 0Tt _op ¢, QAeit BeWori +BeB3) _
aI"k 8uk auk
(14)

Thus ag—‘ﬁ:‘ =0. Since

O0xpy1 _ o tanh(Wix; + By + B1CPy) —0, (15)

8”1( &”k
then
8E22 —2E,C, ank+2 _ 2E2Cea(Aenk+1 —|—BeW2xk+1 +BeB3)
auk (914]( auk

=0.
(16)

Then 222 =0, Similarly,

0E? A B B.B
3 :2E3Ce8nk+3 :2E3Cea( eNi+2 +BeWaXii2 + BeB3)
duy, duy, duy,
d
—2E5C,BW> g” 2
Uy
(17)
With By, = ABi + Buy, we have
0xyi0 :atanh(Wlka + B> +BIC/3k+1)
8uk 8uk
_ dtanh(Ziy1k) 0 Zirik _ atanh(%ﬂ’k)BlC‘B
0 Zir1k dug 0 Zis1k (zlé)

where Zji1x = Wixk1 + B2 + BiCPByy 1. Therefore, g% is
computed with Eqs.(17) and (18). At the same time, the
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resulting ag,’f, ag’;:z and ag’;:‘ can be used to compute
OE} . ..
T which is
Uy
HE‘% M43 Xy 43
— =2E4C.(A B.W; . 19
auk 4e(eauk+e2auk) ()
Note that ag’;f is related to 8;/;:2 and % with
0x143 _ 2] tanh(Wlkarz + By —|—B]Cﬁk+2)
8uk 9uk (20)
:8tanh(¢%<+27k) W 8xk+2 .B\CA 8[3k+1
0 L2k Yo TN ow

Mgyt

Therefore, Jug can be calculated from the previous cal-

H OXpy i
culation of —5*.

Once the derivative can be computed, the gradient descent
method can be implemented with

Uf(m“) — Uf(m) + 5("!)%

oufim’

where m is the iteration number and 6™ is the step length at

m' step. In practice, we keep m < 15 or smaller to improve
the computation efficiency.

1)

IV. EXPERIMENT RESULTS AND DISCUSSION

For experimental validation, a PEA (Nano-OP30, Mad
City Labs) was controlled with the proposed method to track
given trajectories and the performance was compared with
that of a PID controller. The experiment setup is shown
in Fig. 4. All the signals were collected and generated
through a data acquisition system (NI PCle-6353, National
Instruments) which was installed in the workstation (Intel
Xeon W-2125, RAM 32GB). The controller was designed
using MATLAB Simulink (MathWorks, Inc.).

The sampling frequency was chosen as 10kHz. A second
order LPF with cutoff frequency of 1kHz was used. A 20th
order RNN was chosen to model the system. To generate
the training set for RNN, we set the frequency range to O-
400Hz and the amplitude range to 0-3.5um, thus 100 (f;,A;)
pairs were used to construct Uy,). Note that the chosen
amplitude range was about 45% of the total displacement
range of this PEA, at which the nonlinear hysteresis effect
was quite significant—to demonstrate the efficacy of the
proposed approach in dealing with PEA nonlinear dynamics.
The generated training set is shown in Fig. 5.

The proposed RNN-based predictive control (RNNPC)
was then applied on the PEA to track given trajectories which
included sinusoidal trajectories with frequencies of 30Hz,
100Hz, 200Hz, and a I" signal as below.

I'(r) = [0.8sin(275¢ + 1.57) + 0.43sin(2750¢) +
0.12sin(271207 + 1.27) + 0.3sin(2w180¢ + )] /1.3 4+ 1.2.
(22)
The parameters for the predictive controller were N, = 8 and
N, = 6. The tracking errors E,,,, and E,,; were computed
as did in [7].

The tracking performances of RNNPC and PID are com-

pared in Table I. As shown in Table I, the proposed method

4

\

' Nano-piezo stage

=
Nanoi)%ive/Controller

Fig. 4. Experimental setup

3.5

25

n
T

&
T

Voltage(V)

05

-0.2 0 0.2 0.4 0.6_ 0.8 1 1.2 1.4 1.6
Time(s

Fig. 5. Designed input Uy for training RNN.

reduced the tracking error including both E,, and E,,,, by
at least 50% for all trajectories tracked. Specifically, when
tracking low frequency trajectories (30Hz, 100Hz and I'), the
tracking errors of the proposed approach are mostly less than
2%, which implies that the proposed system identification
method—RNN+LME can precisely model the nonlinear PEA
system. The tracking results in time domain for 100Hz
sinusoidal signal and I' are shown in Fig. 6, which again
verified the effectiveness of the proposed method. The error
increased when tracking high frequency trajectory: E,,,; and
E,ax were both more than 6% when tracking the 200Hz
desired trajectory, but were still 8% though (see Table I)
much less than that of PID results. This downgrade of
performance when tracking higher frequency trajectories is
caused by the limited prediction and control horizon (N, =8
and N, = 6) chosen in the predictive controller. The tracking
accuracy can be greatly improved by using bigger N, and
N, however, that will increase the computation burden
greatly. Therefore, to improve the tracking accuracy at higher
frequency range, faster hardware such as field-programmable
gate array (FPGA), should be used. Overall, the tracking
accuracy of RNNPC, as a real-time control approach is
satisfying.
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TABLE I
TRACKING PERFORMANCE COMPARISON OF PID AND RNNPC WHEN
TRACKING DIFFERENT TRAJECTORIES.

[7]

[8]

Refs. 30Hz 100Hz 200Hz r

Error (%) Erms  Emax | Erms Emax | Erms Emax | Erms Enax

RNNPC | 039 127 | 1.74 232 | 631 748 | 069 1.82 9]

PID 229 269 | 793 9.19 | 16.61 19.29| 3.30 4.81

O — ©' [10]
£ I {\ I '\ Eos

=" ‘ NN =

g 'J ‘\J \j ‘ { 5 opt A [11]

of | \ \
0 0.02 0.04 0.06 0.08 0.1 050 0.02 0.04 0.06 0.08 0.1
Time(s) Time(s) (2]
(cP (dpe
i& i il 0.4
6 p —

B € [13]

=0 ﬁm I w o ‘

& 0 ' T

(=1 1] \}A i o2 i [14]

0 0.4‘ ‘
0 0.1 X 0.2 0.3 0.4 0 0.1 _O 2 0.3 0.4
Time(s) |— Reference - - PID - - RNNPC\T'me(S) [15]
Fig. 6. (a) comparison of the tracking results for 100Hz sinusoidal signal
using PID and RNNPC, (b)the tracking error, (c) comparison of the tracking
results for I' signal using PID and RNNPC, (d) the tracking error, [16]
V. CONCLUSION
In this paper, we proposed a RNN-based predictive control |17
(RNNPC) approach to achieve accurate real-time trajectory
tracking of PEAs. Implementation of RNNPC to a PEA (18]
showed that the proposed method can achieve high tracking
accuracy when the desired trajectory spanned over a broad
frequency range. In addition, anything system which can be [19]
modeled by the RNN can be controlled with the proposed
method.
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