
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 3, JUNE 2020 1297

Missing-Tag Detection With Unknown Tags

Youlin Zhang , Member, IEEE, Shigang Chen , Fellow, IEEE, You Zhou, Member, IEEE,

and Yuguang Fang , Fellow, IEEE, Member, ACM

Abstract— Radio Frequency Identification (RFID) technology
has been proliferating in recent years, especially with its wide
usage in retail, warehouse and supply chain management. One of
its most popular applications is to automatically detect missing
products (attached with RFID tags) in a large storage place.
However, most existing protocols assume that the IDs of all tags
within a reader’s coverage are known, while ignoring practical
scenarios where the IDs of some tags may be unknown. The
existence of these unknown tags will introduce false positives in
those protocols, degrading their performance. Some prior art
studies this problem, but their time efficiency is low, especially
when the number of unknown tags is large. In this paper,
we propose a new missing tag detection protocol based on
compressed filters, which not only reduce the filter size for
better time-efficiency but also help dampen the interference of
unknown tags for high missing-tag detection accuracy. To further
improve the performance, we propose to use a combination of
sampling and multi-hashing for tags to report their presence,
greatly reducing collisions and thus improving the detection
probability. We reconfigure the standard ID collection protocol
to support bitmap collection required by missing-tag detection.
Extensive simulations demonstrate that our compressed filter and
collision-reduction method reduce the protocol execution time by
83% to 92% under the same missing-tag detection probability,
when comparing with the best prior work. We also evaluate
the performance of our missing-tag detection protocol under
unreliable channel.

Index Terms— Radio Frequency Identification (RFID) tags,
wireless application protocol.

I. INTRODUCTION

IN RECENT years, RFID technologies have been proliferat-
ing, with numerous applications that have been developed

including supply chain management [1]–[18], object tracking
[19]–[21], theft prevention [22]–[28] and so on [29]–[33]. In
an RFID system, objects are attached with tags, each having
a unique ID, which can be identified by a reader that is
connected with one or many antennas deployed to monitor
tags within a coverage area and collect statistics. Comparing
with traditional barcodes which are read by laser scanners with
line of sight in a very short distance, RFID technologies have
great advantages that they can be read wirelessly over a longer
distance without line of sight and that they are capable of
performing simple computations.

Manuscript received September 6, 2018; revised May 7, 2019 and December
21, 2019; accepted March 6, 2020; approved by IEEE/ACM TRANSACTIONS

ON NETWORKING Editor M. Li. Date of publication April 30, 2020; date
of current version June 18, 2020. This work was supported in part by
the National Science Foundation under Grant CNS-1409797, Grant CNS-
1718708, and Grant CNS-1719222 and in part by a grant from Cyber Florida.
(Corresponding author: Youlin Zhang.)

Youlin Zhang, Shigang Chen, and You Zhou are with the Department of
the Computer and Information Science and Engineering, University of Florida,
Gainesville, FL 32611 USA (e-mail: youlin@cise.ufl.edu).

Yuguang Fang is with the Department of Electrical and Computer Engi-
neering, University of Florida, Gainesville, FL 32611 USA.

Digital Object Identifier 10.1109/TNET.2020.2984706

One of the most popular applications using RFID tags is
to automatically detect missing products in a storage place.
According to [34], [35], shoplifting, employee theft and vendor
fraud have become the major causes of lost capital for retailers
like Wal-Mart. In practice, we may have someone walk around
to check and count items. This is not only laborious but
also error-prone, considering that the products may be stacked
together, goods on racks may need a ladder to access and they
may be blocked behind columns. However, if we attach each
item with an RFID tag, the whole detection process can be
automated with an RFID reader communicating with tags to
check whether any of them are missing.

In general, the missing tag detection problem can be
classified into two types: deterministic detection [23]–[25]
and probabilistic detection [22], [26]–[28]. The deterministic
protocols identify exactly which tags are missing, while the
probabilistic ones report a missing tag event with a certain
detection probability. Usually a probabilistic detection protocol
runs faster with smaller overhead while a deterministic one
gives stronger results with larger overhead. In practice, these
two types of missing tag detection protocols are complemen-
tary to each other and can be used together to achieve better
results. For example, a probabilistic detection protocol can be
scheduled frequently to detect a missing tag event. Once it
detects some missing tags, a deterministic protocol can be
executed to find out exactly which tags are missing.

Most existing protocols assume that the IDs of all tags in the
coverage area are known, while ignoring practical scenarios
where the IDs of some tags may be unknown. Consider
an airport that deploys RFID technologies to monitor the
passenger baggage that belong to different airline companies,
with each passenger baggage attached with an RFID tag. Every
airline company will want to detect whether baggages of its
passengers are missing. However, in an area where baggages
of other companies are present, we will face the problem of
missing-tag detection for tags (baggages) of one airline, with
the presence of unknown tags from other airlines that are of no
interest but cause interference. In a more general warehouse
setting, many clients rent space to store their products, which
are tagged. Suppose a client deploys an RFID reader and
antennas to detect whether some of its products are missing.
Nearby tags on the products of other clients will respond to
the reader if they happen to be within the coverage area.
These tags are unknown to the client that performs missing-tag
detection.

This paper focuses on probabilistic missing tag detection
and considers a problem of practical significance: detecting
missing-tag events with presence of unknown tags. Many tradi-
tional methods such as [22], [26], [36] cannot handle unknown
tags. It is shown in [28] that the presence of unknown tags
will introduce false positives and compromise the detection
accuracy. The most related work is [27], [28], which can

1063-6692 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Florida. Downloaded on July 30,2020 at 21:57:17 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7055-1869
https://orcid.org/0000-0001-7867-7765
https://orcid.org/0000-0002-1079-3871

1298 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 3, JUNE 2020

detect missing-tag events with unknown tags. The efficiency
of [28] drops greatly in the presence of a large number of
unknown tags because it does not filter out the unknown tags
in its operations. The performance of [27] is much better,
thanks to its use of Bloom filters to remove the unknown
tags, but it requires tags to implement a large number of hash
functions (which may be impractical). More importantly, its
Bloom filter design and in particular its use of Bloom filter to
communicate from tags to the reader are costly and result in
long execution time. Reducing execution time is important for
large RFID systems with numerous tags operating in low-rate
communication channels. This is particularly true in a busy
warehouse environment [1]–[8], where we want to minimize
disruptions caused by RFID protocol execution to normal
warehouse operations.

In this paper, we propose a new protocol that can achieve
reliable and time-efficient missing tag detection with the
presence of unknown tags. Our idea is to design a new type
of compressed filter that can work with any number of hash
functions (as low as one) available to the tags, yet with a
decreased filter size for better efficiency than the prior art.
More importantly, unknown tags are removed by the filter
without the need to decompress the filter. The new filter is suit-
able for resource-limited tags because it does not use generic
compression algorithms, but requires only simple operations.
To further improve the performance, we combine sampling
and multi-hashing for tags to report their presence, greatly
reducing collisions. We provide optimal parameter setting that
can tolerate the noise from unknown tags to achieve a pre-
specified detection accuracy.

The main contributions of this paper are summarized as
follows: First, we provide an efficient solution to the missing-
tag detection problem under more general scenarios where
unknown tags are present.

Second, we propose a compressed filter that is suitable
for RFID systems, with low overhead and simple opera-
tions. Combined with a new segmentation mechanism, our
compressed filter allows tags to perform membership check
without decompressing the filter and its size is much smaller
than the original Bloom filter used by the prior art.

Third, we formally analyze the performance of our proto-
col. Through analysis, we investigate the impact of different
parameters on the execution time of our protocol and optimize
the parameters to minimize execution time.

Fourth, we reconfigure the standard ID collection protocol
to support bitmap collection required by missing-tag detection.

Finally, we conduct extensive simulations to complement
our theoretical analysis and evaluate the performance of our
protocol. The results demonstrate that our compressed filter
and collision-reduction method reduce the protocol execution
time by 83% to 92% under the same missing-tag detection
probability, when comparing with the best prior work. We also
evaluate the performance of our missing-tag detection protocol
under unreliable channel.

II. SYSTEM MODEL AND PROBLEM DEFINITION

A. System Model

Consider a large RFID system, where each object is attached
with an RFID tag. Each tag has a unique ID by which we
can identify an object, and it is capable of performing certain
computations. An RFID reader is deployed in the system to
monitor the tags within its coverage and interrogates with the

tags using backscattered signal in a frame-slotted ALOHA
protocol. We also assume that the reader has access to a
backend server which stores the tag IDs of interest.

In one communication round, the reader will first initialize
the communication by broadcasting a request that includes
all necessary parameters such as a frame size and random
seeds. Each tag after receiving the request performs some
calculations and decides which slot(s) it will respond. The
request is followed by an ALOHA frame consisting of f
slots, in which tags can transmit their responses. Based on
the number of tags that respond in each slot, the time slots
are classified in two types: empty slots, where no tag responds,
and busy slots, where one or multiple tags respond. A busy
slot can be further classified into two types: a singleton slot,
where only one tag responds, and a non-singleton slot, where
multiple tags respond. The reader monitors the channel state
and converts the time frame into a bit array, zero for each
empty slot and one for each busy slot.

B. Problem Definition

Let E be the set of tags attached to all objects in an RFID
system and T be a subset of E, that consists of tags we want
to monitor and whose IDs are known. T ⊆ E. We denote the
cardinality of T as n and the set of E−T as U , which consists
of tags whose IDs are unknown. Note that tags in T and U
can all respond to the RFID reader in our system and there is
no difference with respect to their operations among tags in
these two sets except that the IDs of tags in T are known and
of our interest while the IDs of tags in U are unknown. In the
sequel, we will refer tags in U as unknown tags and tags in
T as known tags.

The problem of missing tag detection with presence of
unknown tags is to detect whether any tag(s) in T is missing
with the presence of tags in U . The requirement is that the
probability for detecting a missing tag event after one protocol
execution is at least α if M or more tags are missing, where
0 < α ≤ 1, M ≥ 1, which are two system parameters set by
users based on their practical need. We shall report a missing
tag event with a probability α if m ≥ M , where m is the
number of tags in T that are missing. If the number of tags
that are missing in T is smaller than M , we can still detect
a missing tag event, with a detection probability smaller than
α.

As an example, if we set α = 95% and M = 10, after an
execution of our protocol we shall be able to detect an event
of missing 10 or more tags with at least 95% probability. If
the protocol is executed w times, the detection probability will
be at least 1 − (1 − α)w, which will approach to 100% as w
increases. In this way, a missing tag event will eventually be
detected overtime no matter what the values of α and M are.

C. Performance Metrics

In this section, we describe the metrics for evaluating the
performance of a missing tag detection protocol.

1) Execution Time: As is stated previously, RFID systems
operate in low-rate communication channels. To apply such
protocols in a busy warehouse environment, it is desirable
that the execution time can be reduced as much as possible,
especially when the number of tags is very large.

2) Detection Probability: The probability of detecting a
missing tag event is another important performance metric.

Authorized licensed use limited to: University of Florida. Downloaded on July 30,2020 at 21:57:17 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: MISSING-TAG DETECTION WITH UNKNOWN TAGS 1299

The detection requirement is defined in Section II-B. In
practice, we want the detection probability α to be close to 1.

III. RELATED WORK

There are two types of missing tag detection protocols:
deterministic detection and probabilistic detection. In this
section, we will briefly review these related missing tag
detection protocols and point out the issues existed in them.

The objective of deterministic detection is to exactly identify
which tags are missing and to report the IDs of missing
tags. It can produce strong results but requires huge overhead.
A straightforward approach is to broadcast each tag ID and
identify tags in T one by one. If some tags are missing,
there will be no respond from those tags and their status are
identified. And the time cost of this approach is 96 ·n, where
96 is the length of a tag ID and it is very time-consuming.
Li et al. [23] make an improvement over this approach by
resorting to the properties of hash functions. And they propose
a series of protocols including TPP, TPP/CSTR and IIP to
reduce the hash collisions in tag identification and achieve
missing tag detection without transmitting tag IDs in large
RFID systems. Zhang et al. [24] use bitmaps to store the status
of all tags and identify the IDs of missing tags by comparing
the pre-computed bitmaps. Moreover, Liu et al. [25] improve
the performance of previous work by reconciling 2-collision
and 3-collision slots and filtering the empty slots. However,
all these protocols are designed for deterministic detection,
which are time-consuming and infeasible for probabilistic
detection. Besides, they all work in restricted environment
settings, which requires full-awareness of all tag IDs and can
not be applied to more open scenarios when unknown tags are
present [28].

The objective of probabilistic detection is to detect a missing
tag event with a predefined probability, which is more related
to our work. Tan el al. [22] propose a bitmap-based missing
tag detection protocol called TRP. TRP compares the bitmap
which encodes the responses of present tags with the pre-
computed bitmap of all known tags and reports a missing
tag event when some bits mismatch. Luo et al. [26] make
an improvement over [22] and propose a multi-seed missing
tag detection protocol called MSMD, which employs multi-
seed mapping to reduce the probability of collisions in the
communication. However, both of them require full knowledge
of tag IDs. When applied to a more open scenario where
unknown tags are present, their accuracy drops drastically and
can not satisfy the predefined requirement [28]. RUN [28]
and BMTD [27] take the first step to solve the problem of
missing tag detection with presence of unknown tags. RUN
uses bitmaps to estimate the interference from unknown tags.
Theoretical analysis on the performance of RUN is provided
to optimize the parameters in the system. But the efficiency of
RUN will drop in the presence of a large number of unknown
tags [27], since it does not filter out unknown tags. BMTD
leverages Bloom filter to reduce the interference of unknown
tags and achieves a better performance than RUN. However,
its time efficiency will degrade when the size of the tag set
grows larger.

All these problems existed in the prior work drive us
to explore innovative ways for missing tag detection with
presence of unknown tags. We propose a compressed filter
based protocol, which can reliably and time-efficiently detect
a missing tag event when unknown tags are present.

IV. PROTOCOL DESIGN

Our protocol for missing tag detection with presence of
unknown tags consists of two phases: unknown tag filtration
and missing tag detection. In Phase one, since the reader
knows the tag IDs in T , it can construct a filter that encodes
the membership of all tags in T and use this filter to filter out
unknown tags in U . Rather than using the original Bloom filter,
we adopt a segment design and implement an algorithm that
works on simple RFID tags to compress the Bloom filter into
a compressed filter. Through experiments, we show that our
compressed filter can achieve a lower false positive ratio than
[27] with a more compact space. In Phase two, we combine
sampling and multi-hashing to reduce the tags’ collisions in
communication, which further improve the time efficiency. In
the following, we describe in detail our protocol for missing-
tags detection with presence of unknown tags.

A. Prior Work

The best prior work is BMTD [27] which uses a design
based on Bloom filters [37], a compact data structure that is
used to encode a set T = {t1, t2, . . . , tn} of n elements (tags
in our context). A Bloom filter is a bitmap of f bits. Each tag is
encoded by mapping the tag ID to k bits using k independent
hash functions h1, h2, . . . , hk and setting those bits to one. To
check whether a tag is a member in T , we hash it to k bits
in the filter and check whether these bits are all 1’s. There is
no false negative in a Bloom filter: A tag in T will always
pass the membership check. However, there is false positive:
A tag not in T may also pass the membership check. The false
positive ratio is given by [37]:

Pfp = (1 − (1 −
1

f
)kn)k ≈ (1 − e−kn/f)k. (1)

Given the size n of T and the number k of hash functions,
BMTD uses the following optimal size f for its Bloom filter,
with its false positive ratio also given below.

f =
nk

ln 2
,

Pfp = (
1

2
)k. (2)

An optimal filter has 50% zeros, and therefore its false positive
ratio is (1

2)k. The RFID reader will broadcast the above filter
that encodes the tags in T . Upon receipt of the filter, the
unknown tags will filter themselves out if they cannot pass the
membership check. When the size f is restricted, the optimal
Bloom filter may need to be broadcast multiple times in order
to achieve a desirable false positive ratio.

The k hash functions used in each Bloom filter must be
independent, and the hash functions of different filters must
also be independent. For example, in order to achieve a
positive ratio of 0.001, we will need 10 independent hash
functions, which is a burden for simple hardware of a tag.
If a tag can only afford a fewer number k of hash functions,
we cannot use optimal filters as BMTD does. We have to use
non-optimal filters.

In (1), we can reduce Pfp to an arbitrarily small number
by increasing the filter size f . By increasing f , we increase
the ratio ρ of zeros in the filter, and the false positive ratio
becomes ρk, which can be made arbitrarily small when ρ is
driven down.

Authorized licensed use limited to: University of Florida. Downloaded on July 30,2020 at 21:57:17 UTC from IEEE Xplore. Restrictions apply.

1300 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 3, JUNE 2020

The problem is that a larger filter takes more time for the
reader to broadcast, which degrades time efficiency. Fortu-
nately, if the filter contains a large number of zeros, we can
compress it to a smaller size. One can compress a Bloom filter
to minimum size by using optimal compression algorithms in
the literature [38]. However, if we do that in RFID systems,
there arise two problems. First, tags are resource-limited
and cannot perform generic compression and decompression
algorithms such as Huffman compression and LZ compres-
sion [39]. Second, more importantly, tags do not have the
memory to hold the decompressed filter (with its original size)
to perform membership check. Therefore, we need to design
a compressed filter to work with limited resources. Moreover,
tags should be able to directly work with the compressed filter
for membership check without decompression. The operations
for tags should be simple.

B. Phase One: Unknown Tag Filtration by Compressed Filter

To reduce the interference of unknown tags, the reader uses
a compressed filter with a small pre-set false positive ratio
p1 such that the majority of unknown tags are filtered and
do not participate in Phase two. Let k1 be the number of
hash functions used in the filter of Phase one. We design a
compressed filter that can work with any value of k1 (as low
as one) hash functions, achieve any specified false positive
ratio p1, require simple operations by tags, and perform
membership check without decompression. As we will discuss
later in our evaluation, the compressed filter will have a higher
compression ratio in our application scenario when k1 and p1

are very small.
Given the values of p1 and k1, the reader constructs a Bloom

filter whose size is determined by (1). The smaller the value
of k1 is, the larger the value of f1 will be, and the more the
number of zeros will be in the filter, which gives opportunity
for compression, allowing the reader to broadcast a smaller
filter to tags and save execution time.

For compression, the reader divides the Bloom filter into
segments of consecutive zeros that are separated by the bits
of ones. We replace each segment of consecutive zeros by the
number of zeros in the segment. For example, a segment of 20
zeros is replaced by the number 20, which compresses 20 bits
to a number l1 of bits that represents 20 in binary. Different
segments may have different numbers of zeros. The reader
finds the maximum number Lmax of zeros in all segments.
It sets l1 = �log2(Lmax + 1)�. The reader converts each
segment of zeros to an l1-bit number, and converts the whole
Bloom filter into a sequence of l1-bit numbers, which form
the compressed filter. The bits of ones in the original filter are
implied in the compressed filter, one such bit between any two
consecutive segments.

The reader broadcasts a request with parameters including
the size of the filter. It then transmits the compressed filter to
all tags. If the filter is too long, the reader may divide it into
parts and transmit each part in a time slot. For example, if we
use the same time slots for transmitting 96-bit tag IDs, each
slot can carry 96

l1
segments.

For membership check, each tag maps itself to k1 bits in
the original Bloom filter by k1 hash functions. It then checks
whether those k1 bits are all ones. However, it does not possess
the original Bloom filter, but only receives the compressed
filter from the reader. For each of the k1 bits, the tag loads
the hash position of the bit in the filter into a segment counter.

Fig. 1. An illustration of how to compress an original Bloom filter and use
a compressed filter for membership check.

As it receives the compressed filter from the reader, for
each l1-bit number received, it subtracts the number plus one
from the counter, where the number represents a segment of
consecutive zeros and the one represents a bit 1 between two
segments. This process continues until the counter is reduced
to zero or a negative number. If the counter is reduced to
zero, it means that the bit that the tag is mapped to in the
original Bloom filter is located right between two segments of
zeros; that bit must be one. If the counter becomes negative,
it means that the bit that the tag is mapped in the original
Bloom filter must be zero. There are k1 counters for the tag.
If all k1 counters are reduced to zeros, it means that the tag
has passed the membership check and it is claimed to be a
member in T . If any of the counters becomes negative, the tag
fails the membership check. All tags that pass the check will
participate in Phase two. All tags that fail the check, including
the majority of unknown tags in U , are filtered out and will
stay silent in Phase two.

Fig. 1 shows an example of how to compress an original
Bloom filter and how to use a compressed filter for member-
ship check. In Fig. 1a, the upper bit array is the original Bloom
filter and the lower array is the resulting compressed filter.
As we can see, there are four ones in the original Bloom filter,
and thus the compressed filter has four segments. The numbers
of zeros in those segments are 2, 8, 4 and 10 respectively.
We have Lmax = 10 and l1 = �log2(Lmax + 1)� = 4. The
compressed filter consists of 2, 8, 4 and 10 in 4-bit binary
format. The compression ratio is 28

16 = 1.75. Fig. 1b shows
an example of how to perform membership check using the
compressed filter. Let k1 = 2. The hash values of two tags are
(6, 12) and (3, 17) respectively. The expression below each
l-bit number is the sum of the number and 1. When performing
membership check, each tag will subtract these sums from the
hash values until the results are non-positive. As we can see,
for tag 1, its hash values will be subtracted to (-6, 0), while
for tag 2, they are subtracted to (0, 0). Thus, tag 2 passes the
membership check and tag 1 does not.

We perform experiments to compare the size of our com-
pressed filter with that of the original Bloom filter. The results
are shown in Fig. 2, consisting of three plots that compare
the two filters’ sizes with respect to the number k1 of hash
functions, the number n of encoded tags, and the false positive
ratio requirement p1, respectively. In each plot, the x-axis

Authorized licensed use limited to: University of Florida. Downloaded on July 30,2020 at 21:57:17 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: MISSING-TAG DETECTION WITH UNKNOWN TAGS 1301

Fig. 2. Comparison between the compressed filter and the original Bloom filter.

represents a parameter setting (k1, n or p1), while the y-axis
shows the filter size. Fig. 2a compares the two filters with
respect to k1, where n = 3000 and p1 = 0.001. Recall that
the motivation behind the design of our compressed filter is
to work with a small number of hash functions, considering
the limited tag resources. The size of the compressed filter
is just 40838 when k1 = 1. In comparison, the size of
the Bloom filter is 2998500 when k1 = 1, 85420 when
k1 = 3, and 43130 when k1 takes its optimal value of 10.
An interesting observation is that the size of the compressed
filter first increases as k1 increases, then the size decreases.
The reason is that a larger number of hashes will set more
bits in the filter to ones and thus create more segments in the
compressed filter, but the average segment size may decrease.
Overall, the size of our compressed filter reaches the smallest
when k1 = 1 as we find out in our experiments. Fig. 2b
compares the two filters with respect to n, where k1 is set
to 1 for the compressed filter and 3 for the Bloom filter, and
p1 = 0.001. The sizes of both filters increase as n increases,
while our compressed filter is always smaller than the Bloom
filter, even with a fewer number of hashes. Fig. 2c compares
the two filters with respect to p1, where n = 3000 and k1 is
set to 1 for the compressed filter and 3 for the Bloom filter.
The sizes of both filters increase as p1 decreases, while our
compressed filter is always smaller than the Bloom filter, even
with a fewer number of hashes.

C. Motivation for Phase Two

After Phase one filters out most of unknown tags, we use
Phase two for the remaining tags (particularly those in T)
to report their presence to the RFID reader. In BMTD [27],
these tags together transmit a Bloom filter to the reader, with
each tag encoded as k1 ones in the filter. In order to achieve
a low false positive ratio, the filter size has to be large. For
example, by (1), if k1 = 3, the filter must be at least 12.4n
bits to ensure a false positive ratio of 0.01, which means 12.4
bits per encoded tag, where n is the total number of tags.

The time for delivering each bit in the filter to the reader can
be costly. In practice, it is difficult for numerous tags to syn-
chronize their transmissions at bit level, especially for a long
filter of many bits. Many prior works resort to more robust
designs with one time slot delivering a single bit [5]–[13].
We have implemented such a design that conforms to the EPC
C1G2 standard [40] following [41]. Details of the implementa-
tion is provided in Section VI, and a brief summary is given as
follows: In the standard C1G2 protocol for tag ID collection,
the reader initiates a time frame of a specified number of slots.

Each tag chooses a random slot to transmit its ID, and the slot
structure is QueryRep → RN16 → ACK → tag ID, where
QueryRep is a command transmitted by the reader to start a
slot, RN16 is a 16-bit random number transmitted by a tag
for collision detection, ACK is transmitted by the reader and
carries the received RN16, and ID is transmitted by the tag,
which is followed by another QueryRep from the reader to
start the next slot. We denote the time of such a slot as TID,
during which 96 bits (i.e., a tag ID) are exchanged between a
reader and a tag. We have reconfigured the above protocol to
deliver one bit information in each slot, indicating the presence
of a tag (without transmitting its ID). In the modified protocol,
the transmissions of ACK and tag ID are skipped. After RN16,
the reader immediately sends QueryRep to start the next slot.
In this way, each slot does not carry any ID but instead just one
bit information: If any tag transmits RN16, the reader observes
a busy channel and registers a bit 1; if no tag transmits, the
reader sees an idle channel (empty slot) and registers a bit
0. The time frame of slots will thus be turned into a bitmap.
In case of BMTD [27], if each tag transmits in k1 randomly
chosen slots, the bitmap is a Bloom filter encoding the tags.
The slot structure is now QueryRep → RN16, and its time is
denoted as Tshort. Tshort translates into 2.69ms based on the
settings in [41]. In comparison, the original slot structure for
tag ID, i.e., TID, takes 14.37ms.

BMTD [27] is inefficient because it requires many bits
(slots) per tag. We argue that the minimum number of slots
needed to report the presence of a tag is actually one. In our
design, a tag not filtered in Phase one will transmit at most
once, using a single slot in a slotted time frame initiated by
the reader. Suppose we assign each tag to a single slot by
hashing the tag ID. The slots can be classified into three types:
singleton slots, collision slots, and empty slots, which have a
single assigned tag, multiple assigned tags, and zero tag in T ,
respectively. The reader knows the IDs of tags in T , and thus it
can predict which slots are singletons, which have collisions,
and which are empty. Monitoring the status of the slots, if
the reader observes that an expected singleton/collision slot
turns out to be empty, it knows that the tags in T that are
supposed to transmit in this slot must be missing and thus
it detects a missing-tag event successfully. For now, we will
ignore the unknown tags that pass Phase one; they may cause
noise to make detection fail probabilistically. Their number
is small, and our analysis will consider the noise that they
introduce into our detection and make sure that the accuracy
requirement will be met under such noise.

Among the three types of slots, singletons are most produc-
tive. If a tag in a singleton slot is missing, the slot will become

Authorized licensed use limited to: University of Florida. Downloaded on July 30,2020 at 21:57:17 UTC from IEEE Xplore. Restrictions apply.

1302 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 3, JUNE 2020

empty and the reader will detect a missing tag. For a collision
slot, two or more tags must be all missing in order for the slot
to become empty, which happens with a smaller probability.
We want to design our solution that maximizes the number of
singleton slots in order to improve detection probability, while
reducing the number of empty slots in order to improve time
efficiency. To do so, we map each tag to multiple slots and
choose the one that makes a singleton for the tag to transmit.

Moreover, to make the solution more time efficient, we
sample the tags so that only a portion of them will report
their presence. This is fine for probabilistic detection as long as
the sampling probability is large enough to meet the accuracy
requirement of missing-tag detection.

D. Phase Two: Missing Tag Detection

In Phase two, the reader samples the tags in T and initiates
a slotted time frame, where each sampled tag will transmit in
one of the slots. The reader will convert the time frame to a
bitmap, each slot for one bit, which is one if the slot is busy
or zero if the slot is empty.

Let the number of slots in the time frame be f2, which
is also the number of bits in the bitmap. The time frame is
divided into sub-frames of l2 slots each, where l2 is divisible
by f2. The reader knows the IDs of tags in T . For each tag, it
performs a hash h(ID, r), where ID is the tag’s ID and r is

a random seed. The reader uses the first log2
f2

l2
hash bits to

map the tag to a sub-frame, and uses the following hash bits
to further map the tag to k2 slots in the sub-frame, each slot
taking �log2(l2)� hash bits to locate. These slots are called
the first mapped slot, the second mapped slot, …, the k2th
mapped slot of the tag, respectively, as is illustrated in Fig.3.
(We will discuss how to set the optimal values of the system
parameters, including f2, l2 and k2, in the next section.)

After the reader maps all tags to slots, it determines in
which mapped slot each tag will actually transmit: To begin
with, the reader considers only the first mapped slots of the
tags in T , identifies the singleton slots, and assigns these slots
to the tags mapped to them. These slots are given an index
value of 1, indicating that they are the first mapped slots of
the assigned tags. Then the reader removes these slots/tags
from further consideration. It repeats the above process for
the second mapped slots of the remaining tags: identifying
the singleton slots, assigning these slots to the tags mapped to
them, and removing them from further consideration. These
slots are given an index value of 2. This process is repeated
all the way through the k2th mapped slots. In the end, each
tag is assigned to at most one slot to report its presence. After
determining the slot-tag assignment, the reader pre-computes
an expected bitmap, which contains a bit one for each assigned
slot (expected to be busy) and a bit zero for each unassigned
slot (expected to be empty). Next the reader must inform the
tags about the assignment for their reporting.

The reader initiates communication with a broadcast request
carrying a sampling probability ps and a random seed r.

The request is followed by a sequence of f2

l2
sub-frames.

The reader begins each sub-frame by transmitting a slot-index
array, which contains one index value for each of the l2 slots.
The index value of an unassigned slot is zero. Each index is
�log2(k2 + 1)� bits long, and the total length of the array is
l2�log2(k2 + 1)�. For example, if k2 = 3 and l2 = 48, the
slot-index array takes 96 bits. The reader can broadcast such

Fig. 3. An illustration of multi-hashing, where k2 = 3 and l2 = 8. The
first four bits of h(ID1, r) are used to decide in which sub-frame (the 10th
in this example) the tag will transmit. The first three bits after those four bits
are used to decide the first mapped slot of this tag in this sub-frame. The next
three bits are used to decide the second mapped slot, and the following three
bits are used to decide the third mapped slot.

an array using a time slot of size for transmitting a 96-bit tag
ID in 14.37ms.

All tags receive ps and r. Sampling can be performed
pseudo-randomly using the method in [1], [4], [28], [36],
which is predictable by the reader. The tags know which sub-
frames they are mapped to by computing h(ID, r). Each tag
waits for its sub-frame, and receives the corresponding slot-
index array at the beginning of the sub-frame. It knows its
first mapped slot through k2th mapped slot from the hash bits
in h(ID, r). The tag examines its first mapped slot. If the
corresponding slot index (from the received array) happens to
be 1, the tag knows that it is assigned to this slot and should
report its presence by transmitting in this slot. Otherwise, it
examines its second mapped slot to see if the slot index is
2, and if so transmits in that slot. This process repeats until
an assigned slot is identified, or otherwise the tag will not
transmit.

The reader monitors the status of all slots in each sub-frame,
converting every busy slot to bit 1 and every empty slot to bit 0.
If it observes any expected busy slot to be empty, i.e., that a bit
1 in the pre-computed bitmap turns out to be 0, it announces a
missing tag event. By increasing the sampling probability ps or
increasing the frame size f2, we can make more tags to report
in singleton slots, thus increasing the missing-tag detection
probability in order to meet a pre-specified requirement, even
under the presence of unfiltered unknown tags, as our analysis
will show.

E. Cardinality Estimation

As we will discuss later, in order to obtain some parameters
in our protocol, we need to first perform cardinality estimation
on the entire set E. There are many solutions [1], [3], [4], [7],
[8] for fast cardinality estimation in RFID systems. In this
paper, we adopt state-of-the-art SRC estimator proposed in
[4] to estimate the number of tags in E. The SRC estimator
takes a deeper insight into existing RFID counting protocols
and designs a more efficient algorithm based on existing
literature [3], [42], [43]. The protocol consists of two phases:
a rough estimation phase, which uses a small overhead of
Θ(loglog(|E|)) to get a rough cardinality estimation, and an
accurate estimation phase, which uses 65

(1−0.04ε)2 (ε is the

relative estimation error) slots to obtain an accurate result. For
example, when ε = 0.1 as BMTD [27] sets, in our simulations
the number of slots calculated from [4] is around 1000, which
is relative small compared with the slots needed by RUN,
BMTD and our protocol (more than 30000). After estimation
of |E|, we can use it to obtain the cardinality of unknown tags
as |U | = |E|−n, which will be used later in our optimization
of execution time.

Authorized licensed use limited to: University of Florida. Downloaded on July 30,2020 at 21:57:17 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: MISSING-TAG DETECTION WITH UNKNOWN TAGS 1303

F. Hash Function

There are many efficient implementations of hash functions
in the literature. To lower the complexity of the tag circuit,
we implement our hash function based on the scheme in [23],
which uses a ring of pre-stored random bits: Before a tag
is deployed, the ID of a tags is used as seed for a random
number generator to produce a string of pseudo-random bits.
These bits are stored in the tag and form a logical ring. After
deployment of a tag, it generates a hash value h(id, r) by
returning a certain number of bits after the rth bit in the ring,
where id is the tag ID and r is a hash seed. This hash value
can be predicted by an RFID reader given the tag ID and the
seed r.

This design of hash function is easy to implement in
hardware and thus suitable for tags. But it can only produce a
limited number of different hash values for each tag, depend-
ing on the size of the ring. It is not suitable for protocols
that require each tag to produce a large number of different
hash values. However, as we will see later, in our protocol, we
only require each tag to produce a few hash values for use, in
specific, only 1 hash value in Phase one and 3 in Phase two,
which makes our implementation work well.

V. PERFORMANCE ANALYSIS AND PARAMETER

OPTIMIZATION

In this section, we formally analyze the performance of
our protocol and optimize the parameters in our protocol
such that the execution time is minimized while the detection
probability is satisfied. As is discussed in [27], when the
number of unknown tags is small, the interference from U
can be neglected and Phase one does not need to be executed.
Therefore, we only consider the case when |U | is large such
that Phase one is always needed.

A. Execution Time in Phase One

We first analyze the execution time in Phase one.
From (1), we know that for a given false positive ratio p1,

the size of an original Bloom filter can be calculated as

f = −
nk1

ln(1 − p
1

k1

1)
. (3)

After the construction of the original Bloom filter, we segment
it based on the bits of ones. For a Bloom filter encoding n
elements with k1 hash functions, the number of ones in it is
at most n · k1, which is an upper bound for the number f1 of
segments of consecutive zeros in the filter. Thus, the average
segment length is lower-bounded by

L1 =
f

nk1
= −

1

ln(1 − p
1

k1

1)
. (4)

Recall that f1 denotes the size of the compressed filter in Phase
one and l1 denotes the number of bits used to encode each
segment. The value of l1 is lower-bounded by log2(L1 + 1)
bits.

Suppose we use the same time slots for transmitting 96-bit

tag IDs to transmit the filter. Phase one will take f1

96

l1

slots,

each transmitting 96
l1

segments in time TID, which is defined

in Section IV-C. Therefore, the execution time t1 in Phase one
is

t1 = TID ·
f1

96
l1

. (5)

With the compressed filter, we want to filter the majority of
unknown tags in U . Let N∗ be the tag set which consists of
tags that remain active after Phase one and its cardinality be
n∗ = |N∗|. We know that N∗ consists of two parts:

1) tags in T that are not missing.
2) tags in U that are false positives.
For the first tag set, its cardinality n∗

1 is the number of tags
in T that are present, that is

n∗
1 = n − m. (6)

For the second tag set, since the false positive ratio of our
compressed filter is p1, the number n∗

2 of unknown tags that
can pass our Bloom filter can be calculated as:

n∗
2 = |U | · p1. (7)

Combining (6) and (7), we have

n∗ = n∗
1 + n∗

2 = n − m + |U | · p1. (8)

This number will be used later for our analysis of the execution
time in Phase two.

B. Execution Time in Phase Two

Now, we move forward to analyze the execution time in
Phase two. Since the false positive ratio p1 is very small, we
assume that n∗

2 	 n and n∗ ≈ n.
First we need to derive the detection probability after one

execution of Phase two. The probability that any sampled tag is
successfully assigned to a singleton slot after the ith mapping
is given by

Pi = (1 − Pi−1)
n

∑

j=0

(

n
j

)

(ps
l2

f2
)j(1 − ps

l2

f2
)n−j

· (1−
1−Pi−1

l2
)j−1 ·(1−

jPi−1

l2
)+Pi−1, 1≤ i≤k2. (9)

where the first term is the probability that a tag which is
not assigned to a singleton slot after the (i − 1) mappings
is assigned to a singleton slot in the ith mapping, the second
term is the probability that a tag is assigned to a singleton
slot after i − 1 mappings, and the rest parameters are already
defined in previous sections. Therefore, after k2 mappings, the
detection probability in Phase two is:

p2 = 1 − (1 − ps × Pk2
)m. (10)

where Pk2
is the probability that any sampled tag is assigned

to a singleton slot after k2 mappings. Pk2
can be computed

recursively from (9) with P0 = 0.
Recall in Section II-B that our system requires a detection

probability of at least α for reporting a missing tag event. In
order to satisfy the requirement of our system, we need to set

p2 = α. (11)

Combining (10) and (11), we can obtain f2, the number of
bits in the bitmap of Phase two, each taking a short time slot

Authorized licensed use limited to: University of Florida. Downloaded on July 30,2020 at 21:57:17 UTC from IEEE Xplore. Restrictions apply.

1304 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 3, JUNE 2020

Tshort to deliver, as explained in Section IV-C. The execution
time of Phase two can be obtained as

t2 = f2 · Tshort +
f2

l2
· TID, (12)

where the first term on the right is the time for tags to report
their presence using the bitmap protocol and the second term
is the time for the reader to transmit the slot-index arrays.

C. Overall Execution Time

Finally, we can obtain the overall execution time of our
protocol based on the analysis in Section V-A and Section
V-B as follows:

t = t1 + t2

=
f1 · l1

96
· TID + f2 · Tshort +

f2

l2
· TID. (13)

In order to improve the performance of our protocol, we
need to minimize t such that a missing tag event can be
detected and reported in the shortest time. So in this section,
we study the impact of different parameters on our execution
time t. For a given RFID system, some parameters in (13)
such as m, n, |U | and α are set by users. Thus, to minimize
the time cost, we mainly investigate the impact of parameters
including k1, p1, k2 and ps.

We want to first point out that the increase of the number
k2 of mappings in Phase two will increase the detection prob-
ability and reduce detection time. However, more mappings
will increase the computation overhead for tags and will also
require more on-chip memory to store the computation results.
Therefore, to simply the operation of tags, we set k2 = 3 in
both our analysis and experiments when using multi-hashing
in Phase two.1

1) Impact of k1: First we study how the number k1 of hash
functions used in Phase one will affect the execution time of
our protocol. Since k1 does not affect the execution time t2
in Phase two, we only focus on t1 in our analysis.

We take (4) to (5) and take the first derivative of t1 with
respect to k. Then we have

t′1(k1) = [ln(1 −
1

ln(1 − p
1

k1

1)
)

+
p

1

k1

1 ln p1

k1(1 − p
1

k1

1)(1 − 1

ln(1−p
1

k1

1
)

) ln2(1 − p
1

k1

1)
] ·

nTID

96
. (14)

If we take the second derivative, we can find that t′′1(k1) >
0, ∀k1 ∈ [1,∞) and k1 is an integer. Thus, t′1(k1) is increasing
with respect to k1 in its domain. Besides, we can obtain from
(14) that t′1(1) > 0 for ∀p1 ∈ (0, 1). As a result, t′1(k1) >
0, ∀k1 ∈ [1,∞) and t1(k1) is increasing with respect to k1 in
[1, +∞). Therefore, the execution time t1 (and t) is minimized
when k1 = 1. In the rest of our paper, we set k1 = 1 to
simplify our analysis.

Fig. 4a shows the relationship between execution time t1
and k1 when n = 10000, m = 100, |U | = 50000 and
α = 0.99. In this figure, the x coordinate is the number of
hash functions and the y coordinate is the execution time (in

1One may ask why we do not use k2 = 2. The reason is that we will
always need 2 bits for each slot index when k2 = 2 or 3. In this condition,
we should choose k2 = 3 for better performance.

seconds) for Phase one. We can observe that execution time is
increasing as the number of hash functions increases and will
reach its minimum when k1 = 1.

2) Impact of p1: It is hard to obtain an explicit expression of
t with respect to the false positive ratio p1 from (13). However,
we want p1 to be smaller such that the missing tag detection
is more reliable. In Section V-B, we assume n∗

2 	 n, that is
p1 · |U | 	 n. Therefore, we have

p1 · |U |

n
	 1. (15)

In practice, we set
p1·|U|

n = δ, where δ 	 1 such that (15) will

hold. For example, we set δ = 10−3, when n = 10000, |U | =
50000. In this case, there will only be approximately 10 tags
from U that participate in Phase two, which can be neglected
as Section V-B does.

3) Impact of ps: In this section, we study how the sample
probability ps influences the execution time of our protocol.
Since ps does not affect the execution time t1 in Phase one,
we only focus on f2/t2 in our analysis.

Combining (10) and (11), we can observe that for each
different sampling probability ps, we can compute an optimal
frame size f∗

2 that satisfied the detection probability using the
bi-section algorithm. If we consider the optimal value f∗

2 as
a function of ps, denoted as f∗

2 (ps), f∗
2 (ps) can be optimized

as:

f∗
2 (ps) = min{f2|p2 ≥ α}, s.t. f2 ≤ F, f2 ∈ I+. (16)

where F is the upper bound of acceptable frame size and I+

is the set of positive integers. f∗
2 (ps) can be computed based

on bi-section search using Algorithm 1.

Algorithm 1 Search for f∗
2 (ps)

Input: m, n∗, α, k2, ps

Result: the minimal frame size under sampling probability ps

1: if p2 < α then

2: exit;

3: end if

4: fs = 1, fe = F ;

5: while fe − fs > 1 do

6: fm = � fs+fe

2 �;

7: if p2 < α then

8: fs = fm;

9: else

10: fe = fm;

11: end if

12: end while

13: return fe

Fig. 4b shows the tradeoff between f2 and ps when n =
10000, m = 100, |U | = 50000 and α = 0.99. In this figure,
the x coordinate is the sampling probability ps and the y
coordinate is the frame size for Phase two. We can observe
that there is a tradeoff between f2 and ps. An optimal ps can
be determined by searching ps in the range of (0, 1] such that
f∗
2 (ps) is minimized.

Authorized licensed use limited to: University of Florida. Downloaded on July 30,2020 at 21:57:17 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: MISSING-TAG DETECTION WITH UNKNOWN TAGS 1305

Fig. 4. Impact of different parameters on execution time.

VI. IMPLEMENTATION OF BITMAP PROTOCOL

The proposed solution of missing tag detection with
unknown tags requires each tag to perform some simple
calculations for membership check and report their presence in
the form of a bitmap. In specific, tags are required to have the
capability of: 1) computing hash values based on given random
seeds and tag ID, 2) operating segment counters for the com-
pressed filter, 3) performing basic arithmetic operations such
as subtraction and comparison, and 4) storing random seeds
broadcast by the reader. Unfortunately, the current commercial
EPC C1G2 tags cannot fully support these functionalities.
Therefore, we are not able to implement the proposed protocol
entirely by the commercial tags, which are not programmable
for the operation of membership check specific to our protocol.
Nonetheless, we show the EPC C1G2 protocol can be recon-
figured at the reader side (without reprograming the tags) to
support bitmap collection, which is a key component in Phase
two of the proposed protocol. This will be the component
that does not need to be reimplemented if one wants to
extend todays tags for missing-tag detection. Moreover, bitmap
collection is also the basis for other protocols in RFID research
[1], [6], [7], [9]–[18], [27], [28].

Below we first review the existing tag ID collection protocol
in the C1G2 standard [40], and then show how to reconfigure
it for bitmap collection, allowing each tag to pick a slot and
report its presence with one bit information, e.g., making a
short transmission in the slot to make the channel busy.

A. ID Collection Protocol

According to the EPC C1G2 standard, an inventory round
for tag ID collection is initialized by a reader broadcasting
a Query command. The Query command is 22-bit long
and includes a parameter Q, which decides the number of
slots in this frame. The Query command is followed by an
ALOHA frame, which consists of 2Q slots during which tags
can transmit responses. Upon receiving a Query, each tag
will pick a random value s in the range [0, 2Q − 1] and load
s into its slot counter. The counter is reduced by one for each

Fig. 5. Communication between a reader and tags for tag ID collection.

Query or QueryRep and a tag will transmits back a response
when the slot counter is reduced to 0.

Fig. 5 shows an ALOHA frame generated from our testbed
using the ID collection protocol following the EPC C1G2
standard [40]. We use two Laird antennas [44], one as a
transmitter and the other as a receiver, and we perform ID
collection on the USRP (universal software radio peripheral)
platform following [41], with three widely-used commercial
Alien Squiggle UHF RFID tags [45]. In the experiments, we
set Q = 3 so the frame consists of 8 slots. The physical-layer
signals between the reader and the tags are shown in Fig. 5,
where there is no tag response in the first slot (following
the Query command), since initial random values of all
three tags’ slot counters are non-zeros. In the second slot
(following the first QueryRep command), a short response
which includes an RN16 is received after QueryRep. Then an
ACK command containing this RN16 is broadcast. After that,
the tag receiving this RN16 transmits back a tag-ID response
since the RN16 matches its own, and the reader successfully
resolves it. In the next three slots, no tag responds to the
reader. When it comes to the sixth slot, the slot counters of the
remaining two tags are both decreased to zero. So they both
transmit a short response following the QueryRep command.
The reader resolves an RN16 and includes this information in
the following ACK command. However, since this RN16 does
not match either tag’s RN16, no tag-ID response is transmitted.
As a result, the reader fails to resolve all three tags’ IDs by
executing one ALOHA frame due to collision. Thus, in order
to collect all tag IDs, the reader has to execute additional
frame(s) until all tag IDs are collected.

B. Bitmap Protocol

We modify the above C1G2 ID collection protocol for
bitmap collection that is required in Phase two of our proposed
missing-tag detection solution.

For our purpose, there is no need for any tag to transmit
its ID, but only to report its presence in a slot. As is stated
in Section II-A, the status of each slot is classified into two
types: empty slot and busy slot, which will be converted to 0
and 1, respectively. The bitmap protocol can be implemented
by slightly modifying the ID collection protocol as follows: An
inventory round is still initialized by a reader broadcasting a
Query command, which is followed by an ALOHA frame of
2Q slots. During each time slot, the reader will be reconfigured
to just broadcast the QueryRep command and not transmit
the ACK command after it receives any short responses from
tags. Each tag after receiving a QueryRep command will
decide whether or not it shall send back a short response in
the same manner as in the ID collection protocol. The reader

Authorized licensed use limited to: University of Florida. Downloaded on July 30,2020 at 21:57:17 UTC from IEEE Xplore. Restrictions apply.

1306 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 3, JUNE 2020

Fig. 6. Communication between a reader and tags when collecting a bitmap.

monitors the channel state and classifies a slot as a busy slot
if it receives any short response or as an empty slot if it does
not. After that, the reader will not broadcast an ACK command
and thus no tag-ID response will be transmitted by any tag.
The reader will instead initialize the next slot by transmitting
QueryRep.

Fig. 6 shows an ALOHA frame generated from our testbed
using the bitmap collection protocol we described above. We
use the same two Laird antennas and perform the bitmap
protocol on the USRP platform following [41], with three
widely-used commercial Alien Squiggle UHF RFID tags [45].
We set Q = 3 so the frame consists of 8 slots. From Fig.
6, we can see that the first, third and fourth slot are busy
slots, where short responses are received by the reader after
the Query/QueryRep command, while the other five slots
are empty slots. As a result, this frame is converted to a bitmap
of size 8 as ‘10110000’.

VII. EVALUATION

The proposed protocols are designed for large RFID systems
with tens of thousands of tags where protocol efficiency
becomes critical. For large-scale evaluation, we resort to sim-
ulations. There is limited work on missing tag detection with
presence of unknown tags. Only RUN [28] and BMTD [27]
can detect a missing tag event with the required probability in
our scenario, while most of the existing work cannot handle
the interference of unknown tags. Thus, we compare our
protocol with RUN and BMTD. For each set of experiments,
we repeat 100 times under the same simulation settings. The
parameters of RUN and BMTD are set based on [28] and [27],
respectively.

A. Efficiency of Compressed Filter

The first set of experiments study the efficiency of our
compressed filter. In our simulation, we set the size of set
T as 1000 and set the false positive ratios as 0.005, 0.001,
0.0005 and 0.0001 respectively. We use 10000 elements to
test the actual false positive ratio of the filters.

Table I shows the performance of the optimal Bloom filter
and our compressed filter. In this table, the first row shows the
theoretical false positive ratio that we set in the simulations.
The second row lists the sizes of the optimal Bloom filter
that are calculated based on (2). These results agree with
our analysis that the size of the Bloom filter increases when
Pfp becomes lower. The third row shows the sizes of our
compressed filter using our compression algorithm, which are
much smaller than the sizes of the optimal Bloom filter in the
second row under the same false positive ratio requirement.
This proves that our compressed filter is more efficient than the

TABLE I

COMPARISON BETWEEN THE OPTIMAL BLOOM FILTER AND

OUR COMPRESSED FILTER

Fig. 7. Reliability of our protocol.

optimal Bloom filter. Specifically, when the false positive ratio
is required to be 0.0001, our compressed filter saves 13.8%
space compared with the optimal Bloom filter. The last two
rows show the actual false positive ratio of the optimal Bloom
filter and our compressed filter, respectively. We can observe
that the false positive ratios of both filters are close to the
theoretical one, while the false positive ratio of our compressed
filter can be lower than that of the optimal one. These results
show that our compressed filter can achieve an even smaller
false positive ratio, which can filter out more unknown tags,
with a smaller size than the optimal Bloom filter. All these
results demonstrate the effectiveness of our design.

However, this does not mean that the design of original
Bloom filter and optimal Bloom filter is not compact. We want
to point out that for the problem of missing-tag detection with
presence of unknown tags, when the required false positive
ratio is very small, we can compress the Bloom filter to save
more space. While for other problems, the required false posi-
tive ratio may not be as small, the design of original Bloom fil-
ter is still capable of space-efficiently representing the data set.

B. Accuracy

The second set of experiments investigate the accuracy of
our protocol. We want to verify that our protocol can detect
a missing tag event with the required detection probability α,
which is satisfied by RUN and BMTD.

In our simulations, we set n = 10000, M = 1 and |U | =
50000. We vary the number m of missing tags in our system
from 50 to 100 at a step size of 10 and set the detection
probability α as 0.9 and 0.99 respectively. Other parameters
of our protocol are optimized as is described in Section V.

Authorized licensed use limited to: University of Florida. Downloaded on July 30,2020 at 21:57:17 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: MISSING-TAG DETECTION WITH UNKNOWN TAGS 1307

Fig. 8. Execution time of different protocols when α = 0.9.

Fig. 9. Execution time of different protocols when α = 0.99.

Fig. 7 shows the actual detection probability of our protocol
with different detection probability. The left plot shows the
actual detection probability when α = 0.9 and m varies from
50 to 100, while the right one corresponds to the accuracy
requirement of α = 0.99. In each plot, the x coordinate is
the number m of missing tags and the y coordinate is actual
detection probability. The red line is the required detection
probability and each bar represents the average actual detection
probability of 100 runs under the given setting. We can observe
that the actual detection probability is always higher than the
required one. Besides, as the number of missing tags increases,
the detection probability becomes higher, which is expected
since it is easier to detect a given number of tags when more
tags are actually missing.

C. Execution Time

We evaluate and compare the execution time of our protocol
with RUN and BMTD through simulations. In our simulation,
we set M = 1, and let α = 0.9 and 0.99, respectively. We
vary m, n and |U | to investigate their impact on the time-
efficiency of these three missing-tag detection protocols. We
use real time (in seconds) for evaluation. Recall that in Section
IV-C, we configure the EPC standard to transmit two different
types of slots: Tshort and TID, which are 2.69ms and 14.37ms
respectively based on the parameter settings in [41]. As we
have explained in the protocol description, slots of TID are
used for transmitting the compressed filter in Phase one and the
slot-index arrays in Phase two, while slots of Tshort are used
for tags to report their presence in Phase two. The parameters
for our protocol are set based on Section V. For RUN, we
use Tshort for tags to transmit their responses and the total
execution time is fRUN ×Tshort, where fRUN is the optimal
frame size that is obtained from [28]. For BMTD, we use TID

for the reader to broadcast the Bloom filter in 96-bit segments
and use Tshort for tags to transmit their responses. The total
execution time is fBMTD1 ×

TID

96 + fBMTD2 ×Tshort, where
fBMTD1 and fBMTD2 are the optimal frames size of Phase
one and Phase two in BMTD that are obtained from [27].

1) Impact of m: The third set of experiments study the
impact of the number of missing tags. In our simulations, we
set n = 10000, |U | = 50000 and vary m from 50 to 100 at a
step size of 10. The experiments are conducted under accuracy
requirement of both α = 0.9 and 0.99.

Fig. 8a and Fig. 9a show the results of our simulations
under different accuracy requirements. In each plot, the x
coordinate is the number of missing tags and the y coordinate
is the overall execution time (in seconds). It is expected that
the execution times of these three protocols increase as the
detection probability increases. Besides, we can observe that
the execution times of these three protocols decrease (but
slowly) with the increase of m, which is expected since for
a given threshold, the more tags are missing, the faster we
can detect a missing-tag event. In addition, our protocol takes
less time than BMTD and RUN for detection. The execution
time is reduced by 83% compared with the state-of-the-art
(BMTD), when α = 0.9. When α = 0.99, our protocol is even
better compared with BMTD and RUN. Specifically, when
α = 0.9, m = 50, the execution times of our protocol, BMTD
and RUN are 25.82, 178.90 and 258.68 seconds, respectively.
This comes from the fact that RUN does not filter out any
unknown tags in its detection, thus will waste much time on
these tags. BMTD tries to filter out these unknown tags, but
the Bloom filter it uses is less efficient than our design. As a
result, our protocol outperforms RUN and BMTD in missing-
tag detection with presence of unknown tags.

2) Impact of n: The fourth set of experiments study the
impact of the number of tags in T . In our simulations, we

Authorized licensed use limited to: University of Florida. Downloaded on July 30,2020 at 21:57:17 UTC from IEEE Xplore. Restrictions apply.

1308 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 3, JUNE 2020

Fig. 10. Execution time of our protocol in Phase two under different unreliable channels when α = 0.9.

set m = 100, |U | = 50000 and vary n from 5000 to 10000
at a step size of 1000. The experiments are conducted under
accuracy requirement of both α = 0.9 and 0.99.

Fig. 8b and Fig. 9b show the results of our simulations under
different accuracy requirements. Similarly, the execution times
increase as the detection probability increases. Besides, the
execution times of all three protocols increase with respect
to n, but our protocol still outperforms BMTD and RUN
and consumes much less time (6 times shorter than BMTD
and 15 times short than RUN when α = 0.9). The raise of
execution times is expected since a larger frame needs to be
allocated to maintain the detection accuracy, when the number
of known tags increases. In specific, when α = 0.9, n =
5000, the execution times of our protocol, BMTD and RUN
are 13.44, 89.55 and 237.13 seconds, respectively. Overall,
our protocol outperforms RUN and BMTD in missing-tag
detection with presence of unknown tags under both accuracy
requirements.

3) Impact of |U |: The fifth set of experiments study the
impact of the number of unknown tags. In our simulations, we
set n = 10000, m = 100 and vary |U | from 50000 to 100000
at a step size of 10000. The experiments are conducted under
accuracy requirement of both α = 0.9 and 0.99.

Fig. 8c and Fig. 9c show the results of our simulations
under different accuracy requirements. We can observe that
as the number of unknown tags increases, the execution
time of RUN increases drastically, while the execution time
of our protocol and BMTD increases slowly. This agrees
with our analysis that the performance of RUN drops a
lot when dealing with large tag sets since it does not filter
out unknown tags. While both our protocol and BMTD
filter out the inference of unknown tags, the design of our
compressed filter is more efficient as is analyzed previously.
All these results above demonstrate that our protocol can
more time-efficiently perform reliable missing tag detection
than RUN and BMTD with large unknown tag sets.

VIII. MISSING-TAG DETECTION UNDER

UNRELIABLE CHANNEL

So far, we assume that there is no error in the communi-
cations between the RFID reader and tags and the wireless
channels are reliable. However, in practice the wireless chan-
nels between a reader and a tag are not as perfect and will
suffer noises and interferences from the environment, which
may corrupt a time slot. For example, an empty slot may turn
out to be a busy slot if it is corrupted by noises. In this case,
a missing tag that is supposed to be mapped into an empty
slot will be detected as present, thus reducing the detection

probabilities. Besides, noises and interferences may also make
an influence on busy slots. However, it is extremely unlikely in
practice that the noises and the transmissions between tags and
readers will have opposite phases and completely cancel each
other. Therefore, as long as the reader can still detect some
energy, a would-be busy slot is still detected as a busy slot.
Therefore, we mainly investigate unreliable channels’ impacts
on empty slots in this paper.

There are many error models on unreliable channels includ-
ing random error model, burst error model [46] and so on.
In this paper, we mainly evaluate the impact of unreliable
channels under random error model. We also stress that
the random error model is only applied to the tag-to-reader
communication link since passive tags harvest energy from
readers and the reader-to-tag communication link is strong and
much more resistent to noise than the tag-to-reader link.

A. Random Error Model

The random error model characterizes the impact of channel
errors by a parameter pe, which is the probability for each slot
to be corrupted. For example, pe = 5% indicates that a would-
be empty slot has a probability of 5% to be corrupted into a
busy slot by channel noises.

We now analyze the impact of random error model on
our missing-tag detection protocol. Since Phase One does not
involve any tag-to-reader communication, channel noise will
not make an impact. For Phase Two, we know from Section
V-B that in perfect channels each missing tag has a probability
of ps×Pk2

to be detected. Besides, under random error model
the probability that a would-be empty slot is turned into a busy
slot is pe. Therefore, under random error model the detection
probability in Phase Two is:

p′2 = 1 − (1 − ps × Pk2
× (1 − pe))

m. (17)

Substituting p2 with p′2 in Section V, we can learn the
performance of our protocol under unreliable channels of
random error model.

B. Evaluation Under Unreliable Channel

Since unreliable channels do not make an impact on Phase
one of our protocol, we only compare the execution time of
our protocol in Phase two with different error probability pe

and evaluate the impact of channel errors. We set pe as 0, 5%
and 10% and call these three protocols as REM0, REM5 and
REM10, respectively. Note that REM0 is in fact our protocol
under reliable channels.

Authorized licensed use limited to: University of Florida. Downloaded on July 30,2020 at 21:57:17 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: MISSING-TAG DETECTION WITH UNKNOWN TAGS 1309

In our simulation, we set M = 1, and let α = 0.9. We
vary m, n and |U | to investigate their impact on the time-
efficiency of these three missing-tag detection protocols. We
use real time (in seconds) as discussed in Section VII-C for
evaluation. The parameters for our protocol under unreliable
channels are set based on Section V.

1) Impact of m: The sixth set of experiments study the
impact of the number of missing tags. In our simulations, we
set n = 10000, |U | = 50000 and vary m from 50 to 100 at a
step size of 10. The experiments are conduct under accuracy
requirement of α = 0.9.

Fig. 10a shows the results of our simulations. Similarly, the
execution times of these three protocols decrease (but slowly)
with the increase of m, which is expected as explained in
Section VII-C.1. Besides, we can observe that our protocol
takes more time under unreliable channels. As the noise level
increases, the execution time needed also increases since we
need a larger frame to reduce the impact of interferences from
channel errors.

2) Impact of n: The seventh set of experiments study the
impact of the number of tags in T . In our simulations, we set
m = 100, |U | = 50000 and vary n from 5000 to 10000 at a
step size of 1000. The experiments are conduct under accuracy
requirement of both α = 0.9.

Fig. 10b shows the results of our simulations. The execution
times of all three protocols increase with respect to n as shown
in Section VII-C.2. Besides, the execution time of our protocol
also increases as the noise level increases.

3) Impact of |U |: The eighth set of experiments study the
impact of the number of unknown tags. In our simulations, we
set n = 10000, m = 100 and vary |U | from 50000 to 100000
at a step size of 10000. The experiments are conduct under
accuracy requirement of both α = 0.9 and 0.99.

Fig. 10c shows the results of our simulations and we can
observe the similar pattern of execution time changes as
explained previously.

IX. CONCLUSION

In this paper, we propose a new protocol that performs
reliable and efficient missing-tag detection with presence of
unknown tags. We design a compressed filter which achieves
a comparable false positive ratio to Bloom filter with a smaller
size and propose a collision-reduction method to increase
our efficiency. We theoretically analyze the performance of
our protocol and optimize the parameters to reduce the time
cost. Extensive simulations show that our protocol outperforms
existing works and that when comparing with the best prior
work, more than 83% execution time is saved in detecting a
missing-tag event with presence of unknown tags, while the
accuracy requirement is still satisfied.

REFERENCES

[1] T. Li, S. Wu, S. Chen, and M. Yang, “Energy efficient algorithms for
the RFID estimation problem,” in Proc. IEEE INFOCOM, Mar. 2010,
pp. 1–9.

[2] Y. Zheng, M. Li, and C. Qian, “PET: Probabilistic estimating tree
for large-scale RFID estimation,” in Proc. IEEE ICDCS, Jun. 2011,
pp. 37–46.

[3] Y. Zheng and M. Li, “ZOE: Fast cardinality estimation for large-scale
RFID systems,” in Proc. IEEE INFOCOM, Apr. 2013, pp. 908–916.

[4] B. Chen, Z. Zhou, and H. Yu, “Understanding RFID counting protocols,”
in Proc. Mobicom, Sep. 2013, pp. 291–302.

[5] M. Chen, W. Luo, Z. Mo, S. Chen, and Y. Fang, “An efficient tag
search protocol in large-scale RFID systems,” in Proc. IEEE INFOCOM,
Apr. 2013, pp. 899–907.

[6] S. Qi, Y. Zheng, M. Li, Y. Liu, and J. Qiu, “Scalable data access control
in RFID-enabled supply chain,” in Proc. IEEE 22nd Int. Conf. Netw.

Protocols, Oct. 2014, pp. 71–82.

[7] L. Xie, H. Han, Q. Li, J. Wu, and S. Lu, “Efficiently collecting
histograms over RFID tags,” in Proc. IEEE INFOCOM Conf. Comput.

Commun., Apr. 2014, pp. 145–153.

[8] M. Shahzad and A. X. Liu, “Every bit counts: Fast and scalable RFID
estimation,” in Proc. 18th Annu. Int. Conf. Mobile Comput. Netw.

Mobicom, 2012, pp. 365–376.

[9] L. Shangguan, Z. Zhou, X. Zheng, L. Yang, Y. Liu, and J. Han,
“ShopMiner: Mining customer shopping behavior in physical clothing
stores with COTS RFID devices,” in Proc. 13th ACM Conf. Embedded
Netw. Sensor Syst. SenSys, 2015, pp. 113–125.

[10] X. Liu et al., “RFID cardinality estimation with blocker tags,” in Proc.

IEEE Conf. Comput. Commun. (INFOCOM), Apr. 2015, pp. 1679–1687.

[11] X. Liu et al., “Top-k queries for categorized RFID systems,” IEEE/ACM

Trans. Netw., vol. 25, no. 5, pp. 2587–2600, Oct. 2017.

[12] Y. Hou, J. Ou, Y. Zheng, and M. Li, “PLACE: Physical layer cardinality
estimation for large-scale RFID systems,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2702–2714, Oct. 2016.

[13] Q. Xiao, S. Chen, and M. Chen, “Joint property estimation for multiple
RFID tag sets using snapshots of variable lengths,” in Proc. 17th ACM

Int. Symp. Mobile Ad Hoc Netw. Comput. MobiHoc, 2016, pp. 151–160.

[14] M. Shahzad and A. X. Liu, “Fast and accurate tracking of population
dynamics in RFID systems,” in Proc. IEEE 37th Int. Conf. Distrib.
Comput. Syst. (ICDCS), Jun. 2017, pp. 836–846.

[15] M. Chen, S. Chen, Y. Zhou, and Y. Zhang, “Identifying state-free
networked tags,” IEEE/ACM Trans. Netw., vol. 25, no. 3, pp. 1607–1620,
Jun. 2017.

[16] J. Liu, Y. Zhang, M. Chen, S. Chen, and L. Chen, “Collision-resistant
communication model for stateless networked tags, poster paper,” Proc.
IEEE ICNP, Jul. 2016, pp. 221–222.

[17] Y. Zhang, S. Chen, Y. Zhou, and Y. Fang, “Anonymous temporal-spatial
joint estimation at category level over multiple tag sets,” in Proc. IEEE

INFOCOM Conf. Comput. Commun., Apr. 2018, pp. 846–854.

[18] Y. Zhang, S. Chen, Y. Zhou, and O. Odegbile, “Missing-tag detection
with presence of unknown tags,” in Proc. 15th Annu. IEEE Int. Conf.
Sens., Commun., Netw. (SECON), Jun. 2018, pp. 1–9.

[19] L. Yang, Y. Chen, X.-Y. Li, C. Xiao, M. Li, and Y. Liu, “Tagoram:
Real-time tracking of mobile RFID tags to high precision using COTS
devices,” in Proc. 20th Annu. Int. Conf. Mobile Comput. Netw. Mobi-

Com, 2014, pp. 237–248.

[20] L. Yang, Q. Lin, X. Li, T. Liu, and Y. Liu, “See through walls with
COTS RFID system,” in Proc. 21st Annu. Int. Conf. Mobile Comput.

Netw. MobiCom, 2015, pp. 487–499.

[21] G. Wang et al., “HMRL: Relative localization of RFID tags with static
devices,” in Proc. 14th Annu. IEEE Int. Conf. Sens., Commun., Netw.

(SECON), Jun. 2017, pp. 1–9.

[22] C. C. Tan, B. Sheng, and Q. Li, “How to monitor for missing RFID tags,”
in Proc. 28th Int. Conf. Distrib. Comput. Syst., Jun. 2008, pp. 295–302.

[23] T. Li, S. Chen, and Y. Ling, “Identifying the missing tags in a large RFID
system,” in Proc. 11th ACM Int. Symp. Mobile ad hoc Netw. Comput.

MobiHoc, 2010, pp. 1–10.

[24] R. Zhang, Y. Liu, Y. Zhang, and J. Sun, “Fast identification of the
missing tags in a large RFID system,” in Proc. 8th Annu. IEEE Commun.
Soc. Conf. Sensor, Mesh Ad Hoc Commun. Netw., Jun. 2011.

[25] X. Liu, K. Li, G. Min, Y. Shen, A. X. Liu, and W. Qu, “Completely
pinpointing the missing RFID tags in a time-efficient way,” IEEE Trans.

Comput., vol. 64, no. 1, pp. 87–96, Jan. 2015.

[26] W. Luo, S. Chen, T. Li, and Y. Qiao, “Probabilistic missing-tag detec-
tion and energy-time tradeoff in large-scale RFID systems,” in Proc.
13th ACM Int. Symp. Mobile Ad Hoc Netw. Comput. MobiHoc, 2012,
pp. 95–104.

[27] J. Yu, L. Chen, R. Zhang, and K. Wang, “Finding needles in a haystack:
Missing tag detection in large RFID systems,” IEEE Trans. Commun.,
vol. 65, no. 5, pp. 2036–2047, Feb. 2017.

[28] M. Shahzad and A. X. Liu, “Expecting the unexpected: Fast and reliable
detection of missing RFID tags in the wild,” in Proc. IEEE Conf.

Comput. Commun. (INFOCOM), Apr. 2015, pp. 1939–1947.

[29] J. Ou, M. Li, and Y. Zheng, “Come and be served: Parallel decoding
for COTS RFID tags,” Proc. ACM MobiCom, 2015, pp. 500–511.

Authorized licensed use limited to: University of Florida. Downloaded on July 30,2020 at 21:57:17 UTC from IEEE Xplore. Restrictions apply.

1310 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 3, JUNE 2020

[30] J. Liu, Y. Zhang, S. Chen, M. Chen, and L. Chen, “Collision-resistant
communication model for state-free networked tags,” in Proc. IEEE 39th

Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2019, pp. 656–665.
[31] J. Han et al., “GenePrint: Generic and accurate physical-layer identi-

fication for UHF RFID tags,” IEEE/ACM Trans. Netw., vol. 24, no. 2,
pp. 846–858, Apr. 2016.

[32] Y. Zhang, S. Chen, Y. Zhou, Y. Fang, and C. Qian, “Monitoring bodily
oscillation with RFID tags,” IEEE Internet Things J., vol. 6, no. 2,
pp. 3840–3854, Apr. 2019.

[33] Y. Zhang, S. Chen, Y. Zhou, and Y. Fang, “Using wireless tags to monitor
bodily oscillation,” in Proc. IEEE 15th Int. Conf. Mobile Ad Hoc Sensor

Syst. (MASS), Oct. 2018, pp. 211–219.
[34] National Retail Federation, National Retail Security Survey. Accessed:

Oct. 2015. [Online]. Available: https://nrf.com/resources/retail-library/
national-retail-security-survey-2015

[35] A. D. Smith, A. A. Smith, and D. L. Baker, “Inventory management
shrinkage and employee anti-theft approaches,” Int. J. Electron. Finance,
vol. 5, no. 3, p. 209, 2011.

[36] W. Luo, S. Chen, Y. Qiao, and T. Li, “Missing-tag detection and energy–
time tradeoff in large-scale RFID systems with unreliable channels,”
IEEE/ACM Trans. Netw., vol. 22, no. 4, pp. 1079–1091, Aug. 2014.

[37] L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary cache: A scalable
wide-area Web cache sharing protocol,” in Proc. SIGCOMM, 1998,
pp. 254–265.

[38] M. Mitzenmacher, “Compressed Bloom filters,” IEEE/ACM Trans.

Netw., vol. 10, no. 5, pp. 604–612, Oct. 2002.
[39] CDAlgo. Accessed: May 2004. [Online]. Available: https://en.

wikipedia.org/wiki/Data_compression
[40] EPCglobal. EPC Radio-Frequency Identity Protocols Class-1 Gen-

2 UHF RFID Protocol for Communications at 860MHz-960MHz.
Accessed: Aug. 2008. [Online]. Available: http://www.epcglobalinc.
org/uhfclg2

[41] M. Buettner and D. Wetherall, “A software radio-based UHF RFID
reader for PHY/MAC experimentation,” in Proc. IEEE Int. Conf. RFID,
Apr. 2011, pp. 134–141.

[42] C. Qian, H. Ngan, Y. Liu, and L. M. Ni, “Cardinality estimation for
large-scale RFID systems,” IEEE Trans. Parallel Distrib. Syst., vol. 22,
no. 9, pp. 1441–1454, Sep. 2011.

[43] M. Kodialam and T. Nandagopal, “Fast and reliable estimation schemes
in RFID systems,” in Proc. 12th Annu. Int. Conf. Mobile Comput. Netw.

MobiCom, 2006, pp. 322–333.
[44] Laird. Accessed: May 2015. [Online]. Available: http://www.lairdtech.

com/products/s9028PCL
[45] AlienTags. Accessed: Aug. 2005. [Online]. Available: http://www.

alientechnology.com/products/tags/squiggle/
[46] B. Cornaglia and M. Spini, “Letter: New statistical model for burst

error distribution,” Eur. Trans. Telecommun., vol. 7, no. 3, pp. 267–272,
May 1996.

Youlin Zhang (Member, IEEE) received the B.S.
degree in electronic information engineering from
the University of Science and Technology of China,
Hefei, China, in 2014. He is currently pursuing the
Ph.D. degree in computer and information science
and engineering with the University of Florida,
Gainesville, FL, USA. His advisor is Prof. S. Chen.
His research interests include big network data and
the Internet of Things.

Shigang Chen (Fellow, IEEE) received the B.S.
degree in computer science from the University
of Science and Technology of China in 1993,
and the M.S. and Ph.D. degrees in computer sci-
ence from the University of Illinois at Urbana–
Champaign in 1996 and 1999, respectively. After
graduation, he had worked with Cisco Systems for
three years before joining University of Florida in
2002. He published more than 190 peer-reviewed
journal/conference papers. He holds 12 U.S. patents.
His research interests include computer networks,

big data, Internet security, RFID, cyber-physical systems, and wireless com-
munications. He received the IEEE Communications Society Best Tutorial
Paper Award and the NSF CAREER Award. He is an Associate Editor of
the IEEE TRANSACTIONS ON MOBILE COMPUTING. He has served on the
Editorial Board for the IEEE/ACM TRANSACTIONS ON NETWORKING, the
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, Journal of Computer
Networks, and ZTE Communications. He has served in various chair positions
or as a technical committee member for numerous conferences. He holds
the University of Florida Research Foundation (UFRF) Professorship and the
University of Florida Term Professorship from 2017 to 2020. He is an ACM
Distinguished Member.

You Zhou (Member, IEEE) received the B.S.
degree in electronic information engineering from
the University of Science and Technology of China,
Hefei, China, in 2013. He is currently pursuing the
Ph.D. degree in computer and information science
and engineering with the University of Florida,
Gainesville, FL, USA. His advisor is Prof. S. Chen.
His research interests include network security and
privacy, big network data, and the Internet of Things.

Yuguang Fang (Fellow, IEEE) received the Ph.D.
degree in systems engineering from Case Western
Reserve University, Cleveland, OH, USA, in 1994,
and the Ph.D. degree in electrical engineering from
Boston University, Boston, MA, USA, in 1997.

He was an Assistant Professor with the Depart-
ment of Electrical and Computer Engineering, New
Jersey Institute of Technology, Newark, NJ, USA,
from 1998 to 2000. He then joined the Department
of Electrical and Computer Engineering, University
of Florida, Gainesville, FL, USA, in 2000, as an

Assistant Professor, then got an early promotion to an Associate Professor
with tenure in 2003 and to a Full Professor in 2005. He held the University
of Florida Research Foundation (UFRF) Professorship from 2006 to 2009,
the Changjiang Scholar Chair Professorship with Xidian University, Xi’an,
China, from 2008 to 2011, and the Guest Chair Professorship with Tsinghua
University, Beijing, China, from 2009 to 2012. He has published more than
250 articles in refereed professional journals and conferences.

Dr. Fang is also active in professional activities. He is a member of the
Association for Computing Machinery (ACM). He received the National
Science Foundation Faculty Early Career Award in 2001 and the Office of
Naval Research Young Investigator Award in 2002, and was a recipient of the
Best Paper Award in the IEEE International Conference on Network Protocols
(ICNP) in 2006 and the IEEE TCGN Best Paper Award in the IEEE High-
speed Networks Symposium, the IEEE GLOBECOM, in 2002. He is also
serving as the Editor-in-Chief for the IEEE WIRELESS COMMUNICATIONS.
He has serves/served on several editorial boards of technical journals.

Authorized licensed use limited to: University of Florida. Downloaded on July 30,2020 at 21:57:17 UTC from IEEE Xplore. Restrictions apply.

