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Privacy-Preserving Estimation of k-Persistent Traffic
in Vehicular Cyber-Physical Systems
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Abstract—Traffic volume estimation is critical to the intelligent
transportation engineering. Previous state-of-the-art studies
mainly focus on measuring two types of traffic volume: “point”
traffic (i.e., the number of vehicles passing a given location) and
“point-to-point” traffic (i.e., the number of vehicles traversing
between two given locations) during each measurement period.
In this paper, we extend this line of research from single-period
to multiple periods and study new problems of estimating the
number of k-persistent vehicles that pass a location or two dif-
ferent locations in at least k-out-of-f predefined measurement
periods. We propose two novel k-persistent traffic estimators
with privacy-preserving for the point and point-to-point traffic
models, respectively. Through theoretical analysis, we prove that
our solution can solve more general traffic measurement prob-
lems and employ stronger privacy preserving, i.e., e-differential
privacy, than the existing studies. We also demonstrate the effec-
tiveness and the accuracy of the proposed estimators through
extensive experiments based on real transportation traffic flows
in Shenzhen, China for five consecutive working days. The
numerical results show that the estimators can achieve a trade-
off between the estimation accuracy and privacy preservation
through proper parameter setting.

Index Terms—Persistent traffic, privacy, traffic measurement,
vehicular networks.
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I. INTRODUCTION

RAFFIC volume measurement is crucial to intelligent

transportation engineering. Accurate estimation of traf-
fic data provides important input for the transportation
authority to design cost-effective investment plans. In recent
years, new vehicle-to-infrastructure communication technolo-
gies were proposed to support vehicular cyber-physical
systems (VCPSs), which enable automatic traffic data collec-
tion for urban transportation [1]-[6]. An emerging trend in
traffic analysis is to integrate wireless communications and
computing devices into VCPS for better road safety and driv-
ing experience [7], [8]. For instance, the dedicated short range
communications (DSRC) standard under IEEE 802.11p [9]
enables wireless data exchanges between vehicles and road-
side units (RSUs), making the traffic data collection more
efficient and powerful. Some automobile industry magnates
(such as Toyota and Lexus) plan to start deployment of DSRC
systems on vehicles sold in the United States starting from
2021. By allowing VCPS to collaborate more broadly and
effectively through DSRC technology, we can help drivers
realize a future with zero fatalities from crashes, better traf-
fic flow, and less congestion. To achieve these goals, accurate
traffic volume estimation is necessary and critical [10].

There are two types of traffic measurement for “point” traf-
fic and “point-to-point” traffic, respectively. The point traffic
volume refers to the number of vehicles passing a specific
location, while the point-to-point traffic volume refers to the
number of (common) vehicles that traverse between two given
locations. By measuring these two types of traffic during
each measurement period (e.g., a day), some prior studies
build mathematical models (e.g., the support vector regres-
sion model or the Bayesian model) based on historical data
for traffic prediction [11]-[13]. Privacy is a big concern in
traffic measurement, which means the information collected
by RSUs can only be used to gather traffic statistics without
tracking individual vehicles [14]. Any information that can
serve the purpose of identification, such as vehicle IDs or fixed
numbers, should not be contained in the collected data.

To protect the privacy of vehicles, many privacy-preserving
traffic volume estimators were proposed [14]-[17]. These stud-
ies store the traffic information in a privacy-preserving data
structure and can measure the point or multipoint traffic vol-
ume in one measurement period with high estimation accuracy.
However, we need to find the “core” traffic volume in some
real-world applications. The core traffic is the traffic persis-
tently passes a location or two different locations in all or most
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Fig. 1. Example of 4-persistent traffic.

measurement periods of interest. For instance, the solution
for traffic congestion caused by core traffic may be different
from the congestion caused by transient traffic. To measure
the core traffic volume, we need to estimate the number of
vehicles persistently pass the locations of interest, i.e., the per-
sistent traffic volume. To the best of our knowledge, only the
existing work [18] targets on the measurement of persistent
traffic volume with privacy preserving. However, the previous
work assumes the persistent traffic only consists of the vehi-
cles that pass all the measurement periods, which is obviously
too strong as a hypothesis.

In this paper, we study a more general problem of estimat-
ing the number of vehicles that pass a location or two different
locations in at least k-out-of-7 (k < ¢t) periods of interest, where
k and t are two parameters specified in user queries. An exam-
ple query may be on how many vehicles travel between two
locations in at least four days during Monday through Friday
in a week, as shown in Fig. 1. The previous state-of-the-art
work [18] only solves a special case of this problem, i.e., k = ¢,
which is simpler to solve. For instance, the vehicle only absent
in Wednesday (see the example in Fig. 1) is not a persistent
vehicle based on the definition in [18], but a 4-persistent vehi-
cle with the definition in this paper. Vehicles that appear in all
periods of concern are certainly persistent traffic. However, the
vehicles pass a location or two different locations in most of
the periods of interest should be considered in the core traffic
that persistently shows up, rather than belonging to the tran-
sient traffic that comes and goes. In general, such k-persistent
traffic may be absent for any (¢ — k) periods, but they are con-
sidered as part of the core traffic. Hence, the ability to answer
any k-out-of-t queries, with arbitrarily chosen k and ¢, will pro-
vide users with great flexibility in investigating transportation
traffic, which the method in [18] cannot support.

There exist efficient mechanisms to support differential pri-
vacy (DP), but none of them can be directly adopted in the
context of transportation traffic measurement in this paper. In
particular, RAPPOR is designed for protecting the reports from
clients in crowdsourcing with DP [19]. It stores a noisy repre-
sentation of each clients report, consisting of the client ID and
a 0/1 value which has a certain probability of being flipped. In
our context, we do not know the set of vehicles a priori, and
we cannot let the passing vehicle transmit its ID to an RSU,
which would break the location privacy. Therefore, the method
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of RAPPOR does not apply in our setting. In each mea-
surement period, every RSU produces an anonymous bitmap
(called traffic record) that encodes the set of passing vehi-
cles. More specifically, when a vehicle encounters an RSU,
with a certain probability, it sets a pseudo-randomly chosen
bit in the RSU’s bitmap, where the probability is controlled
by a DP parameter €. To estimate the volume of k-persistent
point traffic, we derive an estimator through set theory based
on different combinations of traffic records produced from a
given RSU over multiple measurement periods. To estimate
the point-to-point k-persistent traffic volume, we first perform
bitmap expansion and then perform bitwise-AND over each
pair of traffic records produced from two given RSUs during
the same period, which results in a set of combined traf-
fic records that contain the common traffic between the two
locations. We then perform bitwise-OR over these combined
traffic records and derive an estimator for k-persistent common
(point-to-point) traffic through probabilistic analysis. The main
contributions of this paper are listed as follows.

1) We propose two novel estimators to measure the
k-persistent traffic point volume and point-to-point vol-
ume, separately. As far as we know, we are the first to
study the k-persistent traffic volume estimation problem
in transportation.

2) We prove that the proposed estimators can achieve
e-differential privacy (e-DP), which means our estima-
tors can provide stronger privacy preserving than the
previous studies.

3) To evaluate the performance of our proposed estima-
tors, we conduct extensive experiments by using the
real transportation traffic traces in Shenzhen, China dur-
ing five consecutive working days. The experimental
results show the effectiveness of the proposed estimator
in producing high accuracy measurement and meanwhile
achieving privacy preservation.

II. PRELIMINARIES

We consider an intelligent transportation system which
includes RSUs, vehicles, and a central server. Vehicles and
RSUs each have a unique ID. A vehicle communicates with
an RSU through DSRC when they encounter each other [9].
RSUs are deployed at locations of interest, such as some major
intersections. They record information of passing vehicles in
data structures called traffic records, which will be sent to
the central server periodically. The server can respond to the
traffic volume queries.

A. Problems of k-Persistent Traffic Measurement

Consider a certain number ¢ of measurement periods and a
given RSU at location L. We define a k-persistent vehicle as
one that passes location L in k or more out of the ¢ periods
of interest, where k is a user parameter specified in a query.
For example, we may set each working day in a week as one
measurement period. Thus, a 3-persistent vehicle is the car that
passes location L in 3 or more working days during the week.
The first problem called k-persistent point traffic measurement
is formally defined as follows.

Definition 1 (k-Persistent Point Traffic Measurement): It
is to estimate the volume (number) of k-persistent vehicles
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observed at location L based on the traffic records from the
RSU at L.

Given an arbitrary pair of RSUs at locations L and L', we
define a common vehicle as one that passes both L and L'
during the same measurement period. We further define a k-
persistent common vehicle as one that is a common vehicle in
at least k-out-of-f measurement periods of interest. Our second
problem, called k-persistent common traffic measurement is
defined as follows.

Definition 2 (k-Persistent Common Traffic Measurement): It
is to estimate the volume (number) of k-persistent common
vehicles based on the traffic records from locations L and L.

B. Attack Model

We consider three types of attacks. In this first type of
attack, the adversary is assumed to be able to install fake RSUs
at chosen locations to communicate with vehicles in order to
obtain traffic records. To guard against these attackers, we
must ensure that vehicles only interact with authorized RSUs.
This is enforced through authentication based on PKI. Each
RSU broadcasts beacons, each carrying its public-key certifi-
cate, which was obtained from a trusted third party. When a
vehicle receives a beacon, it uses its preinstalled public key of
the trusted third party to verify the certificate. If not successful,
the vehicle will not communicate with the RSU further; other-
wise, it performs authentication with the RSU using the latter’s
public key obtained from the verified certificate. After success-
ful authentication, it communicates with the RSU for traffic
measurement, with all data exchanges encrypted. Rogue RSUs
may be deployed by nonauthorities; they will fail authenti-
cation through previous processes and the vehicles will not
interact with them.

We adopt a semi-trusted model for transportation authori-
ties, which are assumed to have good faith in implementing
the proposed privacy-preserving methods since their goal is to
gather traffic statistics, not to track people. Thus, the RSUs
in the transportation system will communicate with passing
vehicles and perform all required operations as proposed.

In the second type of attack, the adversary is assumed to
have access to the traffic records from the authorized RSUs.
For example, the transportation authority has such access, and
the police may gain access after proper authorization. Our
system design wants to protect drivers privacy against even
these entities (who gain access to the records from the RSUs)
from exploiting the information to track individual vehicles
and the whereabouts of the ordinary drivers. If a hypothetical
system design requires all vehicles to transmit their unique
identifiers to each encountered RSU, then these recorded iden-
tifiers can be used to track the trajectory of any vehicle. In
order to prevent this from happening, it is highly desirable
that a vehicle should not transmit its unique ID, nor trans-
mit any other fixed number to the RSUs. We assume that
an anonymous MAC protocol, such as SpoofMAC [20] can
be used to support privacy preservation such that the MAC
address of a vehicle is not fixed. With such a protocol, before
a vehicle communicates with an RSU, it picks a temporary
MAC address randomly from a large space for one-time use,
preventing the MAC address from serving as an identifier of
the vehicle.
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In the third type of attack, not only does the adversary (such
as police) have access to all traffic records from RSUs, but
also it has additional side information about the appearance
of a vehicle at a certain location—for instance, the vehicle
may be stopped by a police car for speeding at the location.
If there are no other vehicles around, the police can asso-
ciate the vehicle identity with the communication from the
vehicle to the RSU at the location. Our system must prevent
such association from revealing the presence of the vehicle
at other locations. To meet this requirement, the data sent
from the vehicle to different RSUs must differ probabilisti-
cally in order to present such data from being used as vehicle
identifier.

C. Performance Metrics

We evaluate our traffic measurement methods based on two
performance metrics: 1) estimation accuracy and 2) preserved
privacy.

1. Estimation Accuracy: Let n* be the actual traffic volume
of k-persistent point/common traffic, and 72* be its estimated
value. We use the absolute error, |n* — n*|, to measure the
estimation accuracy. The smaller, the better.

2. Preserved Privacy: For the second and third types of
attackers, we provide two-level privacy preservation in our
transportation traffic measurement. The first level is to pro-
tect the point privacy of vehicles, which is designed for the
second type of attacker and supported by a e-DP mechanism.
The proposed DP mechanism ensures that any potential tracker
has a very limited chance to identify any individual vehicle
passing a location only based on the information of traffic
records. However, the point privacy of a vehicle v may be
leaked through other ways. For example, the vehicle may be
stopped by a police car for speeding at the location where
there are no other vehicles around. When the point privacy
of a vehicle has been leaked, then another privacy concern
is how much additional information the traffic records will
leak to reveal the trajectory of v. Thus, the second level pri-
vacy preservation we provide is designed for the third type of
attacker, which is to protect the trajectory of vehicles while
the point privacy is leaked by accident.

First, we consider the first level privacy: point privacy. DP
has recently emerged as a leading standard for privacy guaran-
tees on statistical databases. Thus, we propose a randomized
mechanism, which can achieve €-DP, to protect the point pri-
vacy of vehicles. We say two sets § and S’ are adjacent if
their symmetric difference contains at most one element. The
standard definition of €-DP is given below [21], [22].

Definition 3 (e-DP Privacy): A randomized mechanism
M : § - R provides €-DP privacy if for all adjacent inputs
S,S €S and all subsets D C R, we have

PILM(S) € D] .
PIM@S) e D] ~ ¢ M

where € is a privacy parameter referred as the privacy budget.
The smaller ¢ means the closer the distributions M (S) and
M(S) are, and in turn a stronger privacy preservation.

Then, we consider the second level privacy: trajectory
privacy.
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TABLE I
MAIN NOTATIONS USED IN THIS PAPER
Symbol Symbol Meaning
n*, n* the actual traffic volume, the estimated value of n*
p the probability for a vehicle encoded by a passing RSU
Ky the private key of vehicle v
Bi, S; the traffic record/encoded vehicle set at location L during the ith period
m(m') the number of bits in bitmap B (B’)
n4i12...¢ (Ni,12...¢) the number (estimated number) of vehicles that pass location L in exactly ¢ periods out of period 1, 2,..., ¢
S¢ the set of encoded common vehicles that pass L and L’ in period 4
SCG, i the set of common vehicles that encoded by bitmap G;
Sy the set of virtual vehicles in period %
ni12...¢ (N4,12...1) the number (estimated number) of common vehicles that pass location L and L’ in exactly i periods out of period 1, 2, ..., ¢
”27(12 + (ﬁz(m ¢) | the number (estimated number) of common vehicles that pass location L and L during at least k periods out of period 1, 2, ..., ¢

Definition 4 (Trajectory Privacy): Consider two locations L
and L'. If the point privacy of vehicle v has leaked in loca-
tion L, a trajectory privacy-preserving method should ensure
that there is only a limited chance to identify any part of the
trajectory of vehicle v from the traffic records.

To achieve this, we introduce probabilistic noise-to-
information ratio to characterize the level of trajectory privacy
protection in this case. As defined in [18], the probabilis-
tic noise-to-information ratio is (p/[p’ — p]), where p is the
probability that the traffic records will show that v has passed
both locations even though v did not, and p’ is the probabil-
ity that the traffic records will show that v had passed both
locations when v actually did so. Note that p is the noise
term that is introduced by other vehicles and p’ includes the
noise contribution p. Thus, p’ — p is the information that can
be used to identify the trajectory of vehicles. To increase the
privacy-preserving level, we expect the noise p approaches to
one and the information p’ — p approaches to zero. Thus, a
larger probabilistic noise-to-information ratio can better pro-
tect the trajectory privacy of vehicles. To facilitate reading, we
list some of the important notations in Table I.

III. ENCODING VEHICLES IN TRAFFIC RECORDS

In this section, we describe how to encode vehicles in traffic
records.

A. Traffic Records

Consider an arbitrary RSU installed at a certain location.
It uses a bitmap B of m bits to store the traffic record. Each
vehicle that passes the RSU has a certain probability p” to be
encoded by a bit, which is pseudo-randomly selected from B
in a way that masks the identity of the vehicle yet records the
presence of a vehicle for statistical analysis. We point out that
the size m of the bitmap B may differ at different RSUs since
they encounter different traffic volume.

There is a functional relationship between the number of
ones (or zeros) in B and the number of vehicles encoded—the
more the number of vehicles is, the more ones B will have.
Through this relationship, we can estimate the number of vehi-
cles from the number of ones (or zeros) in B. The problem of
k-persistent traffic measurement will be more difficult because
we must combine the traffic records from different RSUs or
from different periods of one RSU to find out the number of

k-persistent vehicles. Moreover, to support privacy, we want
to mix the information from different vehicles in the traf-
fic records: (S1) Different vehicles may be probabilistically
encoded by the same bit in a traffic record B. (S2) The same
vehicle may be encoded by bits of different indices at dif-
ferent locations (RSUs). Together, they break the one-to-one
mapping between vehicles and bits in traffic records.

B. Encoding Procedure

Consider an arbitrary RSU. At the beginning of each mea-
surement period, the RSU resets all bits in bitmap B to zeros.
It then broadcasts beacons in preset intervals, such as ten
times per second, ensuring that each passing vehicle is able
to receive a beacon, which carries the RSU’s location L, its
public-key certificate, and it bitmap size m. After a vehicle v
receives this beacon, it computes the hash output 4, = H(K,)
mod r, where H is a cryptographic one-way hash function, K,
is a private key known only by the vehicle, r is a constant.
If h,/r < p”, v verifies the certificate and uses the public key
to authenticate the RSU, where p” is the system parameter
controlled by the privacy parameter €; otherwise, v will not
communicate with the RSU (thus will not be encoded by the
RSU). After verifying that the RSU is from a trusted authority,
the vehicle computes the following hash output:

h,=H(K,® C[H(L)® K, mods]) modm

where C is an array of s randomly selected constants. The
vehicle transmits h’v to the RSU, which will encode the vehicle
by the Ajth bit in B, i.e., set B[/,] to 1. At the end of each
measurement period, the RSU will send the content of B as
its traffic records to the central server, where users can submit
queries for k-persistent traffic.

C. Design Considerations

The index 7|, produced from a vehicle is not predictable
because the private key K, is not known by others. Moreover,
the array C are also only known to the vehicle. Therefore, it
is not feasible for an eavesdropper to figure out the identity
of a vehicle from the overhead value of A,

On the one hand, h/v is a function of L such that its value
varies at different locations. Thus, the vehicle can be encoded
by different locations at different RSUs, which conforms to the
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statement of (S2) in the previous section. The system param-
eter s controls the number of different values that /;, can take.
On the other hand, many vehicles may pass an RSU during
a measurement period. Due to the random selection of bits to
set, different vehicles may choose the same bit as a result of
hash collision, which conforms to the statement of (S1). Such
variation and mixing in vehicle encoding can help preserve
privacy and The index A/, produced from a vehicle is not pre-
dictable because the private key K, is not known by others.
Moreover, the array C are also only known to the vehicle.
Therefore, it is not feasible for an eavesdropper to figure out
the identity of a vehicle from the overheard value of 4.

On the one hand, %/, is a function of L such that its value
varies at different locations. Thus, the vehicle can be encoded
by different locations at different RSUs, which conforms to
the statement of (S2) in the previous section. The system
parameter s controls the number of different values that 4/,
can take. On the other hand, many vehicles may pass an RSU
during a measurement period. Due to the random selection
of bits to set, different vehicles may choose the same bit as
a result of hash collision, which conforms to the statement
of (S1). Such variation and mixing in vehicle encoding can
help preserve privacy and make it harder for a tracker (includ-
ing the authority) to determine the trajectory of any vehicle
definitively.

IV. MEASUREMENT OF k-PERSISTENT POINT TRAFFIC

In this section, we provide the details of how to derive the
estimator for the k-persistent point traffic at a given location.

A. Notations

Given a set of bitmaps B = {Bj, ..., By} that records the
transportation traffic at a certain location L during ¢ measure-
ment periods, our goal is to estimate the k-persistent point
traffic using this bitmap set B. The size of the bitmap in each
measurement is fixed to m, which is preset as 2 Mogy (1x1T
where 7 is the expected traffic volume at L based on historical
average, and f is a system-wide load factor that specifies the
ratio of the bitmap size m and the expected traffic volume 7.

Let n; 12..+, i < k, be the number of vehicles that pass loca-
tion L in exactly i periods out of period 1, period 2,..., and
period t. As a special case, 7, 12..; denotes the number of per-
sistent vehicles that pass L in all 7 periods. Then, the volume
of k-persistent point traffic, denoted as n;: 1o 18 equal to
Zf’:k n;12.... We also define a more general notation n; ; i, ..i,
as the number of persistent vehicles that pass L in exactly j
periods out of period iy, period i,..., and period iy, where
1 <ip <ip <---<ip<tandj < k. As a special case,
Nk iyiy...i; 1S the number of persistent vehicles that pass L in
period iy, period is,..., and period i.

B. Derivation of ny j,i,...i,

Before deriving an estimator for nj |, , on k-persistent point
traffic, 1 < k < ¢, we first give a method to estimate ny ;,...;; -
Let S; be the set of encoded vehicles that passes location L
in the ith period (or referred as period 7). Since each vehicle
has a probability of p” to be encoded by bitmaps, we have
N ivin. iy = |Si1 ﬂSizﬂ' . -ﬂSik|/p”. To derive N iyin...igs WE first
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join the information from the bitmaps by performing bitwise
OR directly among them, and the combined bitmap is denoted
as Fji,. ;. Its Ith bit is denoted as Fj,;,. ; [/], for 1 <1 < m.
Then, we have Fi1i2-~~ik [l = Bi1 [7] VBi2 []v-- ~\/Bik71 [l]\/Bik (1.
For an arbitrary bit in Fj;, ;, its value can be modeled
as a random binary variable. Let Pr{F;;, ;[l]] = 0} be the
probability of F; ;,. ; [I] = 0, which can be derived recursively.
Obviously, both B; [] and F,;,. ;. ,[!] are equal to zero if and
only if Fj;, ;[l] =0, for 1 <j < k. Then, we have
Pr{Filiz...ik [l = 0}
= Pr{B 1] = 0|F;iy...c,_,[1] = 0} * Pr{Fi, i, ,[[] = 0}. (2)
Note that no vehicle exists in set S;, US;, U---US;, | will
hash to the I/th bit when F;;, ; [/l = 0. Then, Pr{B; [l] =
O|F;,i,...i,_,[l] = O} should be the probability for none of the
vehicle that in set S;, — (S;; US;, U---US;,_,) hashes to the /th

bit of B;,. Based on the principle of inclusion and exclusion
in set theory, we have

1Si, — (i, USi, U= U S, )|
=1yl = Y 1S, NSl
1<pi<k
4 (=1 > 1Si,, NV Siy, M-+ N S;, NSyl

I<pi<py<--<pg<k
o DRSNS, NS, ©

The probability for any vehicle in S;, —(S;; US;, U---US;, ;)
not being hashed to the /th bit of B; is 1 — (1/m). Then, we
have

pr{Bik[l] = O|Fi1i2...ik,1 [l] = 0}

(1-3)

= l _——
m

Substituting (4) to (2), we have

Pr{Fj,..i [l = 0}

(1 1>|5,-k—(s,-1us,-2u-.-usl-k1)’

S,’k—(Sil US,'ZU---US,'k_l ) ‘

“4)

y * Pr{Fi,.. 11 =0}, (5)

Next, we illustrate a theorem as follows.

Theorem 1: Pr{Fi;, i lll = 0} = EWMyi,..i,), Where
V0,iyip...iy 1S a random variable for the fraction of bits in
Fi,..i, that are zeros, and E(Vy ,;,..;,) is the expected value
of Vo,itiy...iy-

Proof: Since Vj ji,..i;, 18 the fraction of bits in Fj;,
that are zeros, we have

1 m
Voivip.iv = — ) Lo
G111 0k m; s

where [;o is an indicator variable, whose value is 1 when
Fi,ip..i, |1l = 0 and O otherwise. Clearly, V1 < < m, E(I;9) =
Pr{Filiz...ik [l] = O} Hence,

1
= - ZE(I[,())
=1

1 m
— > Pr{Fyp,..i[1l = 0} = Pr{Fy;, ;. [11 = 0}.
=1

(6)

E(VO,iliz...ik)

)
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Algorithm 1: Estimator for the #-Persistent Traffic

Algorithm 2: Estimator for the k-Persistent Point Traffic

1: for k=1 to t do
2:  for each combination of k measurement periods

i1,12, ..., i do
3: Measure Vj ;,i,...;; by performing bitwise OR
among all the k bitmaps;
4: Compute the value of 7k j,4,. i, according to

Equation (8);
5. end for
6: end for
7: Return 7y 12,43

Then, we have E(Vy i i,..;;) = Pr{Fi;,. i [l = 0}, which
finishes our proof. |

Combining (3), (5), (7), and replacing E(Vo ;,;,..;,) by the
instant value Vy j;,...;, measured from Fj;, ;, we have

aln<l - n%) +1InVoiiy..iry — I Vo,ii.iy

(=)t ln(l - %)p”

(®)

Nk,iviy...ix =

where @ = Y2070 (=D Y01 oy <t R, i kP

We invoke the above estimator in the orderof k =1,2, ...,
and 7. For a specific value of k, the computation of 7 ;. i
requires the values of Gt Ly, iy ipg ik l<pr<pr<---<
Pg <k—1,0<g < k-2, which are computed through (8).
We also need the value of Vp;,. i ,, which can be mea-
sured earlier when we estimate the value of 7x—1 4.0 ;-
For a given combination of k bitmaps that record the trans-
portation traffic at L in periods iy, i, ..., iy, we first join the
information of these bitmaps by performing bitwise OR to
measure the value of Vq ;,;,. ;. Then, we estimate the value
of 7k iyi...;, through (8). This iterative process is carried out
by Algorithm 1 to estimate the volume of #-persistent point
traffic.

C. Estimator for k-Persistent Point Traffic

Consider an arbitrary vehicle that passes location L in
exactly & measurement periods, it must be recorded by one
subset of k bitmaps from B. There are Cf‘ ways to form such
a subset. For each subset of k bitmaps from B, we can mea-
sure the k-persistent traffic volume by Algorithm 1. However,
Zl§i1<i2<~~<ik§z Nk,iyiy...i;, 15 larger than the actual volume of
k-persistent traffic since all the (k+ 1)-persistent vehicles were
double counted. For a vehicle passing location L in k measure-
ment periods, it will be double counted Cf.‘ times. Hence, we
have

t
k
Mhirig.oi = Mei2.a+ »_ Cininza. (9)
i=k+1

2

I<ij<ip<---<iy<t

Replacing ny ;,i,..;, and n; 12, with their estimated val-
ues Ay i i,..i, and 712, ; separately, we have the following
estimator:

t

~ kA

Nkitig...iy — E Cini2..p. (10)
i=k+1

2

I<iy<ip<--<ix<t

A 1.0 =

1: for j=1tto k do

2:  for each combination of j measurement periods do
3: Compute the value of 7 ;,;, ;; by Algorithm 1;
4:  end for

5. if j ==1 then

6: 12,0 = e iyin. i

7. else

8:

Compute the value of 71; 12, ; by Equation (10);
9: end if
10: end for
A~ 1 ~ .
1 Set i p ;= > iy 12,65

Algorithm 2 carries out an iterative process to estimate the
k-persistent traffic volume, denoted as ;’Z.lz...z- As j decreased
from ¢ to k, we measure the traffic volume fzj,lzmt in each
iteration. For a specific j, we first compute the j-persistent
traffic volume for each combination of j periods. Then, we
compute 71; 12..; through (10), which is in turn used in the next
iteration to compute ﬁj,lglz.,,, by (10). Finally, we get the k-
persistent traffic volume by computing ﬁz,lz.‘.z = Z}:k 12,1

V. MEASUREMENT OF k-PERSISTENT COMMON TRAFFIC

In this section, we derive the estimator for k-persistent
common traffic.

A. Notations

Consider two locations of interest, L and L’. The two sets
of bitmaps measured at these two locations during the ¢ peri-
ods are denoted as B = {By,...,B;} and B = {B},..., B/},
respectively. We want to estimate the k-persistent common
traffic as defined in Section II-A. Let m (m') be the size
of the bitmaps in B (B), n?,, , be the number of com-
mon vehicles that pass location L and L' in exactly i periods
out of period 1, period 2,..., period ¢. Then, the volume of
k-persistent common traffic, denoted as ”Z:lcz.,.p is equal to
Zf:k nf’]zmt. We also define a more general notation nﬁiliz..‘ik
as the number of persistent common vehicles that pass L in
exactly j periods out of period i1, period i3,.. ., period iy, where
1 <ip <ip <---<ip<tandj < k. As a special case,
n,c(’i1 P is the number of persistent vehicles that pass L in
period i1, period is,..., and period i.

B. Joining Bitmaps of Different Locations Through
Expansion

To find the common traffic encoded by bitmaps of two loca-
tions, we need to join the information from the bitmaps in
B and B’. If all bitmaps have the same size, we can com-
bine them by performing bitwise operation directly on them.
However, the bitmap size is determined by the expected traf-
fic volume at each location based on the historical average,
which may be varied widely at different locations. Without
loss of generality, we assume that m < m’. To circumvent this
problem, we expand the size of a bitmap B; by replicating it
multiple times until its size reaches m’, i.e., expand the size
of B; from m to m’ by replicating it (m’/m) times. Since the
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size of bitmaps is powers of 2, such expansion is always pos-
sible. The expanded bitmap is denoted as E;. If m = m’, the
expanded bitmap is simply B;. After bitmap expansion, we
join E; and B; (1 < i < 1) by performing bitwise AND, and
the result bitmap is denoted as G;.

C. Derivation of nli,zjig...ik

Similar with the point k-persistent traffic measurement, we
first give a method to estimate n/i,i]iz...ik' Let S; (S) be the
set of encoded vehicles that pass location L (L) in period i.
Then, ¢ = S;NS; is the set of encoded common vehicles that
pass both location L and L’ in period i. Since each common
vehicle has a probability of p” to be encoded by bitmaps, we
have nj it =18;, NS, N---NS; 1/p".

For point-to- p01nt trafﬁc measurement a common vehicle
v € 8§ may set bits in E; and B; at different indices. It only
has a certain probability to set bits in E; and B} at the same
index, which makes this problem much harder than the point
traffic measurement problem. Due to hash collision, two differ-
ent vehicles may choose the same index at different locations,
which will introduce noise of ones in G;. If we abstract two
different vehicles that introduce a noise of one in G; as a
virtual vehicle, G; encodes both virtual vehicles and part of
common vehicles. We use S to denote the set of virtual vehi-
cles in period i. Based on (11), we compute the number of
independent vehicles that would have produce the bitmap G;

InVg,
N = ——0 (11)

(1)

where Vg, o is the fraction of zeros in G;. Since we perform
bitwise AND among E; and B; to get G;, a common vehicle
v will be encoded by G; only when it sets bits in E; and B;
at the same index. v has a probability of (1/s) to choose the
same bit from its logical bit array L, in both L and L'. The
probability for v to choose a separate bit randomly from C
in L' is (1 — [1/s]), and further choose the same bit in B; is
(1/m’) due to hash collision. Thus, a common vehicle v has
a probability of (1/s) + (1 — [1/s])[1/m] to choose the same
bit in both locations, and introduce a bit of one in G;. The
number of common vehicles in Sf is nfl Then, we have

1 1\ 1
=t (5 (15 o

where nj ; is the number of virtual vehicles in period i. In
the followmg, we will show how to filter the noise introduced
by virtual vehicles from G;, which will in turn an estimator
for nf ;.

Consider an arbitrary bit G;[/]. The probability for a virtual
vehicle to choose this bit is (1/m’). Suppose there are n1
virtual vehicles in period i. The probablhty for none of them
to choose this bit to set is (1 —[1/m ])”1 i, and the probablhty
for at least one of them to choose this bit is 1 —(1—[1/m'])" Li,

We say a common vehicle v is encoded by bitmap G; if v
chooses the same index separately in location L and L', and
use Sg ; to denote the set of common vehicles encoded by
bitmap G;. Since any common vehicle v has a probability of
([1/s]1+ (1 — [1/sD[1/m'])p" to choose the same bit in both
locations, |Sg ;| = n‘l"l.p”([l/s] + (1 = [1/sD[1/m']). If two

(12)
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different vehicles, except the common vehicles in S¢ i choose
the same index separately in location L and L’ will mtroduce
a virtual vehicle in S}. Based on (13), we compute the number
of independent vehicles that would have produced the bitmap
E; and B;

Ny=—— =7 _ (13)
ln(l — %)

where Vg, ¢ is the fraction of zeros in E;, and VB/ o is the frac-

tion of zeros in B’ We use an abstract set of N; (N/ ) vehicles

to produce the same effect as what all the vehicles in S; (S})

jointly produce in E; (B;). The probability P, (Pp) for at least
one vehicle in S; — S ; (S; —8g.;) to set the Ith bit of E; (B)) is

Ni=ni p" %'*‘ 1_% ﬁ
ot (1o )

m/

Mt (4(1-2)
S (1__.}7) niiP ( ( ) ).

m

(14)

The probability P, for at least two different vehicles, which
are not in Sg ;, to set the /th bit separately in location L and
L' is ’

1\ Ni— 15, 1\ Ni—18G.1
pe= (1= (=5 ) - (-2,
m m

15)

Notice that P, is equal to the probability for at least one of
the virtual vehicles to choose the /th bit to set. Thus, we have

(- ”11> ) (1 (- nL>Ninq,,.p (A+(13)m))

Now, we have two independent equations, i.e., (12) and (16),
which can be used to solve for the values of unknowns nf ;
and ny ;.

When there are multiple periods, we can follow a similar
way to derive an estimator for n,‘("l.l bip? where 1 < k < ¢t
First, we join the information from bitmaps of k periods by
performing bitwise AND among them, and the result bitmap
is denoted as Wiclizml-k. Its Ith bit is denoted as Wic]iz..tik [1], for
1 <1 < m, whichis equal to G;, [[ING,[l]A---AG;,[l]. Based
on (17), we compute the number of independent vehicles that
would have produced the bitmap W

1112 i
In VY,

c i1ip...i,0
Nii iy = =\ (17

1n<1 — —,)

m

where Vi,  is the fraction of zeros in W;, .. Because
the bits of ones in W¢, retain all the information from

i1in...ik
k-persistent common vehicles in SGl N Sf;l n-

and virtual vehicles in §; NS} N hs

k-1’
3 c v
equation that relates M ivin...iy to M ivin...ii

NE¢. =ns .. -p”l—l— 1—li +nl .. . (18)
i1ip...0g k,lllz...lk s s m/ k,lllz...lk

~NSGh

, we can build an
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where nk iy |SV N SV - N SV - There are two
unknowns in (18) To derlve an estimator for nk iy we need
to build another independent equation that relates n. iigip ©
n; Hig.oig . Similar to the one period case, we will analyze the
probablhty for at least one virtual vehicles in SV N Slvk .
to set the /th bit to build this equation.

Consider an arbitrary bit Wl‘l i2---ik [{]. The probability for a
virtual vehicle v € S" N S" SV to choose this bit to set
is (l/m) There are "kz by V1rtual veh1cles in set SV ﬂSV

ﬂSV The probablhty for none of them to choose th1s b1t is

o

(1—=[1/m']) n" iia-ik and the probability for at least one of the

virtual vehicles choose this bit to set is 1 —(1—[1/m']) M. ik,
Note that Wfl iy..i, 18 the result bitmap by performing
bitwise AND among all the expanded bitmaps record in
period iy, i, ..., ix. We can also first perform bitwise AND
among bitmaps of each location, and then perform bitwise
AND among the result bitmaps to get ch1 iy iy Let By (E)
be the result bitmap of performing bitwise AND among
Ei . E;, ..., E; (B”,Blz,.. B/) Then, Wy, ; should be
the result bitmap of E, and E by performlng bitwise AND.
For each k-persistent common vehicle passes L and L' in
period iy, period i»,..., period iy, it has a probability of
((1/s) + (1 — [1/sP[1/m'])p” to introduce a bit of one in
Wi, .- Other ones can be abstracted as introduced by vir-
tual vehicles. Based on (19), we compute the number of
independent vehicles that would have produce the bitmap E,

and E,

InV, In Vg
Ny= — VB0 T TEO (19)

*
(1) (1 - )

where Vg, o (Vg o) is the fraction of zeros in Ei (E).
Essentially we use an abstract set S, (S,) of N, (N,) vehi-
cles to produce the same effect as what all encoded vehicles
pass L (L) in period iy, period iy,..., period i jointly pro-
duce in E, (E). If two abstracted vehicles, except the encoded
k-persistent common vehicles, choose the same index sepa-
rately in E, and E/, will introduce a virtual vehicle in SI-Vl N
S;,N---NS; . Weuse Sy, ;. ; to denote the set of k-persistent
vehicles that choose the same index in E, and E/ Then, we

have |7, digoi] = ([1/s]+ A =[1/sD[1/m’ ])nk”l2 lkp” The
probablhty Py« (Ppy) for at least one vehicle in S, —S¢

w,i11o...0k

(% = Sy i1iy...,) set the lth bit of Ey (EY) is
1 N*_"fé,i]iz.ui,‘,l’”(%"‘(l_%)ﬁ)
et (1)
1 N:‘_"Iiiliz-««ikp”(%4_(1_%)»%)
Ppi=1-— (l — %> . (20

The probability P, , for at least two different abstracted

vehicles, which is not in S), ; to set the /th bit separately
102...0g°

in location L and L' is equal to P, 4 * Pp .
Notice that P . is equal to the probablhty for at least one
of the virtual vehicles in SV N SV S" to choose the Ith
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bit to set. Thus, we have

1\ igin..i 1 \N—I85 iy i)
1_<1_7/) 12 k=<1_(1_l> 1720k
m m
1 * |Sw1112 lkl
x [1— (1 — W) . 2D

Solving (18) and (21), we can get the estimated value of
v C
nk,i]jz..:ik nk,iliz...ik'. .

Similar as the k-persistent point traffic measurement, we can
join the information from bitmaps of different periods by per-
forming bitwise OR among them, i.e., join G;;, Gj,,. .., Gj, to
get the result bitmap F! 161 ir._i,- Then, we can build another equa-
tion that relates nZ,iliz...ik to nz,iliz..‘ik based on the principle of
inclusion and exclusion

/" 1
VL VC 1 1 Ap ( (1 A)m )+B 22
i10...0g ipig...Ik—1 Z (22)
(4 3 1 C
where Vl”2 lle the fraction of zeros in sz i

1
A= X

—1)4 C —
()( 1) Zl§p1<~~<pq<kni,,l.‘.i,,qik’ B -

k—1 v
Zq:O(._l)q21§p1<-~<pq<k nlp]...ipqik' )
Solving (21) and (22), we can also estimate the value of
and n,‘( iy it To decrease the relative error, our esti-

by solving (18) and (21), the
. Then, we estimate it again by

v

N ivig...iy j

mator first estimate nz .
i1ip...0x

result is denoted as 71’ llll

~c,1

solving (21) and (22), the result is denoted as i i Finally,

we take the average as the final estimation result nk i
He 1 ~c,2

~C k i1ip...0g +n k i1ip.. lk

nk,ilizn.lk - 2

(23)

D. Estimator for k-Persistent Common Traffic

We can obtain an estimator for ’A’Zfz..‘z by using a similar
way as our point model. A common vehicle that passes loca-
tion L and L’ exactly during k measurement periods must be
recorded by all the bitmaps of one subset of k bitmaps from
G = {G1, Gy, ..., G;}. For each subset of k bitmaps from G,
we can measure the k-persistent traffic volume by using the
estimator proposed in Section V-C. A common vehicle that
passes location L and L' exactly during i(k + 1 < i < 1)
measurement periods will be double counted Cf»‘ times if we
US€ D1 < iy <o<iy<t Mhigiy...q, @S the number of common vehi-
cles that pass location L and L’ exactly during k measurement
periods. Thus, we have

2

1<ij<ip<--<ix<t

~AC — —
nk,]z‘..l‘ - nk,iliz...ik

Z Clitg . (24)

i=k+1

where ”212..,t (;’Elz...z) is the number (estimated number) of
common vehicles that pass location L and L’ exactly during i
measurement periods, and ﬁzﬁ i is the estimated number of
k-persistent traffic volume for a given k measurement periods
i1, 12, ..., ir. Since the k-persistent common traffic include all
the common vehicles that pass location L and L’ during at least
k measurement periods, we have our estimator for ﬁz,’fz...t

t

~AC k ~AC
R ivin..ix — Z (Ci - 1)”;’,12.‘1'

1<ii<ip<--<ix<t i=k+1

(25)
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Based on (24), we can estimate the value of
ﬁf, 2,000 ﬁz’ 1o, one by one. Then, we obtain the
value of ”k’fz..‘z according to (25).

VI. PRIVACY ANALYSIS

When a vehicle passes an RSU, the only thing that a vehicle
may do is to set a bit in this RSU’s bitmap to one at an index
that may vary from location to location. Moreover, different
vehicles may choose the same indices. What each RSU gathers
is a bitmap, with each bit of one suggesting the passage of at
least one vehicle. Therefore, the tracker may possibly identify
a vehicle through the observation that a bit at one location is
one, or identify the trajectory of a common vehicle through the
observation that the bits with the same index at two different
locations are both ones. Below, we will analyze the privacy
preservation of our persistent-traffic measurement design in
terms of €-DP and the probabilistic noise-to-information ratio
as defined in Section II-C.

Theorem 2: The random encoding mechanism of our esti-
mator satisfies e-DP with the following value of p”:

(e — 1)(1 —e—"ﬁz>

_m
e m

Proof: Consider two adjacent sets of vehicles S and S,
and there is only one vehicle difference between S and §'.
Without loss of generality, we assume that the only different
vehicle v € S. Suppose v will be mapped to the /th bit if it is
sampled and encoded in the bitmap. Then the bitmaps encode
the vehicles separately in S and S’ can only differ in the Ith
bit.

Let B (B') be the bitmap encoding the vehicles in set S ('),
Pr[B[l] = 1] (Pr[B'[l] = 1]) be the probability for B[l] = 1
(B[l = 1). Since v is in set S, it has a probability p” of
setting B[/] = 1. If v is not encoded by B, the probability
for the Ith bit of B is set to one by other vehicles in § is
1—(1—[1/m])"™", where m is the bitmap size and n = |S| — 1.
Then, we have Pr(B[l] = 1] = p”" + (1 - p"H(1 - (1 —
[1/m])"""). The probability for vehicles in § to set the /th of B’
is 1 — (1 —[1/m])"™", then

/" /" 1 '
e =11 7 +(1_p)<1_(1_71> ) o7

Pr(B[l]=1] L (1 B 1)””

By applying the approximation (1 — [1/m])?" ~ = lnw"/m]
that works when m is large, we have

Z

p = (26)

np!

Pl =1 7 +(1-p )(1 —em>
PrB[]=1]

< ef.

(28)

np!!

l—e m
Similarly, we have
/" 1 '
PriBl/l = 0] :(l_p)(l_%) —1—p <ef. (29)
Pr[B'[]] = 0] (1 - l)ﬂp” p =e€.
m

In summary, [(Pr[M(S) =X])/Pr[MS)=X])] < €
always stands for any output X, which finish our proof. ®
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Next, we give the analysis of probability noise-to-
information ratio. Each vehicle v that pass location L has a
probability p” to send an index i to the RSU and set B[i] = 1,
where the index i = H(K, & C[H(L) & K, mod s]) mod m.
However, the authority may associate the index i with the vehi-
cle v at L by accidental events, such as v is stopped by a police
for speeding when there is no other vehicle around, and the
police informs the authority. In this case, the authority may
derive the partial trajectory of vehicle v by observing the bit
at the same index in the bitmap of other location.

Let p be the probability that B'[] is set to one by other
vehicles even if v does not pass L', and n’ be the number
of vehicles passing L. Note that only n'p” vehicles can be
recorded by the RSU. Thus, we have

1 n/p//
p:l—(l—g) .

Let p’ be the probability that B'[i] is set to one when v does
pass L. As the analysis in [18], we have

(30)

1
pr=p+d-p. 3D
Further, the probabilistic noise-to-information ratio is
n/p//
= (1= ) Y
— — %s(efn - 1). (32)
P—=r 1— 1)1
ol 5
VII. EXPERIMENT
We conduct extensive experiments to evaluate the

performance of our estimators in this section. Our experiments
are based on the real traffic flows in Shenzhen, China for five
consecutive working days from May 15th to 19th, 2017. This
data set includes the passing vehicle IDs of 475 locations,
which are recorded by the surveillance cameras. Only 210 of
them have exact geographical position information, which is
shown in Fig. 2. We measure the k-persistent point and com-
mon traffic volume in the rush hours from 7 A.M. to 10 A.M.,
i.e., setting the time interval [7 A.M., 10 A.M.] as a mea-
surement period. For any given location (or two locations) of
interest, we measure the actual k-persistent traffic volume by
removing the duplicate vehicles (common vehicles) of each
period of interest, hashing the vehicles of each location in
the duplicate vehicle sets gathered from those five periods to
a hash table and counting the number of measurement peri-
ods that each vehicle passes. In our experiments, we compare
the actual traffic volume and the estimated one to show the
efficiency of our estimators.

In each measurement period, we use a bitmap to record
the traffic for each location. Note that the bitmap size m =
2Mog(xA1 " which means (m/2np”) < f < (m/np"). In our
experiments, we choose the average traffic volume of each
location as the measured value of the expected traffic volume
n. Combining (28), we have

p” + (1 —p”)(l — e_Wm”) p// + (1 _p//)<1 _ e*%x)
< .
B 1—e72lf

(33)
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Fig. 2.
location.

RSU map in Shenzhen, China. Each blue dot represents an RSU

The inequality ([p” + (1 —p")(1 — e /ANy /[1 — e~ 1/21])
s < e will always stand when p” satisfies

(e — 1)(1 —e‘#)

7z

< T (34)
e ¥
Therefore, to preserve the point privacy in each location,
we set p” = ([(ef — DA —e /] /[e11/H]]) in our
experiments.

A. Experimental Results of k-Persistent Point Traffic
Estimation

The experimental results of our estimator for the single-
point model are presented in Fig. 3, where the horizontal axis
represents the actual k-persistent traffic volume and the ver-
tical axis represents the estimated k-persistent traffic volume.
Note that the total number of measurement period ¢ is set
to 5. The plots from left to right in Fig. 3 show the results
of 5, 4, 3, and 2-persistent traffic measurement of all 475
locations, respectively. We draw the equality line y = x for
reference. Each point represents k-persistent traffic measure-
ment in a location. The closer the data points are to this line,
the more the measurement accuracy is. Clearly, in Fig. 3, the
points are clustered to the equality line in all plots, which
indicates that the proposed single-point estimator has good
measurement accuracy for different k-persistent point traf-
fic estimator. Next, We investigate how different parameters
affect the measurement accuracy of our k-persistent point traf-
fic estimator. We employ a metric called the average absolute
error to evaluate the measurement accuracy of our estima-
tor. It is defined as (1/N) Zﬁvz_ol |n — n|, where N is the total
number of flows, n is the true value, and 7 is its estimated
value.

First, we evaluate the impact of the privacy budgets €. The
system-wide load factor f is fixed to 3. We repeat the experi-
ments with p”” = 0.0635, 0.1491, and 0.3116, which translates
to 0.3, 0.6, and 1-DP privacy, respectively. The estimation
results are shown in Fig. 4. From left to right, the plots show
the results of 5, 4, 3, and 2-persistent point traffic measure-
ment, respectively. We observe that our estimator becomes
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more accurate as € increase in all four plots. This is because
a larger € indicates more vehicles will be encoded (i.e., a
smaller sampling probability), leading to a higher estimation
accuracy due to a lower sampling error. From the results of the
experiment, we also observe that there is a tradeoff between
accuracy and privacy. As € decreases, the DP becomes better
but measurement accuracy decreases.

Second, we evaluate the impact of the system-wide load
factor f on estimation accuracy. The sampling probability p”
is set to 1 such that all vehicles will be recorded. We repeat
the experiments for k-persistent point traffic measurement with
f = 2,3, and 5, respectively. The results are shown in the
three plots in Fig. 5. Clearly, as f grows, the accuracy increases
since each location has a larger bitmap to record traffic. Note
that our estimator can still achieve 1.5087, 1.8739, 2.3522-DP
privacy when p” = 1, separately for f = 2, 3, and 5.

B. Experiment Results of k-Persistent Common Traffic
Estimation

General point-to-point traffic measurement mainly focuses
on two relative close locations (or called relative locations),
which produces more useful information for traffic engi-
neering. Therefore, to evaluate our estimator for k-persistent
common traffic measurement, we only consider the point-to-
point traffic from two relative locations. In our experiments, we
assume two locations are relative locations if their 1-persistent
common traffic volume is no less than 2000, and 5-persistent
common traffic volume is larger than zero. In our data set,
there are 1585 relative location pairs that satisfy such require-
ments. The experiment results of our point-to-point estimator
are presented in Fig. 6, where the plots from left to right
show the results of 5, 4, 3, and 2-persistent common traffic
measurement of all 1585 relative pair locations, respectively.
Clearly, in each plot, the points persistently follow the equal-
ity line. Hence, the proposed our point-to-point estimator has
good measurement accuracy for k-persistent common traffic
estimator.

Then, we evaluate he impact of privacy budge € on the mea-
surement accuracy. The number s of indices that a vehicle can
map is set to 3 and the load factor f is fixed to 3. We vary the
value of € from 0.3 to 0.6 to 1. The corresponding estimation
results are shown in Fig. 7. Similar to the experiments of point
traffic measurement, there is a tradeoff between estimation
accuracy and point privacy in our k-persistent common traffic
measurement.

Next, we evaluate the impact of parameters s and f set-
ting on measurement accuracy when p” = 1 and ¢t = 5.
From the simulation results as shown in Figs. 8 and 9, we
found that the absolute error of our estimator for point-
to-point model increases as s and decreases as f. This is
mainly because a larger s or a smaller f will introduce more
noise to traffic records, which will return a worse estimation
accuracy.

We also consider the trajectory privacy of vehicles when
their point privacy have been leaked. In Table II, we evaluate
the trajectory privacy protection by measuring the probabilistic
noise-to-information ratio with respect to f and s. Note that a
larger probabilistic noise-to-information ratio indicates better
trajectory privacy protection since it increases uncertainty to
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track the trajectory of individual vehicles. In Table III, we eval-
uate the estimation accuracy with respect to f and s. Clearly,
when decreasing f or increasing s, the noise-to-information
ratio grows, while it leads to a worse estimation accuracy
as we mentioned before. To balance the accuracy and tra-

jectory privacy, we set f = 3 and s
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Mean absolute error of k-persistent common traffic volume when t =5, f =3,s =3, p” = {0.0635,0.1491, 0.3116}, and € = {0.3,0.6, 1}.

noise-to-information ratio is relatively large as shown in the

table.

C. Computational Overhead

3 in Fig. 7. We

point out that, under these parameters, our accuracy evaluation
has consistently produced good results, and the probabilistic

An RSU uses the same method to collect information from
the passing vehicles in the point estimator or the point-to-
point estimator. The time complexity of a passing vehicle is
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TABLE 11
PROBABILISTIC NOISE-TO-INFORMATION RATIO
WITH RESPECT TO f AND s

T T T Y PR

s—2 [ 344 | 190 | 130 | 098 | 079 | 066 | 0.57

s—3 [ 516 | 284 | 105 | 148 | L.I9 | 099 | 0.85

s—4 [ 688 | 379 | 259 | 197 | 1.58 | 132 | 114

S—5 [ 859 | 474 | 324 | 246 | 198 | 165 | 142
TABLE III

AVERAGE ABSOLUTE ERROR OF COMMON TRAFFIC ESTIMATION
WITH RESPECT TO f AND s, € = 0.6

f=1|f=15/f=2|f=25f=3|f=35f=4

=2 225 67 43 36 33 34 34
s=3 345 100 57 46 47 45 44
= 483 137 73 61 58 54 57
=5 624 180 93 74 73 68 69

O(1), including authentication with the RSU and several hash
computations; the complexity of the RSU is also O(1), includ-
ing authentication with the vehicle and setting a bit to one in
its bitmap. The computation of the offline k-persistent traf-
fic estimation performed at the traffic measurement server is
heavier. Under the point traffic model, we need to compute
ﬁj,il,iz,...,i, in O(tm'), for all subsets of the ¢ bitmaps, where m
is the bitmap size and ¢ is the number of periods under con-
sideration, which is a preset, small constant (such as 5 for a
working week in our simulations). The total time complexity
is therefore O(2'tm’), for calculating the value of k-persistent
point traffic volume based on Algorithm 2. Similarly, we need

to compute 7§ ., for all combinations of j measurement

S50y e00lf
periods iy, iz,j . 1 2, ij, Ik < j < t, under the point-to-point traffic
model. Therefore, the overall time complexity for the central
server to calculate the k-persistent common traffic volume is
also O2'tm).

We perform experiments to evaluate the time efficiency of
the proposed estimators. Because the online components take

very little time (much less than 1 s), our focus is on the offline

TABLE IV
RUNNING TIME OF OUR ESTIMATORS
t
. t=4|t=5 t=26 t=7 |[t=15
estimator
point 13ms | 28ms 62ms 138ms 65s
point-to-point 45ms | 95ms | 21lms | 461ms | 120s

traffic estimation, which is performed on a desktop with Intel
Core 17-4720HQ CPU at 2.6 GHz and 8-GB DDR memory.
The experimental results are presented in Table IV. When
t = 5 for persistent traffic in a working week with each period
being a day, the computation times are just 28 ms for point
traffic and 95 ms for point-to-point traffic. When ¢t = 15 for
half a month, the computation times are 65 and 120 s for
point traffic and point-to-point traffic, respectively. We stress
that this is offline traffic estimation, which is not subject to
the same time constraint as online operations.

VIII. RELATED WORK
A. Transportation Traffic Measurement

With the development of the Internet of things and cloud
computing [23]-[26], new technologies become available for
data collection, such as VCPS that enables automatic monitor-
ing of urban transportation traffic. In this paper, we study how
to estimate the k-persistent traffic volume with information
collected from VCPS.

There are two categories in the field of transportation
traffic measurement: single-period traffic measurement and
multiperiod traffic measurement. Single-period traffic mea-
surement refers to measure the volume of point traffic or
common (point-to-point) traffic during a particular measure-
ment period. Note that, we use point traffic to denote the
vehicles that traversing a particular geographical location (i.e.,
road intersection). Hence, a single-period point traffic mea-
surement often returns in the form of annual average daily
traffic (AADT). Various prediction methods [11]-[13] have
been proposed to measure single-point traffic volume based
on the data recorded by automatic traffic recorders (ATRs)
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installed at road intersections. For example, [11] employs a
support vector regression model to evaluate the volume, [12]
introduces an absolute deviation penalty procedure, and [13]
uses the regression and Bayesian model to solve this problem.
Different from point traffic, point-to-point traffic refers to
the common vehicles that travel through 2 particular inde-
pendent points. In fact, the passing points of a specific
vehicle are part of its trajectory. Therefore, we should con-
sider the privacy protection issues in the point-to-point traffic
measurement. Various methods are proposed to estimate the
single-period point-to-point traffic. Zhou et al. [14]-[17] stud-
ied the point-to-point traffic measurement issue by employing
the data structure of bitmap in CPRS. In [14], they proposed a
model for point-to-point traffic measurement, which preserves
vehicles privacy by an encryption method and measures point-
to-point traffic using the encrypted vehicle IDs. This model
improves the computation efficiency to O(nyny) for any two
RSUs, where n, and ny, denote the number of vehicles travers-
ing them, respectively. However, the computation efficiency of
this model is still unacceptable for todayafs large-scale road
networks. To solve the problem of high computation over-
head, Zhou et al. [15], [17] introduced the fixed-length bit
arrays and improves the computation efficiency to O(n, + ny).
However, different RSUs may observe different traffic in the
real world. Thus, the performance of the method proposed
in [15] and [17] dramatically decreases regarding both vehi-
cle privacy and measurement accuracy when considering a
realistic situation. To adapt to the real situation better, Zhou
et al. [16] further designed a variable-length bit array masking
method.

Different from single-period traffic, multiperiod traffic refers
to the persistent vehicles during two or more measurement
periods. Huang et al. [18] and Sun et al. [27] proposed two
estimators, respectively for the point and point-to-point per-
sistent traffic measurement. However, this research is based
on an overly strict assumption that the persistent traffic passes
the interested point or multipoints at all measurement periods,
and cannot provide the DP for point location privacy.

B. Network Traffic Measurement

Network traffic measurement is another branch of the traffic
measurement, which is similar to transportation traffic mea-
surement. Various methods [28]-[32] have been proposed for
network traffic measurement, which is to measure the network
traffic in a network router. However, none of these network
traffic measurement methods can be directly employed in the
scenario of transportation traffic measurement since the pass-
ing points of a vehicle in fact indicate its trajectory, while the
passing points of packets are not likely to reveal their privacy
(i.e., packet contents, packet source, and packet destination).

There have been many prior privacy-preserving studies for
counting/histogram problem, such as RAPPOR [19] from
Google that can provide strong DP without any trusted entity.
However, none of them can be directly used in our context.
To protect the privacy of items in a set, most existing methods
assign one bit (0/1) to each item. The whole bit array stores
the membership of the set, with the identifiers of all items
preknown. However, we cannot assign each possible passing
vehicle a bit since we do not know the set of possible vehicles
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beforehand. If we let vehicles report their IDs, their point pri-
vacy will be breached once an RSU knows the IDs of passing
vehicles. Therefore, these prior methods that are tailored for
other applications cannot solve the problem we study here.

IX. CONCLUSION

This paper studies privacy-preserving k-persistent traffic
measurement in the context of intelligent cyber-physical road
systems (CPRS). As far as we know, this paper is the first to
study the k-persistent traffic measurement problem in trans-
portation. We propose two novel estimators for k-persistent
point and point-to-point traffic measurements, respectively. We
show that the proposed estimators can provide stronger privacy
preservation than previous studies—the new approaches pro-
tect not only the point DP of vehicles, but also the trajectory
privacy of vehicles even when their point privacy is compro-
mised due to external means outside of our approaches control.
The efficiency of our estimators is demonstrated by extensive
experiments based on real transportation traffic data set.

As future work, we will extend our study beyond point-
to-point traffic measurement for estimating k-persistent traffic
volume along a path through more than two specified loca-
tions, and we plan to discuss and work with the local
transportation authority to explore real-world experimentation
of the proposed estimators.
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