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Abstract—Sleep monitoring plays an important role in many
medical applications, including SIDS prevention, care of patients
with pressure ulcers, and assistance to patients with sleep apnea,
where studies have shown that autonomous and continuous
monitoring of sleep postures provides useful information for
lowering health risk. Existing systems are designed based on
electrocardiogram, cameras and pressure sensors, which are
expensive to deploy, intrusive to privacy, or uncomfortable to
use. This paper presents TagSheet, the first sleep monitoring
system based on passive RFID tags, which provides a convenient,
non-intrusive, and comfortable way of monitoring the sleeping
postures. It does not require attaching any tag directly to a
patient’s body. Tags are taped under a bed sheet. With a
combination of hierarchical recognition, image processing and
polynomial fitting, the proposed system identifies body postures
based on the observed variation caused by the patient body to
the backscattered signals from tags. The system does not require
any personalized data training, making it plug-n-play in use. One
additional advantage is that the system can also estimate the
patient’s respiration rate. This is particularly helpful in assisting
patients with sleep apnea. We have implemented a prototype
system, and experiments show that the system performs posture
identification with an accuracy up to 96.7% and in the meantime
it measures the respiration rate with a small error of about 0.7
bpm (breath per minute).

I. INTRODUCTION

We spend one third of our lives in sleeping, which plays

a vital role in good health and well-being. Clinical evidence

suggests that body posture during sleep serves as a diagnostic

indicator for a variety of chronic diseases and as an aid in

medical therapies. One example is the sudden infant death

syndrome (SIDS) for unexplained deaths of small children less

than one year of age. As 1,545 US infants died from SIDS

in 2014, studies showed that this risk would be much lower

if infants were sleeping on their backs [1]. Pressure ulcers,

also known as pressure sores, are a common clinical issue

for bedridden patients in hospitals and care institutions [2].

These are skin injuries caused by prolonged stay in the same

sleeping posture. To reduce the risk of developing pressure

ulcers, caregivers must adjust the patients’ postures every

two hours to relieve their skin pressure. As patients may

unconsciously move their positions from time to time, a system

that continuously monitors the durations in different postures

will provide caregivers with information on the best postures

that they should adjust the patients to. In yet another example,

sleep apnea is a sleep disorder characterized by pauses in

breathing or periods of shallow breathing during sleep [3].

Prior studies have discovered the relationship between body

postures and sleep apnea, and observed that avoidance of

supine posture (i.e., sleeping on back) results in a decrease in

the number and the severity of obstructive sleep apnea [4], [5].

A system that monitors both sleeping posture and breathing

will help assess a patient’s sleeping habit and the effectiveness

of a certain sleeping aid/therapy.

In the above examples, autonomous and continuous mon-

itoring of body postures during sleep provides useful infor-

mation for lowering health risk due to inappropriate sleeping

postures. To date, existing research has proposed a variety

of approaches to monitor sleeping postures. Lee et al. [6]

perform posture recognition based on cardiovascular signals

from electrocardiogram. This approach requires specialized

medical instrument and trained professionals, which make it

expensive. Video cameras have also been used to recognize

sleeping postures [7]. This image-based approach works but

suffers from three drawbacks. First, the use of camera raises

privacy concern, especially in a private environment, e.g.,

bedroom. While patients are likely to be comfortable to share

electrocardiograms and other sensor data, video of private life

is a different story. Second, it is hard for the camera to capture

the posture image when the body is covered by the quilt. Third,

people usually sleep at night. Darkness degrades video quality.

Even when infrared cameras are used, video may still suffer

from non-uniformity and artifacts. More recently, research has

shifted to pressure sensing techniques [4], [8]. By designing

a pressure sensitive bedsheet with densely deployed textile

sensors, they are able to capture the pressure mapping images

and recognize different postures using classifiers. However,

these approaches require users to replace their mattresses

with the pressure sensor mats or fix the sensor sheets to

the surface of the mattresses, which could affect the patents’

Fig. 1. Chronic diseases related to sleeping postures.
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sleeping comfort. Pressure sensors need a power supply such

as batteries, which not only increases deployment cost, but

also makes it difficult to miniaturize the sensors to a level that

the users will not feel when laying on top of them.

In this paper, we present an RFID-based (radio frequency

identification) system called TagSheet that provides a non-

intrusive way of recognizing body postures without affecting

users’ sleeping comfort. TagSheet consists of passive tags that

are taped under a bed sheet or on the surface of a mattresses,

arranging in rows and columns to form a rectangular tag

matrix, as shown in Fig. 2. Passive tags are powered by RF

waves from an RFID reader, and they communicate with the

reader by backscattering the RF signals. They are thin, flexible,

and unnoticeable to users when separated with a sheet. The

presence of a body between some tags and the reader will alter

the backscattered RF signals from those tags to the reader,

depending on the relative tag-body placement. By observing

the RF signal variance amongst all tags, the reader is able to

construct a coarse-grained grayscale snapshot, from which the

sleep posture will be deduced. As the reader continuously in-

terrogates the tags, it forms snapshot after snapshot over time,

allowing continuous monitoring. Compared to the prior work,

TagSheet has many advantages: It is battery-free, non-intrusive

to privacy, and comfortable to use as we do not attach tags

to human body; they are under a bed sheet. These advantages

do not come for free. Due to its low resolution, analyzing

an RF snapshot taken by TagSheet is much more challenging

than doing so for a visual image or a dense pressure mapping.

Adding to the challenge, we want to improve the usability of

TagSheet by avoiding tedious personalized data training that

is often needed by the traditional classification methods.

To meet the above challenge, we propose a hierarchical

recognition scheme that gradually identifies sleeping postures

from a coarse-grained subsumption to each individual posture

output, without any training process needed, making TagSheet

plug-and-play. We begin with generic posture analysis and

define their geometric features present in RF snapshots. These

features are derived as inherit physical characteristics of cer-

tain postures and thus they are universally applicable to differ-

ent persons. By combining image processing and polynomial

fitting, TagSheet achieves high accuracy in posture recognition.

Moreover, as a by-product, TagSheet can also estimate the

respiration rate, without requiring any extra hardware. This is

useful as an additional indicator for assessing the physical

health of a patient under posture monitoring. Our system

is different from TagBreathe [9] in that we do not attach

any tag to a user’s chest as TagBreathe does. Finally, we

examine the practical issues of how to choose proper tags

that will produce the needed signal variation, how to avoid

signal interference caused by occasional limb movement, and

how to address the under-sampling problem by using selective

reading. Summarized below, our contributions are three-fold.

1) We design a novel sleep monitoring system called

TagSheet that provides a convenient, non-intrusive, and com-

fortable way of identifying the sleeping postures with a

battery-free passive tag matrix, in complement to existing
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Fig. 2. System deployment of TagSheet.

approaches based on electrocardiogram, cameras and pressure

sensors, which have their limitations in practical use.

2) We propose a hierarchical recognition scheme that grad-

ually identifies the sleeping postures from a coarse-grained

subsumption to each individual posture output, without any

personalized training process needed, thus allowing plug-n-

play deployment for different individuals. Besides, we incor-

porate a tag selection approach and a wavelet-filter based

technology to produce a by-product function for estimating

a user’s respiration rate.

3) We implement a prototype of TagSheet. Extensive ex-

periments show that the system performs posture identification

with an accuracy up to 96.7% and in the meantime it measures

the respiration rate with a small error of about 0.7 bpm

(breath per minute). These promising results demonstrate the

practical potential of using TagSheet as an unobtrusive tool

for monitoring sleeping postures as well as breathing rate.

II. TAGSHEET

A. System Deployment

We design TagSheet as a set of passive tags taped on

a thin and flexible carrier (e.g., bed sheet or plastic film

under the sheet), making it easy to deploy on the mattress

and unobtrusive to sleepers. Tags attached to the carrier

are positioned in rows and columns, forming an M -by-N
rectangular matrix A = {am,n}, where am,n denotes the tag at

the m-th row and the n-th column of the matrix, 1 ≤ m ≤ M ,

1 ≤ n ≤ N . The total number of tags is M × N . Since the

unit price of a passive tag is only a few cents, the total cost of

TagSheet is low. For example, a TagSheet with 500 tags costs

about 30 dollars. Above the TagSheet (bed), an RFID reader

(antenna) hangs from the ceiling and collects tag IDs and

RSSI (Received Signal Strength Indicator) measurements from

those tags continuously, as shown in Fig. 2. During the use of

TagSheet, the time is evenly split into a sequence of windows

T = {t1, t2, t3, ...}. At each time window ti, i > 0, the reader

constructs an RSSI snapshot Ri = {rim,n} based on tags’

responses, where rim,n is the mean of RSSI measurements of

tag am,n within the window ti. Besides, we let R0 be the initial

snapshot (which is also called empty snapshot) that consists

of the RSSI values of all tags when nobody lies in bed.

Our problem in this paper is to recognize six sleeping

postures, i.e., supine, prone, left log, right log, left foetus,

and right foetus, from each snapshot Ri, i ≥ 0. According

to Idzikowski’s study [10], these six postures are the most

common postures. As shown in Fig. 3, the supine posture

means lying horizontally with the face and torso facing up
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Fig. 3. Six common sleeping postures [10]: (a) supine, (b) prone, (c) left
log, (d) right log, (e) left foetus, (f) right foetus.

(8%), as opposed to the prone position, which is facing down

(7%). A log means sleeping on left side (left log) or right side

(right log) with arms and legs straight, which is the second

most popular position (28%). The foetus is lying side with

knees bent and arms stretched outwards, which is the most

common sleeping posture (41%). If facing left, it is left foetus;

otherwise, right foetus. We stress that although there are many

kinds of variations of sleeping postures, these six postures

cover the most cases in our daily lives and are sufficient to

provide us with useful diagnostic information.

B. Snapshot Difference

In TagSheet, since the relative location of the reader antenna

and tags is fixed, the RF signals backscattered from each tag

nearly remain stable in a static environment. When a person

lies in bed (above the tag matrix), the human body that is

made up primarily of “salt water” acts as an absorber of

RF energy. That means the signals emitted by tags below

the human body are very likely to be blocked by the human

body, which makes the reader fail to collect the tag IDs and

the corresponding RSSI values. Consider any tag am,n at a

time window ti. If the tag is exactly under the body and is

completely blocked, no response of am,n will be received by

the reader. In this case, we set RSSI value rim,n in the time

window ti to a threshold RT , which is less than the maximum

receive sensitivity determined by the reader. For example, the

maximum receiver sensitivity of Impinj Speedway R420 [11]

is −84 dBm, so the threshold RT is less than −84 dBm when

Impinj Speedway R420 is put into use for TagSheet.

Another impact of human body is reflection influence. The

human body can be treated as a passive virtual transmitter

that emits the reflected signals. These reflected signals and

the line-of-sight signals from the reader will be superposed at

the position of each tag, leading to destructive interference

or constructive interference. Therefore, in consideration of

the dual impacts of the human body, we attempt to use

RSSI variances to recognize the sleeping posture. Specifically,

the difference R̂i between RSSI snapshot Ri and the empty

snapshot R0 is served as the clue to figure out the body posture

in the time window ti.

R̂i = |Ri −R0| = {|rim,n − r0m,n|}, (1)

where 1 ≤ m ≤ M and 1 ≤ n ≤ N . The reason for not

using Ri directly is due to tag diversity and location diversity.

Tag diversity is the hardware difference introduced during

manufacturing, and location diversity is caused by varied

distances and multipath effects to tags at different locations.

(a) (b) (c) (d) (e) (f)

Fig. 4. Snapshots of six sleeping postures: (a) supine, (b) prone, (c) left log,
(d) right log, (e) left foetus, (f) right foetus.

We performed an experiment, which shows that the RSSI

values of 20 different tags located at the same position vary

from −49 dBm to −45 dBm, and that the RSSI values of the

same tag at 20 different positions in a 5× 4 matrix vary from

−59 dBm to −36 dBm. Combining these two effects, when 20

different tags are placed at 20 different locations, their RSSI

values vary from −61 dBm to −34 dBm. These results confirm

that tag diversity and location diversity have great impact on

RSSI measurement. We mitigate such impact by subtracting

the empty snapshot R0 from Ri, which removes tag/location

diversity captured in R0, while leaving the signal fingerprint

left by the presence of human body.

Fig. 4 shows the experimental results of the snapshots R̂i

from six postures in one time window, using a 30 × 18
TagSheet. In this experiment, the threshold RT is set to −100
dBm and the length of time window is 3s. A snapshot is

actually a gray-scale image that consists of 30 × 18 pixels.

Each pixel Im,n in the image is the absolute value of the RSSI

difference between rim,n and r0m,n, i.e., Im,n = |rim,n−r0m,n|.
As we can see, each snapshot gives a blurring sketch of a

sleeping posture. To figure out which posture each snapshot

means, we need to overcome the following three challenges.

First, due to the big physical size of tags, the image resolution

of TagSheet is very low and most posture details are lost.

Second, the RF signal is susceptible to surroundings. How to

design a robust TagSheet that works properly under different

environmental settings and for different users is a key problem.

Third, apart from the traditional classifiers, how to characterize

different postures with physical meanings and avoid tedious

data training is also a challenging issue. Next, we discuss how

to correlate snapshots to different postures.

C. Image Processing

In identifying sleep postures, a key step of TagSheet is

to pre-process each snapshot, including Gaussian blur, Ostu-

based binary conversion of the gray-level image, and removal

of scattered pixels. In image processing, a Gaussian blur is

the result of blurring an image by a Gaussian function, which

is widely used to reduce image noise. In TagSheet, a two-

dimension Gaussian function G(x, y) is adopted as follows:

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 , (2)

where σ is the standard variance. Hence, we have the Gaussian

matrix B = {bi,j} = G(i, j), where −1 ≤ i, j ≤ 1 and

σ = 0.5. The blurring result is a new image I ′ = {I ′(m,n)}:

I ′(m,n) =

1
∑

i=−1

1
∑

j=−1

Im+i,n+jb1+i,1+j . (3)
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As aforementioned, the RF signal is susceptible to sur-

roundings and human body. It is easy to make the proposed

recognition model over-fitting if the RSSI difference in each

pixel is used directly. To address this problem and make

TagSheet robust, we convert the gray-level image to a binary

image with Otsu’s method [12]. In computer vision, Otsu’s

method is used to automatically perform clustering-based

image thresholding and reduce a gray-level image to a binary

image. The algorithm assumes that the image contains two

classes of pixels following bi-modal histogram (foreground

pixels and background pixels). It then calculates the optimum

threshold separating the two classes so that their intra-class

variance is minimal and inter-class variance is maximal. As-

sume the foreground and background pixels are ‘1’ and ‘0’,

respectively. Different body postures will have a great impact

on both the number and the shape of ‘1’ pixels. By observing

the ‘1’s in the binary image BW (black and white), it is

promising to identify different sleeping postures.

As shown in Fig. 5 (b), we obtain a binary image BW

(black and white) of the left foetus posture from Fig. 5(a),

which is produced with blurring. Clearly, the foreground pixels

and background pixels are well separated by Otsu’s threshold,

which helps remove noise and highlight the body posture.

However, there are some scattered points (white pixels of

‘1’s) that are caused by destructive interference of superposed

signals. To get rid of this noise, we remove from the binary

image BW all connected components of pixel ‘1’s that have

fewer than P pixels, producing another binary image BW2.

As shown in Fig. 5(c) where P is 6, most scattered ‘1’s are

removed; only a clear body is left for following recognition.

D. Hierarchical Recognition

TagSheet is designed to unobtrusively identify the six com-

mon sleeping postures (in Fig. 3) using the passive tag matrix.

It can be viewed as a multinomial classification problem. In

this subsection, we propose a multi-level hierarchical classifi-

cation instead of doing a one-stop posture identification. There

are two steps: conducting a coarse-grained posture partition

first and then performing a fine-grained classification based

on the previous partition results. First, we partition the six

sleeping postures together with empty bed (denoted as nobody)

into three general categories, i.e., C1 ={nobody}, C2 =
{supine, prone}, and C3 ={left log, right log, left foetus, right

foetus}. The reason for this partition is that the numbers of

pixel ‘1’s vary a lot amongst the three general categories.

For C1, since nobody stays in bed, there is no pixel ‘1’

in theory. For C2, the postures of supine and prone have a

greater contact area with the bed than C3, which results in

more pixel ‘1’s. Hence, by doing this partition, we are able

to distinguish C1, C2, and C3 by counting the number of

pixel ‘1’s. Since people have different body size, TagSheet

needs a snapshot of supine as reference, which is referred to

as reference snapshot, denoted by I∗. The thresholds for C1

and C3 are set to 0.1λ(I∗) and 0.8λ(I∗), where λ(·) is the

number of pixel ‘1’s. Note that the reference snapshot I∗ is

taken just once for each individual; this is the only initial input

(a) Image I
′ (b) Image BW (c) Image BW2

Fig. 5. Binary images of left foetus. (a) Gray-level image I
′, (b) Otsu-based

binary image BW, (c) image de-noising of BW.

of our method, without any tedious training process required.

For category C3, we further divide the four sleeping pos-

tures into two subsets C31 ={left log, right log} and C32 =
{left foetus, right foetus}. Compared to log posture, the body

height of the foetus posture is smaller because the laid person

curls his knees towards his chest. On the other hand, the image

width of foetus is likely to be lager than that of log, which can

be observed in Fig. 4, where the left log is 6 pixels in width

and the left foetus is 8. However, there may be violations due

to the interference from head, arms, and hands. For example,

the image width of the right log in Fig. 4(d) is 10, which

is more than that of the left foetus posture. To address this

problem, we trim the image to half and just count the image

width of the lower part of the body, which helps remove

the arms and hands from the image and thereby avoids their

negative interference. By using image width after trimming,

we can easily distinguish between the foetus postures and the

log postures based on the following metric:

γ =
ψh

ψw

, (4)

where ψh is the height of the body image and ψw is the image

width of the lower part of the body. The term γ indicates the

ratio of ψh to ψw: the bigger the value of γ is, the more likely

the posture is a log. The threshold Tγ is determined by the

ratio of ψh(I
∗) to ψw(I

∗), where I∗ is the reference image.

Since I∗ is the supine image, its height is close to that of log

and larger than foetus; its width is larger than log and smaller

than foetus. Thus, it is a natural threshold. Given an image in

C3, if γ ≥ Tγ , it is a log. Otherwise, it is a foetus. The next

is to recognize the individual posture in the three categories:

C2, C31, and C32, respectively.

1) Supine vs. Prone: In category C2, supine and prone

produce two very similar snapshots of the body shape due to

the bilateral symmetry, which forms a great barrier to posture

recognition. To overcome this challenge, we take a closer look

at the pose difference between these two postures and find that

the face in supine faces up while prone faces to left or right.

This makes the head shape different and provides us with an

opportunity to distinguish the two postures. From a top view,

as shown in Fig. 6(a), the head width of the supine is less than

prone, which leads to fewer pixel ‘1’s when lying supine. In

addition, the central axis of the head along Y-axis changes.

The head axis and the body axis in supine coincide with each
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(a)
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(b)

Fig. 6. Supine vs. prone. (a) Top view of the head. (b) The common head
pixels in supine and prone. The arrow ↓ is the body axis; the threshold of
dist to distinguish supine and prone is set to 0.95 when ε = 0.1.

other, namely, the distance dist between the head axis and

the body axis is zero. On the contrary, due to lying side, the

head axis in prone deviates from the body axis, which forms

a distance gap that can be used to identify prone.

Assume that the body lying in bed is parallel to the Y-axis

(long axis of the bed).1 The distance between the body axis

and the head axis is actually the difference of X coordinates

of these two lines. An intuitive way to obtain the body axis

is to average the X coordinates of all pixel ‘1’s. This works

but not robust because the objective’s limbs (arms and legs)

may put anywhere and sometimes deviate the body axis from

the ground truth. To address this issue, we run a linear filter

again based on BW2 to remove the limbs from the body part.

After that, only some scatters of limbs’ pixels are left and we

run Otsu’s method [12] once again to obtain the binary image

BW3 of the body shape. By averaging the X coordinates of

pixel ‘1’s in BW3, we are able to get an accurate estimate of

the body axis that is close to the real value.

On the other hand, for the head axis, we expect to enlarge

the impact of pixels far away from the body axis and suppress

others (close to the body axis), which helps widen the gap

of dist between supine and prone. To do so, we weight each

head pixel according to the distance between them and the

body axis. The weight of the i-th head pixel is:

wi =
d2i + ε/k

∑k

i=1 d
2
i + ε

, (5)

where k is the number of head pixels, di is the distance

between the i-th head pixel and the body axis, ε is a small

constant that ensures denominator is non-zero. With these

weights, we are able to derive the head axis by computing
∑k

i=1 wi × xi, where xi is the X coordinate of the i-th head

pixel. Note that the head pixels are obtained by observing the

first two rows of the body pixels. With the computed dist,
a distance threshold is needed to distinguish between supine

and prone. By observing more than 200 supine images and

200 prone images collected from 12 different volunteers, we

find that the body axis and head pixels of supine and prone

have a great difference. We divide these images into 8 general

categories and a distance threshold 0.95 is found to determine

the body postures, as shown in Fig. 6(b).

2) Left Log vs. Right Log: The log position in C31 means

that someone sleeps on his side with both legs straight. The

most difference between the left log and the right log is that

the person faces different orientation: the left and the right,

1If not, we can rotate the body image by a proper angle, which will be
discussed shortly later in Section II-E.
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(a) Left log.
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(b) Right log.

Fig. 7. Quadratic regression of log postures.

respectively. If the feet are also taken into account, the log

posture forms a ‘bow’. By identifying the arc of the ‘bow’,

we are able to distinguish between the left log and the right

log. To do so, we first rotate the log image counterclockwise

by 90◦. After that, each pixel ‘1’ is viewed as a point in the

2D plane and we perform the quadratic fitting on these scatters

to obtain the orientation of the ‘bow’. Assume the quadratic

function is y =
∑2

i=0 cix
i, where ci is the coefficient, x and

y are the coordinates of pixel ‘1’s. The value of c2 determines

the orientation of the ‘bow’. A positive c2 means that the

rotated ‘bow’ faces up, which further indicates that the raw

‘bow’ is towards left, namely, left log. Otherwise, the posture

is the right log. Fig. 7 illustrates the quadratic regression of

left log and right log after counterclockwise rotation by 90◦.

3) Left Foetus vs. Right Foetus: Take a closer look at the

foetus postures in C32. The body profile of the left foetus in

Fig. 4(e) looks like an ‘S’, while the right foetus is exactly a

mirror image of ‘S’. Similar to the log postures, we still adopt

curve-fitting to distinguish the left foetus and the right foetus.

To do so, we rotate the foetus image counterclockwise by 90◦

first. After that, we extract all pixel ‘1’s from the image and

perform the cubic polynomial fitting rather than the quadratic

fitting on these pixels to obtain the function of the lying ‘S’.

Assume the cubic function is y =
∑3

i=0 cix
i, where ci is the

coefficient, x and y are the coordinates of rotated image. The

value of c3 determines the shape of the lying ‘S’. A negative

c3 presents a lying ‘S’ and indicates that the posture to be

recognized is the left foetus. On the contrary, a positive C3

plots a lying mirror image of ‘S’, which returns a result of the

right foetus. Fig. 8 illustrates the cubic polynomial fitting.

E. Image Rotation

During sleeping, the subject can be located anywhere on

the bed at different lying angles. Hence, the raw snapshot

is required to be standardized before posture recognition.

Recalling the above hierarchical recognition, the body position

on the bed has no effect on the recognition, but the rotation

angle does. To avoid this side effect, we correct the rotated

image and make the principal (major) axis of the body shape

aligned vertically in the snapshot. The human body geometry

is approximately treated as an ellipse and the angle α between

the principal axis of the ellipse and the Y axis is referred as

to rotation angle. To derive α, we find out the principal axis

first by using principal components analysis (PCA). Given a

binary image BW3, we get 2-dimension data that is made up

of X-Y coordinates of pixel ‘1’s. For PCA working properly,

we subtract the mean from each of the data dimensions, where
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(a) Left foetus.
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Fig. 8. Polynomial curve fitting of foetus postures.

the mean is the average across each dimension. After that, we

derive a covariance matrix:

C =

(

cov(x,x) cov(x,y)
cov(y,x) cov(y,y)

)

,

(6)

where x is the set of X coordinates, y is the set of Y
coordinates, and cov(x,y) is the covariance of x and y, i.e.,

cov(x,y) =
∑

n
i=1

(xi−x)(yi−y)

n−1 . With C, we are able to calculate

the eigenvectors and eigenvalues of this matrix. Between

the two eigenvectors, the one with larger eigenvalue is the

principal axis that characterizes the data.

F. Posture Transition

So far, we have discussed the posture recognition of a still

body. However, the person is likely to roll over when sleeping,

which may make the sleeping posture ‘blurred’. If we do not

sweep out these posture transitions, multiple sleeping postures

may coexist in a time window, which confuses the recognition

and lowers the classification accuracy. As aforementioned,

when a person lies in bed, the human body acts as “salt water”

and is very likely to block the tags exactly beneath the body,

which makes the reader fail to collect these tags. Hence, for

each snapshot Ri, we just compare its blocked tags (pixels)

with the previous one Ri−1, i ≥ 2. If a posture transition

happens, some previously unseen tags in Ri−1 will be queried

by the reader in Ri and also some unblocked tags turn out to

be blocked. By counting the number of these changes, we are

able to detect the posture transition easily. If the number is less

than a threshold (e.g., 10% of the number of pixel ‘1’s), we

think the body is still. Otherwise, a posture transition happens

and the snapshot is not taken into account.

G. RF Radiation

One may concern whether it is safe to get exposed to

RF radiation of an RFID reader when TagSheet is put into

use. The answer is yes. Daniel W. Engels et al. [13] conduct

extensive experiments and reveal that in an ideal absorption

environment, an RFID reader located 10 centimeters (3.9

inches) from the human head presents a specific absorption

rate of 2.0 W/kg, which is above the maximum value 1.6

W/kg allowed by the United States’ Federal Communications

Commission (FCC). To avoid any potential harm to humans,

UHF RFID interrogators should be set back at least 0.5 meter

(1.6 feet) from anyone who might receive constant exposure.

For commercial interrogators, if they are kept at least 1 meter

(3.3 feet) from the human body, the incident radiation – even

on the eyes (the most vulnerable part of our bodies to RF

radiation) – is at a level well below maximum allowable levels.

In our TagSheet system, the reader (antenna) is deployed on

ceiling, which is more than 2 meters (6.6 feet) apart from the

human body. Hence, it is safe to use TagSheet.

III. RESPIRATION RATE

Besides sleeping postures, TagSheet can also estimate the

respiration rate, not requiring any extra hardware setup.

A. Basic Idea

A respiratory cycle consists of two processes: inhalation

and exhalation. When inhaling, the diaphragm contracts and

moves downward, which expands the lungs and enlarges the

chest cavity. On the contrary, when exhaling, the diaphragm

relaxes and moves upward, which contracts the lungs and

reduces the space in the chest cavity. Hence, the breathing

gives rise to the cyclic motion of chest, which further affects

the tag’s backscatter signal periodically. Based on this findings,

we explore how to estimate the respiration rate with the phase

shift. The reason why we take the phase rather than RSSI

as the metric is that the phase has a fine-grained measure

resolution and is more sensitive to the distance change. Esti-

mating breathing rate, however, poses two challenges. First,

due to the slight fluctuation of the chest, the phase shift

caused by chest reflection is faint. We should carefully pick

proper tags that can well present the phase variation and avoid

the signal interference caused by occasional limb movement.

Second, TagSheet consists of hundreds of tags and each is

read in a round-robin way, which makes the sample rate low.

Hence, how to estimate the breathing rate in the case of under-

sampling is another problem.

B. Tag Selection

Intuitively, the signals of tags close to the chest are more

susceptible to its cycle motion. Therefore, we are supposed

to choose these tags as the vehicle to estimate the breathing

rate. To do so, we first get the body image BW3 according

to the approach mentioned in Section II-D1. After that, we

pick out the tags that are located at the both sides of the body.

For supine and prone, these tags are naturally candidates. For

log and foetus, however, only one-side tags can be used. That

is because, for example, when lying with left log, the chest

motion takes place on the left of the body; the phase shifts of

tags on the right side are negligible. By observing a selected

tag for a period of time (e.g. one minute), we are able to get

a phase profile of this tag, denoted by {(θi, ti)}, where θi is

the i-th phase value measured by the reader at the time ti.

Since the occasional limb movement during sleeping has

a great impact on the phase measurement, a further check

is needed to determine whether or not the selected tag can

be added into the final list for breathing estimation. When

the arm or leg moves, the phase will sharply jump and may

remain stable at a new level later when the limbs are still

again. To check these outliers, we resort to turkey’s test [14].

879



Specifically, with the first quartile (Q1) and the third quartile

(Q3) of all phases {θi}, we get a turkey’s range as follows:

[Q1 − ρ(Q3 −Q1), Q3 + ρ(Q3 −Q1)], (7)

where ρ = 3 is a coefficient. If all phase values {θi} are

bounded within this interval, no outliers happen and this tag

is determined as the final candidate. Otherwise, it is wiped

out. Note that, when collecting phase profile, we expect all

things expect the chest are still. Hence, posture transition is

not allowed within the assigned time window. Fortunately,

the objective during sleeping keeps still in most cases; we

can easily get a time window (e.g., 30s) without any posture

transition. If a posture transition happens, we can easily detect

it according to Section II-F and abandon the phase profile.

C. Increasing Sample Rate

As mentioned above, due to the fixed read rate and a

great number of tags in TagSheet, the phase profile is under

sampling. A possible solution to this problem is compressive

sensing (CS), which is a good vehicle to reconstruct a signal

by solving underdetermined linear systems. Tagbeat [15] is the

first work that uses CS to inspect high-frequency mechanical

vibration and accurately estimate its period with relatively

low RFID read rate. For our problem, however, since the

respiration rhythm is not so steady as mechanical vibration,

CS cannot fit well to the recovery of breathing signal. Hence,

we resort to increasing the sample rate.

We observe that the under-sampling is due to the fact that

the reader in TagSheet has to bear the strain of querying

hundreds of tags concurrently. If only a small tag set is queried,

the sample rate of each tag will see a sharp increase. Based

on this observation, we pick only a few tags to reply and

others are silenced. This can be implemented by carrying out

the Select command. Select is a mandatory command in

EPC Gen2 [16], which allows a reader to choose a specific

subset of tags that participate in the subsequent query round.

The selection principle is based on user-defined criteria, which

follows Section III-B in this work. By this means, the sample

rate will raise sharply. For example, the read throughput of

Impinj R420 is more than 200 tags per second. If only 10

tags are selected, the average sample rate is 20 Hz, which is

much greater than the twice of the breathing rate.

Note that, the improvement of sample rate is at the cost of

silencing most tags. This will make the snapshot (shown in

Fig. 4) fragmentary and disable TagSheet to identify sleeping

postures. This is true if we individually check each snapshot.

In practical use, however, we can address this problem by

taking multiple snapshots into account. More specifically, once

a sleep posture is identified, we switch to the mode of selective

reading for more accurate breathing estimation. What about

posture recognition? The answer is that we check the signals

of selected tags in real time. If the body does not move, the

signals vary slightly (caused by only noise and chest motion).

In this case, we think the person keeps the same posture as

before. Once a body move is detected, we quickly switch to

Fig. 9. Experiment setup.

the mode of normal reading, collect all tags, and execute the

posture recognition as is.

D. Estimating Breathing Rate

With the oversampling breathing signals output by selective

reading, we can run a discrete wavelet transform to remove

the noises caused by imperfect hardware and surrounded

environments, and pass the frequencies within a certain range.

The frequency range is determined empirically according to

the practical breathing rate. In statistics, the common breathing

rate for an adult at rest ranges from 10 bpm to 20 bpm

(breath per minute), and infants have higher breathing rate

that is near 37 bpm. Hence, the respiration rate usually falls

in the frequency range of [0.16, 0.62] Hz. With the wavelet

filter, we are able to remove the residual noises by attenuating

the signals with frequencies outside the frequency range of

the breathing rate. After that, we conduct FFT on the filtered

breathing signal and the peak of FFT outputs is the estimate of

the breathing rate. Further more, we can run above approach

on multiple selected tags and average the outcomes to get a

more stable and accurate estimate of the breathing rate.

IV. EVALUATION

A. Experiment Setup

As shown in Fig. 9, we deploy a 30 × 18 tag matrix on

a thin plastic film, which is placed under the mattress and

unobtrusive to users. The tag that we adopt is Impinj H47

[11] with the size of 5cm×5cm, and the interval between

two adjacent tags is 2cm. Due to the low unit price of

passive tags, this TagSheet cost only 30 dollars. Two Larid

S9028 antennas mounted on the tripods (2.0 meters high) are

uniformly scheduled by the Impinj Speedway R420 reader in

a round-robin to ensure a full coverage of the tag matrix.

We collected data from 12 different individuals, whose height

ranges from 155 cm to 185 cm, and weight from 42 kg to 87

kg, as shown in Fig. 10. Each individual simulates his sleeping

habits by lying on bed for a period of time and performing

the six postures that he is used to when he goes to bed. All

the input of TagSheet for each individual is only a 3-second

reference snapshot I∗, without any data training. The ground

truth is recorded by a camera and checked manually.

B. Posture Recognition

1) Image Rotation: We now verify the PCA-based rotation

algorithm, which is the precondition required by TagSheet.

880



155 160 165 170 175 180 185

Height (cm)

0

20

40

60

80

100

W
ei

g
h
t 

(k
g
)

Men

Women

Fig. 10. Height and weight.

0 1 2 3 4 5 6 7 8 

Error (degree)

0  

0.2

0.4

0.6

0.8

1  

C
D

F

10
°

20
°

30
°

Fig. 11. Image-rotation accuracy.

In the experiment, the supine posture is adopted by the

volunteers. The reason why not choose the other postures is

that prone has a very similar snapshot as supine due to the

bilateral symmetry, and the ground truth of the body axes

of the other four postures is hard to measure, especially for

foetus. In each experiment, the volunteers carefully adjust

their body axes to make them rotate at three particular angles

10◦, 20◦, and 30◦. For a fixed angle, 12 volunteers repeat

the experiment ten times and there are 120 outputs in total.

Fig. 11 plots the CDF of angle errors of the PCA-based

algorithm. The experimental results show that the means of

the degree errors in the three cases are about 2.0◦ and the

90th percentiles are less than 5.7◦. This good performance

indicates that the PCA-based image-rotation approach is able

to achieve accurate angle estimate, which paves the way on

robust posture recognition for any rotated body shapes.

2) Identification Accuracy: Fig. 12 compares the precision

and recall results of six posture identification with the recent

work minimum class residual (MCR) [4] that uses pressure

mapping to recognize the same six postures as our work. In

this figure, the average is the arithmetic mean of precision and

recall. We note that the precision of TagSheet for classifying

six postures reaches up to 96.7%, which is far superior to MCR

(83.5%). The similar conclusion can also be drawn for recall,

which well indicates the great performance of our hierarchical

recognition scheme. In Fig. 13, we show the confusion matrix

of six postures supine (S), prone (P), left log (LL), right

log (RL), left foetus (LF), right foetus (RF), together with

empty bed (E) and posture transition (T). As we can see,

the side postures left log, right log, left foetus, right foetus,

are all classified correctly with certainty, which demonstrates

that the geometric features characterized by our approach can

well reflect these postures and the polynomial curve fitting is

effective. On the contrary, the supine and prone have about

10% chance to be erroneously classified into the other. That is

because these two postures have extremely similar snapshots

due to the bilateral symmetry.

3) Length of Time Window: In Fig. 14, we study the

impact of time window size on the accuracy of posture

recognition. For the sake of clarity, we pick two sleeping

postures, prone (similar to supine) and left log (similar to other

side lying postures) as the representative. We can see that the

identification accuracy remains stable at first. That is because,

with the TagSheet having 540 tags, the short window will

make the reader collect only a small number of tags, which

cannot form a clear RF snapshot. The reason for prone’s high

starting point is that we distinguish between prone and log
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by counting the number of pixel ‘1’s. If a tag has not been

read yet, it is treated as a pixel ‘1’, which leads to that all

postures are mistakenly treated as supine and prone. After

that, with the increase of time window, more tags are read

and a clear RF snapshot appears, leading to a sharp rise of the

accuracy. Once the whole snapshot is taken, more readings

do not contribute any additional information to the posture

identification, and the accuracy remains stable henceforth.

Hence, in our experiments, we set window size to 3s for the

best performance and the minimal delay. We believe that this

delay is sufficient to support many medical applications and

avoid the risk caused by improper postures.

C. Breathing Rate

Breathing rate is a useful diagnostic indicator that can assess

the personal physical health and provide prompts to chronic

diseases. We now study the estimation accuracy of breathing

rate by incorporating the method of selective reading and

the technology of wavelet transform. Fig. 15 compares the

mean errors of the estimation under six sleeping postures. As

we can see, the mean error is around 0.7 bpm (breath per

minute), which well indicates that, as a by-product, Tag-Sheet

can estimate the respiration rate accurately. It is interesting

that prone has a higher accuracy than others. One possible

reason is that, a respiratory cycle consists of inhalation and

exhalation, which gives rise to the cyclic chest motion and

further affects the tag’s backscatter signal. When lying prone,

the chest cavity is oppressed, which makes the breathing more

heavily than others for getting enough oxygen and thereby

produces more signal interferences, increasing the signal-to-

noise ratio and benefiting the signal recovery.

V. RELATED WORK

Sleep is a major part of health and well-being. Existing

sleep monitoring works fall into two broad categories: sleep

quality analysis [17], [18], [19], [20], [21], [22] and sleeping

posture recognition [6], [23], [7], [4], [8]. The former is

to analyze the sleep status, aid in the medical diagnosis

881



of diverse sleep and psychiatric disorders, and serve as an

indicator of chronic diseases. iSleep [17] uses acoustic signals

of a smart phone to detect various sleep-related events, such

as body movement, couch, and snore. MASC [19] achieves

accurate and robust stage classification by using the brain and

myoelectric signals taken from a mouse. Recent works try to

use breathing rate information to get a fine-grained sleeping

analysis [20], [21]. SleepSense [22] adopts a doppler radar-

based sensor to recognize not only the breathing rate, bus

also on-bed movement. MotionScale [24] is a motion detection

system based on low-cost load cell sensors. By observing the

electrical resistance changes on each load cell, MotionScale is

able to infer possible body motions on the bed. Although these

approaches are proposed to monitor sleep quality accurately,

they cannot figure out the still sleeping postures.

Sleeping posture recognition is to identify the body postures

on bed during sleep, which is helpful for assessing personal

physical health and giving prompts to chronic diseases. Early

research [6], [23] focuses on the posture recognition by

observing cardiovascular signals, such as electrocardiogram.

To get these data, the specialized medical instrument is needed,

which requires professional operations and thus is expensive

to use. Video cameras, as another vehicle, have also been used

previously to recognize the sleeping postures [7]. These image-

based approaches work but suffer from privacy concerns

and low-light noise. Besides, the posture images cannot be

captured if the body is covered by quilt. Recent research

has shifted to the pressure sensing techniques [4], [8]. By

designing a dense pressure sensitive bedsheet with dispersed

textile sensors, they are able to capture the pressure mapping

images and recognize different postures by using classifiers.

However, the deployment of pressure sensor mat affects the

sleeping comfort and is not a non-intrusive solution. Besides,

the pressure sensor cannot be self-energized; a power supply

or batteries are needed, which increases the deployment cost

and the maintenance overhead.

VI. CONCLUSION

This paper presents a sleep monitoring system called

TagSheet that can not only identify the body posture on bed,

but also estimate the respiration rate. By extracting geometric

features from the RF snapshots and using the hierarchical

recognition scheme, TagSheet is able to accurately identify

the sleeping postures in a plug-and-play way, without any

tedious data training. Besides, a tag selection approach and

wavelet-filter based technology are presented to estimate the

respiration rate. Experiment results show that TagSheet has a

great performance.
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