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Abstract

Cytochrome ¢ Oxidase (CcO) is the terminal electron acceptor in aerobic respiratory chain,
reducing O: to water. The released free energy is stored by pumping protons through the protein,
maintaining the transmembrane electrochemical gradient. Protons are held transiently in a proton
loading site (PLS) that binds and releases protons driven by the electron transfer reaction cycle.
Multi-Conformation Continuum Electrostatics (MCCE) was applied to crystal structures and
Molecular Dynamics snapshots of the B-type Thermus Thermophilus CcO. Six residues are
identified as the PLS, binding and releasing protons as the charges on heme b and the binuclear
center are changed: the heme a3 propionic acids, Asp287, Asp372, His376 and Glu126B. The
unloaded state has one proton and the loaded state two protons on these six residues. Different
input structures, modifying the PLS conformation, show different proton distributions and result
in different proton pumping behaviors. One loaded and one unloaded protonation states have the
loaded/unloaded states close in energy so the PLS binds and releases a proton through the
reaction cycle. The alternative proton distributions have state energies too far apart to be shifted
by the electron transfers so are locked in loaded or unloaded states. Here the protein can use
active states to load and unload protons, but has nearby trapped states, which stabilize PLS
protonation state, providing new ideas about the CcO proton pumping mechanism. The distance
between the PLS residues Asp287 and His376 correlates with the energy difference between
loaded and unloaded states.
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Abbreviations: CcO, Cytochrome ¢ Oxidase; BNC, Binuclear Center; PLS, proton loading site;
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heme b; PRDy, propionic acid D of heme b; MS, microstate.



1. Introduction

Cytochrome ¢ oxidase (CcO), a member of the heme-copper oxidase superfamily, is a
proton pump, driven by the chemical energy produced by reduction of oxygen to water [1].The
proton is pumped through chains of waters and amino acids from the N-side (high pH) to the P-
side (low pH). Pumping protons uphill is a complex process, requiring changes in proton affinity
and proton connections within the working protein.

CcO, Complex I [2] and bacteriorhodopsin [3] are representative proton pumping
proteins. Proton pumps move protons through the entire membrane embedded protein driven by
energy of a photon or a redox reaction [4,5]. Pumps have proton loading sites (PLS), a residue or
group of residues whose proton affinity changes dramatically through the reaction cycle, so a
proton is loaded, held and then released through the reaction cycle. A requirement for a pump to
function is that the PLS proton affinity must change so that its effective pKa shifts substantially,
from several pH units above the pH for proton loading to several pH units below the pH for
proton unloading [6,7]. Smaller changes in affinity or those where the change of effective pKas
in different states that do not cross the pH of the surroundings will not cause the PLS to alter
protonation state. The electrochemical gradient across the membrane, favors wrong way proton
transfer from P- to N-side, so for efficient pumping, when protons are loaded the proton pathway
must connect to the N-side and opened only to the P-side when protons are released [8]. Thus,
the study of proton pumps must consider the energetics of proton binding sites as well as the
connectivity of proton transfer pathways.

In CcO the energy required is provided by the reduction of oxygen at the Binuclear center
(BNC) located in the center of the protein. The BNC consists of a heme group and a copper site
and a covalently-linked Tyr residue [7,9,10]. In the overall redox reaction cycle CcO reduces one
oxygen molecule to water, driving a reaction cycle that results in uptake of 4 protons from the
N-side for chemistry and additional protons pumped from N- to P-side [7,9]:

0, + 4Cyt c2* + 4(1 + n)H; — 2H,0 + 4Cyt ¢3* + 4nH}7, (1)
where 1 is the number of protons pumped from the N- to P-side of the membrane/electron [11].

CcO is divided into three families denoted by A, B and C [11-13]. The A-type CcO is
present in eukaryotes and bacteria. B- and C-type CcO are found in bacteria and archaea that live
at lower oxygen levels [12]. The different families differ in the nature of the active site hemes
(heme a, b, or c), the number of N-side proton pumping pathways (one or two) and the number
of protons pumped/electron ().

The A-type aa3 CcO is the best studied, with Cua as the electron acceptor from
cytochrome c, a heme a and heme a3 and Cug as the catalytic Binuclear Center (BNC) [5,10,14—
16]. The ba3 CcO is a B-type CcO. It uses heme b instead of heme a to accept electrons from
Cua on the P-side and transfer them to the BNC. The isolated heme b has an E;, of-120mV while
heme a -20mV [17], which can increase the driving force for electron transfer into the BNC.

The number of protons/electron, 1, is =1 for A-type CcO [15,18-20] while it is =0.5 for the B
and C type CcO [21-23].

In every family of CcO the reduction of O takes four sequential reductions of the BNC,
denoted the redox states F, O, E, R [1,24-26]. In the fully reduced R state (Feg3", Cug!, Tyr-
OH), Oz is bound to the iron atom of heme as. It is at this stage that 4 electron reduction of O2
occurs in the BNC, leading to the most oxidized protein (F). Then one electron and one chemical
proton is sequentially transferred to the BNC in each redox transition from O to E and back to R.
(Figure SI.1, Table SI.1).



The PLS has been studied in Rb. sphaeroides [25,27], Paracoccus denitrificans [28-30],
bovine[31-33] and yeast A-type CcO [34,35]. Various studies suggested the propionic acids of
heme a; or the Histidine ligand to Cus to be the potential loading sites for A-type aa3 CcO
[28,29,32,36,37]. Calculations using methods similar to the ones that will be applied here
proposed that the proton loading site is a cluster of residues instead of a single site, with the two
heme propionic acids of heme a3 playing the major role [25]. An analysis of the hydrogen bond
network of A-type CcO also identified a cluster of residues that include, but extend beyond, the
proton holding PLS residues on the P-side that can lead to proton egress [8].

As in the A-type CcO [8] the ba3 type CcO has an extended group of buried charged and
polar residues on the P-side of the BNC. In the ha3 CcO, the propionate A of heme a3 and
nearby residues have been suggested to be the PLS [38—43]. Mutations of Asp372, His376,
Asp287 disrupted or reduced proton pumping [40]. A conserved water molecule between
propionates A and D of heme a3 [39,40,44] or a water-dimer near the Cusg site in the BNC [45]
have also been proposed to be part of the proton pumping pathway. One model [46] highlights a
possible role of His376, suggesting that its rotation moves a proton from the propionate A of
heme a3 or Asp372 onto Glul26B and onward to the P-side surface. Comparison of the pumping
mechanisms of the members of the CcO family can help us understand the constraints on the
transiently proton trapping element of the proton pumping cycle.

In A-type CcO, four protons are pumped with the four electrons needed for one O2
reduction. After much discussion of alternative patterns, one proton is believed to be pumped in
each redox reaction [28,47-54]. To pump one proton each time the BNC is reduced, the proton
affinity of the PLS must change four times during the redox cycle from being above to below the
solution pH. A Monte Carlo analysis of proton binding in Rb. sphaeroides A-type CcO through
the reaction cycle showed protons could be loaded and unloaded in each redox state [25].

Here, CcO structures are obtained from crystal structures from the Protein Data Bank and
snapshots from Molecular Dynamics (MD) trajectories conducted in different redox states with
different protonation states of possible PLS residues. Continuum electrostatics based Monte
Carlo analysis (Multi-Conformation Continuum Electrostatics, MCCE) is applied, allowing the
protonation states of the whole protein to come to equilibrium with a series of imposed redox
states that models the reaction cycle in 136 different starting structures. This approach allows us
to probe the coupling between the redox cycle and the protonation states of the protein in diverse
structures. The method does not pre-select the PLS residues.

A cluster of residues is identified whose average protonation increases when the BNC is
reduced and diminished when a substrate proton is added to the BNC. The ba3 CcO PLS isin a
location similar to that found in the aa3 CcO [25]. However, the propionic acids are the key
loading sites in the aa3 protein, while here we find a more delocalized PLS made of the
propionic acids of heme a3, Asp287, Asp372, His376 and Glu126B (Figure 1). The unloaded
PLS cluster has one proton and the loaded state has two. The changes in heme b redox state and
the redox and protonation states of the BNC always tune the proton affinity of the PLS cluster by
5-6 kcal/mol. However, the free energy difference between the protonated and deprotonated
PLS states, which corresponds to the proton affinity of the cluster, can be too large for the
reaction cycle to change the protonation state. Thus, individual structures are found locked in
loaded (2 protons) or unloaded (1 proton) states, or in ones that can actively bind and release
protons. Locked unloaded and active pumping states were also seen in our earlier study of aa3
CcO, but at the time we could not identify the underlying cause [25]. The distribution of protons
and the hydrogen bonding pattern amongst the residues in the PLS cluster are different in the



active and locked structures. Thus, CcO may move from an active configuration to bind or
release protons to a locked configuration to preserve the loaded or unloaded state. Compared
with A type CcO, B type CcO only has half of the yield of pumped protons, with only =2
pumped/O». No input structure binds more than 3.5 protons into the PLS through the whole
redox cycle and many bind substantially less.

membrane

Figure 1 A) B type CcO from Thermus Thermophilus structure PDB:3S8F. The hemes are shown with sticks, heme b on the left
and heme a3 (with a long tail) on the right. The di-copper Cus and Cug in the BNC are shown as gold spheres. The K channel
[39,55] residues are shown as sticks to the bottom right. The region where the PLS is expected to be located is circled. B)
Electrons are transferred from a P-surface bound cytochrome c (not shown) to Cua then to heme b which reduces the BNC (heme
as and Cug). Protons needed for chemistry are added to the oxygen ligands bound on heme a3 and Cug as a product of O,
reduction. The six labeled residues that are found to function as the PLS are shown as sticks with yellow carbons. Residues that
are connected by hydrogen bonds to these residues shown as grey lines while the propionates of heme b are shown as grey
sticks.



2. Methods and Materials

2.1 MD simulation

MD simulations are prepared at seven different redox/protonation states, starting from the
crystal structure, 3S8F, of Thermus Thermophilus CcO [56] (Table 1). The states were initially
chosen given the proposed reaction cycle where the P to F transition is coupled to proton pumped
from N-side to the PLS [9]. Therefore, CcO was simulated with no protons added to the PLS
region and with protons on the Propionic acid A of heme a3 or on Asp372. In addition, CcO with
protons, on Asp372 and His376, were prepared, as MCCE analysis showed these to be the
preferred proton location in simulations starting with the crystal structures. The MD simulation
protocols are identical to those described previously [57].

Table 1 Redox and protonation states prepared for MD simulation

Trajectory State Designation Details Color!
1 F.MS0 p’ PRA,;", Cup(I)-OH Orange
2 F.MS2 p¥ PRA;H, Cup(I)-OH Purple
3 F..MS0 F? PRA.;", Cup(I)-H,O Cyan
4 F::MS2 F PRA;H, Cup(I)-H,O Green
5 F..MS5 F* D372H, Cug(I)-H.O Yellow
6 F..MS14 F3% PRA;H, D372H, Cug(I1)-H,O  Black
7 F..MS16 F> H376H, D372H, Cug(I1)-H,O  Red
8 Crystal structures Blue

All trajectories have Ferryl (Fe (IV)) heme a; with an O* ligand, with Heme b reduced and Tyr237
ionized (YO"). State: identifies the trajectories with the most similar MCCE substate (Figure SI.1 and
Table SI.1). Designation: trajectory designation in earlier work that defined the MD running conditions
[9]. P? has Cug(1I)-OH  and a reduced heme b, which occurs before the Fe substate in Table SI.1, thus
before heme b is oxidized, while F* has a proton added to the ligand on Cug. All trajectories are 50 ns
long. MS 0 has no proton on any of the six PLS residues (charge -5); MS 2 has a single proton on PRA,3
while MS 5 has a single proton on Asp372; MS 14 PLS has two protons, one on PRA; and Asp372; in
MS 16 His376 and Asp372 are protonated (Table SI.2). Color: connects the results presented in Figure 2
and 3 with the trajectory that is the source of the snapshots that initiate the MCCE calculations.

2.2 MCCE simulation

Twelve crystal structures of the ba3 CcO from Thermus Thermophilus (PDB codes:
1EHK, 1XME, 3EH3, 3EH4, 3EHS5, 3S3A, 3S3B, 3S3C, 3S3D, 3S8F, 4GP4, 4GP5) [38,56,58—
61] from the Protein Data Bank and MD snapshots at different redox/protonation states (Table 1)
are analyzed by MCCE simulation. In the beginning, MD snapshots are selected by their time
point in the trajectory. To guarantee the diversity of input structures, the ~3,500 snapshots from
the seven MD trajectories were then clustered by the coordinates of the PLS cluster (propionic
acids of heme a3, Asp287, Asp372, His376, Glul126B) using MD Analysis [62—64] generating
124 clusters. Each of the trajectories generates 13-24 clusters with from 1 to79
snapshots/cluster. One snapshot representing the centroid of each cluster is chosen for MCCE
analysis of the proton pumping behavior.

MCCE [65] can generate multiple conformers for residue side chains as well as the
protonation and redox state for each residue and cofactor. Monte Carlo sampling allows the
entire system to come to equilibrium. Here conformational sampling was restricted to isosteric
side chain conformations with only the cofactor redox and protonation states imposed for each

6



state in the reaction cycle (Table SI.1 and Figure SI.1). These calculations keep the heavy atoms
determined by the input MD snapshot or crystal structure but samples His tautomers, hydroxyl
proton positions and Asn and Gln termini positions as well as the protonation state for each
acidic and basic residue. Explicit water molecules are removed and replaced with implicit
solvent [66]. The hydrophobic portion of the lipid bilayer from the MD simulation is retained to
serve as a low dielectric surroundings in MCCE simulations (Figure SI.2A). The membrane was
added to the crystal structure coordinates by alignment to an equilibrium MD snapshot with
PyMol. The atomic charges for Cua, Cup, heme a; are given in the earlier publications
[25,67,68]. Atomic charges for heme b are benchmarked in MCCE [68] (Table SI.3).
Approximately 4.5 million steps of MC sampling are averaged to determine the equilibrated
protonation state for each structure in each defined reaction state.

2.2.1 Modeling the changes in CcO redox and protonation state in MCCE

Independent MCCE calculations are carried out for 136 MD snapshots or crystal
structures in twelve redox and protonation states for the BNC, Cua and heme b (Table SI.1 and
Figure SI.1). The four redox states are designated R-F-O-E [9]. Each redox state (X, where X
can be R, F, O or E) starts with electron transfer to the BNC (forming the state designated X),
followed by proton addition to the BNC (X;) and then electron transfer to heme b (X+). Protons
are added to the OH™ or O~ bound to Heme a3 or Cug or to Tyr237. The BNC states are: R:
(Fess", Cug!, Tyr-OH); F:(Feq3'V=07, Cug"-H,0, Tyr-0); O:(Feq3"-OH-, Cug"-OH", Tyr-OH); E:
(Feq3™M-OH, Cug!, Tyr-OH). Heme b is reduced in X+ and oxidized in X, or X,. The total
change on heme b and the BNC is -1 in X and X and 0 in X,.

The Boltzmann distributions of protonation states are calculated for each MCCE
redox/protonation substate in each structure. Six residues will be identified as constituting the
PLS cluster (PRA.3, PRDa3, Asp287, Asp372, His376 and Glul26B). The PLS charge for a
structure in a given CcO reaction state is the sum of the Boltzmann averaged protonation of these
six residues. The average ionization state for this structure is the average PLS charge over the 12
states in the reaction cycle. The integrated proton loading into the PLS region for one reaction
cycle (AH") is:

AH" = Yiredox state Hr-lr-lax - HT-;liTl’ 2)
where H, ., is the maximum number of protons loaded into the PLS for each of the four redox
states (R, F, O and E) and H,},;,, is the minimum protonation in the previous redox state.
Analyses of protons bound are obtained from MC sampling of the entire protein.

2.2.2 Energy map and proton binding energy of PLS

MC analysis samples low energy states but gives little information about states at very
high energy. Thus, if the protein is found in only one protonation state, we only know that other
states are at low probability. Here ~4.5 million microstates are evaluated, which sets the limit on
the likelihood of finding rare states. A more direct analysis of the microstate energy uses the
enumerated energy of each protonation microstate of the six PLS residues (PRAa3, PRDa3,
Asp287, Asp372, His376 and Glul26B) within a fixed, averaged background from the rest of the
protein. The microstate energy here does not count for the entropy generating by the conformers
created in MCCE while the full analysis MC analysis of the entire protein, used to analyze the
proton pumping behavior above, does.

All residues in the protein except those in the PLS cluster are fixed in the MCCE
Boltzmann distribution equilibrated in a given state of heme b and the BNC. Thus, the non-PLS
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residues act on the PLS by their averaged charge and position (a mean-field approach). The
interaction between PLS conformer i and the fixed, non-PLS conformers ( j) in the environment,

mfe . .
AG; i IS
mfe _

AG; = PGy, )
where P; is the Boltzmann averaged occupancy of conformer j previously determined in a free
MCCE calculation for that structure in a specific reaction substate, and AG;; is interaction
between conformer i of PLS residues and conformer j of non-PLS residues.

The total energy of PLS microstate (MS), where x is the conformer combination of the
six-residue PLS, is:

AGys = Tier 2 AG] T
+ Yiex(AGP*P + AGFY
+0.5 * Yiexkex,izk AGi, 4)

where AGP*? is the interaction between the fixed protein backbone dipoles and PLS conformer i
and AG;°! is the solvation energy of conformer i. AGiT]r-l Teis given by Equation 3. AG;; is the

interaction between conformer i of one PLS residue and conformer k of the other five PLS
residues. The factor of 0.5 corrects for the interaction between PLS residues being counted twice
in the summation, See Figure S1.3 for a more complete description. The free energy of all PLS
conformation and protonation microstates are determined in each structure using the AG s
calculated in each step of the reaction cycle. We will use the minimum energy conformational
microstate with the desired proton distribution to designate the energy of each of the 64
individual PLS protonation microstates. Thus, this is the energy rather than the free energy.

The PLS generally shows a loaded state with two protons loaded (a -3 net charge) and an
unloaded state with one proton (a -4 net charge). The free energy difference of PLS between
loaded and unloaded states in a specific structure in a specific MCCE substate is:

AAGy;_; = minAGy, — minAG,, (%)
where minAGy,; is the minimum energy of all microstates with a charge of -4 and the minAG; is
the minimum energy of all microstates with a -3 charge. A positive energy difference indicates
that PLS prefers to be loaded.



3. Results
3.1 Identification of the PLS residues and characterization of the proton
loading/unloading cycle

3.1.1 The highly interconnected residues that are candidates for the PLS of ba3 CcO

The Proton Loading Site (PLS) of B-type CcO is defined as a group of residues that bind
and release protons during the proton pumping cycle. Our search for the PLS will consider
residues that are located between heme b and the BNC, near the middle of the protein, and the P-
side surface (Figure 1). A functional PLS must be connected to proton pathways with alternating
access to the N-side of the protein for proton loading and P-side for release. Here, the MCCE
hydrogen bond analysis previously used to study the aa3 CcO [8] finds twenty amino acid
residues and the four propionic acids residues that are in the right location and are in an
interconnected, water mediated, hydrogen bond network that can facilitate proton transfer
through a Grotthuss mechanism in the ba3 CcO (Figure SI.4). These PLS candidates include 4
basic amino acids (Arg225, 449, 450 and His376), 3 acidic amino acids (Asp 287, 372, and
Glul26B), and the 4 propionic acids of heme b and heme a; as well as 13 polar residues (Table
SI.4). The proton binding PLS residues will be identified by their changing protonation states in
MCCE calculations of the proton distribution in the whole protein through the CcO redox driven
proton pumping cycle [1,25,29,30,47,69—71].

3.1.2 The imposed redox state changes to model the reaction cycle

The redox state of heme b and the BNC redox and protonation states are altered in MCCE
to represent the CcO reaction cycle. The R, F, O, E BNC redox states are each divided by a
sequence of three changes (Table SI.1 and Figure SI.1). A new redox state is initiated when an
electron is transferred from heme b to the BNC, reducing heme a3 or Cug (ET). This forms state
Xe (where X is R, F, O or E). Then a proton is added from the outside to one of the two product
waters in the BNC (PT) to form the states designate X,. Lastly, an electron is added to heme b
(+E) to form X+.. The electron transfer from an external cyz. ¢ to Cua that precedes heme b
reduction is not modeled here.

MCCE brings the protonation states and the polar proton positions of all other residues
into equilibrium with the 12 redox/protonation states that define the imposed changes at heme b
and the BNC through the reaction cycle. The protein backbone and the side chain heavy atoms
are not allowed to move. Rather, structural diversity is added by analyzing 136 structures
derived from crystal structures and selected MD snapshots from trajectories run in different
redox and protonation states (Table 1).

3.1.3 PLS residues that change protonation state as the redox state changes

The residues monitored as the PLS candidates do indeed bind and release at most one
proton when the redox and protonation states of the principle cofactors change. The two
propionic acids of heme a3, Asp287, Asp372, His376, Glul126B, either change their protonation
state or interact strongly with the residues undergoing protonation changes, often changing
position, so they cannot be separated from the cluster (Figure 1B and Figure 2A-2C). Thus,
these six residues are proposed to function as the PLS. All other residues in the PLS candidate
region remain in their standard ionization state with Asp, Glu, Arg and Lys ionized, His and Tyr
neutral in MC sampling through the 12-step reaction cycle in all input structures. Small



ionization state changes are found in mostly surface residues that are disconnected from the PLS
proton transfer chains. These will not be discussed further but are shown in Figure SI.2B.

3.1.4 Choice of structures for analysis of proton loading

MD trajectories allow the protein to explore conformational space with fixed
redox/protonation states in a limited window of time (50 ns here). The question is what
differentiates these input structures to favor different PLA protonation states. A meta-analysis
was carried on the seven MD trajectories, clustering the positions of the six PLS residues,
producing a set of structures that capture the range of PLS conformations [62—64]. Table 2
indicates the likelihood of the different structural categories. One structure in each of the 124
conformational clusters in addition to the 12 crystal structures, are simulated through the cycle of
different BNC redox/protonation states.

E126B
A _(A B E126B
5.0
D287 .87 H376 - 4.2 g
« o D287%?.5“R H376

5.3
5:1
PRD,; AL D372 ‘l
PRA,, PRD,; z.umn
CuB o P RAa3
Heme a; Cu

Heme a;

—3.00 A
E126B

—3.25

‘I? 6
D287 62 H376 —3.50 1
8 (
zk(mn g
PRA,; -4.25 4

a.

—3.75 A
PRD,;

lonization state

Cug —4.50

Heme a; 475

Rie Fo Fp Fie Oc Op Ose Eo Ep Eie Re Ry

Substate
Figure 2 A-C) The position of Cug and Heme as and the six PLS residues identified here from selected input structures showing the
range of positions. The line colors identify the source of the input structure (Table 1). A) Orange, Has proton uptake between -4
and -5; B: Purple; Active proton loading with a charge between -3 and -4; C: Red, Fixed loaded with a -3 charge. D) The net
charges of the six-residue PLS in equilibrium with each of the 12 MCCE substates that model the reaction cycle for different
structures. The orange, thicker purple and red lines show the net charges of structure 2A, 2B and 2C respectively. The line color
identifies the source of the input structure defined in Table 1. Blue: crystal structures; Red: F,.MS16; Black: F..MS14; Yellow:
F.eMS5; Green: F.eMS2, Cyan: F..MSO, Purple: FeMS2, Orange: F.MSO. Given that X can be the R, F, O or E redox state, X..
indicates that an electron is added to heme b; X. that the electron is transferred from heme b to heme as or Cug in the BNC; X,
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that a proton is added to one of the product waters bound in the BNC. The imposed charge on heme b and the BNC is -1 in X,
and X:e and zero in X, substates. Heme b is reduced in X.. and oxidized otherwise. The thicker purple line is described as an
example in the text.

Figure 2D provides examples of how the PLS charge changes through the imposed 12
step reaction cycle, showing the results of calculations initiated with different structures In MC
sampling a defined microstate gives each residue a specific protonation state and so it has an
integer charge. With 5 acids and one base the charge of the PLS can vary from -5, with no
protons bound, to +1, with all residues protonated. A non-integer charge reflects that accepted
microstates have different protonation states. The R+, substate (the BNC in the protonated R state
with heme b reduced) is taken as an arbitrary starting state. The fractional proton binding is the
Boltzmann averaged change in charge of the six residues in the PLS cluster.

The bold line in Figure 2D will be described as an example of the proton
loading/unloading behavior. The six PLS residues have a net charge of -4.0 in the R-. substate.
Thus, one of the residues has bound a proton. When the electron is moved from heme b to the
BNC (generating the F. substate) MCCE calculates that on average 0.6 proton is loaded into the
PLS. Proton binding to the BNC (F,), leads to proton unloading and the recovery of the -4.0 net
charge. There is little change in PLS protonation when heme b is reduced (F+¢). The cycle
continues through O, E and back to the R state, with each redox state having a different
distribution of electrons and protons in the BNC (Table SI.1).

Figure 2D shows examples of the range of behaviors found with different input
structures. The PLS never binds more than one proton during the proton uptake phase of the
reaction cycle, however it can bind less. Many structures change their protonation state in
concert with the imposed charge on heme b and the BNC, moving between having one and two
protons bound. These are considered active. Some structures always keep 2 protons bound,
generating a charge of -3, independent of the imposed redox/protonation states. These structures
are locked in the loaded state (Table 2). Others maintain a charge of -4, with one bound proton,
which are locked in the unloaded state. There is a small subset of structures that transition from
a charge of -5 to -4, which will be denoted active/empty.

The PLS charge is somewhat different in the same substate (X, Xp, X+c) in different
redox states (R,F,O,E). Ec (65%) or Rc (68%) has the most protons loaded (these are double
counted when Ec and R have the same number of protons bound), while in 97% of the structures
the F, substate has the fewest protons bound.
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Figure 3 The proton loading behavior as a function of the energy difference between the lowest energy unloaded (-4 charge) and

loaded (-3 charge) microstates in the E. state of heme b and the BNC, AAGgifL (Equation 5). More positive AAGlE,(sz favors
proton loading. Protonation changes are determined from MC sampling of the whole protein. The schematic at the top shows
that on the left the unloaded state is favored, in the middle the two charge states have similar energy and on the right the
loaded state is at lower energy. A) Dots show the average of the MC determined ionization state in the 12 imposed states in the
reaction cycle; Line: minimum to maximum charge found in the entire 12 step cycle. B) Dots are the integrated proton uptake
through the full reaction cycle (Equation 2). The dot color identifies the source of the input structure defined in Table 1. Blue:
crystal structures; Red: F..MS16; Black: F..MS14; Yellow: F..MS5; Green: F,.MS2, Cyan: F..MSO, Purple: F.MS2, Orange: F.MSO0.
MS identifies the PLS protonation microstate assignments in MD. MS 0 has no protons in the PLS (charge -5); MS 2 has a single
proton on PRA.3 while MS 5 has a single proton on Asp372; MS 14 has two protons in the PLS on PRA.3 and Asp372; in MS 16
they are on His376 and Asp372.

3.2 The input structure determines if the PLS can respond to the changes through
the reaction cycle or be locked in loaded or unloaded state

3.2.1 Characterization of structures by their proton loading characteristics

The pumping behavior depends on how the PLS proton affinity changes through the
imposed 12 step reaction cycle. However, it is also depending on the overall proton affinity of
the PLS, which is a function of the input structure. Structures are categorized by the free energy
difference between the loaded (L, -3 PLS charge, 2 protons bound) and unloaded (UL, -4 charge,
one proton bound) states at a single redox state, AAGur-L (Equation 5). When AAGur-L is
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positive, the PLS favors being loaded. Figures 3A and B use AAGE¢_, for the x-axis since the
E. substate has the most protons loaded through the reaction cycle in almost all active structures.
For simplicity the unique lowest energy unloaded, and loaded microstates are compared, rather
than the Boltzmann averaged energy, of the microstates with that charge.

Figure 3A characterizes the total PLS charge determined by MC sampling for each
structure. The bottom of the vertical line is the charge in the most unloaded state in the reaction
cycle (usually Fp) while the top is the charge in the most loaded state (E. or Re). The dot is the
averaged charge over the 12-step reaction cycle, giving the weighted average of the PLS proton
affinity. A long vertical line indicates protons are bound and released. No line shows that the
PLS is locked in the loaded or unloaded state. For the structure followed by the bold line in
Figure 2D the line extends between -4 and -3.

AH", the integrated proton uptake, shows the ability of the system to respond to the
imposed charge change through our reaction cycle (Figure 3B). If there is no back-proton
transfer this is the maximum number of protons pumped through the reaction cycle for the given
structure. The integrated proton uptake of the PLS cluster for the four-electron reduction cycle is
the sum of the protons loaded in each of the four redox states, adding the difference in
protonation between X. and X, for each of the four BNC redox states (Equation 2). Structures
have zero proton uptake if they are fixed loaded or unloaded. For the structure followed by the
bold line in Figure 2D the integrated proton uptake is 2.5 protons. The maximum AH " here is 3.5
(Table 2). It is never 4.

3.2.2 Division of structures based on their proton loading ability

The observed proton pumping behavior shows if the energy difference between the
loaded and unloaded protonation state, AAGE¢_; , is larger than =8.4 kcal/mol, the protein is fixed
in the loaded state with 2 protons bound (Figure 3, Table 2-catigory 1). All of the 12 crystal
structures are in this locked, loaded state. There are 6 structures that have a small fraction of
microstates with a third proton. They have an average ionization state -2.99 and 0.18 integrated
proton uptake (category 1°). Thus, although these structures have a high proton affinity,
microstates with three bound protons and -2 charge are never really energetically accessible.

The largest group of structural clusters have AAGE?_, between =-2.9 to =8.4 kcal/mol
(Category 2, 84 structures). Here the loaded and unloaded states are close enough in energy so
their probability is tuned by changes in heme b and the BNC. These have an average ionization
state between -4 and -3 and the integrated binding from 0.07 to 3.51. When AAGE¢_; is between
~2 to =4 kcal/mol the system is poised to be most sensitive to the heme b and BNC states and
there is maximal proton loading.

When AAGE¢_; is more negative than =-2.9 kcal/mol the system is fixed in the unloaded
state with net charge -4 and one bound proton (category 3) or switches to load and unload
protons between the -5 and -4 ionization states (category 4). Sixteen structures have a very low
proton affinity where a fully deprotonated microstate with a charge of -5. The minimum,
average charge for this group is -4.40 indicating that the -4 and -5 states are close in free energy,
although there is not much proton loading. These structures are all from the trajectories that
imposed a -5 PLS charge, which may over stabilize this fully deprotonated state (F-MSO0 or
F+cMSO0 (Table 1)).
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3.2.3 Change in AAGy.-L in the different reaction states

The pumping behavior depends on both the absolute value of AAGur-L and as well as how
this value changes between states that are expected to bind and release protons. Table 3
compares the range of AAGE¢_; , which has the most protons loaded and AAGgf_ ,Which has the
least for each proton loading category. AAGuL-L is always less positive in the Fp state, favoring
proton release. However, in the locked loaded states (category 1) AAGur-L remains positive,
while in the locked unloaded states (category 3) it remains negative. As shown schematically at
the top of Figure 3, only in the active, category 2, state does AAGur-L move from being positive
in the E. state favoring loading and negative in the Fp state. Category 5 moves between the -5
and -4 states so AAGur-L, which explores the difference between the -4 and -3 states, strongly,
favors the -4 state and so is negative.

Figure SI.5 compares AAG,;?_, with AAGES_, , AAGS_,, and AAGE¢,. The proton
affinity in the E. state is on average 5.4 kcal/mol more than in the F, state for all structures,
showing how the PLS proton binding energy that is decreased when a chemical proton is added
to the BNC. With this shift in AAGur.v it is clear why AAGES_; between 2 and 4 kcal/mol is
optimal for proton loading as with a shift of 5-6 kcal/mol the AAGuL-L will be above zero to bind
a proton in the E. state and then be lowered to below zero in the Fp state where the proton is
released. The AAGH¢_, favors proton binding by only =3.3 kcal/mol more than AAGgf_ .- Thus,
while the F. substate is the peak of proton binding amongst the three F redox substates, this is
likely to have fewer protons loaded than in the E. substate (Figure 2D). The F.. state only favors
proton binding by ~1.3 kcal/mol more than AAG;{’_ .» which represents the small increase in PLS
proton affinity when an electron is transferred to heme b. This small change is why there is little
proton uptake on this step (Figure 2).

Table 2. Summary of all investigated structures

# of # of Average Integrated
. Ee Fp
Category Behavior clusters frames ionization proton AAGGE AAGy,; ;.
uptake
1 '°°kef'_;)’aded 23 471 -3.00 0.00~0.05 | 851~13.76 | 3.59~8.23
*
1 lo‘zf’;d 6 187 2.99~-2.96 | 0.07~0.44 | 841~12.83 | 3.25~8.34
2 Active 84 2257 | -3.99~-3.02 | 0.07~3.51 | -3.38~8.38 | -9.51~1.82
(-4 to -3)
3 locked :Z;oaded 7 153 -4.00 0.00~0.41 | -4.41~-2.06 | -9.80~-4.80
4 Ac(t_"s'et'sﬂ';’ty 16 442 -4.40~-4.00 | 0.15~1.98 | -4.72~-231 | -9.45~-3.81

The MD Analysis program [62—64] analyzed the positions of the six PLS residues in the seven MD
trajectories finding 124 clusters. MCCE simulations are carried out on one snapshot from each cluster
and on 12 crystal structures. The 136 analyzed structures are divided into 5 categories with different
proton uptake behavior as defined by the average ionization state of the PLS and the proton uptake
behavior shown in Figure 3. # of clusters: How many of the 136 clusters are in this category. This is the
number of structures analyzed in each category; # of frames: The total number of frames in this category
in all of seven MD trajectories and crystal structures; The last four columns give the range of values for
all structures. Average ionization: average net charge of the six-residues of the PLS along the 12-substate
reaction cycle (dot Figure 3A); Integrated proton uptake is calculated by Equation 2 (Figure
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3B); AAGES_; and AAGgf_ ,are the energy difference between the lowest energy unloaded (charge -4) and
loaded (-3) microstates, calculated with Equation 5, in the E. or F, substates respectively. The imposed E.
state generally leads to maximal proton loading while the F, substate has the fewest protons loaded.

3.2.4 The intra PLS interactions lead to the changes in PLS proton affinity

The free energy difference between the lowest energy microstate with a charge of -4 and
-3 (AAGut-1) in any particular imposed heme 5/BNC state varies by close to 20 kcal/mol in the
different structures (Figure SI.3). MCCE calculates this energy difference as the sum of the loss
of solvation energy as a charge is moved from water into the protein interior, the interactions
with the backbone amide dipoles and the interaction with other residues in the protein. What is
most notable is that the interaction with the residues in the protein that do not include the PLS
favor the -4 charge state relative to the state with a -3 charge by -19 & 3 kcal/mol. The average
charge of the protein (not including the PLS or the cofactors) is 10.8+0.85 in the MCCE
calculations. Thus, the surrounding protein is not the main source of the variability of proton
affinity of the various structure, but provides a background positive potential that stabilizes the
negative PLS states found here. The sum of the energy from residues desolvation and their
interaction with the backbone dipoles is near zero. Thus, it is the electrostatic interactions
amongst the six PLS residues that varies by ~30 kcal/mol between the structures that stabilize the
-5 charge state to those locked in the loaded state.

3.3 Where are the protons in the PLS?

The PLS consists of six residues so can generate 64 (2°) pronation microstates. The
MCCE analysis shows the net charge of the PLS cluster switches from one proton loaded to two
protons loaded, changing charge from a charge of -4 to -3. There are six possible protonation
microstates with one proton and 15 microstates with two protons. There is only one state with no
protons and a charge of -5. It should be noted that MCCE generates ~1 million microstates which
can have different polar proton positions and residue tautomers for the PLS residues in addition
to the different protonation states. The conformational microstate with the lowest energy defines
the energy for each protonation state.

Figure 4 and Table SI.2 summarize the distribution of the favored, distinct protonation
microstates for the structures grouped into 5 categories by their proton loading behaviors (Table
2). Of the 64 possible protonation states, only those with a charge state of -5 to -2 have low
enough energy (within 10 kcal/mol of the minimum) to have any microstate occupancy, so those
with a net charge of -1, 0 and 1 are not shown. The vertical ordering of microstates within a
given charge is random. The structures within a category are ordered along the x axis by the
average PLS charge through the 12 imposed states for heme 5 and the BNC (dot in Figure 3A).
The small black boxes show the highest probability, lowest energy microstate for that structure.
Microstates with energies ~3kcal/mol above the lowest energy state are orange, with yellow and
white regions at still higher energy.

Five microstates that are found to be at lowest energy are schematically shown in Figure
5. The lowest energy microstates are almost always MS 14 and 16 with a charge of -3; and MS 2
and 5 with a charge of -4 and MS 0 with a charge of -5. Each of these have PRDa3, Asp287 and
Glul26B ionized, while the protonation of PRA.3, Asp372 and His376 vary. Table SI1.2 gives
information about minority protonation distributions. These include microstates with -3 or -4
charge where PRD,3 or Glu126B are protonated, which are at higher but still accessible energy.
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Figure 4A shows the E, maximally loaded and 4B the F;,, maximally unloaded states.
When the lowest energy states are the same in the two figures, the system is locked. Almost all
structures in the locked, loaded state (category 1) are in MS 16 with His376 and Asp372
protonated (Figure 5). Category 2, which can load and unload protons through the reaction
cycle, shifts the position of the low energy states with MS 14 (Asp372 and PRA.3; protonated) as
the predominate loaded species and MS 5 (Asp372 protonated) as the unloaded microstate.
Category 3 which is fixed in the unloaded state or category 4, which can access the -5 net charge
state tend to have PRA43 protonated (MS 2). Thus, we see that structures that have locked
protonation states (category 1 and 3) choose different proton positions than the active structures
(category 2). So there is an active (MS 5) and a locked (MS 2) unloaded state as well as an
active (MS 14) and locked (MS 16) loaded state.
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Figure 4 Energy map for (A) AGf,,eS and (B) AG%. The protonation microstates are numbered from 0 to 63 while the structures
from 0 to 135. The microstate numbering is sorted by ionization state of the PLS ascending, from -5.0 (zero protons bound) to -
2.0 (3 PLS protons). More positive PLS states are all at unattainable energy and are not shown. The structures are sorted along
the x axis by the proton pumping categories (Table 2). Black boxes show microstates with lowest energy: MS 0, no proton on
PLS; MS 2, a proton on PRA.3; MS 5, a proton on Asp372; MS 14, a proton on Asp372 and PRAq3; MS 16, a proton on Asp372 and
His376 (Figure 5). Orange boxes: Less probable, but accessible microstates, which are listed in Table SI.2. The energy bar shows
energy relative to the minimum energy for that structure in kcal/mol. Energies are shown on a log scale so that a wider range of
energies can be visualized.
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Figure 5 Lowest energy protonation microstates (Figure 4, Table SI.2). Protonation states of His376, Asp372 and the PRAq; are
shown. In these high probability states Asp 287, Glu126B and the PRD,3 are always ionized. MS numbering is the same as Figure
4. MS 14 and MS 16 have a PLS charge of -3; MS 2 and MS 5 have a charge of -4; and MS 0 a charge of -5. MS 16 is locked
loaded; MS 14 and MS 5 are close in energy, so their population is modulated by the BNC and heme b charge in the reaction
cycle. MS 2 can be locked unloaded or moved to MS 0 through the imposed reaction cycle. The orange filled ellipsoids represent
active microstates, while green filled ellipsoids the locked states. The red outline of ellipsoid indicates the PLS is in an unloaded
state while the blue outline indicates a loaded state. The MS 0 is shown in grey filled ellipsoid and a thicker red outline indicating
a more negative state. The dashed arrows from MS 2 to MS 14 and MS 5 to MS 16 show highly unfavorable moves from a locked
to an active microstate with a different number of protons.

3.4 Structure changes that lead to different proton pumping behavior

3.4.1 The protonation states assigned in the MD trajectory influence the proton loading behavior

The different input trajectories yield structures that favor different proton distributions
leading to different proton uptake behavior (Table 3, the dot color in Figure 3 and Figure SI.6).
Trajectories in the F+ redox state (Table 1) were carried out in the five protonation microstates.
The initial trajectories were run in the MS 0 state with no protons in the PLS and MS 2 and MS 5
with a proton on PRA,.3 or Asp372. MCCE analysis, showed the importance of states with 2
protons. MS 14 was identified as an active loaded protonation states and while all crystal
structures were found in the locked and loaded protonation state MS 16. Trajectories were also
prepared in these states.

Figure SI.6 replots the energy map (Figure 4) sorted by the input trajectory rather than the
PLS loading category. Some trajectories return only one protonation state, while others have a
larger diversity of accessible protonation states in the Boltzmann distribution. The proton affinity
(characterized by AAGE¢_,), is smallest in snapshots from trajectories with fewer protons so
increases from F+.MSO0, F+:MS2, F+.MS5, F+.MS14, to F+csMS16. Connecting the trajectory
protonation states with the resultant MCCE protonation states the proton affinity tends to be
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lower in snapshots from (F+cMS2) as MCCE finds MS 2 is the preferred protonation states in the
locked unloaded trajectory. The F+:MSS5 trajectory, with the active, unloaded protonation state
MS 5, leads to more active structures. Likewise, the proton affinity is lower in the trajectory
(F+eMS14) using the active loaded protonation state (MS 14) than the trajectory (F+cMS16) using
the locked loaded protonation state (MS 16). A key finding is that trajectories run with
protonation states MCCE considers to be active (MS 5 and MS 14) return structures that can
toggle between loaded and unloaded states in MCCE rather than being trapped in the protonation
state of the trajectory. All crystal structures have a very high PLS proton affinity, and never
release protons being locked, loaded state (MS 16) independent of the imposed heme » and BNC
charges.

Trajectories were also run in different redox states. In the MS 2 protonation state,
snapshots initiated from the F. trajectory have a broader proton binding energy distribution than
the F.. trajectories. Structures from FeMS0 have what we consider possibly artifactually low
proton affinity so that microstates without protons are accessible.

Table 3. Dependence of the proton loading behavior on the trajectory redox and protonation
state.

. Trajectory # of Integrated Average Ee Fp Ee—Fp
Trajectory Protonation | clusters proton uptake ionization AAGyr-y AAGUL—L AAAGUL—L
FMS0 PRA.3 17 0.65+0.66 -4.08+0.13 -2.78+1.08 -6.70+1.61 3.92
F.MS2 PRA.H 24 0.96+1.01 -3.89+0.14 -0.57+2.67 -6.12+1.41 5.55
F+.MS0 PRA.3 21 0.60+0.52 -3.97+0.09 -1.91£1.41 -6.28+1.57 4.37
F+MS2 PRA.H 19 2.46+0.80 -3.63+0.19 2.38£1.70 -4.47+1.44 6.85
F+.MS5 D372H 14 1.88+0.63 -3.394+0.24 3.43+1.25 -2.84+1.65 6.27
F+MS14 Pl;zﬁa;g’ 16 1.17£1.00 -3.15+0.16 6.42+2.43 -0.24+2.94 6.66
F+MS16 %33776211__11’ 13 0.03+0.04 -3.00+0.00 11.03+1.13 6.08+1.22 4.95
crystal Crystal 12 0.01+0.02 -3.00+0.00 11.88+1.66 6.84+1.57 5.04

The assigned redox and protonation states for the MD trajectory are given in Table 1. # of clusters: Meta-
analysis divides the trajectory into clusters based on the positions of the six PLS residues. One structure
from each cluster is analyzed. Integrated proton uptake is calculated with Equation 2, showing the proton
uptake along the reaction cycle. The average ionization is the average net charge of the six-residue PLS in
the 12-substate reaction cycle. AAGES_; and AAGS{’_ ,are the energy difference between the lowest energy
state with a PLS charge of -4 and the one with a charge of -3 in the E. and F, substates (Equation 5).
AAAG[?~[Pis the difference of this proton affinity in the Ec and F, substates.

3.4.2 Structural change in different proton pumping behaviors

Intra-cluster structural variations move the free energy difference between loaded and
unloaded states of the PLS into an active region where AAGur-1 can cross from being below to
above zero as the protein cycles between imposed loading or unloading redox/protonation
substates of heme b and the BNC. In locked structures AAGur.-v is either too positive or too
negative in all redox substates for the PLS to change protonation states. The distances between
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key PLS residues are shown as a function of the proton loading category (Figure 6 left) or sorted
by the input trajectory (Figure 6 right).

D287 and H376 sit near the top of the PLS cluster (Figure 1B). They never come close
enough to form a hydrogen bond, but the distance between them becomes shorter, showing a
more compact PLS, as the proton loaded states are favored (moving to the right in each panel in
Figure 6). In MS 16, which is the locked and loaded state (category 1), H376 and D372 are
protonated and both of these residues make hydrogen bonds with the ionized PRA.3. The
protonated H376 also makes a hydrogen bond with the deprotonated E126B. The presence of
these 3 hydrogen bonds stabilizes the state with 2 protons into locked, loaded behavior. In the
rare structures where the -2 states, with 3 protons, become possible (category 1) these hydrogen
bonds become less stable.

In the active states (category 2) D372 retains its proton while H376 is deprotonated. The
loaded MS 14 (PRA43 protonated) or unloaded MS 5 are most likely to be populated. Only the
hydrogen bond between the propionic acid and H376 is consistently made. The locked, unloaded
structures (category 3, MS 2, PRA,3 protonated) often retain this one hydrogen bond and begin to
develop a hydrogen bond between Asp372 and His376.

Snapshots that come from the MS 0 trajectories are prepared with no protons and a
maximal charge of -5, which appears to introduce intra-PLS repulsion. The distance between
D287 and H376 at the top of the PLS is approximately 2 A further apart than in the structures
that favor a -3 charge. PRA,3 is no longer hydrogen bonded to any of the other PLS residues.
The neutral H376 and ionized D372 now often make a hydrogen bond.
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Figure 6 PLS structure changes. The x-axis is ordered by the average PLS charge (red dot in Figure 3A) in the left column. In the
right column the structures are first ordered by the MD trajectory that is the source of the MCCE input file and then by the
average PLS charge change within that catigory. Within each panel, structures locked in the unloaded state are on the left; the
structures that can participate in active loading and unloading are in the middle and those locked in the loaded state are on the
right. The distances changes between Asp287 and His376, PRAq3 and Asp372, PRA,3 and His376, His376 and Glu126B, Asp372
and His376 are shown individually. The distances plotted are the minimum distance between either side chain oxygen or side
chain nitrogen. Fig 2A-C show examples of structures from category 4 (orange), 2 (purple) and 1 (red).
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4. Discussion

4.1 proton loading/unloading mechanism of PLS

The pattern of proton loading to the PLS through the reaction cycle. A Proton
Loading Site, PLS, is found within a hydrogen bonded cluster (Table SI.4), on the P-side of
heme b and the BNC consisting of six groups (Figure 2A-2C). The MCCE calculations follow
the protonation states of the PLS residues as a function of imposed changes to the redox and
protonation states of heme » and the BNC (Figure 2D). The calculations propose the substates
that lead to proton loading and unloading [9,72]. The PLS always has the most proton loaded
when the electron is transferred from heme b to the BNC (X. substates where X can be R, F, O,
E (Table SI.1)). This step has been previously suggested to trigger proton loading [16]. After a
proton has been added to the BNC, to form the X, substates, the PLS proton affinity decreases,
releasing the loaded proton. The net charge imposed on CcO in X+ and X, are the same (-1) but
moving the electron from heme b to the BNC does not increase the proton affinity significantly.
Addition an electron to the protein by reducing heme b (X+) is associated with modest, variable
proton uptake (Figure 2D).

The number of protons in the loaded and unloaded PLS. With six residues there are 6
possible charge states, from -5, with no protons) to a state where all groups were protonated,
which would have a charge of +5. The MCCE calculations on most structures support a model
where an unloaded structure has one proton bound and the loaded structure has two. The large
negative charge is supported by a very positive electrostatic potential from the rest of the protein,
which is similar for all structures (Figure SI1.3). States with three protons are significantly higher
in energy and are rarely populated even when the cluster proton affinity is very high (very
positive AAGuL-L).

The "default" protonation gives residues the protonation state they would have in
solution. This has a PLS with neutral His and ionized Asp, Glu and Propionic acids, thus no
bound protons and so a charge of -5. This state had been suggested as the unloaded state [38—
42,73]. A subset of the snapshots derived from trajectories carried out in this protonation state
(MS 0) do support the unloaded state with a charge of -5 (Figure SI1.6). The PLS in these
structures tend to break key intra-PLS hydrogen bonds and the distance between D287 and H376
near the top of the PLS show an expansion of the cluster (Figure 6B). We suggest, but cannot
prove, that the PLS with no protons is an artifact, with the MD simulation returning structures
that stabilize the too negative input charge.

The AAGur-L, which is the difference between the lowest energy unloaded (charge -4)
and loaded (charge -3) microstate in a given imposed substate of heme b and the BNC, explains
much of the PLS proton loading behavior. Redox substates with higher proton affinity have
more positive AAGur-L. AAGur-L must move from being positive in imposed substates that load
protons (e.g. Xe), to negative in substates that release protons (X;) (schematic top Figure 2). The
proton loading behavior is thus found to be controlled by the absolute value of the proton
affinity, which depends on the input structure (Figure 2D, Table SI. 1, Figure SI. 1). It should be
noted that AAGur-L in one state provides a qualitative not quantitate picture of the loading
behavior. When this value is close to zero then the cluster is near its effective pK, and the
changes in potential generated by heme b/BNC charges will change the protons bound in each
structure. However, different structures feel the imposed charges differently (Fig SI1.4). The take
home message is that if the background proton affinity, estimated by AAGur-1, is too large or
small the PLS is locked. When the energy difference between the loaded and unloaded states is
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small the PLS will be active, but the stoichiometry of proton loading will then be sensitive to the
details of each PLS structure.

As the largest difference between the proton affinity to the change in imposed charges at
heme b and the BNC is =5 kcal/mol, between the E. and F,, substates (Figure SI.5). When the
positions of the PLS residues make the proton affinity in the E. state higher than =5.5 kcal/mol
the PLS is locked in the loaded state (Figure 3). The proton affinity does change through the
reaction cycle; but not by enough to have a significant promotion of the PLS clusters lose a
proton. Likewise, if the proton affinity is less than zero in the maximally loaded E. state the PLS
will never bind a proton. Trajectories run with no PLS protons can have very low proton affinity
and so cycle between the -5 and -4 charge states (Figure 2D).

The PLS has a range of different proton loading behaviors. A real, dynamic protein
will change its structure to accommodate changes in the PLS protonation state. This relaxation
can help the PLS maintain the loaded or unloaded protonation state for sufficient time to remain
in sync with the opening and closing of the proton transfer channels so that protons are bound
from the N-side and released to the P-side. It is not (yet) possible to keep the conformational and
protonation states fully at equilibrium. MCCE brings the protonation states to equilibrium with
the imposed redox/BNC protonation states, but with a rigid backbone, while MD trajectories will
change conformation to stabilize the input protonation state. By using meta-analysis to cluster
the PLS conformation in the input trajectories 124 clusters were identified and a single structure
from each was used as an input to MCCE (Table 3). These generated 5 categories of PLS
behavior (Table 2). Thus, the PLS can be locked in the loaded state. However, 68% of the
clusters derived from the trajectory are active so protons are loaded and unloaded through the
reaction cycle.

It is inevitable that MD trajectories will change conformation to stabilize the input
protonation state. MD trajectory run with those sites protonated (F+cMS16) return structures that
are locked in this loaded conformation. While structures from MD trajectory with protonated
PRA3 and Asp372 (MS 14) is in loaded state, retain the activity to lose a proton from PRA,3 and
become MS 5, which is consistent with the proposed mechanism here. The observation that MS
14 and MS 16 were identified in trajectories with different input protonation states lends
additional support to their viability in the reaction mechanism.

The protonation states are different in the locked and active states with the same
charge. Thus, there are two forms for both loaded (PLS charge -3) and unloaded (-4) structures
(Figure 5). The majority of the loaded state have a proton on Asp372. However, when the
second proton on His376 the -4 charge state is inaccessible as AAGur-L is too positive (MS 16);
while when the proton is localized on the PRA.3 (MS 14) the state where this proton is lost is
close in energy. Likewise, when the deprotonated state keeps the single proton on the propionic
acid (MS 2), the structure is locked in the unloaded form, while when the lone proton is on the
Asp372 (MS 5) a second proton can be bound. The crystal structures are always in the locked,
loaded state so we assume they stabilize the proton on His376 and Asp372. Having a more
compact PLS, with hydrogen bonds between PRA,3 and Asp372, PRA.3 and H376 as well as
between His376 and Glul26B, favors the locked, loaded state. The loss of these hydrogen bonds
and expansion of the PLS favors unloading.

Thus, the calculations suggest that CcO is a pump where the location of the proton in the
PLS differentiates between states that are longer lived (locked) or more dynamic (active). This
mechanism may be similar to activation and inactivation process in voltage gated ion channels,
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which have conformational change when channels are active open to block the channel and
transit to inactive state [74].

If there are transitions between locked and active protonation states for both loaded and
unloaded structures (Figure 5), the protein must retain the ability to return the proton to the
position where the PLS can change its net charge. The transition from the locked, loaded state
(MS 16) to any unloaded states (MS 2 or 5) is uphill by 6 to 48 kcal/mol. However, in the
structures that favor the locked MS 16 the shift in a proton to form the active MS 14 requires
only 3.44+2.2 kcal/mol (Figure S1.8). This suggests the trapped MS 16 can return to the active MS
14 and then lose a proton. The AAG separating the locked unloaded MS 2 from the active
unloaded MS 5 is 3.5+4.1 kcal/mol, so again a pathway of thermal activation to the active
loading state followed by proton bindings seems feasible.

MD trajectories run with the protonation state that MCCE finds to be active and unloaded
(MS 5) present a slightly different picture. Snapshots derived from this trajectory remain active
but can populate MS 16 when the BNC/heme b charges are changed. This trajectory returns two
hydrogen bonds, between Asp372 and PRA.3, His376 and PRAg3. While the MS 16 MD
trajectory, which is locked in the MS 16 loaded protonation state, adds a third hydrogen bond
between His376 and Glul26B. The structure with two hydrogen bonds may reflect the active
state. Thus, the MS 5 state would bind a proton to PRAa3 (MS 14) and then transfer it to His376
(MS 16). In addition, conformational changes in the MD trajectories with MS 14 protonation
state, His376 rotation followed by Glu126B reorientation occurs in nanoseconds, showing a path
for proton release to the P-side.

Possible sequence of proton movement. These MCCE calculations focus on the low
energy protonation state so do not directly consider the proton exit pathway. However, changes
in the position of His376 and Glu126B are seen in the MD trajectory with protonated PRA43 and
Asp372 (F+cMS14) that may facilitate proton motion towards the P-side (Figure SI.9). Earlier
simulations examined a possible role for His376 protonation/rotation [46] and here His376
moves away from PRA,3, breaking the hydrogen bond in =~ 19ns in the Fe+.MS14 (active loaded
state) MD trajectory. Glul26B rotates the two oxygen positions after around 30ns (Figure SI.9).
This provides a path to move the proton from the PRA,3 in the active, loaded MS 14 to His376 in
locked, loaded MS 16. The rotation of the protonated His moves it closer to Glu126B, which can
rotate and release the proton to P-side.

The model of loaded and unloaded states was obtained here by MC sampling with a
classical force field of all protonation states focusing on identifying the lowest energy states in a
range of structures. The key protonation states are quite similar to those found in an earlier
analysis using MD coupled with DFT and PMF calculations which focused on a pathway for
proton transfers on the P-side of the ha3 CcO [46]. There it was suggested that the PLS cluster
starts from a protonated Asp372, which is similar to MS 5 state here. Then PRA.3 receives a
proton from Asp372 (MS 2), coupling with the His376 rotation. Then a proton is loaded to
Asp372 (MS 14), PRA,3 passes a proton to His376 (MS 16), the trapped, loaded state here.
Given the complexity of the PLS, with many coupled residues it is interesting that two very
different computational approaches are converging to a similar picture of the PLS.

4.2 Comparison of the ba3 and aa3 CcO

Comparison of the PLS in A and B-type CcO. A similar MCCE based study to identify
the PLS region in the aa3 CcO showed proton binding and release was mainly carried out by the
propionic acid groups of heme a and heme a3[25]. A somewhat larger group of six residues are
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calculated here to play a role in the PLS of ba3 CcO. The previous study of the aa3 CcO also
showed some structures, such as the IM56 crystal structure, exhibited active proton pumping
along the redox state change of BNC, while others such as 2GSM, were locked in unloaded state
[25]. None of the limited group of structures was trapped in the fixed loaded state. At the time
those calculations were carried out, MCCE did not have the capability to save and bin the
protonation states of all of the microstates and determine their state energies so it is not possible
to make a complete comparison with the earlier simulations.

Low efficiency of proton pumping in B-type CcO. A long-standing question is why
the baz CcO pumps fewer protons than the aasz analog [73,75]. The source of the lower efficiency
is not known. It may arise from weaker coupling between the BNC and PLS so protons are not
pumped on each of the four reduction steps or each step could have a lower yield of pumped
protons. Alternatively, it may be that wrong-way proton loading from the P-side is blocked more
effectively in A-type than in B-type CcO. It is suggested that it may because of the lack of D
channel [22] and subunit III or because B-type CcO is more ancient in evolution compared to A-
type CcO [75-77]. Here we find no active structure loads/unloads more than 3.5 protons in the
full cycle as active structures. This results from the need to keep the loaded and unloaded states
(MS 5 and MS 14) close in energy so their equilibrium population can be modulated by the
changes occurring at the relatively distant redox sites. In addition, it is seen that some structures
do not contribute at all to proton loading or unloading as they are energetically locked in a
loaded or unloaded state. The diversity of the stoichiometry of proton loading found here may
help explain the low efficiency of pumping in ba3 CcO. However, the model with auxiliary
locked states found here can enhance proton pumping if the system can move efficiently from an
active state with small driving force for (un)loading into the neighboring locked state, which
fully stabilizes the loaded or unloaded state. This trapping mechanism could lead to maximal, 4
protons, pumping only if it has the appropriate rate constants for moving between locked and
active states to stay in synchrony with the electron and proton transfers at the BNC.

Conservation of PLS residues. The PLS in the a3 and aa3 CcOs are both in a highly
interconnected cluster in a similar location in the structure [8,25]. The propionic acids of heme a
or b and heme a3 are present in both the Rb. sphaeroides aa3 CcO and the Thermus thermophilus
ba3 CcO evaluated here. Several PLS residues are conserved including (Rb. sphaeroides
numbering in parenthesis) Asp372 (Asp407), His376 (Mg ligand His411), but Glu126B, and
Asp287 are not. Two nearby Arg, Arg449 (Arg481) and Arg450 (Arg482) help produce the
positive electrostatic potential that supports the negative net charge of the PLS. A nearby Trp229
in ba3 CcO corresponds to Trp280 in aa3 CcO.

The importance of the residues proposed as the PLS can be evaluated by the degree of
conservation and the sensitivity to mutation. The heme propionic acids (PRAa3 and PRD,3) must
always be present. His376 is 100% conserved, while Asp287 position is found in 64% of related
sequence [78]. Asp372 is an Asp (31%) or Asn (67%). Glul26B is usually Met (89%) and rarely
Glu (3%).

Several site-directed mutations of nearby residues, including Asp372, His376, Tyr133,
Asn377, Glul26B, showed no significant loss on either catalytic or pumping activity [40].
However, the specific mutations Asp3271Ile and His376Asn abolished or diminished proton
pumping while retaining O; reduction, catalytic activity. Glul26B, in the PLS cluster was
previously suggested to contribute proton pumping, but CcO activity is not sensitive to its
mutation and it is poorly conserved [40]. The results of the mutations T312V/D372V and
T312V/H376F suggested that T312 and H376 may be involved in the proton backflow system
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where protons are bound from the P-side [40]. Asp287Asn shows both low respiratory and low
proton pumping activities [40]. Thus, as has been seen previously the use of a cluster rather than
a single residue may build in more flexibility to maintain function [8].
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5. Conclusions

Proton pumps must choreograph changes in proton affinity and proton accessibility to the
two sides of the membrane to be in synchrony with the electron transfer and chemical proton
delivery that underlie the reaction cycle. Here we have investigated the proton transfer to the
PLS in the B-type CcO. The PLS proton transfers occur far from the active site so the
information from the BNC must be felt at long range. The reaction steps occur on the
microseconds to millisecond time scale, so the change in proton affinity that load or unload the
PLS must last this long. In the work reported here we show that changes in the reduction and
protonation of the heme b and the BNC have a direct impact on the free energy difference
between the protonated and unprotonated PLS of =5 kcal/mol. This is sufficient to lead to a
maximum of 3.5 protons loading and unloading through the reaction cycle, but this is only seen
for a subset of structures where the free energy difference between these states is in a narrow
window. However, for a working CcO small changes in PLS proton affinity need to be protected
from too easy proton loading/unloading. Thus, the range of integrated proton uptake of the
proteins in actively loading structures is uncomfortably sensitive to the exact energy difference
between the loaded and unloaded states (Figure 3).

The results show the protein may lock the loaded or unloaded states by shifting the
proton. The active structures stabilize protons in the PLS: with a proton on Asp372 and PRA.3
in the loaded states and on the Asp372 in the unloaded state. Structures that have moved a
proton in the loaded PLS proton from the PRA.3 to His376 have stabilized the loaded state;
Likewise, a locked unloaded state can be generated by moving the single proton from the
Asp372 to the PRA.3. This is a plausible mechanism with a transition between active and locked
states to allow the modest, long-range electrostatic changes from the BNC and heme b to lead to
substantial and sufficiently stable loading and unloading.

The PLS structures that have a higher proton affinity are more compact. The distance
between Asp287 and His376, near the P-side of the PLS, ranges from 5.5 A to 11 A. When the
two residues are far apart, the PLS stays locked in the unloaded state. As they come closer
together the PLS becomes active. When they are close, the PLS is fixed in the loaded state.
Therefore, the Asp287-His376 pair may act as a switch in the P-side that opens when proton is
loaded to the PLS and close when proton is locked at PLS. With a less compact PLS, the longer
distance between His376 and PRA.3 or His376 and Glu126B enable PLS cluster to be active state
to lose proton or gain proton. Once the His376 is hydrogen-bonded with both PRA,3 and
Glul26B, the PLS cluster is completely locked at loaded state.
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