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Abstract—This paper models the crowdsourced label-
ing/classification problem as a sparsely encoded source coding
problem, where each query answer, regarded as a code bit, is
the XOR of a small number of labels, as source information
bits. In this paper we leverage the connections between this
problem and well-studied codes with sparse representations for
the channel coding problem to provide querying schemes with
almost optimal number of queries, each of which involving only
a constant number of labels. We also extend this scenario to
the case where some workers can be unresponsive. For this
case, we propose querying schemes where each query involves
only logn items, where n is the total number of items to be la-
beled. Furthermore, we consider classification of two correlated
labeling systems and provide two-stage querying schemes with
almost optimal number of queries each involving a constant
number of labels.

I. INTRODUCTION

A. Crowdsourcing: Classification

Crowdsourcing is a human-based problem-solving mecha-
nism that allows a large crowd to distributively handle a mas-
sive number of queries. These problems, such as image clas-
sification, video annotation, form data entry, optical charac-
ter recognition, translation, recommendation, and proofread-
ing [1], [2], typically require human involvement or suit hu-
man better than machines [3]. In crowdsourcing systems, there
are usually platforms, such as Amazon Mechanical Turk and
Figure Eight, that match the taskmaster to a huge worker
crowd. However, the workers may be unreliable for several
reasons: the reward for each task is usually as small as a
few cents, the tasks are tedious, and one can still collect his
rewards even if his answer is incorrect.

Many crowdsourcing-based real-life problems have one
common goal deep down: classification/labeling of the items
[4]. Formally, the label learning problem can be defined as
follows: suppose there are n items, and the i-th item has a
label Xi ∈ {0, 1, ..., L− 1}, for i ∈ {1, 2, ..., n}. The goal is
to identify the labels of the items. This problem is equivalent
to clustering n items into L clusters with ground truth. Us-
ing crowdsourcing, a taskmaster can send queries to workers
(sometimes called oracles, human annotators , or labelers).
For instance, same cluster queries are adopted in [5], where
in each query two items u and v are sent to a worker and
the worker is asked "do u and v belong to the same label
cluster?" In [6] and [1], single-item queries are considered,
where the worker receives an item for each query and an-
swers a question, such as "This is a picture of a dog, true or
false?". In another related work, each item is associated with
a certain number of properties and workers are imperfect,
and the goal is to identify an item by querying the work-
ers the properties [7]. In general, in all these scenarios, the
objective is to minimize the number of queries, for a given
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type of query, sent to the workers, while being able to re-
cover the labels with certain reliability/fidelity constraints.
Note that, in practice, a certain number of queries can be
assigned to one worker as a task, however, in the context
of our paper, the goal is to minimize the number of queries
regardless of how many workers are involved.

B. Our Contributions

In this paper we consider the 2-cluster case, i.e., L = 2,
together with XOR queries, similar to the model adopted in
[8]. Unlike several prior works which considered queries in-
volving only 1 or 2 items [1], [5], we consider a generalized
scenario, as considered in [8], where the number of items in-
volved in a query can be more than 2 and up to a certain
threshold. Furthermore, besides the scenario where answers
to queries are perfect, we consider an extension where some
of the workers may not answer the queries assigned to them.
We first show that, in the scenario with perfect answers, the
proof of [8, Theorem 1] is incorrect, with the random ensem-
ble adopted therein, and hence fails to support the theorem.
Note that the existential claim of the theorem may still be
true if an alternative proof is given. We show that, with per-
fect workers, there exists a querying scheme within distance
ϵ from the theoretic lower bound, in terms of the number of
queries normalized by n, with up to log 1

ϵ items in each query.
A similar result is shown for the scenario with unanswered
queries and with up to log n log 1

ϵ items in each query.
We further extend the problem to the scenario when items

need to be clustered according to two different clustering cri-
teria. Ideas from correlated-source and channel coding allow
us to recover two types of clustering with less queries than
when the two types of labeling are recovered separately. We
show that a querying scheme within distance 2ϵ from the
theoretic lower bound, in terms of the number of queries nor-
malized by n, is achievable with log 1

ϵ items per query.

II. PRELIMINARIES

A. Crowdsourcing and Linear Channel Codes

From crowdsourcing’s perspective, when XOR query
scheme is adopted, the process is similar to a linear source
coding problem. In other words, the output of a query is
the XOR of binary labels, i.e., addition over the binary
field F2, of all items involved in that query. In particu-
lar, let n be the total number of items to be labeled and
X = (X1, X2, . . . , Xn)

t ∈ Xn, where X = {0, 1}, consid-
ered as a column vector, denote the true labels, unknown to
the taskmaster. Let also A ∈ Fm×n

2 denote the query matrix,
where ones in the i-th row of A correspond to the indices
of items in the i-th query. Under the XOR model for the
query answers, the correct answer to the i-th query is equal
to the i-th element of AX, where all operations are over F2,
i.e., Xi’s are regarded as elements of F2. Given the limited



capabilities of human workers, the queries need to be de-
signed to be sparse. In other words, the number of items per
query, which is equal to the number of ones in each row of
A, must be small, e.g., bounded by a constant value.

It is common to assume the apriori distribution of the la-
bels are known to the taskmaster [1], [9]. In particular, an
i.i.d. Ber(p) distribution is assumed for the binary labels,
where p is known to the taskmaster. Note that due to the
duality between source coding and channel coding prob-
lems, the parity-check matrix of a linear code C designed for
transmission over a memoryless binary symmetric channel
(BSC) with transition probability p, BSC(p), can be used to
compress an i.i.d. Ber(p) source. In fact, the probability of
error of the maximum-likelihood (ML) decoder would be the
same when the code is used either for channel coding across
BSC(p) or source coding of an i.i.d. Ber(p) source. Hence,
low-density parity-check (LDPC) codes become relevant for
the considered crowdsourced clustering problem with XOR
query scheme and bounded number of items in each query.

B. LDPC and LDGM Codes

LDPC codes were originally introduced by Gallager [10]
in 60’s and were later rediscovered in 90’s [11] and were
shown to offer near-capacity performance under practical
belief-propagation (BP) decoding algorithms.

In [10], Gallager proved that right-regular LDPC codes,
where each row of the parity-check matrix H has a constant
weight ∆, can not achieve the channel capacity on BSC. He
also showed that the gap to capacity diminishes exponentially
fast with ∆. In [12] and [13], similar results are shown when
the row weights and average row weights of H are upper
bounded by ∆, respectively. In terms of code constructions,
several works on regular LDPC codes have shown that rates
close to the provided upper bounds are attainable [13]–[15].
In section III-A, we leverage results from [13] and [16] to
obtain scheme with sparse queries in the context of crowd-
sourced classification.

When considering unreliable workers in the crowdsourc-
ing setup another class of codes with sparse representations,
namely low-density generator-matrix (LDGM) codes, become
relevant. In LDGM code, the generator matrix is assumed to
be sparse. In general, as opposed to LDPC codes, the per-
formance of LDGM codes has not been very well-studied in
the literature. Several works have empirically shown the ex-
istence of LDGM codes with close-to-capacity performance
[17]–[19]. It is shown in [20] that ensembles of LDGM codes
are capacity achieving over BSCs when the row weights scale
linearly with n. Furthermore, row weights of O(log n) suf-
fice to achieve the capacity of binary erasure channels (BECs)
[20]. Scaling exponent of such codes were studied in [21].

C. Prior Work

In [8], three scenarios, namely noiseless queries and ex-
act recovery, noiseless queries and approximate recovery, and
noisy queries and approximate recovery, are discussed. Here,
a query is noisy if the workers are unreliable, i.e., the query
answers may be inaccurate, and is noiseless if it is always cor-
rect. A recovery is assumed to be perfect if the (block) error
probability vanishes as the number of items grows large, and
is considered to be approximate if up to a constant probability
of error in recovering labels/source bits is allowed.

In [8], Mazumdar and Pal attempt to show that, under the
XOR query model with noiseless answers, perfect recovery of
all labels (i.e. source compression) is achievable with sparsely
encoded source coding, when the number of items in each

query is bounded by a constant value ∆. Note that in several
other prior works, queries involving ∆ = 1, 2, 3 items were
considered [1], [5], [6], [22]–[24].

LDPC codes have been considered for source compression
in [25] and [26]. In particular, it is pointed out in [25] that the
analogy between linear source codes and LDPC channel codes
was largely neglected in the literature and it is shown that
LDPC-based data compression for either memoryless sources
or sources with memory are practical.

III. MAIN RESULTS

The main results of this paper are stated in this section.
The proofs of Propositions 1 to 5 can be found in Section IV.

A. Noiseless Queries and Perfect Recovery

Problem Formulation: We adopt the same model as in [8,
Section 3.1]. Consider the crowdsourced classification prob-
lem where there are only two label types for each item and
XOR queries are adopted, as discussed in Section II-A. Sup-
pose that the labels Xi ∈ X = {0, 1}, for 1 ⩽ i ⩽ n, are
i.i.d. Ber(p) random variables. Without loss of generality, we
may assume p ∈ (0, 0.5). In this subsection, we assume a
nonadaptive/one-shot scenario, in which all queries are gen-
erated and sent to the workers at the same time. This is in
accordance with several prior works, e.g. [1], [23].

In [8, subsection 3.1], the number of items in each query
given to workers is fixed to ∆, and the worker returns an
error-free XOR of the labels in the given query. Let Hb(p)
denote the binary entropy function. The following result is
claimed in [8].

[8, Theorem 1]: There exists a querying scheme with m =
n(Hb(p)+o(1))

log2
1
α

queries, of above type, where α
def
= 1

2 [1 + (1−
4p(1− p))∆], that achieves perfect recovery.

The proof provided in [8] is based on the following. The av-
erage probability of error of a randomly chosen query scheme,
consisting of m independently and uniformly selected random
queries involving exactly ∆ items, is analyzed and is claimed
that it approaches 0 as n grows large. However, we show here
that the provided proof does not hold. In particular, we show
in Proposition 1 that the average probability of error over the
considered ensemble is bounded away from 0.

Proposition 1: The average probability of error, denoted
by Pe, in a scheme with m = n(Hb(p)+o(1))

log 1
α

independent and
uniformly distributed random queries involving ∆ items does
not vanish as n, the number of items, grows. More precisely,

Pe ⩾ (1− ϵ)(exp(−∆ ·Hb(p)

log 1
α

)− ϵ′) > 0, (1)

where ϵ, ϵ′ > 0 can be chosen arbitrarily small as n → ∞
Remark 1. In [27, Theorem 2], the authors consider uni-
formly random queries, essentially a random ensemble same
as in Proposition 1, and show that m = Θ(n log n) queries
is necessary and sufficient for perfect recovery regardless of
whether the workers are perfect or not, when no apriori dis-
tribution is assumed.

This does not imply that the theorem itself, [8, Theorem
1], does not hold. Note also that such results are not about
specific constructions and state that the average probability
of error of certain random ensemble is bounded away from
0. In fact, there are trivial cases of a query matrix providing
perfect recovery with m = n queries, e.g., the identity matrix.
However, the question of whether less than n queries, and
more specifically close to nHb(p) queries, is sufficient for
perfect recovery or not is not properly answered by [8] and



has not been considered in [27]. We answer this question in
Proposition 2.
Remark 2. By Shannon’s source coding theorem we need
at least nHb(p) queries to achieve perfect recovery, when
the query answers are binary. Hence, the compression rate,
i.e., the number of queries normalized by the number of
items, must be at least Hb(p). In Proposition 2, it is shown
that for any chosen ϵ ∈ (0, 1), compression rate as small as
Hb(p) + ϵ(1 − Hb(p)) can be achieved by a query scheme,
with O(log 1

ϵ ) items per query, thereby providing a scheme
with almost optimal number of queries.

Proposition 2: Suppose that workers are perfect and labels
have prior distribution Ber(p). Then, for ϵ ∈ (0, 1) and suf-
ficiently large n, there exists a querying scheme using

m = n[Hb(p) + ϵ(1−Hb(p))] (2)

queries, each involving no more than (Hb(p)
−1−1)K1−K2ln(ϵ)

1−ϵ
items, that achieves perfect recovery, where K1 and K2

depend only on p.

B. Two-label Perfect Recovery
In this subsection, we extend the problem discussed in Sec-

tion III-A to the recovery of two different clustering based on
two properties/labeling criteria associated with the same set
of objects. In particular, suppose that the i-th item can be
classified according to two (binary) labeling systems and is
labeled Xi, Yi, respectively. For instance, one labeling system
may involve identifying the objects in pictures, e.g., whether
there is a cat or dog in the picture, and the other may involve
identifying the location, e.g., whether this picture is taken in-
door or outdoor. Furthermore, we assume that a two-stage
query scheme is adopted, where queries involving Xi’s are
sent in the first stage and queries involving Yi’s are sent in
the second stage.

By leveraging the correlation between labels X and Y , we
can recover the clustering by sending an almost optimal num-
ber of queries, under the constraint of finite items per query.

Proposition 3: Let (Xi, Yi)
i.i.d.∼ PX,Y (x, y), for 1 ⩽ i ⩽

n. Then there exists a two-stage querying scheme using

m = n(H(X,Y ) + 2ϵ) (3)

queries, where H(X,Y ) is the joint entropy function, each
involving no more than O(log 1

ϵ ) items, that achieves perfect
recovery for sufficiently large n.

C. Noisy Queries and Perfect Recovery
In this subsection, we consider imperfection in workers’

replies. Due to the monotonicity of queries, low payment for
completion of queries, or the fact that workers may not be
experts, two noisy scenarios for the answers to queries can
emerge. In the first case, it is assumed that some queries are
not replied within a certain specified response time, or not
replied at all. This scenario can be modeled as follows: each
query is replied (correctly) with probability 1− r and is not
replied with probability r, for a certain parameter r, indepen-
dent from other queries. Consequently, this scenario becomes
related to the channel coding problem over the binary erasure
channel (BEC) with erasure probability r. In the second case,
it is assumed that the workers have accuracy 1 − q, that is,
the answer from a worker is correct with probability 1 − q.
This is related to the channel coding problem over BSC(q).

In this paper, we focus on the first case and leave the sec-
ond case for future work. In particular, we show that con-
catenation of LDGM and LDPC codes achieve compression
rate

R = [Hb(p) + ϵ(1−Hb(p))]/(1− r),

with row weights upper bounded by ∆ = O(log 1
ϵ log n).

Let AN×K denote the set of N×K binary matrices and let
B(AN×K , p) denote a distribution on AN×K , where the en-
tries of a random A ∼ B(AN×K , p) are distributed i.i.d. with
Ber(p). We utilize the following result from [20] to derive the
main result of this section.

[20, Theorem 5]: Consider BEC(r) and let K = NR,
where R < 1 − r. Suppose A ∼ B(AN×K , ρ(N)), where
ρ(N) = Θ( logN

N ). Let pc(A) denote the probability of correct
decoding, under ML, using At as the generator matrix and
assuming transmissions over BEC(r). Then

lim
n→∞

EA(pc(A)) = 1, (4)

where the expected value is taken with respect to A.
Note that the generation of A ∼ B(AN×K , ρ(N)) does

not guarantee that all row weights are bounded by logN . We
extend the result of [20, Theorem 5], in order to ensure that
all row weights are bounded, in Proposition 4.

Proposition 4: Let A ∈ AN×K and let At be the generating
matrix corresponding to a code of rate R = K

N < 1− r with
transmissions over BEC(r). For any ρ(N) = Θ( logN

N ), the ex-
pected value of pc(A) over all matrices with B̃(AN×K , ρ(N))
distribution tends to 1 as N approaches infinity, i.e.,

lim
N→∞

EA∼B̃(pc(A)) = 1, (5)

where B̃(AN×K , ρ(N)) is obtained from the distribution
B(AN×K , ρ(N))) by removing matrices that have at least
one row with Hamming weight larger than or equal to
Θ(logN).

Theorem 5: Suppose that queries are answered with prob-
ability 1 − r, independent to each other. Then there exists a
query scheme with

m = n[Hb(p) + ϵ(1−Hb(p))]/(1− r) (6)

queries, each involving O(log 1
ϵ log n) items, that guarantees

perfect recovery of the labels as n grows large.
Proof: The following statements holds for suffi-

ciently large n. The parity-check matrix of LDPC codes
is applied first for the compression. By Proposition 2
there exists an mH(n) × n binary matrix Hn, where
mH(n) = n[Hb(p) + ϵ(1 − Hb(p))], with row weights
bounded from above by (Hb(p)

−1 − 1)
K1−K2 ln 1

ϵ

1−ϵ . Note
that Hn can be used to compress an i.i.d. Ber(p) source
sequence with perfect recovery.

Then, the compressed bits are further encoded to recover
from erasures caused by the BEC(r). By Proposition 4, there
exists a mG(n) × mH(n) matrix Gn, with all row weights
being O(logmH(n)), for transmission of mH(n) bits over
BEC(r), while the expected probability of correct decoding
approaches 1 as n → ∞ for any Rc

def
= mH(n)/mG(n) <

1− r.
Next, the two linear operations, one for the compression

and the other one for the erasure correction, are concatenated,
leading to the overall query matrix. Let GSC(n)

def
= GnHn,

with dimensions mG(n)×n, denote the corresponding overall
encoding matrix. Note that all row weights of GSC(n) are
bounded from above by

(Hb(p)
−1−1)

K1 −K2 ln
1
ϵ

1− ϵ
O(logmH(n)) = O(log

1

ϵ
log n),

and also the number of queries is equal to mG(n), where

mG(n) > mH(n)/(1− r)

= n[Hb(p) + ϵ(1−Hb(p))]/(1− r),



is sufficient to show that GSC(n) guarantees perfect recovery
of the labels as discussed next. Let X denote the vector of
n labels, Y = HnX denote the compressed labels, and Z =
GnY = GSC(n)X and the taskmaster collects Z corrupted
with erasures with probability r. The taskmaster can recover
Y, with high probability, by the choice of Gn. Then, having
recovered Y, perfect recovery of X is possible by the choice
of Hn. That completes the proof of theorem.

IV. PROOFS

A. Proof of Proposition 1
We analyze the average probability of error, Pe, of the

querying scheme given in [8, Theorem 1 ], and provide a
lower bound for it. Consider the following two typical sets
in {0, 1}n,

An
ϵ (X)

def
= {xn : np(1− n− 1

3 ) ⩽ wH(xn) ⩽ np(1 + n− 1
3 )},

Bn
ϵ (X)

def
= {xn:np(1−n− 1

3 )+1⩽wH(xn)⩽np(1+n− 1
3 )−1},

where wH(xn) denotes the hamming weight of vector xn.
Then, we have

Pr(An
ϵ (X)) → 1 and Pr(Bn

ϵ (X)) → 1 as n → ∞.

Note that for xn ∈ Bn
ϵ (X),

np(1− n− 1
3 ) ⩽ wH(xn + e) ⩽ np(1 + n− 1

3 ),

for any e ∈ {0, 1}n with unit weight, i.e., wH(e) = 1. Hence,
xn + e ∈ An

ϵ (X), for any xn ∈ Bn
ϵ (X). Then Pe can be ex-

pressed and lower bounded as follows:

Pe =
∑︂

xn∈Xn

Pn
X(xn) Pr(x̂n ̸= xn)

=
∑︂

xn∈Xn

Pn
X(xn) Pr(∃x̃n ̸= xn, x̃n ∈ An

ϵ (X), Qxn = Qx̃n)

⩾
∑︂

xn∈Bn
ϵ (X)

Pn
X(xn) Pr(∃x̃n ̸= xn, x̃n ∈ An

ϵ (X), Qxn = Qx̃n)

⩾
∑︂

xn∈Bn
ϵ (X)

Pn
X(xn) Pr(xn + e1 ∈ An

ϵ (X), Qxn = Q(xn + e1)),

where e1 = (1, 0, 0..., 0, 0) and Q is the m× n query matrix
corresponding to the query scheme described in Proposition 1.

For xn ∈ Bn
ϵ (X), we always have xn+e1 ∈ An

ϵ (X). Note
that Qxn = Q(xn + e1) if and only if Q(e1) = 0, which is
also equivalent to the first label not being queried by any of
the m queries. The probability that a query does not use the

first label is (n−1
∆ )
(n
∆)

= 1− ∆
n . Thus,

Pr
(︁
Q(e1) = 0

)︁
= (1− ∆

n
)m,

where m = n(Hb(p)+o(1))

log 1
α

as in [8, Theorem 1]. Then we have

Pr
(︁
Q(e1) = 0

)︁
= [(1− ∆

n
)n]

Hb(p)+o(1)

log 1
α

−−−−→
n→∞

exp(−∆ ·Hb(p)

log 1
α

) > 0.

Therefore,

Pe ⩾
∑︂

xn∈Bn
ϵ (X)

Pn
X(xn)(1− ∆

n
)m

⩾ (1− ϵ)(exp(−∆ ·Hb(p)

log 1
α

)− ϵ′) ̸= 0,

for n sufficiently large, where ϵ, ϵ′ can be chosen arbitrarily
small as n → ∞.

B. Proof of Proposition 2

We leverage a result from [13], which establishes a connec-
tion between sparsity of the parity-check matrix and reliability
performance of LDPC codes. First, the density of parity-check
matrix of a linear code is defined as follows.

Definition 1: Given an m × n parity-check matrix H , the
density of H , denoted by ρ = ρ(H), is the number of ones
in H normalized by n, i.e., the total number of ones in H is
(n−m)ρ.
[13, Theorem 2.2]: For any BSC or BEC, there exists a se-

quence of ensembles of regular LDPC codes which achieves,
under ML decoding, a fraction 1 − ϵ of the channel capac-
ity with vanishing block error probability, and the asymptotic
density of their parity-check matrices satisfles

lim
n→∞

ρn ⩽
K1 −K2ln(ϵ)

1− ϵ
, (7)

where K1 and K2 depend only on the channel. In particular,
for BSC(p) with capacity 1−Hb(p), there exists an ensemble
of regular (n, n−m) LDPC codes achieving channel rate

R = (n−m)/n = (1− ϵ)C = (1− ϵ)(1−Hb(p)).

The parity check matrices from this ensemble have
m = n[Hb(p) + ϵ(1−Hb(p))] rows, each with weight

(n−m)ρn/m = ([Hb(p) + ϵ(1−Hb(p))]
−1 − 1)ρn

⩽ (Hb(p)
−1 − 1)ρn

⩽ (Hb(p)
−1 − 1)

K1 −K2ln(ϵ)

1− ϵ
, (8)

for sufficiently large n.
As mentioned in section II-A, we note that the parity-check

matrix of a linear code C designed for transmission over a
BSC(p), can be used to compress an i.i.d. Ber(p) source with
the same block error probability Pe under maximum likeli-
hood (ML) decoding.

C. Proof of Proposition 3

We use a two-stage querying scheme. Let Xi
i.i.d.∼ Ber(p),

q = Pr(Yi = 1|Xi = 1) and r = Pr(Yi = 1|Xi = 0).
First, we use

m1 = n[Hb(p) + ϵ(1−Hb(p))]

queries to retrieve Xi’s. From Proposition 2, (Hb(p)
−1 −

1)K1−K2ln(ϵ)
1−ϵ items per query are sufficient for perfect

recovery of the Xi’s.
Second, we consider the conditional distribution of the Yi

labels. Suppose that Xi’s are recovered correctly. Let n1 =∑︁n
i=1 Xi and n2 = n− n1 denote the number of items with

labels Xi = 1 and Xi = 0, respectively. By law of large
numbers, for any given ϵ′, we have n1 ⩽ np(1+ϵ′) and n2 ⩽
n(1− p)(1 + ϵ′), with high probability, for sufficiently large
n. By Proposition 2, there exists a querying scheme with

m2 = n1[Hb(q) + ϵ(1−Hb(q))]

queries, each involving no more than (Hb(q)
−1−1)

K′
1−K′

2ln(ϵ)
1−ϵ

items that recovers the Yi labels for the items labeled Xi = 1.
Also, there exists a querying scheme with

m3 = n2[Hb(r) + ϵ(1−Hb(r))]



queries, each involving no more than (Hb(r)
−1−1)

K′′
1 −K′′

2 ln(ϵ)
1−ϵ

items that recovers the Yi labels for the items labeled Xi = 0.
The total number of queries is then

m1 +m2 +m3 ⩽ n[Hb(p) + pHb(q) + (1− p)Hb(r)]+

nϵ(1 + p+ (1− p))−
n[ϵHb(p) + pϵHb(q) + (1− p)ϵHb(r))− ϵ′]

⩽ nH(X,Y ) + 2nϵ.

Note that, given p, q, r, the number of items involved in a
query is related to the gap to capacity as O(log( 1ϵ )).

D. Proof of Proposition 4

The following lemma is a direct consequence of Chernoff
bound and the proof is omitted here:

Lemma 6: Let X1, X2, ..., XN be N independent random
variables with Xi ∼ Ber(pi). Let µ =

∑︁N
i=1 pi. Then

Pr(
∑︂N

i=1
Xi ⩾ (1 + δ)µ) ⩽ e−

δ2

2+δµ,∀δ > 0. (9)

For any ρ(N) = Θ( logN
N ), there exist M > 1,m > 0 such

that m logN
N ⩽ ρ(N) ⩽ M logN

N for N sufficiently large. If
p = p1 = p2 = ... = pN = ρ(N), we have

m logN ⩽ µ = Np ⩽ M logN.

Then,

Pr(

N∑︂
i=1

Xi ⩾ δ(m)M logN) ⩽ Pr(

N∑︂
i=1

Xi ⩾ δ(m)µ)

⩽ e−2 logN = N−2, (10)

where δ(m) > 1 is chosen such that (δ(m)−1)2

2+δ(m)−1 ×m > 2.
Next, we discuss the probability that a matrix A ∼

B(AN×K , ρ(N)) has heavy rows, where a heavy row is a
row with weight larger or equal to δ(m)M logN .

Pr(each row of A has weight less than δ(m)M logN)

= 1− Pr(
⋃︂N

i=1
{ith row has weight ⩾ δ(m)M logN})

⩾ 1−
∑︂N

i=1
Pr(ith row has weight ⩾ δ(m)M logN})

= 1−N · Pr(1st row has weight ⩾ δ(m)M logN})
⩾ 1−N ·N−2 → 1 as N → ∞.

Let ph(N) denote the probability that A has at least one heavy
row. Then we have ph(N) → 0. Note that

EA(pc(A)) = ph(N)EA(pc(A))+(1−ph(N))EA∼B̃(pc(A)),

where the expectations are taken with B(AN×K , ρ(N)) dis-
tribution, B(AN×K , ρ(N)) distribution and heavy-row con-
dition, and B̃(AN×K , ρ(N)) distribution.

From [20, theorem 5],

1 = lim
N→∞

EA∈AN×K
(pc(A))

= lim
N→∞

[ph(N)EA(pc(A)) + (1− ph(N))EA∼B̃(pc(A))]

= lim
N→∞

EA∼B̃(pc(A))

V. CONCLUSION

In this paper, crowdsourced classification problems with
XOR querying schemes involving a limited number of items
in each query sent to the crowd workers are considered. The
goal is to perform the classification efficiently, that is, to min-
imize the number of queries sent to workers. We discuss the
scenario where all workers are perfect, and then extend to the

case with possibly having unresponsive workers. We further
consider clustering the items based on two correlated classifi-
cation criteria. In all of the above cases, we provide querying
schemes with almost optimal number of queries each with
limited number of items.
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