
Neutron Radiation Testing of Fault Tolerant RISC-V Soft Processors
on Xilinx SRAM-based FPGAs

Andrew E. Wilson and Michael Wirthlin

NSF Center for Space, High-performance, and Resilient Computing (SHREC)
Brigham Young University

Provo, Utah, USA
{andrew.e.wilson, wirthlin}@byu.edu

Abstract—Many space applications are considering the use
of commercial SRAM-based FPGAs over radiation hardened
devices. When using SRAM-based FPGAs, soft processors may
be required to fulfill application requirements, but the FPGA
designs must overcome radiation-induced soft errors to provide
a reliable system. TMR is one solution in designing a fault
tolerant soft processor to mitigate the failures caused by SEUs.
This paper compares the neutron soft-error reliability of an
unmitigated and TMR version of a Taiga RISC-V soft processor
on a Xilinx SRAM-based FPGA. The TMR RISC-V processor
showed a 33× reduction in the neutron cross section and a
27% decrease in operational frequency, resulting in a 24×
improvement of the mean work to failure with a cost of around
5.6× resource utilization.

Keywords-RISC-V; Fault tolerance; redundancy; Triple
Modular Redundancy (TMR); Single Event Upset (SEU); fault
injection; radiation testing; FPGA; soft processor

I. INTRODUCTION

SRAM-based FPGAs can provide custom hardware sys-

tems using a vast quantity of reprogrammable resources.

Such FPGAs contain lookup tables (LUTs), flip-flops (FFs),

high-speed I/O, digital signal processing (DSP) units, and

block RAM to meet the needs of the designer. As SRAM-

based FPGAs can be fully or partially reprogrammed an

unlimited amount of times, they have been used for proto-

typing, as interconnections between different components,

and for deploying accelerated hardware solutions.

A RISC-V processor can be implemented as a soft pro-

cessor within the FPGA configurable logic as defined by

a hardware description language (HDL) [1]. Soft processors

can be used when a portion of the design proves too complex

for a simple state machine and/or there is a need for a

software-controlled system. These soft processors can be

customized to the given application and provide a hybrid

software and hardware system with very little overhead of

the FPGA resources. The use of a soft processor allows

additional support of already existing software tool-chains

and libraries. These established software libraries can be

utilized to shorten development time and aid in the operation

This work was supported by the I/UCRC Program of the National Science
Foundation under Grant No. 1738550.

of the system. FPGAs implementing soft processors can

provide great flexibility and performance for applications in

both terrestrial and space environments.

Radiation found in both space and terrestrial environments

can prove hazardous to SRAM-based FPGAs and the soft

processors implemented within. This radiation can cause sin-

gle event upsets (SEUs) that flip bits in configuration RAM

(CRAM) and block RAM (BRAM) [2]. SEUs can cause

functional failures in the design within the FPGA by corrupt-

ing the state and circuit configuration. As a soft processor’s

functionality is defined by both the hardware (CRAM) and

software (BRAM), SEUs can produce unpredictable and

unwanted results that may lead to a critical failure of the

system. This hazard must be taken into consideration when

developing custom processors on FPGAs for highly-reliable

systems. The use of SEU mitigation may be required to

improve the functional reliability [3] to meet the required

allowable risk of the application.

Triple modular redundancy (TMR) is an effective mitiga-

tion technique to improve the reliability of SRAM-based

FPGA soft processor designs in harsh radiation environ-

ments [4]. TMR uses redundant copies and voters to mask

errors that would cause functional errors within the system.

Though TMR provides a great improvement in reliability,

it comes at a cost of greater power consumption, higher

resource utilization, and slower operational frequency. If

more than one redundant module fails, TMR cannot pro-

vide fault mitigation and the system fails. To prevent an

accumulation of SEUs, the CRAM is scrubbed to a known

good state without disrupting the operation of the FPGA.

To repair any corrupted state within the processor, the state

is resynchronized with the output of the other redundant

modules.

This paper describes the implementation of a Taiga RISC-

V soft processor [5] targeted to a Xilinx SRAM-based FPGA

and compares the improvement in reliability of a TMR

version to that of the original, unmitigated design. The goal

of this experiment is to understand the difference in the

neutron cross section of a TMR RISC-V system against a

conventional design. Using the BL-TMR tools developed at

Brigham Young University [6], the TMR processor showed

25

2019 IEEE Space Computing Conference (SCC)

978-1-7281-3194-8/19/$31.00 ©2019 IEEE
DOI 10.1109/SpaceComp.2019.00008

Authorized licensed use limited to: Brigham Young University. Downloaded on July 30,2020 at 22:53:54 UTC from IEEE Xplore. Restrictions apply.

a 33× reduction in the neutron cross section and a 27%

decrease in operational frequency, resulting in a 24× im-

provement of the mean work to failure with a cost of around

5.6× resource utilization.

II. RISC-V BACKGROUND

RISC-V is a promising new instruction set architecture

(ISA) that is royalty free, allowing for free use in academia,

research, and industry. Its development began in 2010 at the

University of California, Berkeley [7] and has been main-

tained by a non-profit organization with an ever-growing

membership of individuals and companies [8]. The RISC-

V foundation and its 200+ members have and are currently

defining and ratifying specifications for user-level instruc-

tions, privileged instructions, debug protocols, and memory

models.

RISC-V has specifications for 32-bit, 64-bit, and 128-bit

processors with established extensions and opportunity for

custom application-specific instructions. These extensions

include compressed, integer multiplication and division,

atomic, and floating-point instructions. RISC-V is already

supported by a rich pool of software libraries, tools, and

operating systems. There are many open-source implemen-

tations available for use as soft processors on FPGAs, such

as the PicoRV32 [9], Orca [10], VexRISCV [11], and SerRV

EH1 [12]. This ISA proves to be a strong candidate as a

target for a fault tolerant soft processor with its growing

support and wide adoption.

Taiga is a 32-bit RISC-V processor designed specifi-

cally to be used as a soft processor for Intel and Xilinx

SRAM-based FPGAs [13]. This processor was developed

for research in heterogeneous processor systems and high

performance soft processors. The processor, in addition to

the base instruction set, also supports the multiply/divide and

atomic operations extensions (RV32IMA). The Taiga proces-

sor, implemented in SystemVerilog, supports configurable

options such as caches, multiple bus standards, translation

lookaside buffers (TLBs), and memory management units

(MMUs). The processor is designed to support Linux-based

shared-memory systems.

Figure 1 shows a diagram of the pipelined processor with

multiple independent execution units. For each execution

unit, the upper number is the cycle latency for that type

of instruction. The number below is the rate at which the

unit can start additional requests (the initiation interval).

When multiple numbers are present, there can be multiple

latencies, and for units with variable latencies, the numeric

value of the minimum latency is given in conjunction with

a plus symbol. Additional execution units would have no

restrictions on latency. This allows for easy integration of

new functional units into the processor.

The Taiga processor design used approximately 33%

fewer slices while clocking 39% faster than a LEON3-based

system built on a Xilinx Zynq X7CZ020 [5]. This processor

Figure 1. Taiga Overview and Pipeline Structure. [13, Fig. 2].

proves to be a capable soft processor for SRAM-based

FPGAs. It is easy to implement in a design and develop

software using the RISC-V software libraries.

III. FAULT TOLERANT RISC-V SOFT PROCESSOR

Soft processors have been implemented in SRAM-based

FPGAs for operation in harsh radiation environments, and

many efforts have been made to improve the reliability

of these processors. Techniques in detecting, recovering

from, and mitigating against these SEU failures have been

developed both in hardware and software. Though these

techniques improve reliability, they often come at a cost in

resource utilization, power consumption, and performance.

A. Fault Tolerant Soft Processors

In many of the efforts to produce a fault tolerant soft

processor, the LEON2 and LEON3 processors were targeted

and modified to provide improved reliability [14]–[16]. One

study reported a neutron radiation test resulting in a 27×
improvement for a TMR LEON3 with CRAM scrubbing and

a 50× improvement with both CRAM and BRAM scrubbing

[17]. In addition, software techniques have been used to

improve the detection of failures and provide adequate

recovery without compromising the system. These studies

have shown an improvement with much less overhead than

TMR requires [18]. A combination of hardware and software

techniques can be used to improve the reliability of soft

processors.

Other work has looked at implementing TMR with the

Picoblaze [19], [20], a free 8-bit soft processor provided

by Xilinx. TMR, error correction codes (ECC), and CRAM

single error correction (SEC) are used to provide a fault

tolerant processor with the ability to detect and recover from

errors. Xilinx also offers a Microblaze TMR Subsystem for

use within their FPGAs [21]. This subsystem includes the

TMR Microblaze with a soft error mitigation (SEM) core to

perform CRC checks and SEC on the configuration memory.

26

Authorized licensed use limited to: Brigham Young University. Downloaded on July 30,2020 at 22:53:54 UTC from IEEE Xplore. Restrictions apply.

B. TMR RISC-V

TMR is a fault tolerance technique that can be used for

SEU mitigation to improve the reliability of the RISC-V

soft processor. Within the soft processor, three redundant

domains and voters are used to mask any failures within

one of the redundant domains (see Figure 2). Each domain

is provided the same input stimulus and will have the

same output during correct operation. If one domain is

corrupted, its output may not match the corresponding output

of the other domains. A majority voter is used to mask

the erroneous output and produce the result that is agreed

upon by the other two domains [22]. The voters can be

triplicated as well to reduce single points of failure within

the design. With this, TMR is able to mask any failure of

a single domain. The design can be partitioned down to the

FPGA primitives (i.e. LUTs, flip-flops, BRAM cells) and

voters inserted between partitions to decrease the size of

each partition and improve reliability [23]. Alternately, the

processor can be triplicated at the module level to maintain

the same performance with a lower cost to utilization, but

with only one voter and TMR partition.

Figure 2. TMR.

The TMR RISC-V processor needs a repair mechanism

to continually recover the system from the masked errors

in order to prevent multiple TMR domains from failing. A

processor using TMR without any repair will have higher

reliability early in its operation as it masks the first few

errors, but as the TMR design continues to collect errors,

its reliability will eventually become worse than the original

design. This is due to the increase in circuit size as redundant

modules and voters are introduced, thus creating a bigger

target.

To repair any SEU upsets in the configuration memory

of an SRAM-based FPGA, CRAM scrubbing is employed

to repair the configuration bit upset and prevent the accu-

mulation of errors. Configuration scrubbing is performed by

rewriting the original FPGA bitstream to scrub any incorrect

values [24]. CRAM scrubbing does not affect the operation

of the FPGA nor interfere with the BRAMs.

The dynamic memory of the TMR processor, such as

registers and caches, may also become corrupt in one

of the TMR domains. The voters use feedback loops to

resynchronize the state of the correct TMR domains to all

the domains on the next cycle. This allows any corrupted

state to automatically be repaired each cycle.

Though the soft processor is susceptible to SEUs, with the

use of mitigation, the reliability can greatly be improved. If

only one domain of the TMR is affected and the system

is able to repair itself before another domain fails, the

system can maintain operation. The possible improvement

to reliability is limited by the scrub rate, imperfections in

tools allowing for single point of failure CRAM bits, and

multiple bit upsets that affect multiple domains.

The BL-TMR tool has shown results of 50-100× improve-

ment in reliability despite these limitations [17]. This tool

automates the process of triplicating the design and adding

triplicated voters with necessary feedback to resynchronize

any state. It performs fine-grained TMR by triplicating

all FFs, LUTs, BRAMS, and DSPs and inserting voters

between these primitives. Xilinx-specific primitives such as

the Mixed-Mode Clock Manager and clock buffer are ig-

nored in this setup. The tool’s input is a vendor-independent

electronic design interchange format (EDIF) file such as can

be exported from Xilinx Vivado. The tool then triplicates

the design and inserts the needed voters. The finished TMR

EDIF file can be imported into Xilinx Vivado as a post-

synthesis file, whereupon the vendor place and route tools

can generate a full bitstream.

IV. EXPERIMENTAL DESIGN

To fully utilize the neutron radiation test, the design was

scaled up to contain as many processors as possible. This pa-

per introduces two experimental designs implemented on the

Xilinx Kintex Ultrascale KU040 FPGA. These designs used

the Taiga RISC-V Processor, one containing 20 unmitigated

processors and the other with 20 TMR processors. These

designs were irradiated in a neutron beam in order to induce

faults. The purpose of this test was to understand the baseline

cross section of the unmitigated processor and compare it

to the reduction in cross section of the TMR processor. The

cross section is the ratio between the number of SEUs that

cause failures and the amount of radiation fluence the device

was exposed to. The larger the calculated cross section, the

more sensitive the design is to SEU upsets.

This experiment implemented Taiga RISC-V processors

on a Kintex Ultrascale KCU105 development board with

the XCKU040-2FFVA1156E FPGA. The base Taiga design

was provided through an open source repository [25]. During

this experiment, the processor did not use any caches, TLBs,

or MMUs, which were removed from the configuration. A

16KB dual-ported BRAM was used for both the instruction

27

Authorized licensed use limited to: Brigham Young University. Downloaded on July 30,2020 at 22:53:54 UTC from IEEE Xplore. Restrictions apply.

Table I
COMPARISON OF SINGLE PROCESSOR TEST DESIGNS

Single Processor Test Utilization
Design LUT FF BRAM DSP FMAX

Taiga Processor 1954 (0.80%) 1044 (0.19%) 6 (1.00%) 4 (0.21%) 227.2 MHz

Unmitigated Test Design 5173 (2.13%) 7606 (1.57%) 6 (1.00%) 4 (0.21%) 227.2 MHz
TMR Test Design 29163 (12.03%) 22818 (4.71%) 18 (3.00%) 12 (0.63%) 165.0 MHz

Cost Ratio 5.64× 3.0× 3.0× 3.0× 0.73×

Table II
COMPARISON OF 20 PROCESSOR TEST DESIGNS

20-Processor Test Utilization
Design LUT FF BRAM DSP FMAX

Unmitigated 43350 (17.88%) 36037 (7.43%) 120 (20.00%) 80 (4.17%) 202.4 MHz
TMR 222029 (91.60%) 108021 (22.28%) 360 (60.00%) 240 (12.50%) 149.3 MHz

Cost Ratio 5.12× 3.0× 3.0× 3.0× 0.74×

and data memory. The utilization of a single processor with

this configuration is reported in Table I. The CRAM uti-

lization is represented by the LUTs and FFs. The utilization

of the unmitigated design in Table I shows the additional

resources required for the test hardware.

To verify the functionality of the processor, a Dhrystone

benchmark was executed and the results were compared.

This RISC-V Dhrystone benchmark was developed by the

RISC-V foundation and is available through their online

repositories [26]. The benchmark provides a functional test

(though not full verification) of the integer instructions

on the processor. A checksum was computed using all

the Dhrystone calculated values. The processors continually

looped through the execution of the Dhrystone benchmark.

Figure 3. A block diagram of the experimental design.

For every iteration of the benchmark, the checksum and

iteration count were reported as the CPU status over a JTAG

interface. This CPU status was compared to a golden value

to confirm correct operation. The JTAG reporting interface

was updated to allow messages to be passed through a large

shift register. This made it easy to add as many processors as

needed. Figure 3 shows a simple block diagram of how the

multiple processors were connected to the JTAG interface.

Using the BYU BL-TMR tools, the Taiga processor was

Figure 4. The floorplan for the unmitigated design of 20 Taiga RISC-V
processors.

triplicated, and voters were inserted into the design. The

comparison of utilization of the unmitigated design and the

TMR version are reported for both the single processor de-

sign (see Table I) and for the 20 processor design (see Table

II). The final experiment of 20 Taiga RISC-V processors

used about 20% of the resources available on the FPGA

(see Figure 4). The TMR designs resulted in about a 5×
increase of LUTs; a 3× increase of FFs, BRAMs, and DSPs;

and a 27% decrease in operation frequency. The greater

28

Authorized licensed use limited to: Brigham Young University. Downloaded on July 30,2020 at 22:53:54 UTC from IEEE Xplore. Restrictions apply.

Figure 5. The floorplan for the TMR design of 20 Taiga RISC-V
processors.

increase of LUTs over FFs is due to the triplicated voters

and resynchronization logic. Though the chosen FPGA could

contain 100 unmitigated processors (limited by BRAM), 20

processors was the greatest amount that could be triplicated

within the FPGA. The 20 TMR processor design used about

90% of the available LUTs in the FPGA (see Figure 5).

For both of the experimental designs, configuration scrub-

bing was implemented over a 50 MHz JTAG interface. This

active repair prevents multiple upsets from accumulating

and allows TMR to operate without multiple failures. The

configuration scrubbing was performed by an external device

known as the JTAG Configuration Manager (JCM), which

has been developed at Brigham Young University [27].

V. NEUTRON RADIATION TEST

These two experimental designs were tested with a neu-

tron radiation beam at the Los Alamos Neutron Science

Center (LANSCE). This wide spectrum neutron beam is

commonly used for testing of integrated circuits to es-

timate circuit sensitivity to terrestrial neutrons [28]. The

Kintex Ultrascale KCU105 development board was aligned

to the beam, as depicted in Figure 6. The board contains

an XCKU040-2FFVA1156E FPGA, fabricated using 20-nm

technology. Each of the designs were tested at a normal

angle of incidence and at room temperature. The neutron

Figure 6. KCU105 Setup at the Neutron Radiation Test.

Figure 7. Radiation Testing Flow

beam was collimated to 2 inches.

In previous tests, the board’s on-board power regulators

proved to be highly susceptible to failure in the radiation

test. To overcome this issue, connections were soldered to

the board to bypass the power regulators, and the board was

powered by an external power source that maintained the

correct voltages needed by the FPGA.

Using the JTAG interface on the development board,

the JCM was able to interact with the FPGA during the

radiation test and perform the tasks shown in Figure 7. The

JCM managed the configuration of the FPGA, scrubbed the

CRAM, reported CRAM upsets, and polled the status of the

processors. The JCM used a 50 MHz JTAG clock to perform

a readback of the configuration bits and repair any bits that

were upset by using a golden copy of the bitstream. Using

the JTAG interface, the JCM would poll the status of each

of the 20 processors and determine whether they matched

the correct checksums for the Dhrystone and whether the

29

Authorized licensed use limited to: Brigham Young University. Downloaded on July 30,2020 at 22:53:54 UTC from IEEE Xplore. Restrictions apply.

Table III
NEUTRON RADIATION DATA

Design Fluence (n/cm2) Observed Failures Cross Section Cross Section +95% Confidence Reduction
CRAM Upsets (cm2) Per Processor -95% Confidence

20 Processors
1.15 × 1010 2527 52 4.54 × 10-9 2,27 × 10-10 2.44 × 10-10

1×
Unmitigated 2.10 ×10-10

20 Processors
2.00 × 1011 52139 27 1.35 × 10-10 6.76 × 10-12 9.81 × 10-12

33×
TMR 4.45 × 10-12

processors progressed in Dhrystone iteration. If a processor

was reported as failing the check, an additional scrub cycle

and status poll were performed. If a processor continued

to perform incorrectly, the entire device was reconfigured,

restarting all 20 processors. The total duration for either a

full readback or configuration of the CRAM was about 4

seconds. No other recovery methods were used during this

test.

VI. TEST RESULTS

During the neutron test, the unmitigated design reported

52 errors with a total fluence of 1.15 × 1010, while the TMR

design reported 27 errors with a total fluence of 2.00 × 1011.

Table III shows the observed upsets of the configuration

bits and the number of failures of the processors running

the Dhrystone benchmark. Though the BRAM memory was

triplicated in this design, there was no way to observe

any upsets within the memory. The fluence for the test

was calculated using modifiers for the beam degradation in

regards to distance and any board degradation of any other

experiments in front of this device.

The cross section is the ratio between the failures and the

total fluence the device was exposed to. The effectiveness

of the TMR is represented by the reduction in the cross

section. Table III shows the total neutron cross section for

both designs. The estimated cross sections per processor

with 95% confidence intervals [29] are also reported within

the table. There was a 33× reduction in the neutron cross

section between the unmitigated and TMR designs. With this

reduction in neutron cross section and the 27% decrease in

operational frequency, the TMR processor achieved a 24×
improvement of the mean work to failure.

Table IV
TYPES OF UPSETS DURING PROCESSOR FAILURES

Single Bit Multi-Bit Unobserved Total
Non TMR 18 15 19 52

TMR 10 6 11 27

The processor failures fall into three categories: single bit

upsets, multi-bit upsets, and unobserved upsets. Table IV

shows the frequency of these different failures during the

radiation test. Single bit upsets identify possible single point

failures within the TMR design. These single point failures

could be related to the FPGA’s routing of the data, clocks,

and resets. Though the TMR design may be able to mask

multi-bit upsets, it is not guaranteed to mitigate all multi-bit

upsets. Processor failures that showed no observable upsets

could be potential corruption in the BRAM or a single event

functional interrupt (SEFI) of the FPGA.

The improvement of the TMR design was limited by

single points of failure, multi-bit upsets, and a lack of pro-

tection for the BRAM memory. Other research is being done

to understand and overcome the limitations of TMR when

implemented on SRAM-based FPGAs [30], [31]. Future

work will also consider additional techniques to improve the

reliability of the RISC-V soft processor and recover from

these various types of failures.

VII. CONCLUSION

As soft processors on SRAM-based FPGAs are used in

space applications and other radiation-hazardous environ-

ments, their reliability and risk need to be understood. This

paper has provided a baseline study of the neutron cross

section of a Taiga RISC-V processor with a comparison to

a TMR version. The successful radiation test of the TMR

design showed a 33× reduction in the neutron cross section

and a 27% decrease in operational frequency, resulting in

a 24× improvement of the mean work to failure with a

cost of around 5.6× resource utilization. Though this test

represented a terrestrial environment, these results are en-

couraging and motivate more exploration in the performance

and reliability of soft processors and their applications in

extra-terrestrial radiation hazardous environments.

Future work will compare hardware and software tech-

niques in detecting, recovering, and mitigating errors for

the development of a highly fault tolerant soft processor.

Continuing research in neutron and higher energy radiation

experiments as well as emulated fault injection tests will

verify these techniques and their effectiveness. Additional

BRAM protection techniques, such as ECC and active

scrubbing, will be considered. This future research will also

explore more demanding software and complex extensions

of the RISC-V ISA. New versions of the Taiga RISC-V

processor will help in developing a highly fault tolerant soft

processor capable of supporting operating systems such as

Linux for space applications.

30

Authorized licensed use limited to: Brigham Young University. Downloaded on July 30,2020 at 22:53:54 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. G. Tong, I. D. L. Anderson, and M. A. S. Khalid, “Soft-
core processors for embedded systems,” in 2006 International
Conference on Microelectronics, Dec 2006, pp. 170–173.

[2] P. Graham, M. Caffrey, J. Zimmerman, D. Eric Johnson,
P. Sundararajan, and C. Patterson, “Consequences and cat-
egories of sram fpga configuration seus,” Proc. 5th Annu. Int.
Conf. Military Aerosp. Program. Logic Devices, 01 2003.

[3] H. M. Quinn, P. S. Graham, K. Morgan, J. Krone, M. P.
Caffrey, and M. J. Wirthlin, “An introduction to radiation-
induced failure modes and related mitigation methods for
xilinx sram fpgas,” in ERSA, 2008.

[4] Y. Ichinomiya, S. Tanoue, M. Amagasaki, M. Iida, M. Kuga,
and T. Sueyoshi, “Improving the robustness of a softcore pro-
cessor against seus by using tmr and partial reconfiguration,”
in 2010 18th IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines, May 2010, pp.
47–54.

[5] E. Matthews and L. Shannon, “Taiga: A new risc-v soft-
processor framework enabling high performance cpu archi-
tectural features,” in 2017 27th International Conference on
Field Programmable Logic and Applications (FPL), Sep.
2017, pp. 1–4.

[6] B. Pratt, M. Caffrey, P. Graham, K. Morgan, and M. Wirthlin,
“Improving fpga design robustness with partial tmr,” in 2006
IEEE International Reliability Physics Symposium Proceed-
ings, March 2006, pp. 226–232.

[7] A. Waterman, Y. Lee, D. Patterson, and K. Asanovic, The
RISC-V Instruction Set Manual, Volume I: Base User-Level
ISA. EECS Department, University of California, Berkeley:
Technical Report UCB/EECS-2011-62, 5 2011.

[8] (2019) Members at a glance. RISC-V Foundation. [Online].
Available: https://riscv.org/members-at-a-glance/

[9] C. Wolf, “Picorv32,” https://github.com/cliffordwolf/
picorv32, 2019.

[10] VectorBlox, “Orca,” https://github.com/VectorBlox/orca,
2019.

[11] SpinalHDL, “Vexriscv,” https://github.com/SpinalHDL/
VexRiscv, 2019.

[12] W. D. Corporation, “Swerv eh1,” https://github.com/
westerndigitalcorporation/swerv eh1, 2019.

[13] E. Matthews, Z. Aguila, and L. Shannon, “Evaluating the
performance efficiency of a soft-processor, variable-length,
parallel-execution-unit architecture for fpgas using the risc-v
isa,” in 2018 IEEE 26th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM),
April 2018, pp. 1–8.

[14] M. J. Wirthlin, A. M. Keller, C. McCloskey, P. Ridd,
D. Lee, and J. Draper, “Seu mitigation and validation of
the leon3 soft processor using triple modular redundancy for
space processing,” in Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate
Arrays, ser. FPGA ’16. New York, NY, USA: ACM,
2016, pp. 205–214. [Online]. Available: http://doi.acm.org/
10.1145/2847263.2847278

[15] A. Lindoso, L. Entrena, M. Garca-Valderas, and L. Parra, “A
hybrid fault-tolerant leon3 soft core processor implemented in
low-end sram fpga,” IEEE Transactions on Nuclear Science,
vol. 64, no. 1, pp. 374–381, Jan 2017.

[16] M. Psarakis, A. Vavousis, C. Bolchini, and A. Miele, “Design
and implementation of a self-healing processor on sram-based
fpgas,” in 2014 IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems (DFT),
Oct 2014, pp. 165–170.

[17] A. M. Keller and M. J. Wirthlin, “Benefits of complementary
seu mitigation for the leon3 soft processor on sram-based
fpgas,” IEEE Transactions on Nuclear Science, vol. 64, no. 1,
pp. 519–528, Jan 2017.

[18] N. H. Rollins, “Hardware and software fault-tolerance of
softcore processors implemented in sram-based fpgas,” Ph.D.
dissertation, Provo, UT, USA, 2012, aAI3506158.

[19] C. Hong, K. Benkrid, X. Iturbe, and A. Ebrahim, “Design and
implementation of fault-tolerant soft processors on fpgas,” in
22nd International Conference on Field Programmable Logic
and Applications (FPL), Aug 2012, pp. 683–686.

[20] I. M. Safarulla and K. Manilal, “Design of soft error tolerance
technique for fpga based soft core processors,” in 2014
IEEE International Conference on Advanced Communica-
tions, Control and Computing Technologies, May 2014, pp.
1036–1040.

[21] Microblaze Triple Modular Redundancy (TMR) Subsys-
tem v1.0, https://www.xilinx.com/support/documentation/ip
documentation/tmr/v1 0/pg268-tmr.pdf, Xilinx, 10 2018.

[22] J. M. Johnson and M. J. Wirthlin, “Voter insertion algorithms
for fpga designs using triple modular redundancy,” in
Proceedings of the 18th Annual ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, ser.
FPGA ’10. New York, NY, USA: ACM, 2010, pp.
249–258. [Online]. Available: http://doi.acm.org/10.1145/
1723112.1723154

[23] M. Niknahad, O. Sander, and J. Becker, “Fgtmr - fine grain
redundancy method for reconfigurable architectures under
high failure rates,” in The 16th North-East Asia Symposium
on Nano, Information Technology and Reliability, Oct 2011,
pp. 186–191.

[24] J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb, “Fpga
partial reconfiguration via configuration scrubbing,” in 2009
International Conference on Field Programmable Logic and
Applications, Aug 2009, pp. 99–104.

[25] E. Matthews, “Taiga,” https://gitlab.com/sfu-rcl/Taigas, 10
2018.

31

Authorized licensed use limited to: Brigham Young University. Downloaded on July 30,2020 at 22:53:54 UTC from IEEE Xplore. Restrictions apply.

[26] R.-V. Foundation, “riscv-tests,” https://github.com/riscv/riscv-
tests, 2019.

[27] A. Gruwell, P. Zabriskie, and M. Wirthlin, “High-speed
fpga configuration and testing through jtag,” in 2016 IEEE
AUTOTESTCON, Sep. 2016, pp. 1–8.

[28] P. W. Lisowski, C. D. Bowman, G. J. Russell, and S. A.
Wender, “The los alamos national laboratory spallation
neutron sources,” Nuclear Science and Engineering, vol.
106, no. 2, pp. 208–218, 1990. [Online]. Available:
https://doi.org/10.13182/NSE90-A27471

[29] H. Quinn, “Challenges in testing complex systems,” IEEE
Transactions on Nuclear Science, vol. 61, no. 2, pp. 766–
786, April 2014.

[30] M. Cannon, A. Keller, and M. Wirthlin, “Improving the effec-
tiveness of tmr designs on fpgas with seu-aware incremental
placement,” in 2018 IEEE 26th Annual International Sympo-
sium on Field-Programmable Custom Computing Machines
(FCCM), April 2018, pp. 141–148.

[31] M. J. Cannon, A. M. Keller, H. C. Rowberry, C. A. Thurlow,
A. Prez-Celis, and M. J. Wirthlin, “Strategies for removing
common mode failures from tmr designs deployed on sram
fpgas,” IEEE Transactions on Nuclear Science, vol. 66, no. 1,
pp. 207–215, Jan 2019.

32

Authorized licensed use limited to: Brigham Young University. Downloaded on July 30,2020 at 22:53:54 UTC from IEEE Xplore. Restrictions apply.

