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ABSTRACT

A fundamental problem in network analysis is clustering the nodes into groups which share a similar con-
nectivity pattern. Existing algorithms for community detection assume the knowledge of the number of
clusters or estimate it a priori using various selection criteria and subsequently estimate the community
structure. Ignoring the uncertainty in the first stage may lead to erroneous clustering, particularly when
the community structure is vague. We instead propose a coherent probabilistic framework for simultane-
ous estimation of the number of communities and the community structure, adapting recently developed
Bayesian nonparametric techniques to network models. An efficient Markov chain Monte Carlo (MCMC)
algorithm is proposed which obviates the need to perform reversible jump MCMC on the number of clusters.
The methodology is shown to outperform recently developed community detection algorithms in a vari-
ety of synthetic data examples and in benchmark real-datasets. Using an appropriate metric on the space
of all configurations, we develop nonasymptotic Bayes risk bounds even when the number of clusters is
unknown. Enroute, we develop concentration properties of nonlinear functions of Bernoulli random vari-
ables, which may be of independent interest in analysis of related models. Supplementary materials for this
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1. Introduction

Data available in the form of networks are increasingly becom-
ing common in modern applications ranging from brain remote
activity, protein interactions, web applications, social networks
to name a few. Accordingly, there has been an explosion of
activities in the statistical analysis of networks in recent years;
see Goldenberg et al. (2010) for a review of various application
areas and statistical models. Among various methodological and
theoretical developments, the problem of community detection
has received widespread attention. Broadly speaking, the aim
there is to cluster the network nodes into groups which share
a similar connectivity pattern, with sparser intergroup con-
nections compared to more dense within-group connectivities;
a pattern which is observed empirically in a variety of net-
works (Goldenberg, Libai, and Muller 2001). Various statistical
approaches have been proposed for community detection and
extraction. These include hierarchical clustering (see Newman
2004 for a review), spectral clustering (White and Smyth 2005;
Zhang, Wang, and Zhang 2007; Rohe, Chatterjee, and Yu 2011),
and algorithms based on optimizing a global criterion over
all possible partitions, such as normalized cuts (Shi and Malik
2000) and network modularity (Newman and Girvan 2004).
From a model-based perspective, the stochastic block model
(SBM; Holland, Laskey, and Leinhardt 1983) and its various
extensions (Airoldi et al. 2008; Karrer and Newman 2011)
enable formation of communities in networks. A generic for-
mulation of an SBM starts with clustering the nodes into groups,
with the edge probabilities [EA;; = 6;; solely dependent on the
cluster memberships of the connecting nodes. A realization

of a network from an SBM is shown in Figure 1; formation
of a community structure is clearly evident. This clustering
property of SBMs has inspired a large literature on community
detection (Bickel and Chen 2009; Karrer and Newman 2011;
Zhao, Levina, and Zhu 2011; Newman 2012; Zhao, Levina, and
Zhu 2012; Amini et al. 2013).

A primary challenge in community detection is the esti-
mation of both the number of communities and the clustering
configurations. Essentially all existing community detection
algorithms assume the knowledge of the number of communi-
ties (Airoldi et al. 2009; Bickel and Chen 2009; Amini et al. 2013)
or estimate it a priori using either of cross-validation, hypothesis
testing, BIC, or spectral methods (Daudin, Picard, and Robin
2008; Latouche, Birmele, and Ambroise 2012; Wang and Bickel
2015; Le and Levina 2015). Such two-stage procedures ignore
uncertainty in the first stage and are prone to increased erro-
neous cluster assignments when there is inherent variability in
the number of communities. Although model-based methods
are attractive for inference and quantifying uncertainty, fitting
block models from a frequentist point of view, even with the
number of communities known, is a nontrivial task especially
for large networks, since in principle the problem of optimizing
over all possible label assignments is NP-hard.

Bayesian inference offers a natural solution to this problem
by providing a probabilistic framework for simultaneous infer-
ence of the number of clusters and the clustering configurations.
However, the case of unknown number of communities poses a
stiff computational challenge even in a fully Bayes framework.
Snijders and Nowicki (1997) and Nowicki and Snijders (2001)
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Figure 1. A sketch of a network displaying community structure, with three groups
of nodes with dense internal edges and sparser edges among groups.

developed a Markov chain Monte Carlo (MCMC) algorithm
to estimate the parameters in an SBM for a given number of
communities. Often, a frequentist estimate of k is first deter-
mined through a suitable criterion, for example, integrated
likelihood (Daudin, Picard, and Robin 2008; Zanghi, Ambroise,
and Miele 2008; Latouche, Birmele, and Ambroise 2012), com-
posite likelihood BIC (Saldana, Yu, and Feng 2015), etc., with a
subsequent Bayesian model fitted with the estimated number of
components. In a fully Bayesian framework, a prior distribution
is assigned on the number of communities which is required
to be updated at each iteration of an MCMC algorithm. This
calls for complicated search algorithms in variable dimensional
parameter space such as the reversible jump MCMC algorithm
(Green 1995), which are difficult to implement and automate,
and are known to suffer from lack of scalability and mixing
issues. McDaid et al. (2013) proposed an algorithm by “col-
lapsing” some of the nuisance parameters, which allows them
to implement an efficient algorithm based on the allocation
sampler of Nobile and Fearnside (2007). However, the param-
eter (k) indicating the number of components still cannot be
marginalized out within the Gibbs sampler requiring compli-
cated Metropolis moves to simultaneously update the clustering
configurations and k.

In this article, we consider a Bayesian formulation of
an SBM (Snijders and Nowicki 1997; Nowicki and Snijders
2001; McDaid et al. 2013) with standard conjugate Dirichlet-
Multinomial prior on the community assignments and Beta
priors on the edge probabilities. Our contribution is two-folds.
First, we allow simultaneous learning of the number of com-
munities and the community memberships via a prior on the
number of communities k. A seemingly automatic choice to
allow uncertainty in the number of communities is to use a
Bayesian nonparametric approach such as the Chinese restau-
rant process (CRP; Pitman 1995). While it has been empirically
observed that CRPs often have the tendency to create tiny
extraneous clusters, it has only been recently established that
CRPs lead to inconsistent estimation of the number of clusters
in a fairly general setting (Miller and Harrison 2017). We
instead adapt the mixture of finite mixture (MFM) approach

of Miller and Harrison (2017) which alleviates the drawback of
CRP by automatic model-based pruning of the tiny extraneous
clusters leading to consistent estimate of the number of clusters.
Moreover, MFM admits a clustering scheme similar to the CRP
which is exploited to develop an efficient MCMC algorithm.
In particular, we analytically marginalize over the number of
communities to obtain an efficient Gibbs sampler and avoid
resorting to complicated reversible jump MCMC algorithms
or allocation samplers. We exhibit the efficacy of our proposed
MFM-SBM approach over existing two-stage approaches and
the CRP prior through various simulation examples. We envi-
sion simple extensions of MFM-SBM to degree corrected SBM
(Karrer and Newman 2011) and mixed membership block
model (Airoldi et al. 2008), which will be reported elsewhere.

Our second contribution is to develop a framework for con-
sistent community detection, where we derive nonasymptotic
bounds on the posterior probability of the true configuration.
As a consequence, we can show that the marginal posterior
distribution on the set of community assignments increasingly
concentrates (in an appropriate sense) on the true configuration
with increasing number of nodes. This is a stronger statement
than claiming that the true configuration is the maximum
a posteriori model with the highest posterior probability.
Although there is now a well-established literature on posterior
convergence in density estimation and associated functionals
in Bayesian nonparametric mixture models (see, e.g., Kruijer
et al. 2010 and references therein), there are no existing results
on clustering consistency in network models or beyond to best
of our knowledge. In fact, the question of consistency of the
number of mixture components has only been resolved very
recently (Rousseau and Mengersen 2011; Miller and Harrison
2017). Clustering consistency is clearly a stronger requirement
and significantly more challenging to obtain than consistency
of the number of mixture components. We exploit the conjugate
nature of the Bayesian SBM to obtain the marginal likelihoods
for each cluster configuration, and subsequently use probabilis-
tic bounds on the log-marginal likelihood ratios to deliver our
nonasymptotic bound. We hope our results on selection con-
sistency have a broader appeal to the Bayesian model selection
community; see in particular the second paragraph in Section
4 for a detailed discussion.

The rest of the article is organized as follows. We start with
a brief review of the SBM in Section 2. The Bayesian meth-
ods for simultaneous inference on the number of clusters and
the clustering configurations are discussed in Section 3 and the
Gibbs sampler is provided in Section 3.1. The theory for consis-
tent community detection is developed in Section 4. Simulation
studies and comparisons with existing methods are provided in
Section 5 and illustration of our method on a benchmark real
dataset is in Section 6. Additional simulations exploring sensi-
tivity, convergence diagnostics, and robustness, and proofs of all
technical results, are provided in a separate supplemental docu-
ment. The supplemental document additionally contains a sec-
ond real data example.

2. Stochastic Block Models

We use A = (4;;) € {0, 1}"*" to denote the adjacency matrix
of a network with n nodes, with A;; = 1 indicating the presence



of an edge from node i to node j and A;; = 0 indicating a lack
thereof. We consider undirected networks without self-loops so
that A;; = Aj; and Aj; = 0. The sampling algorithms presented
here can be trivially modified to directed networks with or with-
out self-loops. The theory would require some additional work
in case of directed networks though conceptually a straightfor-
ward modification of the current results should go through.

The probability of an edge from node i to j is denoted by 6;;,
with A;; ~ Bernoulli(6;;) independently for 1 <i < j <n.In
a k-component SBM, the nodes are clustered into communities,
with the probability of an edge between two nodes solely depen-
dent on their community memberships. Specifically,

Aij | Q, k~ Bernoulli(@ij), 9,] = inzja 1<i< ] <mn,
where z; € {1, ..., k} denotes the community membership of
the ith node and Q = (Q,) € [0, 117 is a symmetric matrix
of probabilities, with Q,; = Q,, indicating the probability of an
edge between any node i in cluster r and any node j in cluster s.

Let Zn.kz{(zl,...,zn):z,-e{1,...,k},151’511}
denote all possible clusterings of n nodes into k clusters.
Given z € Z, , let A[,s) denote the n, x n; sub matrix of A con-
sisting of entries A;; with z; = r and z; = s. The joint likelihood
of A under model (1) can be expressed as

PAz,QKk = [] PAI|zQ,

1<r<s<k

[T

1§i<j§n:z,:r,zj:s

P(Apg | 2.Q k) = (1= Q) M. (2)

A common Bayesian specification of the SBM when k is given
can be completed by assigning independent priors to z and Q.
We generically use p(z, Q) = p(z) p(Q) to denote the joint prior
on z and Q. When K (the true number of clusters) is unknown,
a natural Bayesian solution is to place a prior on k. This is
described in Section 3.

3. Bayesian Community Detection in SBM

A natural choice of a prior distribution on (z1, z,, .. ., z,) that
allows automatic inference on the number of clusters k is the
CRP (Aldous 1985; Pitman 1995; Neal 2000). A CRP is described
through the popular Chinese restaurant metaphor: imagine cus-
tomers arriving at a Chinese restaurant with infinitely many
tables with the index of the table having a one-one correspon-
dence with the cluster label. The first customer is seated at
the first table, so that z; = 1. Then z;,i = 2, ..., n are defined
through the following conditional distribution (also called a
Pélya urn scheme, Blackwell and MacQueen 1973)

lc|, atan existing table labeled ¢

P(zi=clz,...,zi1) X

o, if cis a new table.
(3)

The above prior for {z;} can also be defined through a stochastic
process where at any positive-integer time #, the value of the pro-
cessisa partition C, of the set {1, 2, 3, .. ., n}, whose probability
distribution is determined as follows. At time n = 1, the trivial
partition {{1}} is obtained with probability 1. At time n + 1 the
element n + 1 is either (i) added to one of the blocks of the parti-
tion C,,, where each block is chosen with probability |c|/(n + 1)
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where |c| is the size of the block, or (ii) added to the partition C,
as a new singleton block, with probability 1/(n + 1). Marginally,
the distribution of z; is given by the stick-breaking formulation
of a Dirichlet process (Sethuraman 1994):

o0
zi ~ Zﬂhtsh, T = vy l—[(l =), v~ Beta(l, o). (4)
h=1 I<h

Let t = |C,| denote the number of blocks in the partition
Cyn. Under (3), one can obtain the probability of block-sizes
s = (s1, 82, ..., s) of a partition C, as

t
pop(s) 1_[ Sj_lo (5)

j=1

It is clear from (5) that CRP assigns large probabilities to clus-
ters with relatively smaller size. A striking consequence of this
has been recently discovered (Miller and Harrison 2017) where
itis shown that the CRP produces extraneous clusters in the pos-
terior leading to inconsistent estimation of the number of clusters
even when the sample size grows to infinity. Miller and Harrison
(2017) proposed a modification of the CRP based on a mixture
of finite mixtures (MFM) model to circumvent this issue:

k~pC), (@, ....m) [ k~Dir(y,....y),
k
zilk,nNZnhéh, i=1,...,n, (6)
h=1
where p(-) isaproper p.m.fon{l, 2, ..., } and §j is a point-mass

at h. Miller and Harrison (2017) showed that the joint distribu-
tion of (z1, ..., z,) under (6) admit a Pélya urn scheme akin to
CRP:
1. Initialize with a single cluster consisting of element 1
alone: C; = {{1}},
2. Forn=2,3,..., place element n in
(a) an existing cluster ¢ € C,—; with probability o |c| +
Y
(b) anew cluster with probability
where t = |C,_1].
V.. (t) is a coeflicient of partition distribution that need to be
precomputed in this model,

Vu(t+1)
v, ¥

+00

k
Vat) =3 S

n=1

where k) = k(k—1)...(k—t + 1), and (yk)"™ = yk(yk +
1)...(yk+n—1). (By convention, x® = 1 and x(g) = 1).

Compared to the CRP, the introduction of new tables is
slowed down by the factor V,(|C,—1| + 1)/V,(|C,i—1]), thereby
allowing a model-based pruning of the tiny extraneous clusters.
An alternative way to understand this is to look at the probability
of block-sizes s = (s1, 83, - . ., 5¢) of a partition C, with t = |C,|
under MFM. As opposed to (5), the probability of the cluster-
sizes (s1, ..., s;) under MFM is

t
PmEm(S) X 1_[ 5;'/_1' (7)

j=1
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From (5) and (7), it is easy to see that MFM assigns compara-
tively smaller probability to clusters with small sizes. The param-
eter y controls the relative size of the clusters; small y favors
lower entropy s, while large y favors higher entropy 7’s.

Adapting MFM to the SBM setting, our model and prior can
be expressed hierarchically as

k ~ p(-), wherep(-)isap.m.fon {1, 2, ...}

Qs = Qy X Beta(a, b), rs=1,....k
prizi=jlm,k)=m;, j=1,...,ki=1,...,n,

7 | k ~ Dirichlet(y, ..., y),

Aij 12 Q k ¥ Bernoulli(6;), 6;;=Q.., 1<i<j<n

(8)

A default choice of p(-) is a Poisson(1) distribution truncated
to be positive (Miller and Harrison 2017), which is assumed
through the rest of the article. We refer to the hierarchical model
above as MFM-SBM. While MFM-SBM admits a CRP represen-
tation, an important distinction from infinite mixture models
hinges on the fact that for any given prior predictive realization,
one draws a value of k and as n grows the individuals are dis-
tributed into the k clusters. On the other hand, the number of
clusters keeps growing with » for the infinite mixture models.

3.1. Gibbs Sampler

Our goal is to sample from the posterior distribution of the
unknown parameters k,z = (z1,...,2,) € {1,...,k}" and
Q = (Qy) € [0, 1]7<k. Miller and Harrison (2017) developed
the MFM approach for clustering in mixture models, where
their main trick was to analytically marginalize over the dis-
tribution of k. While MFM-SBM is different from a standard
Bayesian mixture model, we could still exploit the Pdlya urn
scheme for MFMs to analytically marginalize over k and
develop an efficient Gibbs sampler. The sampler is presented
in Algorithm 1 in Appendix A of the supplemental document,
which efficiently cycles through the full conditional distribu-
tion of Q and z; | z_; for i =1,2, ..., n, where z_; = z\{z;}.
The marginalization over k allows us to avoid complicated
reversible jump MCMC algorithms or even allocation samplers.
In practice, one way to initialize the number of clusters is to
use a frequentist approach (e.g., Le and Levina 2015). For the
initialization of cluster configurations, we randomly assign all
observations into those clusters.

4, Consistent Community Detection

In this section, we provide theoretical justification to the pro-
posed approach by showing that marginal posterior distribution
on the space of community assignments concentrates on the
truth exponentially fast as the number of nodes increases. At
the very onset, some clarification is required regarding the
mode of convergence, since the community assignments are
only identifiable up to arbitrary labeling of the community
indicators within each community. For example, in a network
of 5 nodes with 2 communities, consider two community
assignments z and z/, with z; = z; = zs = l and z, = z4 = 2;

and 2z} =2z, =z, =2 and 2z, =z, = 1. Clearly, although z
and z' are different as 5-tuples, they imply the same commu-
nity structure and the posterior cannot differentiate between
z and 2. To bypass such label switching issues, we consider
a permutation-invariant Hamming distance introduced in
Zhang et al. (2016) as our loss function and bound the posterior
expected loss (equivalently, the Bayes risk) with large probability
under the true data-generating mechanism. The concentration
of the posterior on the true community assignment (up to
labeling) follows as a straightforward corollary of the Bayes risk
bound.

Consistency results for our Bayesian procedure complement
a series of recent frequentist work on consistent community
detection (Bickel and Chen 2009; Zhao, Levina, and Zhu 2012;
Gao et al. 2017; Abbe and Sandon 2015a, 2015¢, 2015b; Zhang
etal. 2016) among others. From a Bayesian viewpoint, our result
contributes to a growing literature on consistency of Bayesian
model selection procedures when the number of competing
models grow exponentially relative to the sample size (Johnson
and Rossell 2012; Narisetty et al. 2014; Castillo, Schmidt-Hieber,
and van der Vaart 2015; Shin, Bhattacharya, and Johnson 2018).
Our present problem has two key distinctions from these
existing results which primarily focus on variable selection in
(generalized) linear models: (a) the model space does not have a
natural nested structure as in case of (generalized) linear mod-
els, which requires additional care in enumeration of the space
of community assignments; and (b) the log-marginal likelihood
differences between a putative community assignment and the
truth is not readily expressible as a x?-statistic, necessitating
careful analysis of such objects.

4.1. Preliminaries

We introduce some basic notations here that are required to state
our main results. Notations that only appear in proofs are intro-
duced at appropriate places in the supplemental document.

Throughout C, C, etc., denote constants that are independent
of everything else but whose values may change from one line
to the other. 1(B) denotes the indicator function of set B. For
two vectors x = {x;} and y = {y;} of equal length #, the Ham-
ming distance between x and y is dy (x, y) = Y o, 1(x; # y;).
For any positive integer m, let [m] := {1, ..., m}. A commu-
nity assignment of # nodes into K < n communities is given by
z=(z1,...,2,)" withz; € [K] foreachi € [n]. Let Z, x denote
the space of all such community assignments. For a permutation
8 on [K], define § o z as the community assignment given by
8 0 z(i) = §(z;) for i € [n]. Clearly, § o z and z provide the same
clustering up to community labels. Define (z) to be the collec-
tion of § o z for all permutations § on [K]; we shall refer to (z) as
the equivalence class of z. Define a permutation-invariant Ham-
ming distance (see Zhang et al. 2016)

d(z,7) IiIglde(SOZ, Z), 9)

where the infimum is over all permutations of [K]. Note that
d(z,z') = 0 if and only if z and 2’ are in the same equivalence
class, that is, (z) = (Z/).



4.2. Homogeneous SBMs

To state our theoretical result, we restrict attention to homo-
geneous SBMs. An SBM is called homogeneous when the Q
matrix in (1) has a compound-symmetry structure, with Q,; =
q+ (p — @I(r =), so that all diagonal entries of Q are p and
all off-diagonal entries are q. Thus, the edge probabilities

0ij = P %fz,-:zj,
q lei;éZj.

For a homogeneous SBM, the likelihood function for p, g, z, k
assumes the form

f(Alzpgk =]]67 -6
i<j
— AT(Z)(I _ p)HT(Z)*AT(Z)qu(Z)(l _ q)ru(z)ffu(z)’
(10)
where
m@) =Y la=z) A@=) alz=z) (1)
i<j i<j
n@ =)y lz+#z), A@ =y ajl@#z). (12)
i<j i<j
Clearly, n,(z) = (g) —n,(2).

As in Section 3, we consider independent U(0, 1) priors on
p and q. A key object is the marginal likelihood of z, denoted
L(A | z, k), obtained by integrating over the priors on p and q.
Exploiting Beta-binomial conjugacy, we have,

1
{ f prea- p)"W“‘*“)dP}
0

1
0

B 1 1 1 1 13)
Con(2)+1 ("¢<Z>) n,(z) +1 ug)'

LAz k)

Letting I1(z | k) denote the prior probability of the commu-
nity assignment z conditional on k, its posterior probability
I(z | k, A) «« L(A| z, k)I1(z | k). Observe that each one of
n,(z), n,(z), A, (z),and A, (z) are labeling invariant, that is, they
assume a constant value on (z), and hence so is L(A | z, k).
Hence, as long as the prior I1(- | k) is labeling invariant, the
same can thus be concluded regarding the posterior IT(- | k, A).
For example, the Dirichlet-multinomial prior (conditional on k)
in (6) in Section 3 is labeling invariant.

4.3. Main Result for Known K Case

Our first set of results pertain to the case when the number
of communities K is fixed and known. We assume the true
network-generating model is a homogeneous SBM with K
communities, and true within- and between-community edge
probabilities py and qo, respectively. We note that unlike several
existing results, we do not assume knowledge of p, and go. Let

2z denote the true community assignment.

We state our assumptions on these quantities below.

(A1) Assume the number of nodes # is an integer multiple of
K, with each community having an equal size of n/K.
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Without loss of generality, we assume that zo; = | (i —
1)/K|+1fori=1,...,n

(A2) The true edge probabilities py # qo satisfy nD(po, qo)/
K — oo asn — o0, where

(po — 90)*

(14)
(po V qo){1 — (po A qo)}

D(pOa (Jo) =

with V and A denoting maximum and minimum, respectively.

(A1) assumes a balanced network which is fairly common in
the literature; see, for example, Zhang et al. (2016). Extension
to the case where the community sizes are unequal but of
the same order can be accomplished, albeit with substantially
more tedious counting arguments. Condition (A2) is auto-
matically satisfied if py and gy do not vary with n. However,
(A2) is much stronger in that one can accommodate sparse
networks where pg and g, decay to zero. Indeed, parameterizing
po=a/n and qo = b/n, the condition in (A2) amounts to
(a — b)?/(a Vv b) — oo. Recent information-theoretical results
(Theorem 1.1 of Zhang et al. 2016, eq. (16) in Abbe and San-
don 2015a) show that the condition (a — b)?/(aV b) — oo
is necessary for complete recovery of the community assign-
ments. The quantity D(po, qo) is closely related to Renyi
divergence measures between Bernoulli(p,) and Bernoulli(g)
distributions that appear in the information-theoretical lower
bounds.

We next state a Lipschitz-type condition on the log-prior
mass on the community assignments.

(P1) Assume z; satisfies (A1). The prior IT on Z,, g satisfies

ylog I(z)

—log I (z)| < CKd(z, z), (15)

forallz € Z, k.

Remark 1. (P1) requires logIT(-) to be Lipschitz continu-
ous with respect to the distance d, with Lipschitz constant
bounded by a multiple of K. (P1) is satisfied by the Dirichlet-
multinomial prior in Section 3. Straightforward calculations
yield, for the Dirichlet-multinomial prior with Dirichlet concen-
tration parameter y,

K

= axy

=1

T(z)
M(z)

C(np(z) +y)
I'(n/K + y)’

where, recall n,(z) = >, 1(z; = h). The inequality (15) fol-
lows from an application of the following two-sided bound
for the gamma function: for any x > 0, logI'(x) = (x —
1/2)logx — x + R(x), with 0 < R(x) < (12x)~..

Let P denote probability under the true data-generating
mechanism. We now provide a bound to the posterior expected
loss of d(z, zy), that is, E[d(z, zy) | A], that holds with large P-
probability (w.r.t. A), in Theorem 1. The proof is deferred to
Appendix E of the supplemental document.

Theorem 1. Recall the permutation-invariant Hamming dis-
tance d(-, -) from (9). Assume the true cluster assignment z, sat-
isfies (A1), and the true within and between edge probabilities
po and qp satisfy (A2). Also, assume that the prior IT on Z,
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satisfies (P1). Then,

Eld(z,z) | Al < exP{ _ ML

K
holds with P-probability at least 1 — e~“1°8"" for some v > 1.

An immediate corollary of Theorem 1 is that the posterior
almost surely concentrates on the true configuration z,. To see
this, let C denote the large P-probability set in Theorem 1. We
have, inside C,

I[{z) = (z0) | Al = I[d(2z,20) =0 | A]

CnD
1 —M[d(z. 20) > 1] Al > l—exp{ —%},
where the penultimate inequality follows from Markov’s
inequality. We summarize in the following Corollary which is

a straightforward application of the first Borel-Cantelli Lemma.

Corollary 1. Suppose the conclusion of Theorem 1 holds. Then,
M{(z) = (z0) | Al

I~ exp { ~ CnD(po. qo)

K

v

Corollary 1 ensures that as n — oo, for almost every network
sampled from P, T1[(z) = (zo) | A] is close to 1 at the same rate
obtained in Theorem 1. This is possible since P(C¢) decreases
sufficiently fast to 0 as n — oo.

The proof of Theorem 1 is lengthy and thus provided
in Appendix E of the supplemental document. We briefly
comment on some of the salient aspects here. The key ingre-
dient in proving Theorem 1 is to uniformly bound from
below the difference in log-marginal marginal likelihood
between the true community assignment z;, and a putative
community assignment z with d(z,zp) =r. As a first step,
we approximate the log-marginal likelihood log £L(A | z) by
() = n,(Dh{A,(2)/n,(2)) + n,(2)h{A,(2)/n,(2)}),  where
h(x) = xlogx + (1 — x)log(l —x) for x e (0,1). This is
essentially a Laplace approximation of the log-marginal
likelihood and the error in approximation can be bounded
appropriately. We construct a set C with P(C) > 1 — ¢~Cllogn)”
in Proposition E.1 stated in the supplemental document such
that within C,

CD(po, qo) n d(z, zo)
K

for all z € Z, k. Equation (16) combined with the prior mass
condition (P1) essentially delivers the proof of Theorem 1.

A couple of intertwined technical challenges show up in
obtaining a concentration bound of the form (16). First, the
random quantities £(zp) and £(z) can be highly dependent,
particularly when d(z, zy) is small, which rules out separately
analyzing the concentration of each term around its expectation.
However, a combined analysis of the difference is complicated
by the presence of the nonlinear function h. We note that h is
non-Lipschitz, and hence standard concentration inequalities
for Lipschitz functions of several independent variables cannot
be applied. We crucially exploit convexity of h to analyze the dif-
ference £(zp) — £(z). A careful combinatorial analysis of terms

U(z0) — U(z) > : (16)

} almost surely P as n — oo.

arising inside the bounds (Lemma E.1 in the supplemental doc-
ument) along with concentration inequalities for sub-Gaussian
random variables (Vershynin 2012) deliver the desired bound.

4.4. Main Result for Unknown K Case

We now partially aim to answer the question: if the true K is
unknown and a prior is imposed on k which assigns positive
mass to the true K, can we recover K and the true community
assignment z, from the posterior? To best of our knowledge, this
question has not been settled even for usual mixture models, and
a complete treatment for SBMs is beyond the scope of this arti-
cle. An inspection of the proof of Proposition E.1 in the supple-
mental document will reveal that the only place where the fact
that both z and zj lie in 2, x has been used in Lemma E.1. The
primary difficulty in extending the theoretical results in the pre-
vious subsection to the variable k case precisely lie in generaliz-
ing the combinatorial bounds in Lemma E.1. Recall the metric d
in (9) is defined on Z, k. To define d(z1, z;) for z; € 2, g, and
zy € 2, ,, an option is to embed all the Z, ’s inside ﬁkaf o
where K.« is an upper bound on the number of communities.
This substantially complicates the analysis as one now has to take
into account zero counts for one or more communities in obtain-
ing the combinatorial bounds.

We consider the following simplified setting. Suppose the
true K can be either 2 or 3. Given K, the network is gener-
ated exactly as in the previous subsection, that is, according to
a homogeneous SBM with equal-sized communities satisfying
(Al) and (A2). We do not assume knowledge of the true K, and
use an MFM-SBM model with a prior on k supported on {2, 3}.
We only require I (k) to have positive probability on both 2 and
3. We show below that the posterior of k concentrates on the true
K, characterizing the rate of concentration.

Theorem 2. Assume the true cluster assignment z; satisfies (A1)
with K € {2, 3}, and the true within and between edge proba-
bilities po and gy satisfy (A2). Also, assume that the prior IT on
Z, k satisfies (P1) conditional on k and IT(k) > 0 for k € {2, 3}.
Then,

(k=K | A) >1— exp{—cni},

for some constant ¢ > 0, with P-probability at least 1 — e~ for
t, — oo whereg = 1and t, = o(y/n) for K = 2and g = 2 and
t, = o(n) for K = 3.

The proofis deferred to Appendix F of the supplemental doc-
ument. Theorem 2 is an illustration of model-selection consis-
tency when the goal is to identify the number of clusters K. In the
overfitted case when K = 2 and the model is fitted with k = 3,
the posterior can successfully “empty-out” the extraneous clus-
ter and recover the true number of clusters. The likelihood of
the SBM can potentially derive strength from O(n?) edges as
opposed to O(n) data points in standard regression and mix-
ture models. In the overfitted case when K = 2 and the model
is fitted with k = 3, the marginal likelihood ratio corresponding
to a given configuration z against the null zy becomes the weak-
est when the Rand index between z and z; is close to 1. In this
case, the marginal likelihood ratio corresponding to k = 3 and
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Figure 2. Growth rate of the posterior probability of the true number of components, IT(k = K | .A), as sample size n increases, under the setup of Theorem 2. Left panel

corresponds to the case when K = 2, while the right panel corresponds to K = 3.

K =2 is only exponentially small (e”") when the rand-index
between the true configuration and fitted configuration is close
to 1. Apparently, this may appear to impede model selection con-
sistency since the model complexity is exponential in n. How-
ever, it turns out that the number of configurations for which the
rand-index is sufficiently close to 1 is only polynomial in n. This
is also aided by the Dirichlet-Multinomial formulation which
restricts I1(z | k) /T1(zp | K) for configurations close to z; to be
at most polynomial in n. Hence, the Bayes factor is exponen-
tially small in n delivering an exponential concentration of the
posterior of k. This is a clear distinction with standard mixture
or regression models (typically polynomial in # in such cases,
Rousseau and Mengersen 2011; Drton and Plummer 2017). In
the underfitted case, the Rand-Index between the true and the
fitted configuration can never be close to 1 which makes sepa-
ration between the log-marginal likelihoods of the order of n?.
This is strong enough to offset the exponential model complex-
ity as well as the prior ratio leading to a posterior concentration
rate of e

To empirically demonstrate the posterior probability bounds
for K = 2 and K = 3 in Theorem 2, we conduct a small simula-
tion study under the setup of the theorem. Figures 2 displays
IT(k =K | A) averaged over 100 replicated datasets plotted
against #n when K = 2 and K = 3, respectively, and (po, qo) =
(0.5,0.1). It is evident that IT1(k = K | .A) approaches 1 at a
faster rate for K = 3 than for K = 2.

5. Simulation Studies

In this section, we investigate the performance of the proposed
MFM-SBM approach from a variety of angles. At the very onset,
we outline the skeleton of the data-generating process followed
throughout this section.
Step 1: Fix the number of nodes # and the true number
of communities K.
Step 2: Generate the true clustering configuration z, =
(201, - - ., zon) With zp; € {1, ..., K}. To this end, we fix
the respective community sizes ngy, . . ., nok, and with-
out loss of generality, let zy; = I for all i = ) j<iMoj+
1,...,Zj<,n0’j+nol and I=1,...,K. We con-
sider both balanced (i.e., ng ~ |n/K] for all I) and

unbalanced networks. In the unbalanced case, the com-
munity sizes are chosen as ny :
K+1.

Step 3: Construct the matrix Qin (1) with g, = g+ (p —
@I(r = s), so that all diagonal entries of Q are p and all
oft-diagonal entries are g. We fix ¢ = 0.10 throughout
and vary p subject to p > 0.10. Clearly, smaller values
of p represent weaker clustering pattern.

Step 4: Generate the edges A;; ~ Bernoulli(Q,,
pendently for1 <i < j <n.

The Rand index (Rand 1971) is used to measure the accu-
racy of clustering. Given two partitions C; = {Xj, ..., X,} and
C={1",...,Y}of{l1,2,...,n}leta, b, c, and d, respectively,
denote the number of pairs of elements of {1, 2, ..., n} that are
(a) in a same set in C; and a same set in C,, (b) in different sets in
C; and different sets in C,, (c) in a same set in C; but in different
sets in C5, and (d) in different sets in C; and a same set in C,. The
Rand index RI is

...:nOK=2:...:

) inde-

Z()]'

_ a+b _a+b

Ca+b+c+d ()

Clearly, 0 < RI < 1with ahigher value indicating a better agree-
ment between the two partitions. In particular, RI = 1 indicates
C, and C, are identical (modulo labeling of the nodes).

We also briefly discuss the estimation of k from the posterior.
In our collapsed Gibbs sampler, k is marginalized out and hence
we do not directly obtain samples from the posterior distribu-
tion of k. However, we can still estimate k based on the poste-
rior distribution of |z|, the number of unique values (occupied
components) in (zi, ..., z,). This is asymptotically justified for
mixtures of finite mixtures as in sec. 4.3.2 of Miller (2014) who
showed that the (prior) posterior distribution of |z| behaves very
similarly to that for the number of components k when # is large.
This approach also works well in finite samples as demonstrated
below.

In all the simulation examples considered below, we
employed Algorithm 1 with y =1 and a=b=1 to fit
the MFM-SBM model; we shall henceforth refer to this as
the MFM-SBM algorithm. For all simulations, a truncated Pois-
son prior with mean 1 is assumed on k. We arbitrarily initialized
our algorithm with nine clusters and randomly allocated the
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cluster configurations in all the examples. We experimented
with various other choices and did not find any evidence of
sensitivity to the initialization; a detailed sensitivity analysis
can be found in Appendix C of the supplemental document.
In more complex real networks, a practical guideline for the
truncated Poisson mean is to take an empirical Bayes approach
and set it to the estimated number of clusters from a frequentist
algorithm (such as BHM considered in the article).

5.1. Estimation Performance

We now study the accuracy of MFM-SBM in terms of esti-
mating the number of communities as well as the community
memberships. As benchmark for comparison, we consider two
modularity-based methods available in the R Package igraph
which first estimate the number of communities by some model
selection criterion and subsequently optimize a modularity
function to obtain the community allocations. The first com-
petitor, called the leading eigenvector method (LEM; Newman
2006), finds densely connected subgraphs by calculating the
leading nonnegative eigenvector of the modularity matrix
of the graph. The second competitor, called the hierarchical
modularity measure (HMM; Blondel et al. 2008), implements
a multi-level modularity optimization algorithm for finding the
community structure. Our experiments suggests that these two
methods have the overall best performance among available

methods in the R Package igraph. In addition to LEM and
HMM, we also consider a couple of very recent spectral methods
which have been developed solely for estimating the number of
communities and have been shown to outperform a wide variety
of existing approaches based on BIC, cross-validation, etc. These
methods are based on the spectral properties of certain graph
operators, namely, the nonbacktracking matrix (NBM) and the
Bethe Hessian matrix (BHM). We also compare our algorithm
to transdimensional MCMC algorithms like reversible jump
MCMC or allocation samplers (Nobile and Fearnside 2007) that
also allow the number of components to be inferred from data.
We found the very recent preprint (Newman and Reinert 2016,
; MH-MCMC) that came out (C code publicly available) while
this article was in submission which implements a similar idea
to update k using Metropolis—-Hastings moves and also uses a
Dirichlet-multinomial prior.

We consider balanced networks with 100 nodes and different
choices of K and p. We generate 100 independent datasets using
the steps outlined at the beginning of the section and compare
the different approaches based on the proportion of times the
true K is recovered among the 100 replicates. For MEM-SBM,
we used random initializations to run 10 MCMC chains in par-
allel for 250 iterations each, and took majority voting among the
posterior modes of k from each chain to arrive at a final point
estimate. The summaries from the 100 replicates are provided
in Figures 3 and 4.

MFM-SBM LEM HMM NBM BHM MH-MCMC
100 100 100 100 100 100
75 75 75 75 75
£ £ £ £ £ £
3 50 3 5 50 3 5 50 3 50
] 3 ] 3 g 3
25 25 II 25 25
1 2 3 2 3 4 4 5 6 7 3 1 2 3 3
#of jti d#of iti il #of iti #of iti d #of
MFM-SBM HMM BHM MH-MCMC
100 100 100 100 100
75 75 75 75 75 75
£ £ t £ t £
3 50 350 3 50 3 50 3 50 3 50
] ] 3 3 ] ]
25 25 25 25 25 25
0 —_— 0 0 0 0 0
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

#of #of #of

#of #of

#of

Figure 3. Balanced network with 100 nodes and 2 communities. Histograms of estimated number of communities across 100 replicates. The lower panel is the case when
the community structure in the network is prominent (p = 0.5); the top panel is for a vague block structure (p = 0.24). From left to right: our method (MFM-SBM), leading
eigenvector method (LEM), hierarchical modularity measure (HMM), nonbacktracking matrix (NBM), Bethe Hessian matrix (BHM), and MH-MCMC.
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MFM-SBM LEM NBM BHM MH-MCMC
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Figure 4. Balanced network with 100 nodes and 3 communities. Histograms of estimated number of communities across 100 replicates. The lower panel is the case when
the community structure in the network is prominent (p = 0.5); the top panel is for a vague block structure (p = 0.33). From left to right: our method (MFM-SBM), leading
eigenvector method (LEM), hierarchical modularity measure (HMM), nonbacktracking matrix (NBM), Bethe Hessian matrix (BHM), and MH-MCMC.

From the lower panels of Figures 3 and 4, we can see that
when the community structure in the network is prominent
(p = 0.5), all three methods have 100% accuracy. However, the
situation is markedly different when the block structure is vague,
as can be seen from the top panels of the respective figures.
When the true number of communities is 2 and p = 0.24 (top
panel of Figure 3), MEM-SBM comprehensively outperforms
the competing methods. When p = 0.33 with three communi-
ties (top panel of Figure 4), our method continues to have the
best performance.

We next proceed to compare the estimation performance in
recovering the true community memberships using the Rand
index as a discrepancy measure. For MFM-SBM, inference on
the clustering configurations is obtained employing the modal
clustering method of Dahl et al. (2009). Comparisons with LEM,
HMM, and MH-MCMC are summarized in Table 1; NBM and

Table 1. The value outside the parenthesis denotes the proportion of correct esti-
mation of the number of clusters out of 100 replicates. The value inside the paren-
thesis denotes the average Rand index value when the estimated number of clus-
ters is true. NAs indicate no correct estimation of the number of clusters out of all
replicates.

(K, p) MFM-SBM LEM HMM MH-MCMC
K=2,p=0.50 0.99 (1.00) 1.00 (0.99) 1.00 (1.00) 1.00 (1.00)
K=2,p=024 0.97(0.84) 0.35(0.79) NA (NA) 0.61(0.78)
K=3,p=0.50 1.00 (1.00) 0.67 (0.96) 1.00 (0.99) 0.91(0.99)
K=3,p=033 0.97 (0.93) 0.85(0.79) 0.78 (0.89) 0.54 (0.93)

BHM are excluded since they only estimate the number of com-
munities. When the block structure is more vague (small p),
MFM-SBM provides more accurate estimation of the commu-
nity memberships.

We also conducted a thorough simulation study to assess
robustness of the method to misspecification in Appendix B of
the supplemental document.

6. Benchmark Real Datasets

We consider two real datasets popularly considered in the lit-
erature (i) the dolphin social network data and the (ii) US
political books network. Both can be found in http://www-
personal.umich.edu/mejn/netdata/. We mention the analysis of
the first dataset in Section 6.1 and defer the analysis of the sec-
ond dataset to Appendix D of the supplemental document.

6.1. Community Detection in Dolphin Social Network Data

We consider the social network dataset (Lusseau et al. 2003)
obtained from a community of 62 bottlenose dolphins (Tur-
siops spp.) over a period of seven years from 1994 to 2001. The
nodes in the network represent the dolphins, and ties between
nodes represent associations between dolphin pairs occurring
more often than by random chance. A reference clustering of
this undirected network with 62 nodes is in Figure 5 (refer to
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Figure 5. Reference configuration for the dolphin network. Left panel: Vertex color indicates community membership: black and nonblack vertices represent the principal
division into two communities. Shades of gray represent sub-communities. Females are represented with circles, males with squares, and individuals with unknown gender
with triangles. Right panel: Heatmap of the membership matrix B of the reference configuration z° defined as B,.j =1 (zf’ = z?).

Fig. 1 in Lusseau and Newman 2004). The reference clustering
shows several sub-communities based on gender, age, and other
demographic characteristics. There are 58 ties between males
and males, 46 between females and females, and 44 between
males and females, for a total of 159 ties altogether. We are inter-
ested in recovering the principal division into two communities
as indicated by the black and the nonblack vertices just from the
adjacency matrix itself.

Results from our method (MFM-SBM) is based on 10,000
MCMC iterations leaving out a burn-in of 4000, initialized at
a randomly generated configuration with nine clusters. The

Table 2. Estimated number of clusters for dolphin data.

Method MFM-SBM NBM  BHM LEM HMM  MH-MCMC

Number of clusters 2 2 2 5 5 3

elements of probability matrix Q are assigned independent
Beta(1, 1) priors. From Table 2, it is evident that our method
(MFM-SBM), NBM, and BHM provide consistent estimate of
the number of clusters (being same as the reference clustering),
while the other three overestimated the number of clusters.
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Figure 6. Estimated configuration for the dolphin network using MFM-SBM. Left panel: Vertex color indicates community membership. Right panel: Heatmap of the mem-
bership matrix B of the estimated configuration 2. Perfect concordance with the reference configuration except for the assignment of the 8th subject.
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Figure7. Estimated configuration for the dolphin network using LEM. Left panel: Vertex color indicates community membership. Right panel: Heatmap of the membership
matrix B of the estimated configuration 2. The number of clusters is estimated to be 4. Aside from cluster splitting, the assignment of three subjects are different from that

in reference configuration.

From Figure 6, we see that the estimated configuration from
MFM-SBM is very similar to the reference clustering (the only
difference is in the assignment of the 8th subject).

The heatmaps in Figures 7 and 8 show both LEM and HMM
incur a few misclassified nodes. Figure 9 shows MH-MCMC
overestimate the number of clusters, with the larger cluster cor-
responding to the reference configuration split into two smaller
clusters indicating that the mixing of the MCMC has been
affected by the transdimensional moves.

7. Discussion

We proposed a Bayesian approach for discovering the number
of communities as well as the groups in a network, which

has excellent performance in both simulation and real data
examples. The contribution of the article is learning the number
of communities and the configurations simultaneously in a
coherent probabilistic framework. The approach is also proved
to yield consistent detection of the number of communities,
which is to the best of our knowledge the first such result in
a Bayesian paradigm. As an intermediate result, we developed
concentration inequalities for nonlinear functions of Bernoulli
random variables (refer to Proposition E.1 in the supplemental
document) which may be useful in analysis of related network
models. The method can be extended easily to numerous
modification of stochastic block models including the degree-
corrected, mixed membership and the covariate-adjusted
versions.
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Figure 8. Estimated configuration for the dolphin network using HMM. Left panel: Vertex color indicates community membership. Right panel: Heatmap of the membership
matrix B of the estimated configuration 2. The number of clusters is estimated to be 4 and the assignment of two subjects are different from that in reference configuration

aside from cluster splitting.



904 J. GENG, A. BHATTACHARYA, AND D. PATI

Color Key

Value

R BEEUREEEN oL AREE R EEEUKKELREUUY

--------- 2z 80082 eRANRNARARAARANAARARRASSUOIUSSSSBFUAIBBUEEREE Y

Figure 9. Estimated configuration for the dolphin network using MH-MCMC. Left panel: Vertex color indicates community membership. Right panel: Heatmap of the
membership matrix B of the estimated configuration 2. The number of clusters is estimated to be 3.

Supplementary Materials

Additional simulations exploring sensitivity, convergence diagnostics, and
robustness, and proofs of all technical results, are provided in the supple-
mental materials. The supplemental material additionally contains a second
real data example.
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