2019 IEEE Space Computing Conference (SCC)

Neutron Radiation Testing of Fault Tolerant RISC-V Soft Processors
on Xilinx SRAM-based FPGAs

Andrew E. Wilson and Michael Wirthlin
NSF Center for Space, High-performance, and Resilient Computing (SHREC)
Brigham Young University
Provo, Utah, USA
{andrew.e.wilson, wirthlin} @byu.edu

Abstract—Many space applications are considering the use
of commercial SRAM-based FPGAs over radiation hardened
devices. When using SRAM-based FPGAs, soft processors may
be required to fulfill application requirements, but the FPGA
designs must overcome radiation-induced soft errors to provide
a reliable system. TMR is one solution in designing a fault
tolerant soft processor to mitigate the failures caused by SEUs.
This paper compares the neutron soft-error reliability of an
unmitigated and TMR version of a Taiga RISC-V soft processor
on a Xilinx SRAM-based FPGA. The TMR RISC-V processor
showed a 33X reduction in the neutron cross section and a
27% decrease in operational frequency, resulting in a 24x
improvement of the mean work to failure with a cost of around
5.6 resource utilization.

Keywords-RISC-V; Fault tolerance; redundancy; Triple
Modular Redundancy (TMR); Single Event Upset (SEU); fault
injection; radiation testing; FPGA; soft processor

I. INTRODUCTION

SRAM-based FPGAs can provide custom hardware sys-
tems using a vast quantity of reprogrammable resources.
Such FPGAs contain lookup tables (LUTs), flip-flops (FFs),
high-speed 1/0, digital signal processing (DSP) units, and
block RAM to meet the needs of the designer. As SRAM-
based FPGAs can be fully or partially reprogrammed an
unlimited amount of times, they have been used for proto-
typing, as interconnections between different components,
and for deploying accelerated hardware solutions.

A RISC-V processor can be implemented as a soft pro-
cessor within the FPGA configurable logic as defined by
a hardware description language (HDL) [1]. Soft processors
can be used when a portion of the design proves too complex
for a simple state machine and/or there is a need for a
software-controlled system. These soft processors can be
customized to the given application and provide a hybrid
software and hardware system with very little overhead of
the FPGA resources. The use of a soft processor allows
additional support of already existing software tool-chains
and libraries. These established software libraries can be
utilized to shorten development time and aid in the operation

This work was supported by the /UCRC Program of the National Science
Foundation under Grant No. 1738550.

978-1-7281-3194-8/19/$31.00 ©2019 IEEE
DOI 10.1109/SpaceComp.2019.00008

25

of the system. FPGAs implementing soft processors can
provide great flexibility and performance for applications in
both terrestrial and space environments.

Radiation found in both space and terrestrial environments
can prove hazardous to SRAM-based FPGAs and the soft
processors implemented within. This radiation can cause sin-
gle event upsets (SEUs) that flip bits in configuration RAM
(CRAM) and block RAM (BRAM) [2]. SEUs can cause
functional failures in the design within the FPGA by corrupt-
ing the state and circuit configuration. As a soft processor’s
functionality is defined by both the hardware (CRAM) and
software (BRAM), SEUs can produce unpredictable and
unwanted results that may lead to a critical failure of the
system. This hazard must be taken into consideration when
developing custom processors on FPGAs for highly-reliable
systems. The use of SEU mitigation may be required to
improve the functional reliability [3] to meet the required
allowable risk of the application.

Triple modular redundancy (TMR) is an effective mitiga-
tion technique to improve the reliability of SRAM-based
FPGA soft processor designs in harsh radiation environ-
ments [4]. TMR uses redundant copies and voters to mask
errors that would cause functional errors within the system.
Though TMR provides a great improvement in reliability,
it comes at a cost of greater power consumption, higher
resource utilization, and slower operational frequency. If
more than one redundant module fails, TMR cannot pro-
vide fault mitigation and the system fails. To prevent an
accumulation of SEUs, the CRAM is scrubbed to a known
good state without disrupting the operation of the FPGA.
To repair any corrupted state within the processor, the state
is resynchronized with the output of the other redundant
modules.

This paper describes the implementation of a Taiga RISC-
V soft processor [5] targeted to a Xilinx SRAM-based FPGA
and compares the improvement in reliability of a TMR
version to that of the original, unmitigated design. The goal
of this experiment is to understand the difference in the
neutron cross section of a TMR RISC-V system against a
conventional design. Using the BL-TMR tools developed at
Brigham Young University [6], the TMR processor showed

IEEE
computer
pSOCIe

Authorized licensed use limited to: Brigham Young University. Downloaded on July 30,2020 at 22:53:54 UTC from IEEE Xplore. Restrictions apply.

ty

a 33x reduction in the neutron cross section and a 27%
decrease in operational frequency, resulting in a 24X im-
provement of the mean work to failure with a cost of around
5.6 resource utilization.

II. RISC-V BACKGROUND

RISC-V is a promising new instruction set architecture
(ISA) that is royalty free, allowing for free use in academia,
research, and industry. Its development began in 2010 at the
University of California, Berkeley [7] and has been main-
tained by a non-profit organization with an ever-growing
membership of individuals and companies [8]. The RISC-
V foundation and its 200+ members have and are currently
defining and ratifying specifications for user-level instruc-
tions, privileged instructions, debug protocols, and memory
models.

RISC-V has specifications for 32-bit, 64-bit, and 128-bit
processors with established extensions and opportunity for
custom application-specific instructions. These extensions
include compressed, integer multiplication and division,
atomic, and floating-point instructions. RISC-V is already
supported by a rich pool of software libraries, tools, and
operating systems. There are many open-source implemen-
tations available for use as soft processors on FPGAs, such
as the PicoRV32 [9], Orca [10], VexRISCV [11], and SerRV
EHI1 [12]. This ISA proves to be a strong candidate as a
target for a fault tolerant soft processor with its growing
support and wide adoption.

Taiga is a 32-bit RISC-V processor designed specifi-
cally to be used as a soft processor for Intel and Xilinx
SRAM-based FPGAs [13]. This processor was developed
for research in heterogeneous processor systems and high
performance soft processors. The processor, in addition to
the base instruction set, also supports the multiply/divide and
atomic operations extensions (RV32IMA). The Taiga proces-
sor, implemented in SystemVerilog, supports configurable
options such as caches, multiple bus standards, translation
lookaside buffers (TLBs), and memory management units
(MMUgs). The processor is designed to support Linux-based
shared-memory systems.

Figure 1 shows a diagram of the pipelined processor with
multiple independent execution units. For each execution
unit, the upper number is the cycle latency for that type
of instruction. The number below is the rate at which the
unit can start additional requests (the initiation interval).
When multiple numbers are present, there can be multiple
latencies, and for units with variable latencies, the numeric
value of the minimum latency is given in conjunction with
a plus symbol. Additional execution units would have no
restrictions on latency. This allows for easy integration of
new functional units into the processor.

The Taiga processor design used approximately 33%
fewer slices while clocking 39% faster than a LEON3-based
system built on a Xilinx Zynq X7CZ020 [5]. This processor

26

PROCESSOR PIPELINE FETCH BLOCK

FETCH / PRE-DECODE

DECODE / ISSUE J

LATENCY L] L] . . ® 3/a+
BR { ALU | CSR { MuL { DIv | LS

INITIATION - - - - LIRS
INTERVAL

TLB MMU 4

Br
SCRATCH| | prep

INST i g >
CACHE

¥3Ligyy 1
FOVAYIUIN| WIN

LOAD STORE UNIT

TLB

| DaA
SCRATCH | CACHE >

Bus
MASTER

oMMy

INSTRUCTION TRACKING REGISTER FILE

IDGEN | REGFILE = 7

INUSE
REGS D

INUSE

INSTQ BIT

WB

| SNg WILSAS [

Figure 1. Taiga Overview and Pipeline Structure. [13, Fig. 2].

proves to be a capable soft processor for SRAM-based
FPGAs. It is easy to implement in a design and develop
software using the RISC-V software libraries.

III. FAULT TOLERANT RISC-V SOFT PROCESSOR

Soft processors have been implemented in SRAM-based
FPGAs for operation in harsh radiation environments, and
many efforts have been made to improve the reliability
of these processors. Techniques in detecting, recovering
from, and mitigating against these SEU failures have been
developed both in hardware and software. Though these
techniques improve reliability, they often come at a cost in
resource utilization, power consumption, and performance.

A. Fault Tolerant Soft Processors

In many of the efforts to produce a fault tolerant soft
processor, the LEON2 and LEON3 processors were targeted
and modified to provide improved reliability [14]-[16]. One
study reported a neutron radiation test resulting in a 27X
improvement for a TMR LEON3 with CRAM scrubbing and
a 50x improvement with both CRAM and BRAM scrubbing
[17]. In addition, software techniques have been used to
improve the detection of failures and provide adequate
recovery without compromising the system. These studies
have shown an improvement with much less overhead than
TMR requires [18]. A combination of hardware and software
techniques can be used to improve the reliability of soft
processors.

Other work has looked at implementing TMR with the
Picoblaze [19], [20], a free 8-bit soft processor provided
by Xilinx. TMR, error correction codes (ECC), and CRAM
single error correction (SEC) are used to provide a fault
tolerant processor with the ability to detect and recover from
errors. Xilinx also offers a Microblaze TMR Subsystem for
use within their FPGAs [21]. This subsystem includes the
TMR Microblaze with a soft error mitigation (SEM) core to
perform CRC checks and SEC on the configuration memory.

Authorized licensed use limited to: Brigham Young University. Downloaded on July 30,2020 at 22:53:54 UTC from IEEE Xplore. Restrictions apply.

B. TMR RISC-V

TMR is a fault tolerance technique that can be used for
SEU mitigation to improve the reliability of the RISC-V
soft processor. Within the soft processor, three redundant
domains and voters are used to mask any failures within
one of the redundant domains (see Figure 2). Each domain
is provided the same input stimulus and will have the
same output during correct operation. If one domain is
corrupted, its output may not match the corresponding output
of the other domains. A majority voter is used to mask
the erroneous output and produce the result that is agreed
upon by the other two domains [22]. The voters can be
triplicated as well to reduce single points of failure within
the design. With this, TMR is able to mask any failure of
a single domain. The design can be partitioned down to the
FPGA primitives (i.e. LUTs, flip-flops, BRAM cells) and
voters inserted between partitions to decrease the size of
each partition and improve reliability [23]. Alternately, the
processor can be triplicated at the module level to maintain
the same performance with a lower cost to utilization, but
with only one voter and TMR partition.

—> —>
—| Mmodule A » module B [
Triplication and
Voter Insertion
—> —>
—|module A module B[
—> —>
—| module A, module B,
—> —>
—|module A, module B,[

Figure 2. TMR.

The TMR RISC-V processor needs a repair mechanism
to continually recover the system from the masked errors
in order to prevent multiple TMR domains from failing. A
processor using TMR without any repair will have higher
reliability early in its operation as it masks the first few
errors, but as the TMR design continues to collect errors,
its reliability will eventually become worse than the original
design. This is due to the increase in circuit size as redundant
modules and voters are introduced, thus creating a bigger
target.

To repair any SEU upsets in the configuration memory
of an SRAM-based FPGA, CRAM scrubbing is employed
to repair the configuration bit upset and prevent the accu-
mulation of errors. Configuration scrubbing is performed by
rewriting the original FPGA bitstream to scrub any incorrect

27

values [24]. CRAM scrubbing does not affect the operation
of the FPGA nor interfere with the BRAMs.

The dynamic memory of the TMR processor, such as
registers and caches, may also become corrupt in one
of the TMR domains. The voters use feedback loops to
resynchronize the state of the correct TMR domains to all
the domains on the next cycle. This allows any corrupted
state to automatically be repaired each cycle.

Though the soft processor is susceptible to SEUs, with the
use of mitigation, the reliability can greatly be improved. If
only one domain of the TMR is affected and the system
is able to repair itself before another domain fails, the
system can maintain operation. The possible improvement
to reliability is limited by the scrub rate, imperfections in
tools allowing for single point of failure CRAM bits, and
multiple bit upsets that affect multiple domains.

The BL-TMR tool has shown results of 50-100x improve-
ment in reliability despite these limitations [17]. This tool
automates the process of triplicating the design and adding
triplicated voters with necessary feedback to resynchronize
any state. It performs fine-grained TMR by triplicating
all FFs, LUTs, BRAMS, and DSPs and inserting voters
between these primitives. Xilinx-specific primitives such as
the Mixed-Mode Clock Manager and clock buffer are ig-
nored in this setup. The tool’s input is a vendor-independent
electronic design interchange format (EDIF) file such as can
be exported from Xilinx Vivado. The tool then triplicates
the design and inserts the needed voters. The finished TMR
EDIF file can be imported into Xilinx Vivado as a post-
synthesis file, whereupon the vendor place and route tools
can generate a full bitstream.

IV. EXPERIMENTAL DESIGN

To fully utilize the neutron radiation test, the design was
scaled up to contain as many processors as possible. This pa-
per introduces two experimental designs implemented on the
Xilinx Kintex Ultrascale KU0O40 FPGA. These designs used
the Taiga RISC-V Processor, one containing 20 unmitigated
processors and the other with 20 TMR processors. These
designs were irradiated in a neutron beam in order to induce
faults. The purpose of this test was to understand the baseline
cross section of the unmitigated processor and compare it
to the reduction in cross section of the TMR processor. The
cross section is the ratio between the number of SEUs that
cause failures and the amount of radiation fluence the device
was exposed to. The larger the calculated cross section, the
more sensitive the design is to SEU upsets.

This experiment implemented Taiga RISC-V processors
on a Kintex Ultrascale KCU105 development board with
the XCKUO040-2FFVA1156E FPGA. The base Taiga design
was provided through an open source repository [25]. During
this experiment, the processor did not use any caches, TLBs,
or MMUs, which were removed from the configuration. A
16KB dual-ported BRAM was used for both the instruction

Authorized licensed use limited to: Brigham Young University. Downloaded on July 30,2020 at 22:53:54 UTC from IEEE Xplore. Restrictions apply.

Table T
COMPARISON OF SINGLE PROCESSOR TEST DESIGNS

[Single Processor Test Utilization

Design LUT

FF

BRAM DSP FMAX

Taiga Processor 1954 (0.80%)

1044 (0.19%)

6 (1.00%) 4 (0.21%) 227.2 MHz

Unmitigated Test Design 5173 (2.13%)

7606 (1.57%)

6 (1.00%) 4 (0.21%) | 227.2 MHz

TMR Test Design 29163 (12.03%)

22818 (4.71%)

18 (3.00%) | 12 (0.63%) | 165.0 MHz

Cost Ratio 5.64x

3.0x

3.0% 3.0x 0.73x

Table 11
COMPARISON OF 20 PROCESSOR TEST DESIGNS

[20-Processor Test Utilization

Design LUT FF

BRAM DSP FMAX

Unmitigated | 43350 (17.88%)

36037 (7.43%)

120 (20.00%) 202.4 MHz

80 (4.17%)

TMR 222029 (91.60%)

108021 (22.28%)

360 (60.00%)

240 (12.50%)

149.3 MHz

Cost Ratio 5.12x 3.0x

and data memory. The utilization of a single processor with
this configuration is reported in Table I. The CRAM uti-
lization is represented by the LUTs and FFs. The utilization
of the unmitigated design in Table I shows the additional
resources required for the test hardware.

To verify the functionality of the processor, a Dhrystone
benchmark was executed and the results were compared.
This RISC-V Dhrystone benchmark was developed by the
RISC-V foundation and is available through their online
repositories [26]. The benchmark provides a functional test
(though not full verification) of the integer instructions
on the processor. A checksum was computed using all
the Dhrystone calculated values. The processors continually
looped through the execution of the Dhrystone benchmark.

16KB

BRAM @ @ @
1

16KB
BRAM
20

Taiga Core 1 Taiga Core 20

\ 4

@—""

JTAG Status
Interface

CPU Status 20

Figure 3. A block diagram of the experimental design.

For every iteration of the benchmark, the checksum and
iteration count were reported as the CPU status over a JTAG
interface. This CPU status was compared to a golden value
to confirm correct operation. The JTAG reporting interface
was updated to allow messages to be passed through a large
shift register. This made it easy to add as many processors as
needed. Figure 3 shows a simple block diagram of how the
multiple processors were connected to the JTAG interface.

Using the BYU BL-TMR tools, the Taiga processor was

28

3.0x

3.0%

0.74 %

Figure 4.
processors.

The floorplan for the unmitigated design of 20 Taiga RISC-V

triplicated, and voters were inserted into the design. The
comparison of utilization of the unmitigated design and the
TMR version are reported for both the single processor de-
sign (see Table I) and for the 20 processor design (see Table
II). The final experiment of 20 Taiga RISC-V processors
used about 20% of the resources available on the FPGA
(see Figure 4). The TMR designs resulted in about a 5x
increase of LUTSs; a 3x increase of FFs, BRAMs, and DSPs;
and a 27% decrease in operation frequency. The greater

Authorized licensed use limited to: Brigham Young University. Downloaded on July 30,2020 at 22:53:54 UTC from IEEE Xplore. Restrictions apply.

Figure 5.
Processors.

The floorplan for the TMR design of 20 Taiga RISC-V

increase of LUTs over FFs is due to the triplicated voters
and resynchronization logic. Though the chosen FPGA could
contain 100 unmitigated processors (limited by BRAM), 20
processors was the greatest amount that could be triplicated
within the FPGA. The 20 TMR processor design used about
90% of the available LUTs in the FPGA (see Figure 5).

For both of the experimental designs, configuration scrub-
bing was implemented over a 50 MHz JTAG interface. This
active repair prevents multiple upsets from accumulating
and allows TMR to operate without multiple failures. The
configuration scrubbing was performed by an external device
known as the JTAG Configuration Manager (JCM), which
has been developed at Brigham Young University [27].

V. NEUTRON RADIATION TEST

These two experimental designs were tested with a neu-
tron radiation beam at the Los Alamos Neutron Science
Center (LANSCE). This wide spectrum neutron beam is
commonly used for testing of integrated circuits to es-
timate circuit sensitivity to terrestrial neutrons [28]. The
Kintex Ultrascale KCU105 development board was aligned
to the beam, as depicted in Figure 6. The board contains
an XCKUO040-2FFVA1156E FPGA, fabricated using 20-nm
technology. Each of the designs were tested at a normal
angle of incidence and at room temperature. The neutron

29

Figure 6.

KCU105 Setup at the Neutron Radiation Test.

P T Y
| Scrub Configuration |
i~ Memory i
VA
\J
Correct Failed "
- Poll CPU Status -1 SN Sareraticn
emory
e CEE—
Y
e
Correct
< Poll CPU Status
-~ J
Failed
A
Full Reconfiguration —
.
Figure 7. Radiation Testing Flow

beam was collimated to 2 inches.

In previous tests, the board’s on-board power regulators
proved to be highly susceptible to failure in the radiation
test. To overcome this issue, connections were soldered to
the board to bypass the power regulators, and the board was
powered by an external power source that maintained the
correct voltages needed by the FPGA.

Using the JTAG interface on the development board,
the JCM was able to interact with the FPGA during the
radiation test and perform the tasks shown in Figure 7. The
JCM managed the configuration of the FPGA, scrubbed the
CRAM, reported CRAM upsets, and polled the status of the
processors. The JCM used a 50 MHz JTAG clock to perform
a readback of the configuration bits and repair any bits that
were upset by using a golden copy of the bitstream. Using
the JTAG interface, the JCM would poll the status of each
of the 20 processors and determine whether they matched
the correct checksums for the Dhrystone and whether the

Authorized licensed use limited to: Brigham Young University. Downloaded on July 30,2020 at 22:53:54 UTC from IEEE Xplore. Restrictions apply.

Table III
NEUTRON RADIATION DATA

Desien Fluence (n/cm?) Observed Failures Cross Section Cross Section +95% Confidence Reduction
g CRAM Upsets (cmz) Per Processor -95% Confidence
20 Processors 10 9 10 244 x 1070
. 252 2 . 1
Unmitigated 1.15 x 10 527 5 4.54 x 10 2,27 x 10 210 %1070 X
20 Processors 1 10 12 9.81 x 102
TMR 2.00 x 10 52139 27 1.35 x 10 6.76 x 10 445 % 107 33x

processors progressed in Dhrystone iteration. If a processor
was reported as failing the check, an additional scrub cycle
and status poll were performed. If a processor continued
to perform incorrectly, the entire device was reconfigured,
restarting all 20 processors. The total duration for either a
full readback or configuration of the CRAM was about 4
seconds. No other recovery methods were used during this
test.

VI. TEST RESULTS

During the neutron test, the unmitigated design reported
52 errors with a total fluence of 1.15 x 10'°, while the TMR
design reported 27 errors with a total fluence of 2.00 x 10'!.
Table III shows the observed upsets of the configuration
bits and the number of failures of the processors running
the Dhrystone benchmark. Though the BRAM memory was
triplicated in this design, there was no way to observe
any upsets within the memory. The fluence for the test
was calculated using modifiers for the beam degradation in
regards to distance and any board degradation of any other
experiments in front of this device.

The cross section is the ratio between the failures and the
total fluence the device was exposed to. The effectiveness
of the TMR is represented by the reduction in the cross
section. Table III shows the total neutron cross section for
both designs. The estimated cross sections per processor
with 95% confidence intervals [29] are also reported within
the table. There was a 33 x reduction in the neutron cross
section between the unmitigated and TMR designs. With this
reduction in neutron cross section and the 27% decrease in
operational frequency, the TMR processor achieved a 24 x
improvement of the mean work to failure.

Table IV
TYPES OF UPSETS DURING PROCESSOR FAILURES
Single Bit | Multi-Bit | Unobserved | Total
Non TMR 18 15 19 52
TMR 10 6 11 27

The processor failures fall into three categories: single bit
upsets, multi-bit upsets, and unobserved upsets. Table IV
shows the frequency of these different failures during the
radiation test. Single bit upsets identify possible single point
failures within the TMR design. These single point failures
could be related to the FPGA’s routing of the data, clocks,

30

and resets. Though the TMR design may be able to mask
multi-bit upsets, it is not guaranteed to mitigate all multi-bit
upsets. Processor failures that showed no observable upsets
could be potential corruption in the BRAM or a single event
functional interrupt (SEFI) of the FPGA.

The improvement of the TMR design was limited by
single points of failure, multi-bit upsets, and a lack of pro-
tection for the BRAM memory. Other research is being done
to understand and overcome the limitations of TMR when
implemented on SRAM-based FPGAs [30], [31]. Future
work will also consider additional techniques to improve the
reliability of the RISC-V soft processor and recover from
these various types of failures.

VII. CONCLUSION

As soft processors on SRAM-based FPGAs are used in
space applications and other radiation-hazardous environ-
ments, their reliability and risk need to be understood. This
paper has provided a baseline study of the neutron cross
section of a Taiga RISC-V processor with a comparison to
a TMR version. The successful radiation test of the TMR
design showed a 33 x reduction in the neutron cross section
and a 27% decrease in operational frequency, resulting in
a 24x improvement of the mean work to failure with a
cost of around 5.6x resource utilization. Though this test
represented a terrestrial environment, these results are en-
couraging and motivate more exploration in the performance
and reliability of soft processors and their applications in
extra-terrestrial radiation hazardous environments.

Future work will compare hardware and software tech-
niques in detecting, recovering, and mitigating errors for
the development of a highly fault tolerant soft processor.
Continuing research in neutron and higher energy radiation
experiments as well as emulated fault injection tests will
verify these techniques and their effectiveness. Additional
BRAM protection techniques, such as ECC and active
scrubbing, will be considered. This future research will also
explore more demanding software and complex extensions
of the RISC-V ISA. New versions of the Taiga RISC-V
processor will help in developing a highly fault tolerant soft
processor capable of supporting operating systems such as
Linux for space applications.

Authorized licensed use limited to: Brigham Young University. Downloaded on July 30,2020 at 22:53:54 UTC from IEEE Xplore. Restrictions apply.

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

[13]

REFERENCES

J. G. Tong, I. D. L. Anderson, and M. A. S. Khalid, “Soft-
core processors for embedded systems,” in 2006 International
Conference on Microelectronics, Dec 2006, pp. 170-173.

P. Graham, M. Caffrey, J. Zimmerman, D. Eric Johnson,
P. Sundararajan, and C. Patterson, “Consequences and cat-
egories of sram fpga configuration seus,” Proc. 5th Annu. Int.
Conf. Military Aerosp. Program. Logic Devices, 01 2003.

H. M. Quinn, P. S. Graham, K. Morgan, J. Krone, M. P.
Caffrey, and M. J. Wirthlin, “An introduction to radiation-
induced failure modes and related mitigation methods for
xilinx sram fpgas,” in ERSA, 2008.

Y. Ichinomiya, S. Tanoue, M. Amagasaki, M. lida, M. Kuga,
and T. Sueyoshi, “Improving the robustness of a softcore pro-
cessor against seus by using tmr and partial reconfiguration,”
in 2010 18th IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines, May 2010, pp.
47-54.

E. Matthews and L. Shannon, “Taiga: A new risc-v soft-
processor framework enabling high performance cpu archi-
tectural features,” in 2017 27th International Conference on
Field Programmable Logic and Applications (FPL), Sep.
2017, pp. 1-4.

B. Pratt, M. Caffrey, P. Graham, K. Morgan, and M. Wirthlin,
“Improving fpga design robustness with partial tmr,” in 2006
IEEE International Reliability Physics Symposium Proceed-
ings, March 2006, pp. 226-232.

A. Waterman, Y. Lee, D. Patterson, and K. Asanovic, The
RISC-V Instruction Set Manual, Volume I: Base User-Level
ISA. EECS Department, University of California, Berkeley:
Technical Report UCB/EECS-2011-62, 5 2011.

(2019) Members at a glance. RISC-V Foundation. [Online].
Available: https://riscv.org/members-at-a-glance/

C. Wolf, “Picorv32,”
picorv32, 2019.

https://github.com/cliffordwolf/

VectorBlox, “Orca,” https://github.com/VectorBlox/orca,
2019.
SpinalHDL, “Vexriscv,” https://github.com/SpinalHDL/

VexRiscv, 2019.

W. D. Corporation, “Swerv ehl,” https://github.com/
westerndigitalcorporation/swerv_ehl, 2019.

E. Matthews, Z. Aguila, and L. Shannon, “Evaluating the
performance efficiency of a soft-processor, variable-length,
parallel-execution-unit architecture for fpgas using the risc-v
isa,” in 2018 IEEE 26th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM),
April 2018, pp. 1-8.

31

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

M. J. Wirthlin, A. M. Keller, C. McCloskey, P. Ridd,
D. Lee, and J. Draper, “Seu mitigation and validation of
the leon3 soft processor using triple modular redundancy for
space processing,” in Proceedings of the 2016 ACM/SIGDA
International ~ Symposium on Field-Programmable Gate
Arrays, ser. FPGA ’16. New York, NY, USA: ACM,
2016, pp. 205-214. [Online]. Available: http://doi.acm.org/
10.1145/2847263.2847278

A. Lindoso, L. Entrena, M. Garca-Valderas, and L. Parra, “A
hybrid fault-tolerant leon3 soft core processor implemented in
low-end sram fpga,” IEEE Transactions on Nuclear Science,
vol. 64, no. 1, pp. 374-381, Jan 2017.

M. Psarakis, A. Vavousis, C. Bolchini, and A. Miele, “Design
and implementation of a self-healing processor on sram-based
fpgas,” in 2014 IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems (DFT),
Oct 2014, pp. 165-170.

A. M. Keller and M. J. Wirthlin, “Benefits of complementary
seu mitigation for the leon3 soft processor on sram-based
fpgas,” IEEE Transactions on Nuclear Science, vol. 64, no. 1,
pp. 519-528, Jan 2017.

N. H. Rollins, “Hardware and software fault-tolerance of
softcore processors implemented in sram-based fpgas,” Ph.D.
dissertation, Provo, UT, USA, 2012, aAI3506158.

C. Hong, K. Benkrid, X. Iturbe, and A. Ebrahim, “Design and
implementation of fault-tolerant soft processors on fpgas,” in
22nd International Conference on Field Programmable Logic

and Applications (FPL), Aug 2012, pp. 683—686.

I. M. Safarulla and K. Manilal, “Design of soft error tolerance
technique for fpga based soft core processors,” in 2074
IEEE International Conference on Advanced Communica-
tions, Control and Computing Technologies, May 2014, pp.
1036-1040.

Microblaze Triple Modular Redundancy (TMR) Subsys-
tem v1.0, https://www .xilinx.com/support/documentation/ip_
documentation/tmr/v1_0/pg268-tmr.pdf, Xilinx, 10 2018.

J. M. Johnson and M. J. Wirthlin, “Voter insertion algorithms
for fpga designs using triple modular redundancy,” in
Proceedings of the 18th Annual ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, ser.
FPGA ’10. New York, NY, USA: ACM, 2010, pp.
249-258. [Online]. Available: http://doi.acm.org/10.1145/
1723112.1723154

M. Niknahad, O. Sander, and J. Becker, “Fgtmr - fine grain
redundancy method for reconfigurable architectures under
high failure rates,” in The 16th North-East Asia Symposium
on Nano, Information Technology and Reliability, Oct 2011,
pp. 186-191.

J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb, “Fpga
partial reconfiguration via configuration scrubbing,” in 2009
International Conference on Field Programmable Logic and
Applications, Aug 2009, pp. 99-104.

E. Matthews, “Taiga,” https://gitlab.com/sfu-rcl/Taigas, 10
2018.

Authorized licensed use limited to: Brigham Young University. Downloaded on July 30,2020 at 22:53:54 UTC from IEEE Xplore. Restrictions apply.

[26] R.-V. Foundation, “riscv-tests,” https://github.com/riscv/riscv-
tests, 2019.

[27] A. Gruwell, P. Zabriskie, and M. Wirthlin, “High-speed
fpga configuration and testing through jtag,” in 2016 IEEE
AUTOTESTCON, Sep. 2016, pp. 1-8.

[28] P. W. Lisowski, C. D. Bowman, G. J. Russell, and S. A.
Wender, “The los alamos national laboratory spallation
neutron sources,” Nuclear Science and Engineering, vol.
106, no. 2, pp. 208-218, 1990. [Online]. Available:
https://doi.org/10.13182/NSE90-A27471

[29] H. Quinn, “Challenges in testing complex systems,” [EEE
Transactions on Nuclear Science, vol. 61, no. 2, pp. 766—
786, April 2014.

[30] M. Cannon, A. Keller, and M. Wirthlin, “Improving the effec-
tiveness of tmr designs on fpgas with seu-aware incremental
placement,” in 2018 IEEE 26th Annual International Sympo-
sium on Field-Programmable Custom Computing Machines
(FCCM), April 2018, pp. 141-148.

[31] M. J. Cannon, A. M. Keller, H. C. Rowberry, C. A. Thurlow,
A. Prez-Celis, and M. J. Wirthlin, “Strategies for removing
common mode failures from tmr designs deployed on sram
fpgas,” IEEE Transactions on Nuclear Science, vol. 66, no. 1,
pp- 207-215, Jan 2019.

32

Authorized licensed use limited to: Brigham Young University. Downloaded on July 30,2020 at 22:53:54 UTC from IEEE Xplore. Restrictions apply.

