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Abstract— Radio-frequency identification (RFID) technology
has been widely adopted in various industries and people’s
daily lives. This paper studies a fundamental function of spatial-
temporal joint cardinality estimation in distributed RFID sys-
tems. It allows a user to make queries over multiple tag sets
that are present at different locations and times in a distributed
tagged system. It estimates the joint cardinalities of those tag
sets with bounded error. This function has many potential
applications for tracking product flows in large warehouses and
distributed logistics networks. The prior art is either limited
to jointly analyzing only two tag sets or is designed for a
relative accuracy model, which may cause unbounded time cost.
Addressing these limitations, we propose a novel design of the
joint cardinality estimation function with two major components.
The first component is to record snapshots of the tag sets in a
system at different locations and periodically, in a time-efficient
way. The second component is to develop accurate estimators that
extract the joint cardinalities of chosen tag sets based on their
snapshots, with a bounded error that can be set arbitrarily small.
We formally analyze the bias and variance of the estimators, and
we develop a method for setting their optimal system parameters.
The simulation results show that, under predefined accuracy
requirements, our new solution reduces time cost by multiple
folds when compared with the existing work.
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I. INTRODUCTION

VER the past decade, radio-frequency identifica-

tion (RFID) technology has been widely used by
industries such as warehouse management, logistical control,
and asset tracking in malls, hospitals or highways [1]. RFID
systems can be conceptually divided into two parts: RFID tags
(each carrying an unique ID) which are attached to physical
objects, and RFID readers, which are deployed at places of
interest to sense the existence of tags, quickly retrieve the
tag IDs, or collect aggregate statistical information about a
group of tags.

An important fundamental functionality of RFID system is
called cardinality estimation, which is to count the number of
tags in a physical region [1]-[9]. This function can be used to
monitor the inventory level of a warehouse, the sales in a retail
store, or the popularity of a theme park. Counting the number
of tags can take much less time than a full system scan that
collects all tag IDs. This is an important feature since RFID
systems communicate via low-rate wireless channels and the
execution time cost is the key performance metric in system
design. In addition to its direct utility, tag estimation can work
as a pre-processing step that improves the efficiency of tag
identification process [10], [11]. More importantly, since it
does not collect any tag IDs, the anonymity of tags can be
preserved, particularly in scenarios where the party performing
the operation (such as warehouse or port authority) does not
own the tagged items.

Motivation

The previous works study relatively simple scenarios,
i.e., estimate the cardinality of a tag set in the radio range
of one reader [1]-[8], or estimate the union of tag sets near
multiple readers [2], [8]. Our paper studies the cardinality
estimation problem in a more generalized scenario: Multiple
tag sets are captured by a distributed multi-reader system at
different spatial or temporal domains. As requested by users,
these tag sets may form any set expression using the operators
of union (U), intersection (N) and relative complement (\).
We estimate the cardinality of any user-desired set expression,
which is called joint cardinality of multiple sets.

For this joint cardinality estimation problem, we use two
applications to better illustrate its usefulness. Just imagine
that we are to manage a large logistics network, where tagged
products are shipped from one location (factory, warehouse,
port, or storage/retail facility) to another. Assume the reader,
pre-deployed at each location, takes periodic snapshots of its
local set of tags and keeps a series of such snapshots over time.
The end users may want to know the quantity of goods flowing
from one location to another. Clearly, we can address the query
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by estimating the cardinality of intersection between two snap-
shots from different locations. However, a more complicated
user query can be the quantity of goods traversing a routing
path comprised of multiple locations. Then, to address the
query, we may need to compute the cardinality of intersection
among more than two tag set snapshots.

In the second application, imagine that we are monitoring
a warehouse for its inventory dynamics over time. Users may
want to know the amount of goods entering the warehouse
(or called the number of new tags), and the amount of
goods leaving (or the number of departed tags), between rwo
user-defined time points. Suppose an RFID reader system has
been deployed into the warehouse to take periodic snapshots
about the existing tags. Then, a solution for this problem is
to examine the difference between two snapshots taken at
different time points, which contains the information about
product inflow and outflow within the time interval. However,
a key challenge is that a large warehouse inevitably needs
more than one readers to achieve full coverage. Note that each
reader can take a snapshot only about its local set of tags,
and the snapshots taken by different readers may not be of an
identical length. When a user queries for the dynamics of such
a warehouse, he or she actually wants to know how the union
of multiple tag sets (scanned by readers at different locations)
fluctuates over time. Such a query will produce a complex set
expression — to compute the cardinality of the set difference
between two union tag sets at different time points.

Problem

From the above two applications, we can abstract a prob-
lem called joint cardinality estimation. It is to estimate the
cardinality of an arbitrary set expression that involves multiple
tag sets (whose number is denoted by k) existing in different
temporal or spatial domains. The protocol designed to scan
each tag set must be very time-efficient, and meanwhile, its
absolute estimation error for the cardinality must be inside a
preset bound with a good probability above a high threshold.

There are limited prior studies on this problem. The differ-
ential estimator (DiffEstm) [9] and the joint RFID estimation
protocol (JREP) [12] can only handle set expression involving
two tag sets. Although the recent work named composite
counting framework (CCF) [13] can provide a generalized
estimator for an arbitrary expression over multiple sets, it is
designed based on a different, relative error model, resulting
in large execution time, with unbounded worst-case time
complexity. This is because, as multiple RFID readers are
deployed at different places to scan their surroundings peri-
odically, the tag sets they encounter may differ significantly
in sizes. The biggest tag set can be many times larger than the
average-sized tag sets. Both the prior solutions DiffEstm and
CCF encode each tag set into a data structure whose length is
determined by the size of the largest possible set (or even the
union of several largest tag sets for union estimation), which
causes unnecessarily long protocol execution time.

Our Contributions

Firstly, for the generalized joint cardinality estimation prob-
lem, we propose a solution with a novel design that supports
versatile snapshot construction. It adopts a two-phase protocol
design between a reader and its nearby tags to construct a
snapshot of the tag set. The length of the snapshot can be (but
not necessary) proportional to the size of the tag set, instead of
being fixed to a large worst-case value. Given the snapshots of
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Fig. 1. Venn diagram of three tag sets S, S2, S3, and an illustration of
elementary subsets Ny, 4,5, With b3 ba by falling between 000 and 111.

any k tag sets, although their lengths may be very different,
we have derived closed-form formulas to estimate the joint
cardinalities of the k sets.

Secondly, we analyze the means and variances of the
estimated joint cardinalities computed from the formulas.
We prove that the formulas produce asymptotically unbiased
results and they estimate the joint cardinalities with an absolute
error (probabilistic) bound that can be set arbitrarily. We also
derive formulas for determining the optimal system parameters
that minimize the execution time of taking snapshots, under a
given accuracy constraint for joint cardinality estimation.

Thirdly, we perform extensive simulations, and the results
show that, by allowing the snapshots to have variable lengths,
the new solution significantly outperforms DiffEstm [9] and
CCF [13], both of which assume a fixed length for snapshots.
Under the same accuracy requirement, our new solution can
reduce time cost by over 80% as compared with prior work.

The rest of this paper is organized as follows. Section II
define the problem of joint cardinality estimation. Section III
briefly describe the underlying ALOHA protocol for collecting
raw data. Section IV describes a baseline solution, requiring
all the frames to have an identical size, and section V presents
our adaptive MJREP protocol. We analyze the estimation mean
and variance of our protocol in section VI, and optimize its
parameters in section VII. We provide simulation studies of
our protocol in section X, and review related research in
section XI. Section XII concludes the whole paper.

II. JOINT CARDINALITY ESTIMATION

In this section, we formally define the research problem of
joint cardinality estimation for multiple RFID tag sets.

Definition of Joint Cardinalities

Suppose a distributed RFID system, where tagged objects
are moved from one location to another. We use Sy, Ss, ..., Sk
to denote the tag sets captured by RFID systems at different
locations or time points. They can form an arbitrary set
expression as connected by the union (U), intersection (M) and
relative complement (\) operations. The cardinality of such an
expression is called a joint cardinality of the k tag sets.

A major difficulty is that the number of possible set expres-
sions is really huge. In order to tame the high complexity, we
start from a small group of expressions with special forms.
Hence, we divide the union of all k£ sets S1 US> . ..U Sy into
subsets that are mutually disjoint. They are called elementary
subsets, and the number of elementary subsets is only 2% — 1.

As an example, in Fig. 1, we illustrate the Venn diagram
of three RFID tag sets S1, S2, S3, and we divide their union
into 2% — 1 = 7 elementary subsets. Each subset is denoted by
Nigbs b, > Where b3 ba by is a binary ranging from 001 to 111 to
indicate whether this subset is included by S3, Sy or Si.
For instance, the subset Njjp is included by Ss and Ss,
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but excluded by Si. In Fig. 1, Nygo is a special case that
corresponds to the tags not included by any sets Sy, So or Ss.
We formalize the concept of elementary subset Ny, . p, 5, as

1<i<k 1<i<k
S,

b; #0 7') \(Ub::(; Sl)’ (1)

where the bit b; indicates whether the elementary subset is
included or excluded by the ith set .S;. It is equivalent to

Nipoooby by = (

1<i<k 1<i<k
S,

B (ﬂbﬁéo i) N (ﬂb,;(: 5. @

if applying the rule of relative complement A\ B = AN B¢
to equation (1), where B¢ is the absolute complement of B.
For a shorter notation, we replace Ny, . p, 5, by N, where
x is a decimal that is equal to the binary number by, . ..bs by.
Hence, the definition of elementary subset in (2) becomes

Ny,,..o5 by

1<i<k 1<i<k

Nx - (ﬂ?i*l/\m;éo Sl) n (ﬂgi—lAmzo Sic)’ (3)

where 2! A x extracts the ith bit from 2 by bitwise AND A.
There are two boundary cases: Nor_q = S1 N Sy... NSy is
the intersection of all sets, and Ng = S1°N S2°... NS¢ =
(S1USy...USk)¢ is the complement of the union of all sets.

For an arbitrary elementary subset N, with 1 < z < 2k,
we denote its cardinality by n,, and call it a joint cardinality
of the k tag sets S, 59,...,Sk. If the cardinalities n, of all
elementary subsets N, (1 < z < 2k are known, we can
compute the cardinality of an arbitrary set expression by
summing up the cardinalities of elementary subsets it includes.

Any set expression can be rewritten as the union of several
elementary subsets. As an example, let the queried tag set be
S3N (SQ U 51) It is equal to S3N ((SQC N 51) U (SQ n Slc) U
(S2NS1)). By applying the distributive law, it becomes (S3N
SN 51) @] (53 NSy N S1C) U (53 NSy N 51) By the definition
of N, in (3), it equals N5 U Ng U N7. Hence, the queried
cardinality |S1 N (S2 U S3)] is equal to ns + ng + nr.

The cardinality of such a set expression is called a composite
Jjoint cardinality. A special case of composite joint cardinality
is the cardinality of Ny, which is equal to the union of all
elementary subsets V,, 1 <z < 2k We denote such a union
cardinality as nf§, which is equal to ), ., ok 1.

In a word, we put more focus on determining the ok _ 1
elementary joint cardinalities n,.. The composite joint cardinal-
ities, whose number is huge, are left to a secondary position.

Probabilistic Estimation

In many practical applications, it often does not require
to know the exact value of the joint cardinality n,, and an
approximated value n, with desired accuracy is adequate.
In the following problem definition, we require the absolute
estimation error 77, — m, must be bounded by a predefined
range +60 at a probability of at least 1 — 4, which is called
the (0,d) model. Besides n,, we also consider to keep the
absolute estimation error of n§ bounded by £6, which can act
as a representative of composite joint cardinality.

Definition 1 (Joint Cardinality Estimation Problem): For
joint cardinalities ng or ng (1 <z < 2k), the Jjoint estimation
problem is to find an algorithm for generating estimations 7{8
and n. They should satisfy the accuracy constraint:

Prob{ng —0 <n§ <ni+60}y >1-94
Prob{n, — 0 <, <n,+60} >1-4, 4)
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where n§ +0 and n, =0 are the confidence interval of estima-
tions n}‘; and 1, respectively, and 1 —4 is the confidence level.

An alternative way of specifying the estimation accuracy is
based on a relative error bound € € (0, 1):

Prob{n§(1—¢) <ns<ni(1+e)} >1-96
Prob{ns(1 —€) <7y <n,(1+e)} >1-4. Q)

According to this model, the probabilities for the relative errors
ng—ng

——¢ and “:”n_"'” to fall into the range +¢ are at least 1—0.
< w

This relative error model has been adopted by the previous
work [9], [13], with a time complexity of O(ﬁ In %) where
J is Jaccard similarity — the ratio of the intersection size of
all tag sets to the union size of all sets. However, % can be
very large, since the intersection size can be small or even zero
while the union size is very large, which may be the routine
case in practice, instead of being rare. For the applications
in the introduction, there can be two warehouses with few
products moved between them, or there can be times when
few products are moved in or out of a warehouse. In both
cases, % is very large or even tends to infinite.

In conclusion, the relative error model, as a remanent from
the earlier literature on cardinality estimation of a single tag
set, is no longer suitable for joint cardinality estimation of
multiple sets. Therefore, this paper adopts the absolute error
model in (4). The previous protocols named DiffEstm [9] and
CCF [13] are not designed under this model.

III. ALOHA-BASED RFID PrROTOCOL

In this section, we introduce a standardized RFID commu-
nication protocol based on slotted ALOHA, which can be used
to take a snapshot of a tag set without collecting any tag IDs.

A. ALOHA Communication Protocol

A reader communicates with the tags in its radio range,
using the following slotted ALOHA protocol, which is com-
pliant with the de-facto RFID standard named EPC C1G2 [14].

Initially, the reader broadcasts a Query command to start
an ALOHA frame with m time slots and using R as random
seed. Upon receiving the command which carries the values of
m and R, each tag selects a time slot pseudo-randomly through
hashing H(id ® R) mod m, where m is the frame length,
id is the tag ID, and & is bitwise XOR that mixes tag id and
the random seed R. During the frame, the reader broadcasts
a QueryRep command between any two adjacent slots,
terminating the previous slot and starting the next slot. Each
tag will transmit a response during its selected slot.

By executing the above slotted ALOHA protocol, from the
perspective of the reader, the responses of all tags distribute
uniformly at random across the m time slots in the frame.
Furthermore, a sampling mechanism can be incorporated into
the ALOHA frame as a field in the frame header. Due to the
sampling, only p fraction (0 < p < 1) of tags respond in the
frame and the rest of them just keep silent.

B. Empty/Busy Time Slots and Snapshot

Time slots can be classified into two types: a slot is called
empty if it contains no tag response, or called busy if it has at
least one tag response. Busy slots can be further classified
into singleton slots (containing exactly one tag response)
and collision slots (containing at least two tag responses).
According to the EPCglobal RFID standard [14], each tag
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response needs to contain a 16-bit random number in order to
differentiate singleton slots from collision ones. In this paper,
we only need to distinguish empty slots from busy slots. For
this purpose, transmitting just one bit is sufficient to indicate
the presence of a tag response in a slot, which significantly
reduces the length of each time slot.

We use 0 to represent an empty slot and 1 a busy slot.
By monitoring the empty/busy states of the slots, the reader
can turn an ALOHA frame into a bitmap of m bits, a bit
of 0 for each empty slot and a bit of 1 for each busy slot.
This bitmap is a compact data structure, also called snapshot,
which encodes the set of tags at the location of the reader
and at the chosen time when the reader initiates the ALOHA
frame. In the sequel, we use the terms “snapshot”, “bitmap”
and “frame” interchangeably.

IV. A BASELINE SOLUTION

Suppose a distributed RFID system with multiple readers.
The reader at each location can take a snapshot of the set
of tags currently in its radio range using the ALOHA proto-
col. The reader will forward the periodically taken snapshots
to a central server where queries on joint cardinalities over
multiple tag sets are made. Consider an arbitrary query that
considers k chosen snapshots, By, B, ..., Bg. Let S7, So,
..., Sk be the tag sets that are encoded in these bitmaps,
respectively. Note that these tag sets may be present at
different locations in the system or at the same location but
different times.

In this section, we present a baseline solution that performs
joint cardinality estimation over S;, 1 < i < k, based on their
snapshots, B;, 1 < i < k. This baseline solution assumes that
all the bitmaps must have the same length and use a common
sampling probability. The key reason is that it retrieves useful
information from these bitmaps by bitwise OR operation.
Next, we describe its estimation formulas by details.

Union Cardinality Estimation

For ALOHA frames B1, Bo, ..., By, an important property
is that, if a tag is sampled to respond, it will select the same
time slot among all frames. This is because the tag uses the
same hash function H(id & R) mod m for slot selection in
different frames, where m is the common length of all frames
and IR is the random seed.

Out of the & bitmaps, we can arbitrarily select ¢ bitmaps and
combine them by bitwise OR, which is represented by B;, V
Bi, ... VB, with 1 <1 <iy... < i, < k. Because a tag
responds at the same slot in all these frames, when calculating
the bitwise OR, its multiple responses in different frames will
be automatically combined into one bit. Therefore, the OR of
¢ bitmaps B;, V B, ...V B;, is equivalent to the bitmap-based
snapshot for the union of ¢ tag sets S;;, US;, ... US;, [1].

For estimating the cardinality of such a union set, a good
method is to use the fraction of zero bits in the OR bitmap B;,
VDB;, ...VB;, [1]. Specifically, let z be the fraction of zero bits
in the OR bitmap. Then, the cardinality of corresponding union
set can be estimated as —m log(z) / p, where m is the number
of bits in the OR bitmap, and p is the sampling probability.

Joint Cardinality Estimation

Since the cardinality of any union set is known, we can
easily derive |S1 N Sa... N S|, ie., the cardinality of the
intersection of all the k tag sets, which is denoted as the joint

20 tags,
40% sampling

ol t[o[tJo[folo[1]1]

[t[o[t]oft]tJo[tfolo]o[-[-[-[o]t[tJo[t]t]o[1]t]o]o]

2000 tags,
40% sampling

2000 tags,
40% sampling

large bitmap

for a small set 1 2°[00[1[0]o[o]olofo] [-]-[ofolofolofo]o[]o[o]o]

Fig. 2. Inefficiency problem of baseline protocol when handling small tag
sets and large tag sets.

cardinality nqx_ . According to the principle of inclusion and
exclusion, no._1 is equal to

ok 1
=151 NS85 NSkl =i <k 19|
— > IS, USLI+ > 1S, U8, US|
1<i1<ia<k 1<y <ia<iz<k
+ o+ (=D)FS USy . US|, (6)

where the union cardinalities |S;, |, [Si, USi, |, |Si, USi, USis |,
e [S1U So ... U Sk| all have unbiased estimators as stated.

Interestingly, Eq. (6) can be extended to estimating any joint
cardinality n, with 1 < 2 < 2*. By the definition of N, in (3),

e = [ M550 il =1 (M50 51) M (Un'5m i) -
The first term |ﬂ;§1§fx 760S¢| is the intersection of multiple
tag sets and hence can be estimated similar to (6). The second
term is the intersection of (3=, 40 Si and Uss'sl S
where the latter can be treated as a single tag set encoded into
the OR bitmap \/;fﬁkzzo B;. Hence, the second term can be
regarded as the intersection of multiple sets with a union set,
and can also be estimated similar to (6).

Because this baseline protocol depends on the
INClusion-EXClusion principle in (6) for estimating the
intersection of multiple sets from their unions, we call it
INC-EXC for short.

We explain why this baseline protocol will have poor time
efficiency. For a small tag set, if the sampling probability is
very small, too few or even no tag will be sampled for the
snapshot construction. Hence, the sampling probability has to
be reasonably large, as depicted by the first bitmap in Fig. 2,
where 20 tags are recorded with 40% sampling probability.
However, for a large set, a significant sampling probability will
cause all bits to be set as ones (as shown by the second bitmap
in Fig. 2), unless the bitmap length is sufficiently large (see the
third bitmap of Fig. 2). Now because the same large length has
to be applied to all bitmaps, it becomes a great waste for small
tag sets (the fourth bitmap of Fig. 2). Since each bit takes one
time slot to determine, a large bitmap length implies a long
time for taking a snapshot, even for a very small tag set. Hence,
when the tag sets have dramatically different sizes, the baseline
protocol will greatly waste protocol execution time.

V. ADAPTIVE ESTIMATION PROTOCOL

We present our MJREP, which is a Joint RFID Estimation
Protocol to derive joint cardinalities for Multiple tag sets, even
when they are encoded into bitmaps of different lengths.

Naturally, it is desirable to encode each tag set into a bitmap
with a different length, depending on the cardinality of the
tag set. This inspires us to develop a new algorithm to jointly
analyze k bitmaps with variable lengths. The real difficulty is
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not at how to combine k£ bitmaps; there are simple ways to
combine them. The real difficulty comes after the combination
— how to perform analysis on the information combined from
non-uniformly sized snapshots, how to use that information
for joint cardinality estimation, and most importantly, how to
ensure the satisfaction of accuracy requirements in (4). These
are the tasks that have not been fulfilled in the literature.
Our MJREP protocol can be divided into two components:
an online encoding component for compressing each tag set
into a bitmap, and an offline analysis component for estimating
the joint cardinalities of multiple tag sets, using their bitmap-
based snapshots. Whenever a bitmap that encodes a tag set is
collected by RFID reader during the online phase, the reader
offloads it immediately to a central server for long-term storage
and for offline processing. Such an asymmetric design will
push most complexity to the offline component at the server
side, while keeping the online component at the side of reader
and tags (for raw data collection) as efficient as possible.
We will introduce the online component in the first subsection,
and then the offline component in the subsequent subsection.

A. Online Encoding of a Tag Set

We use a two-phase protocol to produce a snapshot for tag
set S; whose length is proportional to the tag set size s;. The
first phase is to quickly generate an estimation with coarse
accuracy for the number of tags s;. In second phase, the RFID
reader invokes the ALOHA protocol in Section III to encode
the current tag set in a bitmap (snapshot), and the coarse
estimation $; can be used to configure the length of ALOHA
frame proportional to s;. As described later in Section XI
for related works, it becomes a common practice for RFID
researchers to use such a two-phase protocol for estimating
the cardinality of a single tag set [8]. In following, we will
explain this two-phase protocol with more details.

Firstly, the RFID reader that covers the tag set .S; invokes an
existing protocol to generate a coarse estimation of the set size
s;. Since this phase handles only a single tag set, its estimation
accuracy can be specified by the (¢, d) model in (5), in which
the probability for the relative estimation error to fall within
the range e is at least 1 — 4. Since the accuracy of this phase
does not need to be high, we often configure ¢ = 20% and
0 = 5%. To implement this phase, many existing protocols
can be used, such as LoF [2], GMLE [3], PET [5] and
ZOE [7]. If LoF is used, then the needed number of time
slots for scanning the tag set is O(Z% log(smax)) - log(}) to
attain the pre-defined cardinality estimation accuracy, where
Smax 18 an upper bound for the size of any tag set. By a
recent survey study [8], the time cost can be reduced to
O(Z loglog(smax)) - log(}) if PET [5] is used. It is clear that
the time expense is proportional to the logarithm or even the
log-logarithm of the tag set size. Hence, the time cost of the
first phase is negligibly small when its accuracy requirement
is coarse. For instance, when the relative estimation error € is
20% and § is 5%, the time cost of the LoF algorithm [2] is
about 321og(Smax)-

Secondly, because the size of tag set has been coarsely
estimated by the first phase as s;, the reader can scan the tag
set using an ALOHA frame B; whose length m; is linearly
proportional to ;. Then, the frame length m; satisfies

m; = minge g,y {21821}, )
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where p is the load factor of the frame. Here, the frame length
m; is configured to a power of two. Our purpose is to ensure,
when jointly analyzing two frames, the length of the longer
one is always integer multiple of the length of the shorter one.
Equation (7) can be regarded as the major proportion of
time cost for the online component to encode a tag set. Later
in section VII-A, we will prove an optimized value of the load
factor p that minimizes (7) while keeping the pre-set accuracy
constraint of joint cardinality estimation in (4) satisfied is

p=mie (3 V3 +1) - 5). ®

where 6 is the bound of absolute estimation error, Zs is the
1— g quantile of standard Gaussian distribution (e.g., Zy.o5 ~
1.96), Smax 1S the upper bound of the cardinality of a tag set,
kmax 1 the largest number of tag sets that may involve in
any user query, and p is the sampling probability. Since Sy ax,
kmax, 0 and Zs are all fixed values, (8) can be regarded a
function of only one variable p. Let p* be the optimal sampling
probability that maximizes (8), which in turn will minimize
the time cost of encoding a tag set in (7). It is clear that the
value of p* only depends on Syax, kmax, 0 and 6. Hence, p*
is pre-determined for a system once these parameters are set,
and the best p is also pre-determined.

B. Offline Estimation of Joint Cardinalities
of Multiple Tag Sets

In this subsection, we present an offline analysis algorithm
that derives the joint cardinalities n§ and n,, 1 < z < 2k of k
tag sets, using the bitmaps Bi, Bo, ..., Bi. Without loss of
generality, we assume the bitmaps are sorted by their lengths
in non-descending order that satisfies m; <mo < ... <my.

Although all these bitmaps are assumed by equation (7) to
have the same load factor p, our offline algorithm to describe
later can in fact work well if each bitmap B; has its own load
factor p;. We will prove in Section VI that, only when p; =
p2 = ...= pr = p, can we minimize the protocol time cost.

Expanded Bitwise OR: We introduce two bitwise operations
which will be used later. In the binary representation of a value
y, let lo(y) be the location of the lowest-order 1-bit, and let
hi(y) be the location of the highest-order 1-bit. For example,
if the binary representation of y is 1010001, then we have
lo(y) = 1 and hi(y) = 7. A boundary case is that y is equal
to zero. In this case, we define hi(y) = 0 and lo(y) = 0.

For the k bitmaps, we introduce an auxiliary bitmap
called expanded OR to combine them, which is
noted by ORy, .. b, b, -

1<i<k
ORy,,. .05 b, = \/b.;so Expand(B;, Mui(p,...bsb1))

The subscript by, ...by by indicates for each bitmap whether
it is involved in the expanded OR: If b; is one, the bitmap
B; is involved. Among the chosen bitmaps the length of
the longest bitmap is TMhi(by,...b by)> since m1 < ma... <
my and hi(bg...bs by) is the position of the highest 1-bit
in by...by by. The function Expand(Bi, Muiw,. b, b))
increases the length of B; to the largest bitmap length
Mhi(by,...be by) DY self replication, such that all bitmaps after
expansion have an equal length and can be combined by
bitwise OR operator \/.

Figure 3 illustrates an example of applying expanded OR
to three bitmaps B, B2 and Bs;. Among them, Bsj is the
longest. We replicate B for one time and Bs for three times,
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Replicate

B |1|o|1 |0|0|1 [oJo1Jo]1]oJo]1]o]o]

Bs [1]ofo]1]oJofofofo]t]1]o]oJo]o]1]
Bitwise OR of B3 and expanded B> and B,
ORwm [t]o]t[1]t]t]oJo1]t]1o]1]1]o]1

Fig. 3.
are 4, 8, 16.

Expanded OR of three bitmaps Bi, B2, B3, whose sizes

such that after expansion, all bitmaps are of the same length
and the bitwise OR operation can be used to combine them.
For simplicity, we replace ORy, ., », by a shorter notation
OR,, where y is a decimal equal to by, ...by b;. Therefore,
1<i<k

OR, = Expand(B;, muy;y))- 9)

2i=1Ay£0

It is always feasible to expand the bitmap B; to have the
same length with the longest bitmap By;(,), because both their
lengths m; and my,(, are the powers of two by equation (7),
and the ratio my;(,)/m; is definitely an integer.

Expected Zero Fraction of ORy: We analyze the expected
fraction of zero bits in the bitmap OR,. Let us focus on just
one bit in OR,,, and we have the following property.

Property 1 (Probability of a Tag Setting a Bit in OR
Bitmap): Considering an arbitrary bit in bitmap OR, and an
arbitrary tag from elementary subset N, when the bitwise
AND of x and vy is non-zero, the probability of the tag
assigning the bit to one is m when x Ay is zero,
the probability is zero. o

Proof: Please check out the Appendix. [ |

According to Property 1, a tag has the chance to assign a
bit of OR, to one, only when it is in a subset N, that satisfies
x Ay # 0. Because in such a subset Nm, any tag assigns the
jth bit of OR,, at a probability of —F2—, the probability

Mio (A v
p )nm

that all tags in N, do not assign this bit is (1 — )
o(zAy

Let Xéj ) be the event that the jth bit in OR,, remains zero.
The occurrence of the event needs all tags in an arbitrary N,
with Ay # 0 do not assign this bit. Thus, its probability is

Prob{XW} = T{2v7%9 (10)

(-2
1<z <2k Mio(zAy) :

Let z, be the fraction of zero bits in OR,. Then,
(1D

where my;(,) is the number of bits in bitmap OR, (see (9)),

and 1 X is the indicator function of the event ng 7 whose

value is one if the event occurs and is zero otherwise. Since the
zero fraction z, is the arithmetic mean of a large number of
independent variables, according to the central limit theorem,
z, approximates a Gaussian distribution. Its expected value is

E(Zy) = E(—mhli(y) E 1X1(/J)) =

Clearly, E(1,.)) = Prob{Xéj)}. Hence, applying (10),

_ 1 )
Ry = Mhi(y) ZOSj<mhi(y) 1X,£(/J)’

1
m 20§j<mhi(y> E(lxq(/) )

E(zy) = m 20§j<mha(y> Prob{XgSJ)}
= Prob{X@Sj)} = Hmy#o

__ P\
1<z <2k (1 Mio(zAy) ) ’

Applying the approximation (1 — 2)" ~ (1 — %)%" which
works when m and m’ are both large, we have

"hi(y)

Mg
) Mio(@Ay)

~ Tz Ay#0
E(Zy) ~ H1<m<2k ( - #@,)
)ngiigk "”loh(iafz)y)

(1- mkf<y>

Using the sign function sgn (which equals to 1, 0 or —1 when
its input parameter is positive, zero or negative), we have

ity
)Zlgmdk Sgn(sz)'m i

E(zy) ~ (1 - —2—

Mhi(y)

12)

Estimator of Joint Cardinality n,: Using the fraction of
zero bits in OR, with 1 <y < 2k we are able to estimate
each joint cardinality n, with 1 < z < 2. We will show
later that this essentially is to solve a fully determined linear
system, which puts 2k _ 1 constraints over 2 — 1 unknown
variables.

By (11), we know the variance of z, is inversely propor-
tional to the number of observations my;,). Hence, when the
number of slots my;(,) in the frame OR,, is sufficiently large,
we can approximate F(z,) by z,. Then, (12) becomes

"hi(y)

_hity)
Mio(zAy)

P i<ocok sgR(TAY)-
~ 1 _ P 1<xz<2
= ( mhi(m)
We will prove later that such an approximation indeed pro-
duces unbiased estimators. Taking the logarithm of both sides,
Mhi(y)
Mio(zAy)

log(zy) /log (1— ) A 1< pcor SER(TVAY)-

m h,(y) T

Applying the approximation log(1 — 2

(w 10%(%)

)~ -

L for large m,

_ M Mhi(y)

~ Zl§1<2k Sgn(l‘ A y) ’ Mio(zAy)

€T

If we define the measurement of the number of tags in OR, as

~ mh,

ty = == log(zy), (13)
then the above equation can be simplified as
Yicacon SEN(T Ay) - B ng Ay (14)

Applying (13) to each OR,, bitmap, we can collect a vector
N L. . 1T .

of measurements G = [ul, Uy ooy Uy, ..oy UQk_l] . If putting

together the sizes of all elementary subsets, we can obtain the
T

vector of unknowns: n = [nl, N2y eeey My e e ,ngk,l] . With
1 and n properly defined, equation (14) can be rewritten as

Mn ~ 1, (15)

where M is the coefficient matrix defined in (16). Its element
uses y as row index and z as column index, 1 < z,y < 2*.

Mhi(y)

M= sgn(:c/\y)~m1(A)
o(zAy

(16)

For elements of M, if « A y is zero, then sgn(z A y) is
. mhi(y> .

zero, and the expression sgn(zx A y) - Titoang) is treated

as zero. By Property 2 to present later, we know that the

coefficient matrix M is always non-singular. Hence, we can

solve the equation system in (15) and obtain an estimator of

joint cardinalities.

A=M1a (17)
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Estimator of Composite Joint Cardinality ng: Among the
numerous composite joint cardinalities, the largest and the
most important cardinality is n§ — the number of tags in
the union of all the sets. We estimate it as n§ = >, ek T,

the sum of all elements in the vector ii. After simplification,

~ e _ R _ R
ng = Ugk _1 — m2m1m1u1 — m3m2m2 us ...
mj —mj; — — mep—mpg— —
_ Muy_l L= MUQk—l_l. (18)

mj ME—1

Property 2: The coefficient matrix M defined in (16) is
always non-singular, and its inverse matrix M™' always
exists.

Proof: Firstly, we consider a simple case that the sizes
of all frames are equal, i.e., m; = mgy... = myg. In this
case, the coefficient matrix M degrades to G = [sgn(z Ay)],
1 < x,y < 2% by (16). We use G}, to denote the G matrix
when there are k tag sets to perform joint estimation. We have

1 0 1 G, 0 Gy
GQ—[O 1 1], Gkﬂ—[o 1 1].
1 1 1 G, 1 1

Clearly, Gj1 has a recursive form, whose left top, right top
and left bottom blocks are Gy. It is easy to verify its left top
block is Gy, since when the (k+1)th bit of = and the (k+1)th
bit of y are both 0, other bits of x and y decide the value of
sgn(z A y). The right bottom block of Gy is 1, since the
bitwise AND of the (k + 1)th bit of z and y is 1.

Next, we use mathematical induction to prove that matrix
G is non-singular. The base case is G2, which is non-singular
since it can be transformed to a triangular matrix by Gaussian

101 10 1
elimination: Go — lO 11| — lO 11 ].For the inductive
010 00-1

step, we assume Gy is non-singular, and prove that G
is also non-singular. By Gaussian elimination, Gy+; —

G, 0 Gy G, 0 Gy
lO 1 1 ] — lO 1 1 ].Since Gy can be
0 11-Gg 0 0 -Gy

transformed to triangular form, so can Gy 1. Thus, the non-
singularity of Gy has been proved.
Secondly, we remove the assumption of identical frame size

my =msy... = my, and prove M = [sgn(z Ay) - WZ”i(i))]
o(zAy
is non-singular. By (16), the base case and inductive ruie are
1 0 1
0O 1 1
Mo =Ny | oy |
L M1 mi
[ My O My
Myy1 = 0 1 1 ;
| DMk 1 DMy +1 - Gy
Me4+111

where Dy is a diagonal matrix with Dy = diag({

mi ?
k—1 .

{Fett )2, { TR ), where {-}' means the component

between two parentheses repeats for ¢ times. Gaussian elim-

ination can be applied to get a triangular matrix: M4 —

My 0 My
0 1 1 , which can prove My is non-singular.
0 0 —Gg

VI. THEORETICAL ANALYSIS OF MJREP

It is easy to prove that the estimators 7, in (17) and 7{8
in (18) are asymptotically unbiased, due to the rigid process by
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which they are derived. In this section, we focus on analyzing
their variances, which determine their estimation errors.

A. Probabilistic Distribution of Measurements z,

Since the zero fraction z, of bitmap OR, is the input of
MJREP estimator, we need to analyze its mean and variance.
By (11), the zero ratio 2, is the arithmetic mean of independent
variables. When the number of variables my;,) is large, by the
central limit theorem, z, approximates a Gaussian distribution.
The expected value of z, is given in (12), and can be further
simplified as E(z,) ~ e Py, where w, is defined below and
its physical meaning is the load factor of OR,,.

e (19)

Mo (zAy)

Wy = E1§x<2k sgn(x Ay) -

Note that the symbol w,, is different from p;, which later will
be used to denote the load factor of the frame B;.

In the previous conference version, we have derived that
the covariance of zero ratio z,, of OR,, and zero ratio z,,
of OR,, is approximately

e PYy1Vya e Py twys)

- (1+p2w*

Y1:Y2
min(mMui(y, )»Mhi(ys)) ’

Cov(zy, , 2y,) =~ (20)

. .
where wy, . is density of common tags of OR,, and OR,,.
* I . . T AYy17#0 N
Wyiya = mln(mhl(yl)’ mhl(y2)) EIAnyO Mio(xAy) Mlo(zAys)
21

B. Variance of Cardinality Measurements i,

Previously in (13), we have defined 1, as the measurement
of the number of tags in the OR bitmap OR,,. We will analyze
the covariance between cardinality measurement uy, of bitmap
OR,, and cardinality measurement uy, of bitmap OR,,.

Cov(uy, , uy,)
v yi”’hi(y ) Mhi(yg)
= Cov( — =22 log(zy, ), ——5*2 log(2y,))

_ mhi(yl;;”hi(yz) C’ov(log(zyl),log(zm)) — _mhi(yl;;mhi(yz)

+[E(log(zy,) log(2y,)) — E(log(2y,)) E(log(2y,))]
(22)

We use Taylor series to expand log(z,) about the point
E(zy) ~ e P“v. For simplicity, the point e ?“v is denoted
by g,. Since z, is an observation of ratio of zero slots from
a large number of time slots, it will be very close to the
point g,. Then, log(z,) = —pw, + % + O((zy — ay)?).
Since E(Z”q;yq”) ~ 0, the expected value of log(z,) is roughly

E(log(zy)) & —pwy + E(Z%) & —pwy,.
After substituting log(z,) by —pwy + Z”q;yq” and E(log(zy))

by —pw,, the equation (22) becomes

Cov(uy, , uy,)
s mhi(’y1;);”’hi(y2) [E((—p Wy, + Z’y1q;1‘Iy1 ) .

(_pwy2 + Pya —dyo )) —pwylpwa} g Mhi(yy) Mhi(yz)

Qy2 P
Zy1 —9yy Rys —dy: Mhi(yy) Mhi(yg)
E( YL_“¥L ZV2 2): 0V( 2oy 5 Zys ) -
yy dyz P2qy; dyy C ( y1» y2)
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By substituting C'ov(z,,, 2y,) with its approximation in (20),
Cov(u;}17u;/2) ~ p% max(mhi( 1) mhi(yz)) :

x (e” (o ton wnvn) (1 +p2wy1 )
(23)

where wy can be found in (19), and wy, . is defined in (21).
As a special case, when y; = yo = v, (23) becomes Var(uy).

Var(iy)~ p%mhi(y) (epwy - (1 + pzzgmwéo m::@%m”))
(24)

C. Estimation Variance of Joint Cardinality

We analyze the variance of MJREP for estimating the
cardinality n, of elementary subset. By (17), we know
each cardinality estimation 7, is a linear combination of
OR bitmap measurements 0 = [ti1, 2, ..., Uy, ..., Ugk_1)" .
Thus, the variance of each cardinality estimation 7, is a
linear combination of covariance Cov(uy,,uy,) in (23). Let
Cou(i,11) be the covariance matrix of measurement vec-
tor @. Then,

Var(n,) = M~ z] Cov(t,d) (M [z])7, (25)

where M ~![z] is the wth row of matrix M, and (M ~![z])7
is its transpose and hence is a column vector.

Next, we analyze the estimation variance of the composite
joint cardinality ng. Equation (18) can be rewritten as

n =ty + (= 22ady + ais) + (= By + dr) . (5
X tUgi—1 1 + Ui 1)« (= tigh g+ Ugs 1)
(26)
To simplify this equation, we define Cij as
dj = — g0y + Uy 7, with2<j <k (27)
j—1

We define d; as the cardinality of the relative complement of
tag set S; with respect to union set S; U Sy...US;_1.

dj=|5;\ (S1US2...US;_1)| with2<j<Fk (28)

It is easy to verify that d\j is an unbiased estimation of d;.
Applying (27) to (26), we have

ng = iy + Doo<j<k dj-
From (29), we have Var(ng) = Var(i; + Da<i<k dy).

We have proved in the previous conference version that
the three kinds of estimations 4, d; and dj, 2 <i <y,
are mutually uncorrelated. That is Cov(iiy,d;) ~ 0, and
Cov(d;,d;) ~ 0 for arbitrary 7, j values with 2 < i < j.

Applying the property of uncorrelatedness to (29), we have

Var(ng) ~ Var(iy) + Doa<i<k Var(dAj), (30)

where Var(uy) is given in (24). By definition of dAj in (27),

(29)

~ 2 - o
Var(d;) = mn;’_12 Var(ugi-1-1) + Var(u _7)
_ 2 7”7

mj—1

o —

COU(UQ/J-I\l, Ui — 1)

o —

By (23), Cov(ugi—1_1, Ui _1) ~ "17 Var(ujl\l) Then,

Var(d;) ~ (u;_tl )+ Var(tg 7).

€1V

Applying the above equation of Var(d;) to (30), we have

Var(ng)
~ Var(ir) + Y. (Var(ug 1) — m}leVar(qufl_l))
2<j<k .
— m.; 27?77,»2 —
= Var(uge—1) = X1<cjep — gz Var(uz—1).  (32)

VII. PROTOCOL PARAMETERS

In this section, we optimize the parameters of MJREP, under
the constraints of estimation accuracy in (4). Among various
parameters, the size of largest tag sets Syax 1S @ phenomenon
of physical world and is out of the control of RFID system.
The accuracy model (6, ¢) and the number of tag sets k totally
depends on the demand of users. Hence, only two parameters
are under the control of RFID readers, i.e., the load factor p;
of the frame B; and the common sampling probability p.

In the first subsection, we investigate the appropriate con-
figuration for the load factor p; for frame B;. In the second
subsection, we study how to optimize the sampling probability
p to minimize the execution time (or the length of frame B;).

A. Configuration of Load Factors

Equation (4) requires that the probability for the absolute
estimation errors of joint cardinalities n§ and n, to fall within
+0 is at least 1 — 0. We proved before that both 7, and 7
are asymptotically unbiased estimations and they approximate
Gaussian distributions. Hence, Eq. (4) can be translated to

Var(ng) <0/ Zs)* and Var(ni,) < (0/ Z5)%, (33)

where Zs is 1 — g quantile of standard Gaussian distribution.
Property 3 (Variance Upper Bounds): The  tight  upper
bound of Var(ri,), 1 <z < 2%, and Var(n§) is Var(ugr_).

Var(ri,), Var(d;) < Var(ng) < Var(uge—3)  (34)

Meanwhile, Var(uqs_1) is tightly upper bounded by

- (1+p° Di<i<k pi))-
(35)

Proof: Refer to the previous conference version. [ |
By property 3, Var(n§) and Var(rn,) are tightly bounded
by (35). Thus, the two constraints in (33) can be tightened as

- (1 +p2 E1§i§k pz)) < (6/26)27 (36)

which guarantees that (33) is satisfied even in the worst case.

In our system design, we shall configure p = p; =
p2 ... = pr as a system-wide optimal load factor, which will
be explained at the end of this subsection. Then, (36) becomes

(1 + p2kp)) < (0/ Zs)*. 37)

This subsection focuses on the optimization of the load
factor p, and keep the sampling probability p temporally
fixed, whose optimization is postponed to the next subsection.
Equation (37) has no explicit solution for p due to the existence
of exponentlal term epkp Hence, we apply the Taylor series

~ltr+ G+ g +O( 4) to (37). Then,

VGT(ng_l) < pr_k(eP El<1<k i

1 sk (ep Elgigk pi
P2 pr

1 sk (,pkp _
p? p (e

%7’?(1 + php + GRS 4 @R (1 4 p2p)) < £
3+f\/8p 7z +1) = 5).

p= 2pk
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Assume the size of any tag set s; is at most Syax, and the
number of tag sets k involved in any query is at most Ky ax.
In the worst case S = Smax and k = kpax, WE must ensure

3+\/_\/8p — 92+1)—5)

KkmaxSmax Zs

p < < (38)

Kmax

Since p = p; = pry
length m;, which measures the protocol time cost for encoding
the tag set .S;. Thus, we configure the target load factor as large
as possible under the constraint, and obtain Eq. (8).

We justify our choice of setting p = p1 = p2... = pg.
The left side of (36) is an increasing function in each p;.
If we allow these load factors to be unequal and still set
their values to be as small as possible, then some of them
will be greater than the right side of (38) and others will
be small. Because S1, Ss,...,.S; are arbitrary tag sets under
consideration, it means that some tag sets will be encoded
with their load factors greater than the right side of (38) and
some other will have smaller load factors. Let S7, S5, ..., 5,
be the k tag sets with load factors greater than the right side
of (38). We should be able to perform joint estimation on any &
encoded tag sets without violating the accuracy requirement.
However, if we perform joint estimation on S7,S5,...,S),
because their load factors are larger than (38), the constraint
of (36) will not hold.

B. Optimization of Sampling Probability p

Si

Because p = p; = -, we have m; = 2. Recall that the
value of m; must be a power of two to support the expanded
OR of multiple ALOHA frames. Hence, m; = 2122051,
We want to choose the optimal sampling probability that
minimizes the protocol execution time by keeping the frame
length m,; as small as possible. Hence, we have the formula

for the frame length defined by section V-A as (7) and quoted

here: m; = minp6(071}{2r1°g2(71)]}, where the load factor p
is determined by (8), and the sampling probability p is hidden
inside (8) and needs to be optimized. The optimal p* that
can minimize m; depends on the pre-determined parameters
Smax> Kmaxs 0 and §. We can numerically compute from (7)
the optimal sampling probability p* that minimizes m;.

VIII. MJREP WITH UNRELIABLE CHANNELS

Our initial design of MJREP protocol makes an implicit
assumption that the wireless transmission between a reader
and a tag has no error, such that the reader can reliably detect
the empty/busy state of each time slot. However, it is inevitable
for real-world RFID systems to suffer from environmental
noise or interference in wireless channels. Due to the unwanted
radio energy of noise or interference, an empty slot which
should be detected as a zero bit may be misinterpreted as a
one bit. Besides, environmental noise may also affect a busy
slot when a reader takes a snapshot of one tag set. But the noise
signal will only deform the radio wave of tag’s backscattered
response in the slot. It is quite unlikely for the random noise
to exactly cancel a tag response and turn the busy slot into
an empty one. Therefore, we mainly focus on the impact of
channel noise on empty slots. Let P, be the probability for an
empty slot to be corrupted by channel error, i.e., detected as
a busy slot. Below we will analyze its impact.

We stress that our MJREP protocol is more resilient to
random channel noise (which is uniformly distributed in all
time slots) than other tag counting work, such as LoF [2]
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and PET [5]. This is because LoF and PET use an exponential
distribution, in which the tag sampling probability reduces
exponentially in a sequence of time slots. Higher-order slots
have greater impact on the tag counting result than lower-order
slots. As a result, the channel noise in higher-order slots will
greatly disturb the counting result, even though the mean error
rate of the slots can be measured. By contrast, our protocol and
ZOE [7] adopt a uniform distribution of tags in an ALOHA
frame. All slots in the frame are equally important for the
counting result. There does not exist any especially important
slots whose error rates sensitively affect the counting result.
But our protocol is different from ZOE [7], which counts the
number of tags in a single tag set. Our aim is to perform joint
cardinality estimation for k tag sets, which are encoded into
bitmaps B;, 1 < ¢ < k. The impact of unreliable channels
must be characterized by a different set of formulas, so that
their induced bias in the joint cardinality estimation can be
compensated.

Suppose each frame corresponding to the bitmap B; will
experience environmental noise during wireless transmission,
turning some of its empty slots into busy slots at a probabil-
ity P.. When performing joint estimation, as shown in (9),
we need to calculate the bitmap OR,, the expanded OR of
bitmaps B; satisfying 2°~! Ay # 0. Clearly, the bitmap OR,,
may be influenced by channel error.

Recall that X;j ) is the event that the jth bit in OR,, remains
zero, whose original probability is given in (10). With the
presence of channel error, this probability needs to be updated,
as the occurrence of the event now requires two conditions.

o This bit is not assigned by the tags in an arbitrary subset

N, with Ay # 0, whose probability is given in (10).

o For any ALOHA frame B; satisfying 2=t Ay # 0, its

(7 mod m;)th bit does not experience channel error. Due

to the independence of each slot in frame B;, the prob-

ability of this condition is (1 — P.)P°(®), where be(y) is

the number of one-bits in the blnary representation of y.
Thus, the probability of the event Xy @

Prob{XZSJ)} = (1 — P,)Pe( Hmy#o ( »

)"
1<z <2k Mio(zny) '

Recall that z, is the fraction of zero bits in the bitmap OR,,.
Then, using z, ~ E(z,) = Prob{ X"}, we have

cAy#0 Ny
Zy/ (1-F H1<oyc<2k( - m,lu(I;Ay)) :
Applying logarithm operator to both sides of the above
equation, and using log(1 + z) ~ « for small z value,

log (zy / (1—Pe)bc(y)) ~ Y sgn(zAy) —2W g

1<z<2k Mo(znw)

)bC(y)

_ Mhi(y)

where sgn(z) is the sign function which equals 1, O or
—1 when its parameter x is positive, zero or negative. For
the above equation, its left-hand side is a constant value once
OR, is determined and channel error rate P, is empirically
known, while the right-hand side is a linear combination of the
unknown variables n,, 1 < z < 2F. Collocating 2F — 1 such
equations established from the O R, bitmaps with 1 <y < 2k,
we can obtain a fully-determined linear equation system:

Mn ~ d,
where M is given in (16), and U, is defined as a column vector:

e = [~ ™2 Jog (2, / (1 - P)P®)]", 1<y < 2"
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Fig. 4. The setup of our testbed based on USRP reader and COTS tags.
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Fig. 5. A reader communicates with a single tag to collect its EPC ID.
Since Property 2 proves the non-singularity of coeffi-
cient matrix M, the above linear equation system can
always be solved.

IX. PROTOCOL IMPLEMENTATION ISSUES

In this section, we discuss several technical issues for imple-
menting our MJREP protocol in real-world RFID systems.

A. USRP Reader to Query a Small Tag Set

We implement a UHF (ultra high frequency) RFID reader
based on USRP (universal software radio peripheral) platform
following [15]. Our testbed setup is illustrated in Fig. 4,
consisting of an USRP reader and tens of commercial passive
RFID tags. We control the USRP reader to interrogate its
surrounding RFID tags by EPC C1G2 protocol [14].

In Fig. 5, we illustrate an ALOHA frame when a reader
communicates with a single tag to collect its ID. The hor-
izontal axis is time in ms, and the vertical axis is signal
magnitude sensed by the reader. When the reader broadcasts a
command, the signal magnitude fluctuates significantly. When
the tag responds by backscattering, the continuous carrier
wave is modulated slightly. From the reader’s perspective,
an ALOHA frame is composed of four periods: a power-down
period (to force each tag to consume up energy reserve and
hibernate), a continuous wave transmission period to energize
surrounding tags, a Query command to notify powered-up
tags that a frame with m time slots has started, and m — 1
QueryRep commands to mark the boundary of each two
neighboring slots.

The ALOHA frame in Fig. 5 has only two time slots. The
first time slot (roughly from 12.5ms to 35ms) is a singleton
slot where only one tag responds. The second time slot is an
empty slot where no tags respond. In the singleton slot, a tag
reports its ID to the reader. When the tag receives Query/
QueryRep command that starts its chosen slot, it sends
a RN16 command with a 16-bit random number to help

o
~

received signal magnitude by reader
o
=

M

00 700

0
0 100 200 300 400 500
protocol running time (ms)

Fig. 6. A reader communicates with multiple tags for snapshot construction.

the reader detect tag collision. If the reader can successfully
decode the RN16, it sends an ACK command to the tag
containing the decoded random number. When the tag receives
the acknowledgement and finds the number consistent with its
own, it responds its 96-bit EPC ID plus CRC checksum code.

Clearly shown in Fig. 5, transmitting a 16-bit random
number takes multi-fold less time than collecting a tag ID.
To save time, after receiving RN16 command, the reader
can be configured to preempt the ID transmission by immedi-
ately sending QueryRep command (to start the next slot),
without transmitting any ACK command which initiates 1D
transmission. The reader can make a determination of whether
the slot is empty or busy based on the 16-bit number alone.

In Fig. 6, we depict a frame when a reader queries more
than one tags. In this experiment, we configure the number
of time slots in a frame to 256, and each tag only sends
in its chosen slot a RN16 command to reveal its presence.
Figure 6 shows that an RFID reader can encode an arbitrary
tag set into a bitmap, by checking whether each slot contains
a RN16 response. As long as each tag set has been pseudo-
randomly encoded into a bitmap, our MJREP can accept
multiple such bitmaps to perform joint cardinality estimation
as in Fig. 3.

B. Multi-Reader System for a Large Tag Set

In the previous subsection, a single reader with one antenna
is used to encode a small tag set within radio range. For a
typical commercial RFID reader, the effective radio range is
as small as 3~8 meters when querying battery-free passive
tags. It is impossible to use just one reader to cover an entire
warehouse or a cargo port. Below, we discuss how to query a
large tag set in such a place by leveraging a distributed RFID
system with multiple readers and multiple antennas.

In the scenario of a single reader with multiple antennas (for
example, Impinj R420 reader can have at most 32 antennas),
taking a snapshot of its tag set is not complicated. For most oft-
the-shelf readers, the antennas on a same reader are activated
by a round robin fashion. Hence, for one antenna, when
its activation time comes, it can broadcast RFID commands
without interference, and all other antennas will keep listening
and help the activated antenna to receive tag responses. If any
antennas (including the activated one) senses a busy time
slot, then the corresponding bit is one. Given multiple bitmap
snapshots when different antennas are activated and having the
same length, we can merge them by Bitwise OR to construct
a snapshot of tags covered by all antennas of the reader.

In the scenario of multiple readers with multiple antennas,
taking a snapshot of all tags needs more efforts. The key
challenge is that multiple readers have the chance to be
activated at the same time and have radio collisions. For
example, if a tag locating within the intersected radio zone
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of two readers receives commands from both readers at the
same time, then the tag with very simple circuit may not
correctly resolve reader commands. To address this problem,
many reader scheduling algorithms have been proposed by
literature [16], [17], which schedules conflicting readers with
intersected radio zone to different time intervals. Then, each
reader can take a snapshot of its own set of tags without
interference by other readers. We can easily combine the
snapshots from multiple readers by bitwise OR, as long as
these snapshots are of the same length, which can be easily
implemented inside a warehouse. From user perspective, these
multiple readers can be regarded as one “virtual” reader that
takes a bitmap snapshot for the tag set in the entire warehouse.

X. SIMULATION STUDIES

We evaluate the performance of our MJREP protocol by
simulations. The most related work include CCF (Composite
Counting Framework [13]), which is based on the relative
error model, and DiffEstm (Differential Estimator [9]), which
is also based on the relative error model and can only handle
two tag sets. Please check Section II for discussion on the
absolute error model and the relative error model. In this
section, we will compare our MJREP protocol with CCF
and INC-EXC. Note that INC-EXC protocol in Section IV
degrades to DiffEstm [9], when it handles only two tag sets.

We will consider two performance metrics. First, given the
same accuracy requirement defined in (4), we compare the
execution times of all the three protocols. For MJREP, its
execution time is measured as the number of time slots it
takes the reader to encode a tag set into a bitmap, including
the frame length m; and other slots needed to give an initial
rough estimation of tag set size s;. We adopt GMLE [3] to
generate an initial estimate with a 95% confidence interval of
+20% error. The time cost of GMLE hence is approximately
1.544 - Zy.052/0.22 &~ 148 slots [3].

Second, when the three protocols are given the same
execution time, we compare their probabilities of meeting a
given error bound +6. The probability is measured as the
number of joint estimations that meet the error bound divided
by the total number of joint estimations performed in the
simulation. When presenting simulation results, we only show
the probability of successfully bounding the estimation error of
union cardinality ng, and omit the bounding probability of n,,
since by Property 3, Var(ri,) < Var(ng) and the bounding
probability of n, is always larger than ng.

The system model is a distributed RFID system of multiple
business places. Each place is deployed with a reader array to
periodically take a snapshot of its set of tags, whose number
ranges from 0 to 50000 with sy.x = 50000. The average
cardinality of a tag set is s,, = 10000, which reflects that
the normal business flow of tagged objects is smaller than the
worst-case number that the system is designed to handle. The
size of each tag set will be taken from a Gaussian distribution
N(10000,2000%) truncated by the range (0, Smyay]. For the
accuracy requirement, we configure 6 = 5% and 6 = 800 by
default. We will perform simulation studies with other values
of system parameters 0, 0, Smax and Saye as well.

A. Protocol Time Cost to Achieve Same Estimation Accuracy

We compare the average time cost of the three protocols,
when they are forced to meet the same accuracy constraint.
A critical parameter that affects protocol performance is kyax,
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TABLE I
PARAMETER SETTINGS FOR MJREP PROTOCOL

Number of Sets kmax 2 4 6 8

Optimal Sampling Probability p* 1 1 1 1
Theoretical Value of Load factor p  0.86 0.28 0.14 0.09
Empirical Value of Load factor p  1.39 0.68 0.35 0.13

TABLE II
COMPARISON OF TIME COST AMONG PROTOCOLS

Number of Sets kmax 2 4 6 8

Time Cost of MJREP 10,274 21,072 40,234 77,044
Time Cost of INC-EXC 50,920 124,725 230,112 384,616
Time Cost of CCF for Union 42,244 168,976 380,196 675,904

the largest number of tag sets involved in a query. We perform
simulations with k,,,x assigned to the value 2, 4, 6 or 8.

Before presenting simulation results, we explain how to
theoretically configure the parameters of MJREP. With known
error bound # and §, we can compute the value of load factor
p from (8) and the optimal sampling probability p* from (7).
For different k,,,x values, we show the corresponding p and p*
in Table I. We find the optimal sampling probability p* should
be configured close to one in order to eliminate sampling error,
in most circumstances with reasonably high accuracy.

The theoretical values of p are set conservatively (on the
third row of Table I) to guarantee that the accuracy constraint is
satisfied even in the worst case. Alternatively, their values can
be set empirically through simulations for normal situations.
In our simulation, we first compute the initial value of p
from (8) and then perform bi-section search to increase it
as large as possible such that the resulting value of m; will
still satisfy the accuracy requirement. Consequently, on the
last row of the above table, when ky,.x equals 2, 4, 6 or 8§,
the load factor p is empirically configured to 1.39, 0.68, 0.35
or 0.13, respectively. It shows that, to support the queries that
involve more tag sets, the load factor p must reduce, which is
consistent with Eq. (8).

In the second row of Table II, we present the average
execution time of MJREP in simulations (using the empirical
parameters in Table I). When INC-EXC and CCF realize the
same estimation accuracy, their execution times are shown in
the third and fourth rows of Table II, respectively. Because
they are not designed for absolute error bound, there is no
formula to compute their frame length or the number of hash
values stored. With s,,4, = 50,000, we use exhaustive search
by simulation to find their minimum time cost that can meet
the error bound. Table II shows that the frame length used
by INC-EXC is at least 500% larger than that of MJREP,
and the time cost of CCF is even higher. This is because
INC-EXC (or CCF) has to adopt a large frame length (or store
a large amount of tag hash values) to tolerate the worst
case of estimating joint cardinalities for k., tag sets whose
cardinalities range between 45,000 and 50,000. This expensive
time cost is fixed even when encoding small tag sets whose
average size is only about 10,000. The time costs of CCF
can get even worse than the results shown in the last row of
Table 11, if it is applied to another worst scenario of estimating
the intersection of multiple sets, which is empty.

To give a straightforward impression on the time costs of
MJREP, INC-EXC and CCF, we configure ky,,x to 4 and show
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Fig. 7. Protocol execution time under the parameter settings: kmax = 4,
Smax = 50000, 8 = 800, 6 = 5%.

TABLE III
ACCURACY WHEN HANDLING kmax LARGE SETS

Number of Sets kmax 2 4 6 8
Bounding Probability of MJREP 95% 95% 95% 95%
Bounding Probability of INC-EXC 7.8% 9.6% 18.4% 28.8%

TABLE IV

ACCURACY COMPARISON WHEN HANDLING TWO LARGE TAG
SETS AND kmax — 2 SMALL TAG SETS

Number of Sets kmax 2 4 6 8
Bounding Probability of MJIREP  95% 96% 96.6% 99.6%
Bounding Probability of INC-EXC 7.8% 50.4% 86.6% 99%

their comparison results in Fig. 7, where the horizontal axis
is the size of a tag set, which varies from 100 to 50,000, and
the vertical axis is the number of time slots needed (or hash
values stored for CCF) to take a snapshot of the tag set. Due
to the nature of their designs, INC-EXC uses a constant frame
length of 124,725 slots, and CCF uses constant time cost of
recording 168,976 hash values. The frame length of MJREP
is variable. It is small when the tag set is small. For example,
for a set of 10,000 tags, the number of time slots needed by
MIJREP is 2/1082(10,000/0.68)] 4 148 — 16,532, only 13% of
what is needed by INC-EXC. The average time cost of MJREP
is 21,072 shown by the solid horizontal line.

B. Estimation Accuracy Under the Same Execution Time

We compare the estimation accuracy of INC-EXC and
MIJREP, when giving them the same execution time that is
configured by the second row of Table II. Here, we omit the
results of CCF for space, which are worse than INC-EXC.

When presenting simulation results, a difficulty is that the
estimation accuracy is strongly affected by the sizes of tag
sets involved and their ways of overlapping. It is impossible
to present the simulation results of all the cases, and hence we
focus on only two of them. The first is an extreme case that
deals with k.« large sets (sized from 45,000 to 50,000) which
are slightly overlapped. The second case can be regarded as
a normal case that handles two large sets and ky,,x — 2 small
sets whose sizes randomly distribute between 0 and 5,000.

The simulation results of the extreme case are shown
in Table III, and the results of the normal case is in Table IV.
In both tables, our MJREP protocol performs well, because
its probability of bounding absolute estimation error with
6 is always above 1 — 6 = 95%. In contrast, the accu-
racy of INC-EXC is non-satisfactory for the normal case
in Table IV, and severely degrades when handling the extreme
case in Table III.
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Fig. 9. Impact of largest tag set size smax On average estimation error of
MIREP, while the number of tag sets k is fixed to two. (a) Absolute error vs.
tag set size. (b) Absolute error vs. load factor.

C. Impact of Load Factor on MJREP’s Estimation Accuracy

In previous subsections, we have studied the impact of the
number of tag sets ky,,x on estimation accuracy. Below we
evaluate how the accuracy of MJREP is influenced by the load
factor p. The length of each ALOHA frame m; is inversely
proportional to p as shown in equation (7).

We illustrate in Fig. 8(a) the relation between the load factor
p and the average estimation error of union set n¢°, which has
the largest error among all joint cardinalities n, by Property 3.
Clearly, in the above plot, as the load factor p grows, the
average estimation error increases, due to the smaller frame
length m; shown in (7). It is surprising that the error curves in
the plot are staircase functions of p, instead of some smooth
functions. This is because our MJREP protocol requires the
length of an arbitrary frame to be a power of two, so that it
is always an integer multiple of the length of another shorter
frame when we perform the expanded OR operation in Fig. 3.
Note that it is also a requirement by EPC C1G2 standard that
the length of a frame should be a power of two [14].

We depict in Fig. 8(b) the relation between the load factor
p and the probability of keeping estimation error within a
threshold 8 = 800. In the plot, the largest load factor p that
can ensure 95% bounding probability is about 1.4, 0.7 or 0.6,
when the number of tag sets k is 2, 3 or 4, respectively.
These p values are consistent with the crossing points in
Fig. 8(a) between curves and a horizontal line y = 400, which
keep the average estimation error under a threshold 6/7Zs; =
800/Zy.95 = 400, where Zs is defined in (33). This verifies
that MJREP’s estimation results follow Gaussian distributions.

D. Impact of Tag Set Size on MJREP'’s Estimation Error

We additionally evaluate the impact of the largest tag
set size Smax on the average estimation error of MJREP.
We illustrate the evaluation result in Fig. 9, where the y-axis
is the average absolute estimation error of union set size. The
plot (a) shows that MJREP’s error increases as the upper bound
of tag set size Spax grows, when the load factor is fixed to
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Fig. 10. Impact of channel error rate P, on average estimation error of
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1 or 0.4. The plot (b) shows that MJREP’s error increases
as Smax grows, regardless of the value of load factor p. The
reason, as shown by (32) and (24), is that the estimation
variance for the union of all tag sets Var(n§) is linear to the
length of ALOHA frame m;, which is roughly proportional to
the tag set size s; as in Eq. (7). Hence, the standard deviation

of the union set estimation Var(n%) is roughly linear to
/Smax, the square root of the upper bound of tag set size.

E. MJREP’s Estimation Error Under Unreliable Channels

In this subsection, we evaluate the average estimation error
of MJREP under unreliable wireless channels. To simulate the
unreliable channel model whose expected error rate is Pey..,
we generate random numbers uniformly distributed in the
range of [0, 1]. For each zero bit in a snapshot, if the random
number generated is smaller than P,,,, we flip that bit to one,
which simulates one occurrence of time slot corruption.

In Fig. 10(a), we illustrate the average estimation error of
MJREP, when the channel error rate P.,,. is configured to
0%, 5% and 10%. The plot shows that the error of MJREP
increases as P... grows. As a result, when P,.. grows,
the load factor p must be set with a smaller value, if we
want to ensure the average estimation error is smaller than
0/Zs =400.

In Fig. 10(b), We fix the load factor p to 0.4 or 1, and
evaluate the increasing speed of estimation error relative to
the channel error rate P.,... It shows that MJREP’s estimation
error linearly increases as P, grows, when p is fixed.

XI. RELATED WORK

Much existing RFID work concentrates on how to efficiently
collect the IDs of a group of tags, which is called rag iden-
tification. Since the tags communicate with a reader through
wireless medium, inevitably collisions will happen when mul-
tiple tags respond to the same reader simultaneously. Collision
arbitration protocols mainly fall into two categories, i.e., tree-
based protocols [10], and slotted ALOHA protocols [11]. The
de-facto RFID standard, named EPC C1G2, is a variant of the
slotted ALOHA protocol [14].

Another branch of RFID research studies how to accurately
estimate the cardinality of a tag set at low time cost without
collecting any IDs. To minimize the time cost, a plethora of
protocols have been developed, including unified probabilistic
estimator [1], lottery frame protocol [2], generalized maximum
likelihood estimation [3], first non-empty slot based estima-
tion [4], probabilistic estimating tree [5], average run based tag
estimation [6], and zero-one estimator [7]. An important recent

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

work proposed a two-phase protocol named SRC; [8], which
uses a first phase to quickly make a rough estimation of the tag
cardinality, and a second phase based on ALOHA frame for
achieving better accuracy. Our MJREP also adopts a two-phase
protocol for efficiently encoding a tag set into a bitmap.

A recent research direction is to extend the tag count-
ing problem from a single set to multiple sets. Some
researchers focus on two tag sets scanned by a reader at
different times, and estimate the cardinalities of their inter-
section/differences [9], [18]-[21]. Such information can help
count the number of missing tags (which exist in the previous
tag set, but no longer in the current), remaining tags (existing
in both sets), and new tags (opposite to missing tags). Another
work named CCF can estimate the cardinality of an arbitrary
set expression [13]. It encodes each tag set into a sketch named
k-min hash values [22], which can support the merging of
multiple sketches. Its shortcoming is that it needs the sketches
of all tag sets to be configured with the same £ value.

However, for this tag counting problem with multiple sets,
the previous studies are still limited from three perspectives.
Firstly, most of them are not designed to estimate cardi-
nality of a general set expression, except the work in [13].
Secondly, all of them specifies the accuracy requirement by
the relative error model. Unfortunately, when the quantity to
estimate approaches zero, their time cost to meet the accuracy
requirement skyrockets to infinity (see Section II for detailed
discussion). The correct choice is to adopt instead the absolute
error model. Thirdly, previous work requires all tag sets must
be compressed into data structures (called snapshots) with the
same length, such that multiple snapshots can be merged easily
to estimate the union of multiple sets [9], [13], [18], [19].
However, these snapshots may not have an equal length,
especially when the tag sets they encode dramatically differ
in sizes, which regretfully is commonly seen in real worlds.

A very recent work [12] addresses the above third problem
by allowing the bitmap-based snapshots of tag sets to have
adaptively different lengths, in order to reduce protocol time
cost. But the paper is still inadequate in that it only deals
with the joint cardinality estimation of two tag sets. In many
applications, it often requires to estimate the cardinality of a
general set expression that may involve an arbitrary number
of tag sets. Our paper can solve this problem time-efficiently.

XII. CONCLUSION

In this paper, we have formulated a problem called joint
cardinality estimation, in which the cardinality of an arbitrary
set expression (involving multiple tag sets from different spa-
tial or temporal domains) is estimated with bounded absolute
error. We propose a protocol named MJREP with a novel
design that allows multiple tag sets to be encoded into bitmaps
with varied lengths. It provides a new method called expanded
OR to combine the multiple bitmaps, and it designs formulas
to exploit the combined information, estimate the cardinalities
of all elementary subsets, and finally calculate the cardinality
of the desired set expression. We have analyzed the bias
and variance of MJREP, and also the optimal setting of its
protocol parameters under predefined accuracy requirements.
We have performed extensive simulation studies. The results
show that our protocol can reduce the execution time by
multiple folds as compared with INC-EXC and CCF protocols,
which require all tag sets must be encoded into equal-length
snapshots.
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APPENDIX
PROBABILITY OF A TAG IN IV, SETTING A BIT IN OR,

We firstly define a few notations. In the binary format of z,
the series of one-bits from low end to high is at positions

U(z,1), {(x,2), ..., {(z,be()), (39)

where £(x,7) is the location of the ith one-bit in x, and be(z)
is the number of one-bits in x (or called the bit count of x).
For simplicity, we denote

« the location of the lowest-order 1-bit /(x, 1) by lo(x), and

o the location of the highest-order 1-bit ¢(x,bc(x))

by hi(z).

By the definition of elementary subset N, in (3), the one-
bits in binary format of x decide which tag sets will include
Nz, ie., Sp(e,1), Se(a,2) - - > Se(x,be(x))- Since the tag set S;
are encoded by the ALOHA frames B,;, the one-bits in
z also decide which frames may receive responses from
tags in V,.

(40)

Byz,1), Be,2) s Bo(a,be(x))

Property 4: For an arbitrary tag from the elementary sub-
set N, it may respond in (or be encoded by) the frames
Bi(z,1), Be(z,2)s - - - s Be(z,be(x)). The tag will be sampled to
respond either in all these frames or in none of them,
since the sampling process is performed in a pseudorandom
fashion.

Property 5: Assume a tag in N, is sampled to respond, and
its list of encoding frames in (40) includes By(y iy and By(z i),
where the former frame is no longer than the latter my(; ;) <
My(q,i)- For an arbitrary slot number j, if the tag does not
pick the (j mod my(, ))th slot in frame By, ;), it will neither
select the (j mod my(, ;y)th slot in By ).

Proof: Suppose a tag id is sampled and does not select
the (j mod my(, ;)th slot in frame By, ;). ie., H(id ©
R) # j mod my(, ;. Since both my(, ;) and my, ) are
the powers of two and my(, ;) < My(y,q1), the former is able
to divide the latter. Thus, H(id © R) # j mod my(, i),
implying that the jth slot in By ;) is not selected
by the tag. [ |

Property 6: Among the list of frames in (40), if in the first
frame By, 1y, a tag in subset N, does not select the (j mod
My(z,1))th slot, then in any subsequent frame By, ;) with
i > 1, the tag neither selects the (j mod my(, ;))th slot.

Consider an arbitrary tag id in elementary subset N,.
As mentioned in (40), the frames that may receive responses
of the tag id are Bé(x,l)vBZ(z,Q)v R aBZ(x,bc(z))- Further
consider the bitmap OR,, which is the expanded OR of
bitmaps By, 1), Bey,2)s- -+ Begy,be(y)) as defined in equa-
tion (9). Among these selected bitmaps as marked by v,
the bitmaps that may receive the response of tag id in the
subset IV, are

Bé(x/\y,bc(m/\y)) (41)

According to (9), the jth bit of bitmap OR, is the OR of
the (j mod my(, ;))th bit in bitmap By, ;) with the index
¢ ranging from 1 to be(y). But the tag in subset N, only
appears in the list of bitmaps in (41). Hence, we only
need to analyze the probability for the tag to
assign the (j mod my(zay,i))th bit in bitmap Bygay.q
with ¢ € [1, be(x A y)]

Bé(x/\y,l)7 BZ(I/\y,Q); [ERE BZ(I/\y,i)v R

As explained in Property 6, if the tag id does not select the
(j mod my(zny,1))th slot in By, 1), then it neither selects
the (j mod my,, ))th slot in By, for any i value.
Hence, the probability that the tag id picks the jth slot in
OR, equals the probability that the tag ass1gns the (j mod

p
My (zry,1))th bit in Bygny 1, ie. Ty = et , where

lo(zAy) and £(zAy, 1) are the location of lowest 1-bitin zAy.
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