

## Analysis of Alternative Climate Datasets and Evapotranspiration Methods for the Upper Mississippi River Basin using SWAT within HAWQS

Manyu Chen<sup>1,2</sup>, Philip W. Gassman<sup>2,\*</sup>, Raghavan Srinivasan<sup>3</sup>, Yuanlai Cui<sup>1</sup>, Raymond Arritt<sup>4</sup>

<sup>1</sup>State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China

<sup>2</sup>Center for Agricultural and Rural Development, Iowa State University, Ames, Iowa, 50011-1070, USA

<sup>3</sup>Spatial Sciences Laboratory, Department of Ecosystem Science and Management, Texas A&M University, College Station, TX 77843-2120, USA

<sup>4</sup>Department of Agronomy, Iowa State University, Ames, Iowa, 50011-1051, USA

\*Contact author: email: [pwgassma@iastate.edu](mailto:pwgassma@iastate.edu); phone: 515-294-6313

**Abstract:** The Upper Mississippi River Basin (UMRB) is an important ecosystem located in the north central U.S. that is experiencing a range of ecological stresses. Simulation models are a key tool for evaluating UMRB ecosystem-related problems including the Soil and Water Assessment Tool (SWAT). This study focused on the application of SWAT within Hydrologic and Water Quality System (HAWQS) on-line platform, which supports rapid development of SWAT projects for U.S. watersheds. To date, testing of SWAT models developed in HAWQS has been extremely limited including the effects of different climate-related inputs. Thus the focus of this study was to test the effects of the: (1) Hargreaves (HG) and Penman-Monteith (PM) PET methods, and (2) Livneh climate dataset, which exists external to HAWQS, and the National Climatic Data Center (NCDC) and Parameter-elevation Regressions on Independent Slopes Model (PRISM) climate datasets, which are available in HAWQS. The Livneh data was found to result in the highest average annual water yield of 380.6 mm when executed with the PM method but the lowest estimated water yield of 193.9 mm in combination with the HG method in response to 23-year uncalibrated simulations. Higher annual ET and PET values were predicted with HG method versus the PM method for all three weather datasets in response to the uncalibrated simulations, due primarily to higher HG-based estimates during the growing season. Based on these results, it was found that the HG method is the preferred PET option for the UMRB. Initial calibration of SWAT was performed using the Livneh data and HG method for three Mississippi River main stem gauge sites, which was followed by spatial validation at 10 other gauge sites located within the UMRB stream network. Overall satisfactory results were found for the calibration and validation gauge sites, with the majority of  $R^2$  values ranging between 0.61 and 0.82, Nash-Sutcliffe modeling efficiency (NSE) values ranging between 0.50 and 0.79, and Kling-Gupta efficiency (KGE) values ranging between 0.61 to 0.84. The results of an additional experimental suite of six scenarios, which represented different combinations of climate data sets and calibrated parameters, revealed that suggested statistical criteria were again satisfied by the different scenario combinations. Overall, the PRISM data exhibited the strongest overall reliability for the UMRB.

**Key words:** SWAT model; Climate dataset; UMRB; HAWQS; Hargreaves method; Penman-Monteith method

50      **1. Introduction**  
51

52      The Upper Mississippi River Basin (UMRB) was proclaimed both a “nationally significant  
53      ecosystem” and a “nationally significant commercial navigation system” in the Water Resources  
54      Development Act that was passed by the U.S. Congress in 1986 (Weitzell et al., 2003; USACE, 2016).  
55      However, extensive alterations to the UMRB stream system, which began during the middle of the 19th  
56      century to support commercial navigation, continue to conflict with ecosystem services goals (USACE,  
57      2016). These stream system modifications, in conjunction with large-scale land use change throughout  
58      much of the region, have resulted in a degraded UMRB ecosystem and loss of native aquatic diversity  
59      (Weitzell et al., 2003). Other pervasive ecosystem stresses are prevalent in the UMRB stream system  
60      including degraded water quality (Bouska et al., 2018; Christianson et al., 2018; Sprague et al., 2011,  
61      Jones et al., 2018), and increasing flood levels and damage (Criss and Shock, 2001; Criss and Luo, 2017).

62      A wide range approaches have been implemented to support efforts to mitigate habitat decline,  
63      pollution, flooding, and/or other UMRB ecosystem related problems, including habitat restoration  
64      (USACE, 2016), biological and habitat surveys (Weitzell et al., 2003), nutrient loss reduction strategies  
65      (Christianson et al., 2018) and in-stream monitoring (Royer et al., 2006; Sprague et al., 2011; Jones,  
66      2018). Applications of simulation models have also emerged as key tools in evaluating UMRB  
67      ecosystem-related problems including The Soil and Water Assessment Tool (SWAT) ecohydrological  
68      model (Arnold et al., 1998; 2012; Williams et al., 2008; Bieger et al., 2017) which has been extensively  
69      applied worldwide for a wide range of watershed scales, environmental conditions and water resource  
70      problems (Gassman et al., 2007; 2014; Tuppad et al., 2011; Krysanova and White, 2015; Bressiani et al.,  
71      2015; Tan et al., 2019; CARD, 2019). SWAT has been used to analyze several UMRB-focused water  
72      quantity and/or water quality issues as described in numerous previous studies (e.g., Jha et al., 2004;  
73      2006; Demissie et al., 2012a; Srinivasan et al., 2010; Rabotyagov et al., 2010; Kling et al., 2014; Qi et al.,  
74      2019). The model has also been applied in dozens of studies for smaller stream systems within the UMRB  
75      (e.g., Hanratty and Stefan, 1998; Vaché et al., 2002; Kirsch et al., 2002; Chaplot et al., 2004; Green and

76 Wang, 2008; Jha et al., 2010; Beeson et al., 2014; Almendinger et al., 2014; Teshager et al., 2016;  
77 Getahun and Keefer, 2016; Gassman et al., 2017; Schilling et al., 2019).

78 SWAT has been adopted within several decision support tools (DSTs; e.g., Barnhart et al., 2018)  
79 including the USEPA Hydrologic and Water Quality System (HAWQS) on-line platform (Yen et al.,  
80 2016; USEPA, 2019). The HAWQS platform provides the capability of building SWAT projects  
81 relatively quickly for U.S. watersheds of any scale using pre-loaded climate, land use, management, soil,  
82 topographic and other pertinent data layers. SWAT models are constructed in HAWQS by using  
83 hydrologic unit codes (HUCs) to delineate a study region that have been defined by the USGS and other  
84 federal agencies (USGS, 2013). The HUC8, HUC10 or HUC12 levels (USGS, 2013) can be chosen in  
85 HAWQS (Yen et al., 2016) which are commonly referred to as 8-, 10- or 12-digit watersheds. Yen et al.  
86 (2016) note that “preliminary calibration” have been conducted for parameters incorporated in HAWQS  
87 and Barnhart et al. (2018) state that HAWQS is an example of a “widely used and tested watershed-based  
88 DST.” However, only three studies to date report results of SWAT applications built in HAWQS (Yen et  
89 al., 2016; Fant et al., 2017; Yuan et al., 2018), which were supported with limited model testing. The  
90 Initial testing results of these HAWQS-based SWAT models strongly suggest that more in-depth testing  
91 is needed to better establish ideal input parameter values and/or sources for different regions including the  
92 UMRB, for SWAT projects built in HAWQS.

93 Thus it is extremely relevant in this study to investigate further testing of a UMRB SWAT model  
94 built in HAWQS, in the context of U.S. Department of Energy (USDOE) sponsored research focused on  
95 assessing climate simulations in conjunction with the energy-land-water nexus (USDOE, 2019). An  
96 important component of this research is the evaluation of different baseline (historical) measured climate  
97 data sources and potential evapotranspiration (PET) methods, within the HAWQS-based SWAT model  
98 created for the UMRB. The evaluation of inputs from alternative climate data sources is fundamentally  
99 important in determining the accuracy of SWAT for representing hydrological processes of a given  
100 watershed system as documented in numerous previous studies (e.g., Roth and Lemann, 2016; Tan et al.,  
101 2017; Vu et al., 2018; Qi et al., 2019). Assessment of simulated evapotranspiration (ET) is also critical

102 due to the influence of ET on the overall hydrologic balance, crop yields and agricultural management at  
103 the watershed scale (Alemayehu et al., 2016; Aouissi et al., 2016; Tie et al., 2018; Valle Júnior et al.,  
104 2020). The assessment of climate data sources and PET methods in this study is foundational for future  
105 applications of HAWQS-based UMRB SWAT models within the USDOE sponsored research project and  
106 other potential applications focused on various ecosystem related problems as described above.

107 Previous evaluations of climate data effects on SWAT UMRB hydrologic predictions are limited to  
108 the research reported by Qi et al. (2019), who compared the impacts on estimated streamflow between  
109 National Climatic Data Center (NCDC) data (NOAA, 2019) data and two versions of the NASA North  
110 American Land Data Assimilation System Phase Two (NLDAS2) data (Xia et al., 2012). The evaluation  
111 of climate data sources in this study included three data sets that spanned > 20 years: (1) NCDC data and  
112 the Parameter-elevation Regressions on Independent Slopes Model (PRISM) data (PCG, 2019; USDA-  
113 NRCS, 2019), which are both available in HAWQS, and (2) Livneh data (Livneh, 2013), which must be  
114 accessed external to HAWQS (ESRL, 2019). In addition, two other key inputs to the SWAT UMRB  
115 assessment were evaluated in this study. First, the effects of two PET methods on streamflow and ET  
116 estimates were also investigated which are standard options available in SWAT: Hargreaves (Hargreaves  
117 and Samani, 1985) and Penman-Monteith (Monteith, 1965; Allen et al., 2006). Second, the influence of  
118 different land use types on UMRB hydrology were analyzed for baseline conditions, in combination with  
119 the three climate data sets and two PET methods.,

120 In summary, the specific objectives of this research were to compare: (1) the temporal and spatial  
121 differences of the NCDC, PRISM and Livneh climate data sets, (2) the impacts of using the Hargreaves  
122 (HG) versus the Penman-Monteith (PM) PET methods on SWAT UMRB streamflow and ET estimates,  
123 (3) the impacts of different land use types on UMRB baseline hydrology, and (4) the effects of the three  
124 different climate datasets in combination with the two PET methods on UMRB streamflow estimates.

125 **2. Description of the Study Region**

126 The UMRB originates from Lake Itasca in northern Minnesota and outlets at the confluence of  
127 the Ohio and Mississippi Rivers near the town of Cairo in southern Illinois (Fig. 1). The UMRB stream  
128 system drains a total of 491,700 km<sup>2</sup>, which includes large portions of five states (Illinois, Iowa,  
129 Minnesota, Missouri and Wisconsin) and small portions of three other states (Indiana, Michigan and  
130 South Dakota). Nearly 1,400 km of the Upper Mississippi River is commercially navigable, between St.  
131 Paul, Minnesota and the confluence with the Ohio River, which is facilitated by a system of 29  
132 locks/dams and dredging to maintain a minimum channel depth of 2.7 m (UMRBA, 2019). The region is  
133 designated as code 07 at the 2-digit watershed level (USGS, 2013) and is further delineated into 131 8-  
134 digit subwatersheds and 5,729 12-digit subwatersheds (Panagopoulos et al., 2015). The basin outlet is  
135 often assumed to be a gauge site located near Grafton, Illinois in SWAT modeling studies, which drains  
136 an area of 447,802 km<sup>2</sup> (119 8-digit watersheds) and is located just upstream of the confluence of the  
137 Mississippi and Missouri Rivers.

138 The major land use in the UMRB is cropland (44.7%), which is dominated by rotations of corn  
139 (27.5%) and soybean (17.2%). There are smaller areas of wheat, oats and other crops in the UMRB but  
140 those are excluded in this HAWQS modeling framework. Other important land use categories include  
141 forest (20.1%), grassland (16.2%), water and wetlands (9.9%) and urban/developed areas (9.1%). Annual  
142 precipitation averaged over 830 mm across the UMRB during the 23-year simulation period (1983 to  
143 2005) used in this study, and ranged from < 600 mm in the northwest part of the basin to > 1,000 mm in  
144 the southern area of the basin, depending on the source of precipitation data (Fig. 2). Average daily  
145 temperatures in the region generally range from 4.0 °C to 5.5 °C in the northern part of the basin to 11.5  
146 °C to 13.0 °C in the south (Fig. 3). However, distinctly colder average temperatures are indicated by the  
147 NCDC dataset for a subset of specific 8-digit watersheds in the northwest and central parts of the UMRB,  
148 as compared to the PRISM and Livneh datasets (these lower temperatures are likely an anomaly in the  
149 NCDC data as discussed in section 4.2). The soil types range from heavy, poorly drained clay soil to  
150 light, well-drained sands, with silty loam and loam soils covering about 66% of the total UMRB area

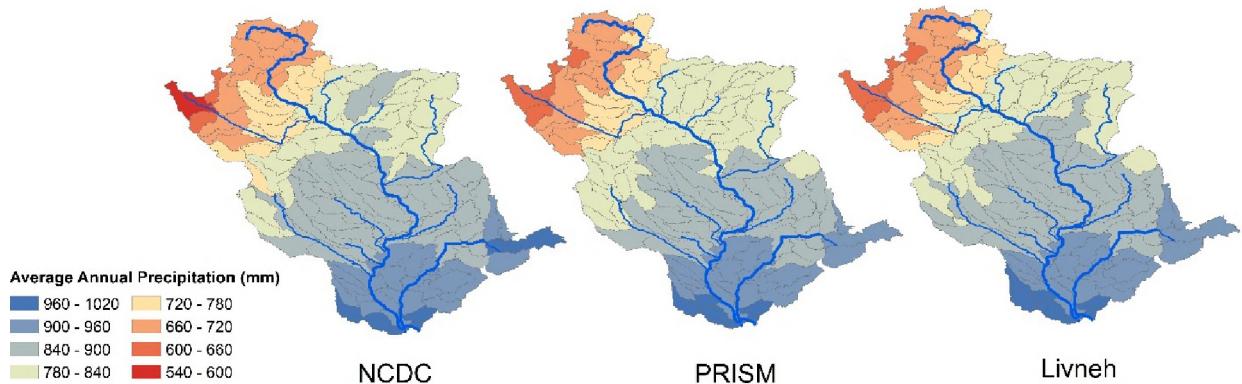


151 **Figure 1. The location of the Upper Mississippi River Basin (UMRB) with 8-digit watersheds, and gauge**  
 152 **sites over the study region.**

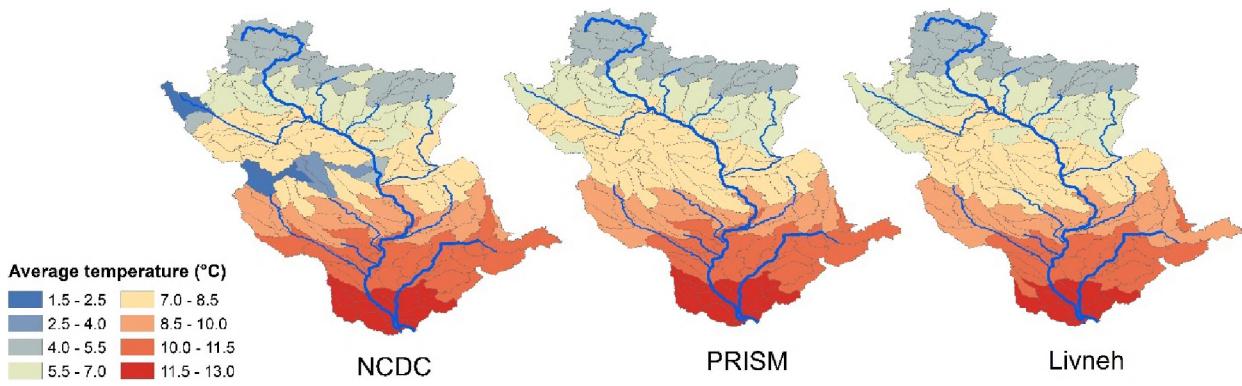
153  
 154 (Demissie et al., 2012b). The topography is characterized by flat to gently rolling terrain, with  
 155  
 156 55% of the area having less than a 2% slope and an average elevation of 280 m.

157  
 158 **3. Previous SWAT Applications Reported for the UMRB**

159 A total of 41 previous studies (Table 1) were documented (CARD, 2019) that reported  
 160 simulation of the UMRB using SWAT. Four of the studies report SWAT applications for the entire  
 161 MARB that included the UMRB as a major subregion (Kannan et al., 2019; Santhi et al., 2014; White et  
 162 al., 2014; Yuan et al., 2018) and three other studies report Corn Belt region results that include SWAT  
 163 analyses for the combined UMRB and Ohio-Tennessee River Basin (OTRB) systems (Kling et al., 2014;  
 164 Panagopoulos et al., 2015; 2017). The studies listed in Table 1 focused on a range of themes including



166 **Figure 2. Distribution of average annual precipitation amounts values by climate data set**  
167 **and 8-digit watersheds across the UMRB for the time period of 1983 to 2005.**



169 **Figure 3. Distribution of average daily temperature values by climate data set and 8-digit**  
170 **watersheds across the UMRB for the time period of 1983 to 2005.**

171  
172 model testing, climate change impacts on streamflow or water quality, and BMP, land use change or  
173 biofuel cropping production impacts on water quality. The only UMRB application that reported the  
174 effects of different climate sources on UMRB streamflow was Qi et al. (2019) and none of the studies  
175 reported the impacts of different PET methods.

176 There is a considerable distribution of reported SWAT subwatershed and HRU structures (Table  
177 1), ranging from a relatively coarse delineation of 119 subwatersheds and 474 HRUs (Takle et al., 2005)  
178 to an extremely detailed subdivision of 5,732 subwatersheds and 136,079 HRUs (Feng et al., 2018). Most  
179 of the studies state that model testing was performed using streamflow data collected at a gauge site  
180 located near Grafton, IL. A smaller subset of studies report expanded calibration and/or validation at

**Table 1. Focus, structure, SWAT version and total gauge sites used for model testing in previous SWAT-based UMRB studies**

| Study                                     | Focus of study                                                                | Subwatersheds/<br>HRUs             | SWAT<br>version   | Testing at<br>Grafton, IL | Streamflow<br>testing sites<br>Cal/Val | Pollutant testing<br>sites<br>Cal/Val |
|-------------------------------------------|-------------------------------------------------------------------------------|------------------------------------|-------------------|---------------------------|----------------------------------------|---------------------------------------|
| Arnold et al., 2000                       | Hydrologic testing and evaluation                                             | 131/NR <sup>a,b</sup>              | NR                | No <sup>c</sup>           | 0/1                                    | 0/0                                   |
| Deb et al., 2015                          | Biofuel crops and climate change                                              | 131/14,568                         | 2009              | Yes                       | 0/1                                    | 0/1                                   |
| Demissie et al., 2012 <sup>a,d</sup>      | Biofuel crop impacts on water quality                                         | 131/14,200                         | 2005              | Yes                       | 3/7                                    | 3/7                                   |
| Eisner et al., 2017 <sup>e</sup>          | Climate change impacts from 9 hydrologic models used for major river systems  | NR                                 | NR                | No <sup>c</sup>           | 1/1                                    | 0/0                                   |
| Feng et al., 2017                         | Suitability of marginal land for biofuel crop production                      | NR                                 | NR                | No                        | 0/0                                    | 0/0                                   |
| Feng et al., 2018                         | Biofuel crop production on marginal land                                      | 5,732/136,079                      | 2012              | Yes                       | 13/13                                  | 0/0                                   |
| Gu et al., 2015                           | Biofuel crop impacts on water quality                                         | 131/2,730                          | 2005 <sup>f</sup> | No <sup>c</sup>           | 0/0 <sup>g</sup>                       | 0/0                                   |
| Gosling et al., 2017 <sup>e</sup>         | Predicted changes in runoff due to multiple global warming scenarios          | NR                                 | NR                | No <sup>c</sup>           | 1/1                                    | 0/0                                   |
| Hattermann et al., 2017 <sup>e</sup>      | Climate change impacts on hydrological model output for major river systems   | NR                                 | NR                | No <sup>c</sup>           | 1/1                                    | 0/0                                   |
| Huang et al., 2017 <sup>e</sup>           | Comparison of 9 hydrologic models that were applied to major river systems    | NR                                 | NR                | No <sup>c</sup>           | 1/1                                    | 0/0                                   |
| Jha et al., 2004                          | Climate change impacts on streamflow                                          | 119 <sup>g</sup> /474 <sup>h</sup> | NR                | Yes                       | 1/1                                    | 0/0                                   |
| Jha et al., 2006                          | Climate change impacts on streamflow                                          | 119 <sup>g</sup> /NR               | 2000 <sup>f</sup> | Yes                       | 1/1                                    | 0/0                                   |
| Jha et al., 2015                          | Climate change impacts on nitrate loads                                       | 131/18,000                         | 2005              | Yes                       | 1/0                                    | 0/0                                   |
| Kannan et al., 2008                       | Automatic calibration approach                                                | 131/NR                             | NR                | No                        | 0/0                                    | 0/0                                   |
| Kannan et al., 2019                       | Calibration approaches/issues                                                 | NR                                 | 2000 <sup>f</sup> | Yes                       | 5/5                                    | 0/0                                   |
| Kling et al., 2014                        | BMP impacts on water quality                                                  | 5,279/5,279 <sup>i</sup>           | 2009 <sup>f</sup> | No <sup>j</sup>           | 0/0 <sup>j</sup>                       | 0/0 <sup>j</sup>                      |
| Krysanova & Hattermann, 2017 <sup>e</sup> | Summary of comparing hydrologic and climate models for 12 major river systems | NR                                 | NR                | No <sup>c</sup>           | 1/1                                    | 0/0                                   |
| Li et al., 2017                           | Drought impacts on ecosystem services                                         | 157/6,686                          | 2009 <sup>f</sup> | Yes                       | 13/13                                  | 0/0                                   |

**Table 1. Continued**

| Study                            | Focus of study                                                            | Subwatersheds/<br>HRUs            | SWAT<br>version   | Testing at<br>Grafton, IL | Streamflow<br>testing sites<br>Cal/Val | Pollutant testing<br>sites<br>Cal/Val |
|----------------------------------|---------------------------------------------------------------------------|-----------------------------------|-------------------|---------------------------|----------------------------------------|---------------------------------------|
| Li et al., 2019                  | Climate change impacts on BMP effects                                     | NR                                | 2009 <sup>f</sup> | Yes                       | 13/13                                  | 6/6                                   |
| Panagopoulos et al., 2014        | Climate change impacts on BMP effects                                     | 5,279/5,279 <sup>i</sup>          | 2012              | Yes                       | 12/0                                   | 0/0                                   |
| Panagopoulos et al., 2015        | Calibration and validation approach                                       | 5,279/5,279 <sup>i</sup>          | 2012              | Yes                       | 12/12                                  | 6/6                                   |
| Panagopoulos et al., 2017        | Biofuel crop impacts on water quality                                     | 5,279/5,279 <sup>i</sup>          | 2012              | No <sup>j</sup>           | 0/0 <sup>j</sup>                       | 0/0 <sup>j</sup>                      |
| Qi et al., 2019a                 | Climate source impacts on streamflow                                      | 131/NR                            | 2012              | Yes                       | 11/11                                  | 0/0                                   |
| Qi et al., 2019b                 | Enhanced freeze-thaw cycle processes                                      | 131/14,568                        | 2012 <sup>k</sup> | Yes                       | 1/0                                    | 0/0                                   |
| Qi et al., 2020                  | Water quality testing and evaluation                                      | 131/14,568                        | 2012 <sup>l</sup> | Yes                       | 0/3 <sup>m</sup>                       | 0/3 <sup>m</sup>                      |
| Rabotyagov et al., 2010          | Analyses of least cost of BMPs                                            | 131/NR                            | NR                | No                        | 0/0                                    | 0/0                                   |
| Rajib & Merweade, 2017           | Land use change impacts on hydrology                                      | 260/NR                            | NR                | Yes                       | 10/2                                   | 0/0                                   |
| Santhi et al. 2008               | Calibration and validation approach                                       | 131/NR                            | NR                | No                        | 0/0 <sup>n</sup>                       | 0/0                                   |
| Santhi et al., 2014 <sup>o</sup> | Phosphorous transport in stream system                                    | NR <sup>p</sup>                   | 2005 <sup>q</sup> | Yes                       | 5/5                                    | 5/5                                   |
| Secchi et al., 2011              | Land use change impacts on water quality                                  | 131/2,730                         | 2005 <sup>f</sup> | Yes                       | 1/1                                    | 1/1                                   |
| Srinivasan et al., 2010          | Uncalibrated baseline streamflow testing                                  | 131/14,568                        | 2009 <sup>r</sup> | Yes                       | 0/11 <sup>m</sup>                      | 0/0                                   |
| Takle et al., 2005               | Climate change impacts on streamflow                                      | 119/474                           | 2000 <sup>f</sup> | Yes                       | 0/0 <sup>s</sup>                       | 0/0                                   |
| Takle et al., 2010               | Climate change impacts on streamflow                                      | NR                                | 2000 <sup>f</sup> | Yes                       | 0/0 <sup>s</sup>                       | 0/0                                   |
| Vetter et al., 2017 <sup>e</sup> | Climate change uncertainty within hydrologic models used for major rivers | NR                                | NR                | No <sup>c</sup>           | 1/1                                    | 0/0                                   |
| Wang et al., 2011 <sup>o</sup>   | Crop production impacts on sediment loss                                  | NR <sup>p</sup>                   | 2005              | Yes                       | 5/5                                    | 0/0                                   |
| White et al., 2014 <sup>o</sup>  | Nutrient loads delivered to stream system, including effects of BMPs      | 131 <sup>t</sup> /NR <sup>b</sup> | 2005 <sup>o</sup> | Yes                       | 7/4                                    | 7/4                                   |
| Whittaker et al., 2015           | Land use change impacts on water quality                                  | 131/NR                            | 2009 <sup>u</sup> | Yes                       | 0/0/                                   | 0/1                                   |
| Wu et al., 2012a <sup>d</sup>    | Biofuel crop impacts on water quality                                     | 131/14,200                        | 2005              | Yes                       | 3/7                                    | 3/7                                   |
| Wu et al., 2012b                 | Climate change impacts on streamflow                                      | 187 <sup>g</sup> /972             | 99.2 <sup>v</sup> | Yes                       | 1/1                                    | 0/0                                   |

**Table 1. Continued**

| Study             | Focus of study                                                                  | Subwatersheds/<br>HRUs  | SWAT<br>version   | Testing at<br>Grafton, IL | Streamflow<br>testing sites<br>Cal/Val | Pollutant testing<br>sites<br>Cal/Val |
|-------------------|---------------------------------------------------------------------------------|-------------------------|-------------------|---------------------------|----------------------------------------|---------------------------------------|
| Wu & Tanaka, 2005 | Reducing nitrate loads in stream system                                         | 118 <sup>g</sup> /1,410 | 2000              | Yes                       | 0/1                                    | 0/1                                   |
| Yuan et al., 2018 | Estimating nitrate loads for Mississippi<br>stream system using multiple models | 131 <sup>l</sup> /NR    | 2012 <sup>w</sup> | NR                        | NR                                     | NR                                    |

184 <sup>a</sup>NR = not reported.185 <sup>b</sup>Specific HRU data are not reported in these studies; however Arnold et al. (2000) note that approximately 16 HRUs were delineated per subwatershed and  
186 White et al. (2014) state that a range of 40 to 99 HRUs were delineated in a given subwatershed.187 <sup>c</sup>The gauge used for model testing in these studies was located near Alton, IL, which is located several km south of Grafton, IL (and below the confluence of the  
188 Mississippi and Missouri Rivers) and captures a drainage area of 444,185 km<sup>2</sup> (Huang et al., 2017).189 <sup>d</sup>The model structure, gauge testing sites and model testing results used in these studies were reported in Demissie et al. (2012b).190 <sup>e</sup>These six studies were part of a special issue published in Climatic Change (<https://link.springer.com/journal/10584/141/3/page/1>). Results of applying SWAT  
191 for the UMRB are reported in these six studies. SWAT testing statistics are reported in supporting documentation that can be accessed at Huang et al., 2017b.192 <sup>f</sup>The SWAT model version was inferred from citations to SWAT documentation reported in the respective study.193 <sup>g</sup>These SWAT models were constructed with the outlet at Grafton, IL and thus excluded the subwatersheds that drain to the Mississippi River below Grafton.194 <sup>h</sup>Inferred from information reported in Takle et al. (2005).195 <sup>i</sup>A dominant HRU approach was used that resulted in one HRU per subwatershed.196 <sup>j</sup>Model testing was based on the results reported in Panagopoulos et al. (2015).197 <sup>k</sup>Standard SWAT model used in study was SWAT2012, Revision 664; modified version of SWAT called TSWAT.198 <sup>l</sup>A standard SWAT2012 version199 <sup>m</sup>Uncalibrated simulations were performed in these studies; Srinivasan et al. (2010) list “calibrated statistics” in Table 9 of their study for comparison purposes.200 <sup>n</sup>Streamflow testing was not reported although mean NSE and R<sup>2</sup> statistics were reported for water balance indicators determined for all 131 subwatersheds.201 <sup>o</sup>An interface between the Agricultural Policy/Environmental eXtender (APEX) model ( Gassman et al., 2010) and SWAT was used in these studies.202 <sup>p</sup>It is inferred that the model structure used in these studies is based on what is reported in White et al. (2014).203 <sup>q</sup>Model version based on personal communication with M. White, Grassland Soil and Water Research Laboratory, USDA-ARS, Temple, TX.204 <sup>r</sup>Model version was not directly reported in study but confirmed in later study published by Deb et al. (2014).205 <sup>s</sup>Model testing was based on previously reported information in either Jha et al. (2004) or Jha et al. (2006).206 <sup>t</sup>Almost all of the entire MARB were simulated in these studies; i.e., White et al. (2014) simulated a total of 848 USGS 8-digit watersheds (USGS, 2013) and  
207 Yuan et al. simulated total of 821 USGS 8-digit subwatersheds. It is assumed that 131 of the 8-digit watershed were used to represent the UMRB in both studies.208 <sup>u</sup>SWAT model structure based on previously developed model described by Srinivasan et al. (2010).209 <sup>v</sup>The authors report using a modified version of SWAT 99.2 in their study.210 <sup>w</sup>The model version was not directly reported in the study but the modeling system was constructed via the Hydrologic and Water Quality System (HAWQS) that  
211 currently provides the option of using four different releases of the SWAT2012 model (Srinivasan, 2019).

213 additional gauge sites (Table 1). Ten of the studies report some level of pollutant load testing at specific  
214 gauge sites (Table 1). Some of the studies provide comparisons of SWAT predicted loads versus  
215 observed or other estimated loads at the 8-digit watershed level (e.g., Arnold et al., 2000; Kannan et al.,  
216 2008; White et al., 2014; Jha et al., 2015).

217 The majority of the studies report both calibration and validation testing results at Grafton and/or  
218 other gauge locations, and include evaluations based on the Coefficient of Determination ( $R^2$ ) and/or  
219 Nash-Sutcliffe Efficiency (NSE) statistics (Krause et al., 2005). Tabulation of computed  $R^2$  and NSE  
220 statistics, which measure how accurately simulated streamflows replicated measured streamflow, are  
221 shown by frequency in Table 2 for a daily time step (usual SWAT time step), and aggregated monthly and  
222 annual time periods. Roughly 90% of the NSE and  $R^2$  statistics represented in Table 2 exceed 0.5 and 0.6,  
223 respectively, which satisfies satisfactory or better model performance criteria suggested by Moriasi et al.  
224 (2007; 2015). The distribution of statistics in Table 2 also generally mirror previous similar statistical  
225 compilations reported in several review studies (Gassman et al., 2007, 2014; Tuppad et al., 2011;  
226 Bressiani et al., 2015; Tan et al., 2019). Some of the weaker validation statistics reflect more stringent  
227 applications of un-calibrated SWAT models reported by Srinivasan et al. (2010) and Qi et al. (2020).

228 The composite results of previous studies (Table 2) confirm that applications of different versions  
229 of SWAT have been generally successful in replicating observed streamflows at Grafton, IL and at other  
230 gauge sites, for both calibration and validation. The majority of model testing was performed using a  
231 split-time approach (Arnold et al., 2012), where calibration and validation were conducted for the same  
232 gauge locations based on observed streamflow data collected during two different time periods. Spatial  
233 validation, where calibration is performed for different gauge sites versus the gauges used for validation,  
234 was performed only in support of the analyses by White et al. (2014), and for Demissie et al. (2012a) and  
235 Wu et al. (2012a) as reported in their corresponding supporting documentation (Demissie et al., 2012b). A  
236 spatial validation approach was adopted in this study as described in more detail below.

237

238 **Table 2. Distribution of statistics comparing simulated streamflows versus measured streamflows**  
 239 **that were reported in SWAT UMRB studies by time steps and frequency ranges<sup>a,b</sup>**

| Frequency Range | Daily       |                |            |                | Monthly     |     |                |    | Annual      |                |            |     |                |
|-----------------|-------------|----------------|------------|----------------|-------------|-----|----------------|----|-------------|----------------|------------|-----|----------------|
|                 | Calibration |                | Validation |                | Calibration |     | Validation     |    | Calibration |                | Validation |     |                |
|                 | NSE         | R <sup>2</sup> | NSE        | R <sup>2</sup> |             | NSE | R <sup>2</sup> |    | NSE         | R <sup>2</sup> |            | NSE | R <sup>2</sup> |
| 0.90-1.00       |             |                |            |                | 1           | 3   | 3              | 5  | 7           | 11             | 6          | 27  |                |
| 0.80-0.89       |             |                |            |                | 12          | 23  | 23             | 35 | 6           | 6              | 8          | 9   |                |
| 0.70-0.79       | 1           | 1              | 1          | 3              | 43          | 44  | 27             | 29 | 1           |                | 6          | 3   |                |
| 0.60-0.69       |             | 1              | 2          |                | 28          | 24  | 19             | 19 |             |                | 7          |     |                |
| 0.50-0.59       | 1           |                |            |                | 17          | 4   | 13             | 8  | 2           |                | 4          |     |                |
| 0.40-0.49       |             |                |            |                | 3           | 4   | 10             | 7  |             |                | 3          |     |                |
| 0.30-0.39       |             |                |            |                | 1           | 2   | 5              | 2  |             |                |            |     |                |
| 0.20-0.29       |             |                |            |                | 1           |     | 2              | 1  |             |                | 2          |     |                |
| 0.10-0.19       |             |                |            |                |             |     | 3              |    |             |                | 2          |     |                |
| 0.00-0.09       |             |                |            |                |             |     | 1              |    |             |                |            |     |                |
| <0              |             |                |            |                |             |     | 1              |    |             |                |            |     |                |

240 <sup>a</sup>Data based on the following studies: Arnold et al. (2000), Deb et al. (2015), Feng et al. (2018), Huang et al.  
 241 (2017b), Jha et al. (2004), Jha et al. (2006), Jha et al. (2015), Kannan et al. (2019), Li et al. (2017), Panagopoulos et  
 242 al. (2014), Panagopoulos et al. (2015), Qi et al. (2019a; 2019b; 2020); Rajib & Merweade (2017), Santhi et al.  
 243 (2014), Secchi et al. (2011), Srinivasan et al. (2010), Wang et al. (2011), Wu et al. (2012b)

244 <sup>b</sup>Calibration was not performed by Srinivasan et al. (2010) and Qi et al. (2020); statistic from those two studies are  
 245 reported here as validation

#### 247 **4. Methods and Materials**

##### 248 **4.1. SWAT/HAWQS model configuration and simulation scenarios**

249 The development of the UMRB SWAT model was performed in HAWQS, which provides  
 250 interactive web interfaces, maps and preloaded data layers including stream network, land use and land  
 251 management, soil, climatic, point sources, historical climate, future climate projections, atmospheric  
 252 deposition and reservoir data (Srinivasan, 2019). The sources of these input data and the date  
 253 (month/year) are listed in HAWQS (2017). Users can assign preferred parameter values at HRU,  
 254 subwatershed and/or overall basin levels, respectively. In addition, HAWQS is technically capable of  
 255 providing preliminarily calibrated parameters as default values, although the level of testing supporting  
 256 these parameter values is very limited as previously noted. In this study, the default parameters values set

257 by HAWQS for the UMRB SWAT model were considered to be uncalibrated baseline data (Table 3), and  
258 output from this baseline model are referred to as uncalibrated results. The files created for this  
259 uncalibrated baseline UMRB SWAT model were also downloaded from HAWQS after the initial model  
260 construction, which allows additional parameter modification using the SWAT editor program or other  
261 external software.

262 The SWAT model was configured for the UMRB at the 8-digit watershed level within the HAWQS  
263 platform, resulting in 119 8-digit watersheds that encompass the previously described 447,802 km<sup>2</sup> area  
264 that drains to Grafton, IL (the outlet is the 8-digit watershed identified as HUC07110009). A total of  
265 34,630 HRUs were initially configured within the 119 subwatersheds when the UMRB SWAT model was  
266 first constructed within HAWQS. HRU thresholds of 1 km<sup>2</sup> were then applied to the land use, soil type  
267 and slope classes to eliminate minor land uses, soils, and slopes in each subwatershed. The application of  
268 the thresholds resulted in a total of 30,812 HRUs for the baseline UMRB SWAT model and subsequent  
269 calibrated versions of the UMRB model.

270 The SWAT simulations were performed from 1981 to 2005; the first 2 years served as an  
271 initialization period. This 25-year simulation period reflects a consistent time period available in all three  
272 data sets (see Section 4.3). Two sets of six simulations each were then performed as scenarios (Table 4)  
273 The first set of simulations were executed without calibration using the baseline UMRB model, to provide  
274 an initial comparison of water balance and streamflow estimates between the three climate data sets and  
275 two ET methods that were not influenced by any adjustments in SWAT input parameters. These scenarios  
276 were based on the baseline UMRB SWAT model that was executed with the HAWQS default input  
277 parameters (Table 3). This allowed the weather inputs (including daily precipitation, daily maximum  
278 temperature and minimum temperature) to be held constant while varying the PET methods, so that the  
279 effects of the PET methods on the hydrologic outputs can be discerned. The initial uncalibrated SWAT  
280 model was constructed using the Penman-Monteith (PM) PET method, which is the default PET option  
281 that is used in HAWQS (scenarios PRISM(PM), NCDC(PM) and Livneh(PM) in Table 4). The

282 uncalibrated SWAT model was then executed with the HG PET method (scenarios PRISM(HG),  
283 NCDC(HG) and Livneh(HG) in Table 4), to provide a further basis of comparison (Section 5.1).

284 The second phase of simulations were based on calibration and validation, which was initially  
285 performed using the Livneh climate data and HG PET method. The Livneh data were chosen for the  
286 initial calibration due to the fact that the data set has served in a historical climate role for a suite of  
287 downscaled climate projections (Pierce, 2016), that may be analyzed as part of the broader research  
288 initiative (DOE, 2019). The HG method was selected because the annual ratio of ET/precipitation was >  
289 0.7 for HG method versus approximately 0.6 for PM method. The HG method ET/precipitation ratio of  
290 0.7 was more consistent with the UMRB region ratio reported by Liu et al. (2013), who estimated ET and  
291 runoff for the major basins that contribute steamflow to the Gulf of Mexico. Calibration was performed  
292 for the three calibration gauge sites shown in Fig 1 and Table 5: St. Paul, Clinton and Grafton. Spatial  
293 validation was then performed by performing an additional simulation with the calibrated model, without  
294 any further adjustments to the SWAT input parameters, and comparing simulated versus observed  
295 streamflows at the other 10 “hydrologically independent” gauge sites (Fig 1 and Table 5). Each of the 10  
296 hydrologically independent sub-regions corresponds to either the most upstream part of the main stem  
297 (Royalton for Mississippi River) or a major tributary flowing into the main stem (i.e., the Skunk, St.  
298 Croix, Chippewa, Rock, Wisconsin, Iowa, Des Moines, Minnesota or Illinois Rivers). Table 5  
299 summarizes the information related to the monitoring points.

300 Following calibration and validation, six additional experimental scenarios (Table 4) were  
301 evaluated, which were again based on monthly streamflow output from 1983 to 2005. These scenarios  
302 provided further assessment of the performance of SWAT in response to the three climate datasets, HG  
303 method, and calibrated parameters listed in Table 3 (that are described in more detail in Section 5.3).  
304 These second set of six scenarios were further split into two subsets, which were demarcated as follows:  
305 (1) the first subset of three scenarios was based on the calibrated parameters (Table 3) obtained with the  
306 previously described Livneh climate dataset and HG method (scenario Livneh-calibrated, in Table 4),  
307 versus (2) a second set of three scenarios that were performed using calibrated parameters (Table 3)

308 **Table 3. Calibration input parameters, default values in HAWQS, allowable ranges, type of calibration adjustment and final calibrated values.**

| Parameters | Description                                                                                                  | Type of change <sup>a</sup> | Default values in HAWQS | Allowable ranges |      | Calibrated value for Livneh | Calibrated value for PRISM |
|------------|--------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------|------------------|------|-----------------------------|----------------------------|
|            |                                                                                                              |                             |                         | Min              | Max  |                             |                            |
| CN2        | Initial SCS runoff curve number for moisture condition II                                                    | R                           | 22 - 84                 | -0.1             | 0.1  | 0.0985                      | 0.0526                     |
| ALPHA_BF   | Baseflow alpha factor (1/days)                                                                               | V                           | 0.023 - 0.85            | 0                | 1    | 0.9                         | 0.999                      |
| GW_DELAY   | Groundwater delay time (days)                                                                                | A                           | 25 - 323                | -30              | 90   | -12                         | 6.880                      |
| GWQMN      | Threshold depth of water in shallow aquifer required for return flow to occur (mm)                           | A                           | 0.7 - 900               | -1000            | 1000 | -422                        | -577                       |
| GW_REVAP   | Groundwater "revap" coefficient                                                                              | V                           | 0.01 - 0.1066           | 0.02             | 0.1  | 0.04                        | 0.053                      |
| RCHRG_DP   | Deep aquifer percolation fraction                                                                            | A                           | 0.01 - 0.33             | -0.05            | 0.05 | 0.027                       | 0.044                      |
| REVAPMN    | Threshold depth of water in the shallow aquifer for "revap" or percolation to the deep aquifer to occur (mm) | A                           | 264.6; 500              | -750             | 750  | 206                         | -24                        |
| ALPHA_BF_D | Alpha factor for groundwater recession curve of the deep aquifer (1/day)                                     | V                           | 0                       | 0                | 1    | 0.25                        | 0.32                       |
| ESCO       | Soil evaporation compensation factor                                                                         | V                           | 0.808 - 0.98            | 0.6              | 0.1  | 0.92-0.95                   | 0.93-0.98                  |
| CANMX      | Maximum canopy storage (mm)                                                                                  | V                           | 15.4                    | 0                | 25   | 2 <sup>b</sup>              | 2 <sup>b</sup>             |
| SLSOIL     | Slope length for lateral subsurface flow (m)                                                                 | V                           | 0                       | 0                | 150  | 6.375                       | 28                         |
| LAT_TTIME  | Lateral flow travel time (days)                                                                              | V                           | 0                       | 0                | 200  | 153                         | 186                        |
| SOL_AWC    | Available water capacity of the soil layer (mm H <sub>2</sub> O/mm soil)                                     | R                           | 0.01 - 0.42             | -0.05            | 0.05 | 0.038 <sup>c</sup>          | -0.034 <sup>c</sup>        |
| SFTMP      | Snowfall temperature (°C)                                                                                    | V                           | 1                       | -5               | 1    | 0.175                       | 3.53                       |
| SMTMP      | Snow melt base temperature (°C)                                                                              | V                           | 0.5                     | 0                | 3    | 0.68                        | 0.29                       |
| SMFMX      | Melt factor for snow on June 21 (mmH <sub>2</sub> O/°C -day)                                                 | V                           | 4.5                     | 2                | 4.5  | 3.99                        | 4.42                       |
| SMFMN      | Melt factor for snow on December 21 (mm H <sub>2</sub> O/°C -day)                                            | V                           | 4.5                     | 0                | 2.5  | 0.07                        | 2.37                       |
| TIMP       | Snow pack temperature lag factor                                                                             | V                           | 1                       | 0                | 1    | 0.55                        | 0.38                       |

309 <sup>a</sup>R indicates that an existing parameter value is multiplied by (1+ a given value), V indicates that the existing parameter value is to be replaced by a given  
310 value, and A indicates that a given value is added to the existing parameter value.311 <sup>b</sup>For various forest (FRSD, FRSE and FRST) landuse.312 <sup>c</sup>For the first soil layer.

313 **Table 4. Description of the SWAT scenarios executed with baseline (HAWQS default parameters)**  
 314 **versus scenarios that were calibrated parameters.**

| Scenario name     | Climate dataset | PET method | Input parameters | Calibration dataset |
|-------------------|-----------------|------------|------------------|---------------------|
| PRISM(PM)         | PRISM           | PM         | HAWQS default    | NA <sup>a</sup>     |
| NCDC(PM)          | NCDC            | PM         | HAWQS default    | NA                  |
| Livneh(PM)        | Livneh          | PM         | HAWQS default    | NA                  |
| PRISM(HG)         | PRISM           | HG         | HAWQS default    | NA                  |
| NCDC(HG)          | NCDC            | HG         | HAWQS default    | NA                  |
| Livneh(HG)        | Livneh          | HG         | HAWQS default    | NA                  |
| Livneh-calibrated | Livneh          | HG         | Calibrated       | Livneh              |
| PRISM-Livneh      | PRISM           | HG         | Calibrated       | Livneh              |
| NCDC-Livneh       | NCDC            | HG         | Calibrated       | Livneh              |
| PRISM-calibrated  | PRISM           | HG         | Calibrated       | PRISM               |
| Livneh-PRISM      | Livneh          | HG         | Calibrated       | PRISM               |
| NCDC-PRISM        | NCDC            | HG         | Calibrated       | PRISM               |

315 <sup>a</sup>NA = not applicable

316

317 **Table 5. The USGS gauge sites used for streamflow calibration and validation in this study, including**  
 318 **location, gauge site IDs, hydrologic units and reported drainage area.**

| Gauge site      | River       | State | Used for    | USGS Station | Hydrologic Unit | Drainage Area (km <sup>2</sup> ) |
|-----------------|-------------|-------|-------------|--------------|-----------------|----------------------------------|
| St. Paul        | Mississippi | MN    | Calibration | 05331000     | 7010206         | 95312                            |
| Clinton         | Mississippi | IA    | Calibration | 05420500     | 7080101         | 221703                           |
| Grafton         | Mississippi | IL    | Calibration | 05587450     | 7110009         | 443665                           |
| Augusta         | Skunk       | IA    | Validation  | 05474000     | 7080107         | 11168                            |
| St. Croix Falls | St. Croix   | WI    | Validation  | 05340500     | 7030005         | 16162                            |
| Durand          | Chippewa    | WI    | Validation  | 05369500     | 7050005         | 23336                            |
| Joslin          | Rock        | IL    | Validation  | 05446500     | 7090005         | 24732                            |
| Muscoda         | Wisconsin   | WI    | Validation  | 05407000     | 7070005         | 26936                            |
| Royalton        | Mississippi | MN    | Validation  | 05446500     | 7010201         | 30044                            |
| Wapello         | Iowa        | IA    | Validation  | 05446500     | 7080209         | 32375                            |
| Keosauqua       | Des Moines  | IA    | Validation  | 05446500     | 7100009         | 36358                            |
| Jordan          | Minnesota   | MN    | Validation  | 05446500     | 7020012         | 41958                            |
| Valley City     | Illinois    | IL    | Validation  | 05446500     | 7130011         | 69264                            |

319

320 obtained with the PRISM climate dataset in combination with the HG method (scenarios PRISM-  
321 calibrated, Livneh-PRISM and NCDC-PRISM in Table 4).

322 This suite of scenarios thus provided an approach of further testing SWAT with the three different  
323 climate data sets using two different sets of calibration parameters that represent two different potential  
324 baseline climate data sets: Livneh versus PRISM. The Livneh-calibrated and PRISM-calibrated scenarios  
325 depict obvious conventional SWAT calibration simulations using the climate data sets that the model was  
326 calibrated with. However, the PRISM-Livneh, NCDC-Livneh, Livneh-PRISM and NCDC-PRISM  
327 scenarios reflect atypical SWAT simulations that consist of executing the model with a different climate  
328 data set than was used for the calibration process. These additional scenarios provide additional insight  
329 into the sensitivity and performance of SWAT in response to different climate inputs for the UMRB.

### 330 **4.2. Description of Climate Datasets**

331 Daily precipitation and temperature data obtained from the NCDC, PRISM and Livneh climate  
332 datasets were used to simulate UMRB streamflow. Brief summaries of these datasets are provided below  
333 followed by further analysis of the apparent anomalies in the NCDC temperature data revealed by Fig 3.

334 (1) NCDC: NCDC dataset consists of daily weather variables from the Global Historical  
335 Climatology Network (GHCN)-Daily of land-based weather stations. The dataset was developed via  
336 processing steps of data collection, quality control, and archival and removal of biases associated with  
337 factors such as urbanization and changes in instrumentation through time (Menne et al., 2012). The  
338 NCDC dataset in HAWQS spans the time period of 1961 to 2010.

339 (2) PRISM: PRISM was developed by the PRISM Climate Group at Oregon State University (PCG,  
340 2019) and is officially endorsed by the U.S. Department of Agriculture Natural Resources Conservation  
341 Service (USDA-NRCS, 2019). PRISM data are defined on a 2.5 min degree grid, which calculates a  
342 climate-elevation regression for each grid cell of digital elevation model (DEM). Stations included in the  
343 regression are assigned weights based primarily on the similarity of physiographic characteristics (Daly et  
344 al., 2008; Gao et al., 2017). PRISM data are available in HAWQS for the time period of 1981 to 2015.

345 (3) Livneh: Livneh dataset is derived from observations at NCDC cooperative observer (COOP)  
346 stations across the continental United States (CONUS). Both temperature and precipitation were gridded  
347 to 1/16° using the synergistic mapping system (SYMAP) algorithm (Livneh et al., 2013; ESRL, 2019).  
348 Long-term daily climatic data are provided in the Livneh dataset for 1981 to 2010 (ESRL, 2019).

349

#### 350 **4.2.1. UMRB climate data distributions and NCDC temperature data anomalies**

351 The spatial distributions of average annual precipitation and air temperature from 1983 to 2005  
352 (Fig. 2 and Fig. 3) provide further insights regarding the differences between the weather datasets. The  
353 trends in spatial distribution of precipitation across the UMRB are similar between the NCDC, PRISM  
354 and Livneh datasets (Fig. 2), with highest annual precipitations occurring in the southeast versus the  
355 lowest annual precipitation in the northwest. The trends in spatial distribution of annual average  
356 temperature across the UMRB are also similar among three weather datasets (Fig.3), with a clear gradient  
357 of increasing temperature from the north to south. However, the distribution of the NCDC temperature  
358 data reveals that some subwatersheds in the northwest and central part of the UMRB manifest cooler  
359 average annual temperatures versus subwatersheds in the most northern part of the region; i.e.,  
360 subwatersheds located in far eastern South Dakota, southeast Minnesota, northern Iowa and southwest  
361 Wisconsin (Fig. 3). These “cooler subwatersheds” do not manifest in the PRISM and Livneh data. Thus,  
362 it is likely that these cooler subwatersheds are anomalies in the NCDC data that may be due to errors in  
363 the original measured observations and/or that occurred during the interpolation and averaging of the data  
364 to create pseudo-stations at the 8-digit watershed level, both of which would have occurred prior to  
365 inclusion within HAWQS. In contrast, the PRISM and Livneh data were processed for each subwatershed  
366 by using their gridded cell values, which provides a more continuous temperature surface for creating a  
367 single set of subwatershed temperature data. The revelation of the apparent NCDC temperature anomalies  
368 warrants further review and probable correction of the data. However, it is unlikely that these errors  
369 greatly affected estimates of UMRB streamflow.

370        **4.3. PET estimation methods**

371        The PET concept was introduced by Thornthwaite (1948) as part of a climate classification scheme.

372        PET was defined as the rate of evapotranspiration without any limits imposed by the supply of water.

373        Numerous methods have been developed to estimate PET. The PM method (Monteith, 1965; Allen et al.,  
 374        2006) and HG method (Hargreaves and Samani, 1985) are two of the PET options available in SWAT and  
 375        were tested in this study.

376        The PM equation combines components that account for the energy needed to sustain evaporation,  
 377        the strength of mechanism required to remove the water vapor, and aerodynamic and surface resistance  
 378        terms. The PM equation is:

$$379 \quad \lambda E = \frac{\Delta \cdot (H_{net} - G) + \rho_{air} \cdot c_p \cdot [e_z^o - e_z] / r_a}{\Delta + \gamma \cdot (1 + r_c / r_a)} \quad (1)$$

380        where  $\lambda E$  is the latent heat flux density ( $\text{MJ m}^{-2} \text{ d}^{-1}$ ),  $E$  is the depth rate evaporation ( $\text{mm d}^{-1}$ ),  $\Delta$  is the  
 381        slope of the saturation vapor pressure-temperature curve  $de/dT$  ( $\text{kPa} \text{ }^{\circ}\text{C}^{-1}$ ),  $H_{net}$  is the net radiation ( $\text{MJ m}^{-2}$   
 382         $\text{d}^{-1}$ ),  $G$  is the heat flux density to the ground ( $\text{MJ m}^{-2} \text{ d}^{-1}$ ),  $\rho_{air}$  is the air density ( $\text{kg m}^{-3}$ ),  $c_p$  is the specific  
 383        heat at constant pressure ( $\text{MJ kg}^{-1} \text{ }^{\circ}\text{C}^{-1}$ ),  $e_z^o$  is the saturation vapor pressure of air at height  $z$  ( $\text{kPa}$ ),  $e_z$  is  
 384        the water vapor pressure of air at height  $z$  ( $\text{kPa}$ ),  $\gamma$  is the psychrometric constant ( $\text{kPa} \text{ }^{\circ}\text{C}^{-1}$ ),  $r_c$  is the plant  
 385        canopy resistance ( $\text{s m}^{-1}$ ), and  $r_a$  is the diffusion resistance of the air layer (aerodynamic resistance;  $\text{s m}^{-1}$ ).

386        The original HG equation (Hargreaves and Samani, 1985) is the form used in SWAT as follows:

$$387 \quad \lambda E_0 = \alpha_{pet} \cdot \frac{\Delta}{\Delta + \gamma} \cdot (H_{net} - G) \quad (2)$$

388        where  $\lambda$  is the latent heat of vaporization ( $\text{MJ kg}^{-1}$ ),  $E_0$  is the potential evapotranspiration ( $\text{mm d}^{-1}$ ),

389         $\alpha_{pet}$  is a coefficient,  $\Delta$  is the slope of the saturation vapor pressure-temperature curve  $de/dT$  ( $\text{kPa} \text{ }^{\circ}\text{C}^{-1}$ ),  $\gamma$  is  
 390        the psychrometric constant ( $\text{kPa} \text{ }^{\circ}\text{C}^{-1}$ ),  $H_{net}$  is the net radiation ( $\text{MJ m}^{-2} \text{ d}^{-1}$ ), and  $G$  is the heat flux density  
 391        to the ground ( $\text{MJ m}^{-2} \text{ d}^{-1}$ ).

392        The PM and HG methods vary considerably in the amount of required inputs. The PM method  
393        requires solar radiation, air temperature, relative humidity and wind speed but the HG method requires air  
394        temperature only. Daily solar radiation, relative humidity and wind speed inputs were generated by the  
395        weather generator within SWAT, because daily precipitation and air temperature are the only measured  
396        climatic data available.

#### 397        **4.4. Calibration approach and evaluation criteria**

398        The SWAT-CUP platform (Abbaspour, 2015; SWAT, 2019) is a software package with a web-based  
399        interface, which facilitates automatic calibration and/or uncertainty analyses for SWAT applications via  
400        manipulation of the large number of text files associated with a typical SWAT project (prior to the release  
401        of SWAT+; see Bieger et al., 2017). SWAT-CUP allows users to control the initial range of parameters  
402        and supports the most accurate identification of the parameter optimum values by automatic or manual  
403        calibration of SWAT projects. There are several algorithms incorporated in SWAT-CUP to help with the  
404        automatic calibration process: Sequential Uncertainty Fitting (SUFI-2), Particle Swarm Optimization  
405        (PSO), Generalized Likelihood Uncertainty Estimation (GLUE), Parameter Solution (ParaSol), and  
406        Markov Chain Monte Carlo (MCMC). The SUFI-2 algorithm was used for model calibration in this  
407        study. This algorithm can map all of the uncertainties for each parameter (expressed as uniform  
408        distributions or ranges) and attempts to capture most of the measured data within the 95% prediction  
409        uncertainty (95PPU) of the model in an iterative process. It requires fewer simulations to complete a  
410        calibration/uncertainty project (Yang et al., 2008) and is highly recommended for the calibration of  
411        SWAT models (Arnold et al., 2012).

412        Parallel processing was also used in this study, since it can speed up the calibration process by  
413        parallelizing the simulations in SUFI-2. The speed of the parallel processing depends on the  
414        characteristics of the computer. For example, if the computer has 8 central processing units (CPUs), the  
415        parallel processing module can utilize all 8 CPUs so that a 200-run iteration can be divided into 8  
416        simultaneous runs of 25 each per CPU. For a large-scale SWAT model, the utilization of the parallel

417 processing option results in substantially faster overall simulation times versus using just a single 200-run  
418 CPU submission.

419 The SUFI-2 algorithm was set to identify the optimum parameters by using the Nash-Sutcliffe  
420 modeling efficiency (NSE) statistic (Krause et al., 2005) as the key objective function. However, the  
421 results were also evaluated according to the coefficient of determination ( $R^2$ ; Krause et al., 2005), percent  
422 bias (PBIAS; Moriasi et al., 2007) and Kling-Gupta efficiency (KGE; Gupta et al., 2009). Values for  
423 NSE,  $R^2$  and PBIAS on a monthly scale were evaluated per criteria suggested by Moriasi et al. (2007;  
424 2015); i.e., NSE values  $\geq 0.50$ ,  $R^2$  values  $\geq 0.6$  and PBIAS values  $\leq \pm 25\%$  (Moriasi et al., 2007) or  $\leq \pm$   
425 15% (Moriasi et al., 2015) are judged to be satisfactory. Patil and Stieglitz (2015) implied that simulated  
426 values could be regarded as satisfactory with a KGE value  $> 0.6$ . The KGE statistics are designed to  
427 provide an improved criterion by incorporating error compensation for the bias and variability  
428 components (Roy et al., 2014; Zhu, et al., 2016). Graphical comparisons between the simulated and  
429 measured streamflow values were also used to assess the accuracy of the model output.

430  
431 **5. Results and Discussion**

432 **5.1. Climate dataset analysis**

433 Table 6 lists the daily mean temperature ( $^{\circ}\text{C}$ ), average annual precipitation (mm) and other  
434 uncalibrated average annual water balance components (mm) that were predicted for the UMRB using the  
435 three weather datasets and two PET methods during the 23-year simulation period. The Livneh data set  
436 was found to have the largest average annual amount of precipitation (837.2 mm) and highest daily mean  
437 temperature ( $8.2^{\circ}\text{C}$ ) among the three weather datasets. In contrast, the respective average annual  
438 precipitation for the NCDC and PRISM data sets was 836.1 mm and 831.5 mm, and the respective daily  
439 mean NCDC and PRISM temperatures were  $8.0^{\circ}\text{C}$  and  $7.9^{\circ}\text{C}$ . Overall, there were small differences in  
440 the annual average precipitation (5.7 mm maximum) and temperature ( $0.3^{\circ}\text{C}$  maximum).

441  
442**Table 6. Average annual values (mm) of hydrological components and daily mean temperature (°C) over the UMRB, for the different combinations of climate data and PET methods, based on the applications of the uncalibrated HAWQS SWAT model during 1983 to 2005.**

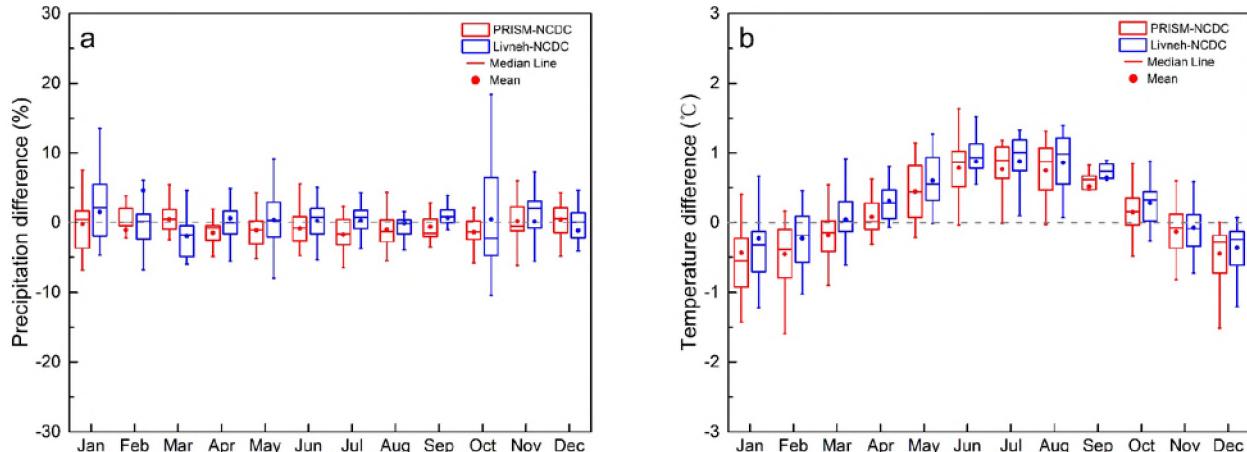
| Scenario   | Precipitation | Daily mean temperature | surface runoff | lateral flow | Groundwater flow | Soil water | ET    | PET   | Water yield | ET/P <sup>a</sup> | WY/P <sup>b</sup> |
|------------|---------------|------------------------|----------------|--------------|------------------|------------|-------|-------|-------------|-------------------|-------------------|
| PRISM(PM)  | 831.5         | 8.0                    | 204.6          | 40.9         | 25.7             | 267.9      | 508.2 | 856.9 | 323.7       | 0.56              | 0.43              |
| NCDC(PM)   | 836.1         | 7.9                    | 227.2          | 46.7         | 30.5             | 285.5      | 470.6 | 764.2 | 363.1       | 0.61              | 0.39              |
| Livneh(PM) | 837.2         | 8.2                    | 235.7          | 49.6         | 35.0             | 295.2      | 451.7 | 707.8 | 380.6       | 0.54              | 0.45              |
| PRISM(HG)  | 831.5         | 8.0                    | 141.9          | 24.0         | 18.3             | 231.4      | 620.4 | 958.6 | 212.4       | 0.74              | 0.26              |
| NCDC(HG)   | 836.1         | 7.9                    | 145.3          | 26.2         | 18.7             | 238.3      | 615.9 | 934.9 | 219.7       | 0.75              | 0.26              |
| Livneh(HG) | 837.2         | 8.2                    | 128.1          | 22.7         | 18.8             | 228.9      | 641.7 | 961.3 | 193.9       | 0.77              | 0.23              |

443  
444<sup>a</sup>ET/P = the ratio of annual ET/Precipitation<sup>b</sup>WY/P= the ratio of annual Water yield/Precipitation

445 The Livneh data also generated the largest amounts of surface runoff, lateral flow, groundwater, soil  
446 water and water yield when simulated in combination with the PM method (Table 6). The predicted  
447 annual average water yield for the Livneh data was 380.6 mm, versus 323.7 mm for PRISM and 363.1  
448 mm for NCDC. This was due primarily because the Livneh data produced the lowest estimated annual  
449 average PET of 707.8 mm among the three weather datasets, as compared to 856.9 mm and 746.2 mm for  
450 PRISM and NCDC, respectively. The different weather data set inputs resulted in maximum differences  
451 of 56.9 mm in water yield and 149.2 mm in PET for the uncalibrated simulations. These trends are also  
452 reflected in the ratios of annual ET/precipitation (ET/P) and annual water yield/precipitation (WY/P)  
453 reported in Table 6; e.g., the lowest ET/P and WY/P ratios were found for Livneh(PM) and Livneh(HG),  
454 respectively,

455 Considerably higher annual ET and PET values were estimated when the three weather data sets  
456 were simulated in combination with the HG method, resulting in much lower predicted water yield and  
457 key water yield components; i.e., surface runoff, lateral flow and groundwater flow (Table 6). There was  
458 also considerable variation in the responses of the three weather datasets to the two PET methods,  
459 especially for the Livneh data set. The Livneh data resulted in the lowest estimated ET and PET when  
460 used in combination with the PM method, but produced the highest ET and PET estimates when  
461 simulated with the HG method (Table 6). Consequently, the Livneh data generated the highest and lowest  
462 water yields when executed with the PM and HG methods, respectively.

463 In addition to comparing the spatial distribution of average annual precipitation and temperature,  
464 the differences between the monthly mean precipitation and daily mean temperature during the 23-year  
465 uncalibrated SWAT simulations are presented in Fig.4. The PRISM data generated smaller amounts of  
466 precipitation as compared to the NCDC data in most months, especially during the May to September  
467 growing season. The cumulative difference between PRISM and NCDC during the growing season  
468 accounted for 85% of the total annual average difference between the two data sets. However, the Livneh  
469 data precipitation amounts were larger versus NCDC for most months, except for March, August,  
470 November and December. The Livneh data precipitation amount was greater during the growing season,



471  
472 **Figure 4. Box plots of monthly differences for (a) precipitation and (b) daily mean temperature. For**  
473 **precipitation, percent difference (%) is displayed. Temperature values displayed are the absolute**  
474 **difference (°C).**

475  
476  
477 while it was slightly smaller during the non-growing season, relative to the NCDC data. With regard to daily  
478 temperature, there are distinct seasonal variations between the monthly differences. Both PRISM and Livneh  
479 tend to be warmer during the summer months and colder during the winter period, as compared to the NCDC  
480 data. Fig. 4 further shows that the Livneh data had the highest daily temperature among three weather datasets  
481 in spring and summer, while the PRISM data set results in the lowest temperature in winter.

482  
483 **5.2. Land use data analysis**

484 Table 7 represents average annual precipitation (mm), ET (mm) and water yield to the reach  
485 (mm) predicted for different UMRB land uses using the three weather datasets and two PET methods  
486 during the 23-year simulation period. The average annual amount of precipitation for urban areas was  
487 847.6 mm, which was greater than the corresponding annual average precipitation levels of 843.7 mm for  
488 cropland, 832.1 mm for grassland and 820.8 mm for forest. The differences in the annual average  
489 precipitation (from 3.9 to 26.8 mm) are primarily caused by the uneven spatial distribution of both  
490 precipitation and land use.

491 The highest ET levels were predicted for the composite urban areas when the PM method was  
492 simulated in combination with the three weather datasets. On average, the annual ET for the urban areas  
493 was 526.6 mm, versus 513.1 mm for cropland, 493.4 mm for grassland and 383.5 mm for forest (Table 7).

494 **Table 7. Average annual values (mm) of hydrological components for different land uses, based on the application of the uncalibrated HAWQS**  
 495 **SWAT model during 1983 to 2005.**

| PET<br>method | Land use   | Precipitation |       |        |         | ET    |       |        |         | Water yield |       |        |         |
|---------------|------------|---------------|-------|--------|---------|-------|-------|--------|---------|-------------|-------|--------|---------|
|               |            | PRISM         | NCDC  | Livneh | Average | PRISM | NCDC  | Livneh | Average | PRISM       | NCDC  | Livneh | Average |
| PM            | Cropland   | 843.7         | 848.0 | 848.8  | 846.9   | 546.9 | 502.3 | 490.2  | 513.1   | 296.7       | 344.6 | 356.5  | 332.6   |
|               | Forest     | 820.8         | 826.4 | 827.5  | 824.9   | 409.3 | 381.5 | 359.7  | 383.5   | 408.5       | 440.7 | 461.6  | 436.9   |
|               | Grassland  | 832.1         | 835.7 | 838.0  | 835.3   | 525.5 | 488.6 | 466.0  | 493.4   | 304.4       | 343.1 | 366.1  | 337.9   |
|               | Urban area | 847.6         | 852.8 | 853.5  | 851.3   | 556.5 | 521.4 | 502.0  | 526.6   | 293.4       | 332.4 | 351.5  | 325.8   |
| HG            | Cropland   | 843.7         | 848.0 | 848.8  | 846.9   | 613.9 | 602.5 | 643.4  | 620.0   | 229.6       | 245.1 | 205.4  | 226.7   |
|               | Forest     | 820.8         | 826.4 | 827.5  | 824.9   | 674.5 | 682.4 | 695.9  | 684.3   | 147.3       | 144.9 | 132.6  | 141.6   |
|               | Grassland  | 832.1         | 835.7 | 838.0  | 835.3   | 586.8 | 587.9 | 613.8  | 596.2   | 243.2       | 245.4 | 221.9  | 236.8   |
|               | Urban area | 847.6         | 852.8 | 853.5  | 851.3   | 630.3 | 632.3 | 660.9  | 641.2   | 219.6       | 222.5 | 194.8  | 212.3   |

496

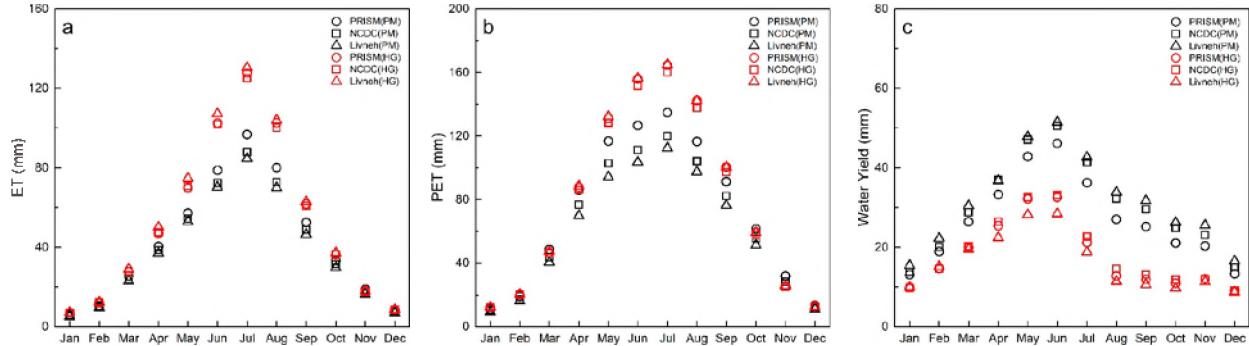
497

498 In contrast, forest was predicted to have the highest annual water yield of 436.9 mm, followed by  
499 grassland (337.9 mm), cropland (332.6 mm) and urban area (325.8 mm). Also, the forest areas tend to  
500 generate more runoff in response to the Livneh climate data as compared to the NCDC or PRISM climate  
501 data. This is in accord with the variation of runoff for the whole UMRB in Table 6.

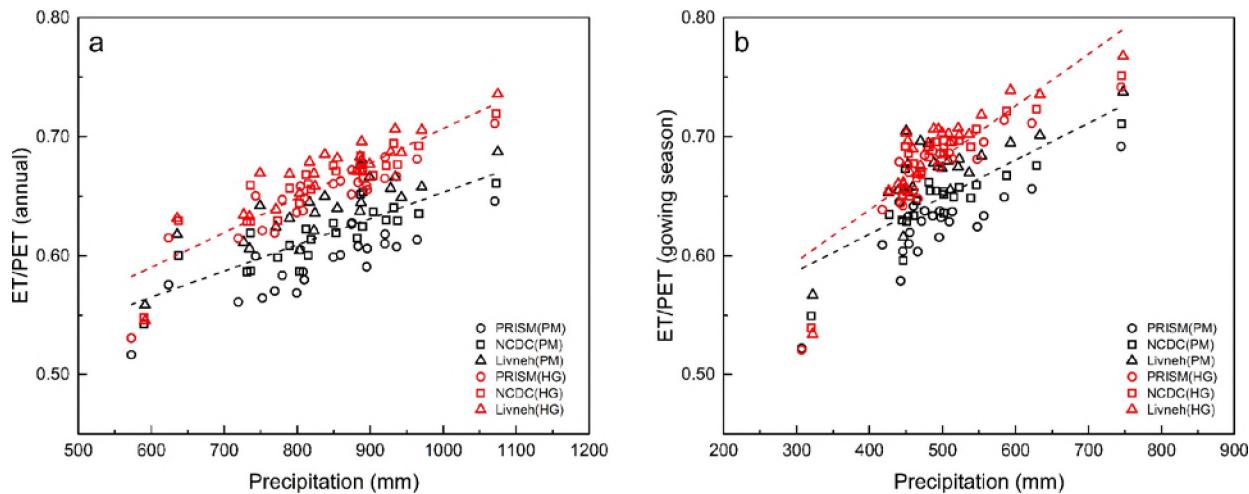
502 Among all land use types, the predicted ET amounts ranked from high to low as follows: forest  
503 (684.3 mm) > urban areas (641.2 mm) > cropland (620.0 mm) > grassland (596.2 mm). The highest  
504 annual average water yield was produced by grassland (236.8 mm), as compared to 226.7 mm, 212.3 mm  
505 and 141.6 mm for cropland, urban areas and forest, respectively. Overall, Table 7 shows that the  
506 estimated impacts of land use on the hydrology varied considerably in response to the different climate  
507 data sets and/or PET methods. For example, the highest and lowest annual average water yields were  
508 estimated to be generated by forested areas when simulated with PM and HG methods, respectively. With  
509 HG method, it is indicated that cropland (dominated by corn and soybean) may increase streamflow  
510 because of decreased evapotranspiration. The results of HG method are consistent with the work of Zhang  
511 and Schilling (2006) that assessed the effect of land use on streamflow in Mississippi River.

512  
513 **5.3. PET methods analysis**

514 Fig 5 shows the monthly variations of ET, PET and water yield predicted by the six uncalibrated  
515 SWAT scenarios (Table 4), which again are averaged over the period of 1983 to 2005. The experimental  
516 results show that the predicted annual distribution of ET and PET vary quite similarly in response to the  
517 two PET methods. Both the ET and PET start rising after January in the winter period, peak in July, and  
518 then descend during the remaining fall and winter months (Fig 5a-b). During the growing season (May to  
519 September), the SWAT-predicted ET and PET amounts calculated with HG are considerably higher  
520 versus the corresponding PM-based estimates. However, the gap between the HG- and PM-estimates is  
521 much smaller during the non-growing season and become virtually negligible in winter. The predicted  
522 water yield patterns are similar for the two PET methods, except that the peaks occur in June and the  
523 ascents to and declines from the peaks are more gradual (Fig 5c). The HG method generated smaller



524  
525 **Figure 5. Monthly variations for (a) ET, (b) PET, and (c) Water Yield, based on the applications of the**  
526 **uncalibrated HAWQS SWAT model during 1983-2005. Colors denote the PET method used: black are**  
527 **Penman-Monteith method, red are Hargreaves method.**



529  
530 **Figure 6. Ratio of ET/PET along with precipitation based on the applications of the uncalibrated**  
531 **HAWQS SWAT model from 1983 to 2005, on an (a)annual basis, and (b) growing season basis. Colors**  
532 **denote the PET method used: black are Penman-Monteith method, red are Hargreaves method.**

533 water yields as compared to the PM method, but the differences are greater during the growing season.

534 The ratio of ET/PET relative to corresponding precipitation from 1983 to 2005 are presented respectively  
535 on an annual basis and growing season basis in Fig. 6. Fig. 6a reveals that the ET/PET ratios steadily  
536 increased as precipitation increased. Consistently higher ratios of ET/PET were predicted with the HG  
537 method across the full range of precipitation amounts. Ratios of ET/PET estimated with the PM  
538 method range from 0.52 to 0.69 on annual scales while ratios of ET/PET predicted with the HG method  
539 range from 0.53 to 0.74. This result underscores that the HG method results in a higher rainfall use  
540 efficiency for the SWAT UMRB model. The ET/PET ratios reveal a similar tendency during the growing  
541 season periods (Fig. 6b). The ET/PET ratios are predicted to be higher during the growing season due to  
542 season periods (Fig. 6b). The ET/PET ratios are predicted to be higher during the growing season due to

543 the growth of the crops. In general, lower ET/PET ratios imply that crops and other vegetation are not  
544 supplied with sufficient water needed for ET and growth, and thus may experience greater water stresses  
545 (Chen et al., 2010).

#### 546 **5.4. Flow calibration and validation**

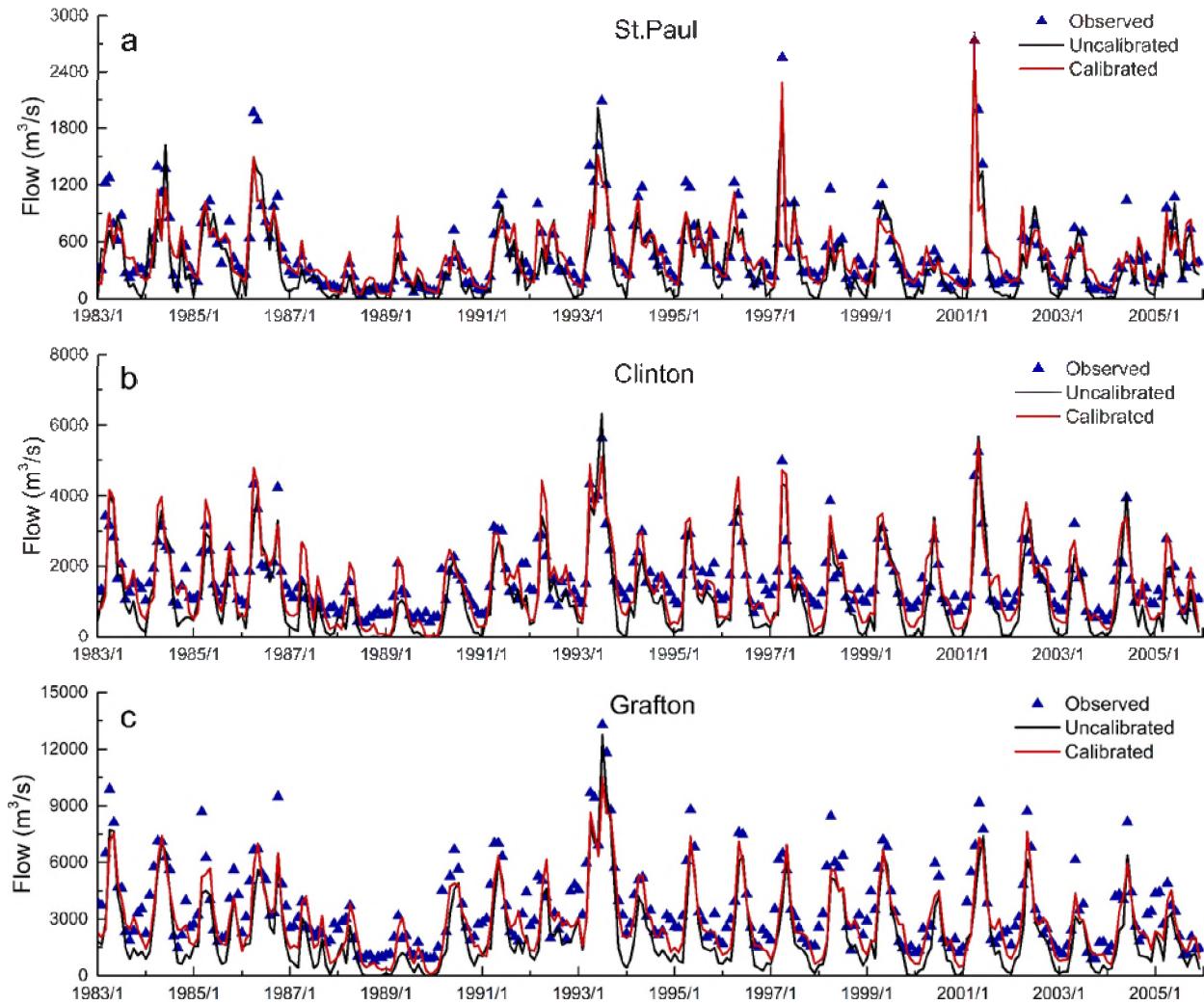
547 Table 3 lists the allowable ranges and types of calibration adjustments that were performed for  
548 the selected calibration parameters. Surface runoff and baseflow were calibrated simultaneously. The  
549 primary calibration parameters adjusted for surface runoff were the curve numbers (CN2), which  
550 represented different land conditions. Seven parameters related to groundwater (ALPHA\_BF,  
551 GW\_DELAY, GWQMN, GW\_REVAP, RCHRG\_DP and REVAPMN) were adjusted to improve the  
552 agreement between observed and simulated streamflows (Table 3). Five snow parameters (SFTMP,  
553 SMTMP, SMFMX, SMFMN and TIMP) were also adjusted in this study (Table 3) to better reflect  
554 snowmelt magnitude and hydrograph shapes.

555 The Last two columns in Table 5 represent the two different sets of calibrated parameter values  
556 that were obtained for the respective Livneh-calibrated and PRISM-calibrated scenarios. The subset of  
557 calibration parameters and allowable ranges were the same for the Livneh- and PRISM-based calibration  
558 processes. Because the performance of the PRISM and Livneh data sets were similar within SWAT (Fig. 2  
559 and Fig. 3), consistent adjustment trends occurred for the majority of the parameters. For example, values  
560 of CN2, ALPHA\_BF and RCHRG\_DP increased for both scenario calibrations relative to default values  
561 in HAWQS. However, different trends in the final calibrated values resulted for a smaller subset of  
562 parameters between the two calibration phases; e.g. GW\_DELAY and REVAPMN, where the calibrated  
563 values decreased for one calibration phase versus increased values for the other calibration phase (both  
564 calibration processes resulted in positive values for both parameters). This does not mean those two sets  
565 of parameters are contradictory. It should be noted that the goal of the SUFI-2 algorithm application is not  
566 to find the so-called “best simulation” in such a stochastic procedure but instead to find the 95PPU that

567 brackets some or most of the observed data (Abbaspour, 2015). Hence, the calibrated values (Table 3)  
568 do not represent the “best parameter” but rather the fitted value within a certain range.

569 Time series plots of measured versus simulated total streamflow on an aggregated monthly time  
570 scale for the three calibration sites (Fig. 1) in response to the Livneh-calibrated scenario are presented in  
571 Fig. 7. The solid blue triangles represent the measured monthly streamflow that was derived from daily  
572 measured streamflows (USGS, 2019). The black solid line represents the simulated flow based on the  
573 uncalibrated baseline SWAT model (using default HAWQS input parameters). The baseline SWAT  
574 model generally tracked the seasonal variance pattern including the peaks and recessions, although there  
575 is an obvious underestimation of the observed streamflows by the simulated streamflows for all three  
576 calibration gauge sites (St. Paul, Clinton and Grafton). The red solid line represents the predicted monthly  
577 streamflow after calibration was completed. The calibration process resulted in increased predicted  
578 streamflows including peak streamflow estimates that are more consistent with observed peak  
579 streamflows during the summer periods, although some peak streamflows were still underestimated  
580 (especially for Grafton). Winter low streamflow periods were generally still underpredicted, especially  
581 versus the observed streamflows for Clinton during November to February. Overall, the magnitude and  
582 temporal variation of the simulated streamflows matched the measured streamflows, indicating a realistic  
583 representation of the observed hydrographs by the model.

584 Table 7 presents the statistical results for comparison of the SWAT simulated monthly  
585 streamflows versus corresponding observed streamflows for both the calibration and validation gauge  
586 sites under Livneh-calibrated scenario. The results indicate satisfactory monthly NS values (>0.5 per the  
587 criteria suggested by Moriasi et al., 2007; 2015) for all the 3 calibration gauges and most of the 10  
588 validation gauge sites within the UMRB. However, NS values were <0.5 for the two UMRB subregions  
589 that drain to Muscoda and Royalton (Table 7). Weaknesses were also reflected in the other statistics  
590 calculated for these two regions. This may be due in part to an under-representation of the impact of  
591



592  
 593 **Figure 7. Monthly flows at calibration gauge sites. Observed are measured flow data from USGS**  
 594 **stations, uncalibrated are flow outputs of uncalibrated HAWQS/SWAT model when using Livneh**  
 595 **dataset, and calibrated are simulated flow after calibrating.**

596

597 natural lakes and/or wetlands in the two regions, which can attenuate peak streamflows and maintain  
 598 considerable storage of streamflows in low-flow periods. The percentages of these lake and wetland land  
 599 uses, which are not captured well by the current HAWQS wetlands parameterization, are the highest for  
 600 the Muscoda and Royalton drainage areas among the 10 different validation gauge sites.

601 The  $R^2$  statistics ranged from 0.54 to 0.81, which indicates that the majority of the simulated  
 602 streamflow trends replicated the counterpart observed streamflows well, considering the  $R^2$  criteria of 0.6  
 603 proposed by Moriasi et al. (2015). Almost all of the PBIAS results (Table 8) are acceptable per the  
 604 criterion of  $\pm 25\%$  deviation suggested by Moriasi (2007), except for Valley City (37.30%). Most of

605

**Table 8. Monthly streamflow statistics for calibration and validation gauge sites.**

| Gauge site     | Used for    | R <sup>2</sup> | NSE  | PBIAS  | KGE  |
|----------------|-------------|----------------|------|--------|------|
| St.Paul        | Calibration | 0.78           | 0.77 | 5.95   | 0.76 |
| Clinton        | Calibration | 0.76           | 0.58 | 7.07   | 0.70 |
| Grafton        | Calibration | 0.76           | 0.66 | 19.74  | 0.73 |
| Augusta        | Validation  | 0.80           | 0.73 | -8.36  | 0.62 |
| St.Croix Falls | Validation  | 0.54           | 0.54 | -0.37  | 0.61 |
| Durand         | Validation  | 0.66           | 0.60 | 13.22  | 0.75 |
| Joslin         | Validation  | 0.75           | 0.70 | 6.64   | 0.84 |
| Muscoda        | Validation  | 0.61           | 0.30 | 17.12  | 0.64 |
| Royalton       | Validation  | 0.65           | 0.29 | -20.31 | 0.58 |
| Wapello        | Validation  | 0.82           | 0.77 | 3.11   | 0.66 |
| Keosauqua      | Validation  | 0.68           | 0.62 | -14.74 | 0.57 |
| Jordan         | Validation  | 0.81           | 0.79 | 6.30   | 0.73 |
| Valley City    | Validation  | 0.81           | 0.50 | 37.30  | 0.52 |

606

607

608 the PBIAS results also meet the more stringent criteria of  $\pm 15\%$  proposed by Moriasi et al. (2015), with

609 the exception being Grafton (19.74%), Muscoda (17.12%), Royalton (-20.31%) and Valley City

610 (37.30%). The positive PBIAS that was calculated for the majority of gauge sites reveals that there was an

611 underestimation bias for the simulated streamflows. The KGE values for three calibration stations

612 were  $>0.7$ ; i.e., 0.76, 0.70 and 0.73 for St. Paul, Clinton and Grafton, respectively (Table 7). For the

613 validation locations, the lowest KGE value was 0.52 for Valley City while the highest KGE was 0.84 for

614 Joslin. All of the computed KGE statistics met the criteria of 0.6 suggested by Patil and Stieglitz (2015),

615 except the KGE values determined for Royalton (0.58), Keosauqua (0.57) and Valley City (0.52). Overall,

616 the validation statistics verify the calibration process and were even stronger for some gauge sites.

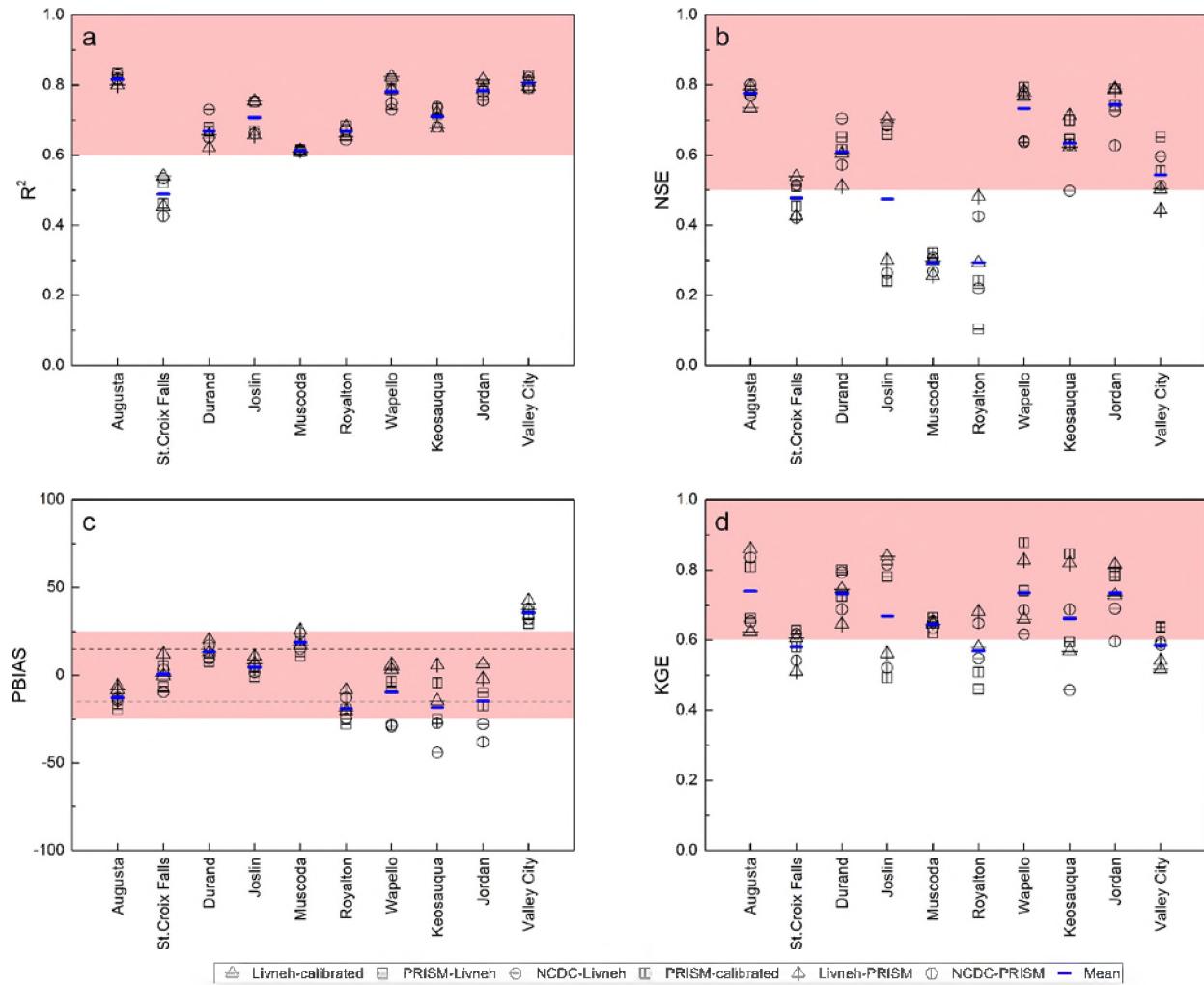
617

### 5.5. Comparison of Model performance evaluation

618 Fig. 8 summarizes all of the evaluated criteria values for six calibrated scenarios (Table 4) and the

619 ensemble mean at the 10 validation gauge sites (Fig. 1 and Table 5). Statistical values that are considered

620 “satisfactory” lie within the rose color background in Fig. 8a-d. Almost all of the R<sup>2</sup> values are acceptable



621

622 **Figure 8. The summary of 4 criteria values for 10 validation gauge sites. The rose background**  
 623 **indicates the “Satisfactory” performance range for each criterion. The rose background in 8c**  
 624 **depicts the  $\pm 25\%$  PBIAS criteria suggested by Moriasi et al. (2007) while the dashed lines in 8c**  
 625 **represent the  $\pm 15\%$  PBIAS criteria reported by Moriasi et al. (2015).**

626

627

628 ( $>0.6$ ) with the exception of the St. Croix Falls station in Wisconsin (Fig. 8a). For Augusta and Valley  
 629 City, the mean  $R^2$  values are  $> 0.8$ , which indicates a strong linear relationship between observed flow  
 630 and simulation flow. The NSE values determined for the sites of Augusta, Durand, Wapello, Keosauqua,  
 631 Jordan and Valley City are all satisfactory ( $>0.5$ ) as shown in Fig. 8b. For Muscoda and Royalton, the  
 632 NSE values were found to be unacceptable for most of the scenarios, which indicates that additional  
 633 calibration is likely required for these two independent basins. The majority of PBIAS values are within  
 634 the “satisfactory” range ( $\leq \pm 25\%$ ) as suggested by Moriasi et al. (2007) except for the gauge site located at

635 Valley City, where streamflows are considerably underestimated resulting in a PBIAS > 40% (Fig. 8c).  
636 However, Fig. 8c also shows that some of the computed PBIAS values for seven other gauge sites lie  
637 outside of the more stringent criteria of  $\pm 15\%$  proposed by Moriasi et al. (2015). Fig. 8d reveals that most  
638 of the KGE mean values for the six scenarios are  $> 0.6$  except for St.Croix Falls, Royalton and Valley  
639 City. There are also some large differences between scenarios in the KGE criterion for specific gauge  
640 sites. For example, the KGE statistics range from 0.75 to 0.85 for the Livneh-calibrated, PRISM-Livneh  
641 and NCDC-Livneh scenarios versus 0.5 to 0.6 for the PRISM-calibrated, Livneh-PRISM and NCDC-  
642 PRISM scenarios at Joslin.

643 Most of the statistics for the PRISM-Livneh and NCDC-Livneh scenarios are very close to the  
644 corresponding statistics found for the Livneh-calibrated scenario. This implies that the PRISM and NCDC  
645 data are adaptable to the model that was calibrated with the Livneh data despite some minor differences in  
646 the calculated statistics (Fig. 8). Likewise, application of the NCDC data and Livneh data also result in  
647 similar effects for the calibrated model driven by PRISM data. The model performance was very strong at  
648 some gauge sites in response to different climate datasets. For example, the statistics determined for the  
649 Augusta and Wapello stations all lie in the satisfactory range. However, unacceptable results, according to  
650 the criteria suggested by Moriasi et al. (2007; 2015) occurred for some stations for one or more evaluation  
651 criteria; e.g.,  $R^2$  and NSE values at St.Croix Falls, NSE at Muscoda, and NSE and KGE at Royalton. This  
652 may have been caused by the weakness of model adaptability to spatial variability at the subwatershed  
653 level. It should also be noted that for some gauge sites, the model estimated streamflow value was even  
654 more precise with the alternative climate datasets than with the driving dataset; i.e., NSE and KGE values  
655 for the PRISM-Livneh and NCDC-Livneh scenarios are both higher than the Livneh-calibrated scenario  
656 at Augusta, Durand and Valley City. These differences in model performance that occurred between the  
657 three climate datasets are likely due primarily to differences in the spatial distribution of precipitation and  
658 temperature (Fig. 3). However, it is possible that accuracy in precipitation and temperature measurements  
659 also effect the ability of SWAT to replicate UMRB streamflows; e.g., the previously described apparent

660 errors in the NCDC temperature for the subset of subwatersheds in the western and central part of the  
661 basin.

662 It can be concluded that the execution of the UMRB SWAT model resulted in different  
663 performance levels across all of the calibrated experimental scenarios. However, it is difficult to compare  
664 or rank the six different scenarios in a straight forward way. To overcome this issue and to provide  
665 additional insights regarding the outcomes of statistical analysis, a Global Performance Indicator (GPI) is  
666 introduced to assess the combined effects of the individual statistical indicators (Behar et al., 2015;  
667 Despotovic et al., 2015; Jamil and Akhtar, 2017). The values of all the statistical indicator are scaled  
668 between 0 and 1.

669 These scaled indicators are then subtracted from their corresponding median values respectively.  
670 Finally, the obtained differences are summed up using appropriate weight factors. The GPI indicator  $i$  is  
671 defined as

$$672 \quad GPI_i = \sum_{j=1}^4 \alpha_j (\tilde{y}_j - y_{ij}) \quad (3)$$

673 where  $\tilde{y}_j$  is the median of scaled values of indicator  $j$ ,  $y_{ij}$  is the scaled value of indicator  $j$  for scenario  $i$ ,  
674  $\alpha_j$  equals 1 for the indicator PBIAS, and equals -1 for other 3 indicators. As illustrated in Eq. (3), the  
675 GPI in this study is a multiplication of four statistical factors:  $R^2$ , NSE, PBIAS and KGE. A higher value  
676 of GPI indicates improved accuracy of a scenario between the observed data and simulated data.

677 The GPI rankings of the six calibrated experimental scenarios at the 10 validation gauge sites are  
678 reported in Table 8. For instance, the NCDC-PRISM scenario was ranked first at Augusta while the  
679 Livneh-calibrated scenario ranked sixth. The best overall performing climate dataset based on the highest  
680 consistent rank was PRISM, due to average rankings of the PRISM-Livneh scenario and PRISM-  
681 calibrated scenarios of 2.2 and 2.8 (Table 8), respectively. In contrast, the NCDC-Livneh and NCDC-  
682 PRISM scenarios were ranked 3.5 and 4.0, respectively. The Livneh data was ranked in the last positions  
683 among the three climate datasets on average, with 4.1 for Livneh-calibrated and 4.4 for Livneh-PRISM.

684  
685**Table 8. Ranking of scenarios according to GPI at 10 validation gauge sites.**

| Scenario          | Augusta | St.Croix Falls | Durand | Joslin | Muscoda | Royalton | Wapello | Keosauqua | Jordan | Valley City | Average ranking |
|-------------------|---------|----------------|--------|--------|---------|----------|---------|-----------|--------|-------------|-----------------|
| Livneh-calibrated | 6       | 3              | 3      | 3      | 4       | 4        | 4       | 5         | 3      | 5           | 4.0             |
| PRISM-Livneh      | 2       | 2              | 2      | 1      | 3       | 5        | 1       | 4         | 1      | 1           | 2.2             |
| NCDC-Livneh       | 4       | 1              | 1      | 2      | 2       | 6        | 6       | 6         | 5      | 2           | 3.5             |
| PRISM-calibrated  | 3       | 4              | 4      | 4      | 1       | 3        | 2       | 1         | 4      | 3           | 2.9             |
| Livneh-PRISM      | 5       | 6              | 6      | 6      | 6       | 1        | 3       | 3         | 2      | 6           | 4.4             |
| NCDC-PRISM        | 1       | 5              | 5      | 5      | 5       | 2        | 5       | 2         | 6      | 4           | 4.0             |

686  
687

688 This does not mean that the Livneh data can not be applied in the UMRB SWAT model but it may result  
689 in a weaker performance than PRISM or NCDC in some subwatersheds. The Livneh data is also highly  
690 ranked at some stations; i.e., it was ranked in the third place at St.Croix Falls, Joslin and Jordan for the  
691 Livneh-calibrated scenario, and in first place at Royalton for the Livneh-PRISM scenario.

692 **5.6. Reflections on results relative to previous UMRB SWAT studies**

693 The NSE and  $R^2$  calibration/validation statistical results computed between the SWAT-simulated  
694 and measured streamflows in this study compare favorably with corresponding statistics reported in  
695 previous studies that mostly ranged between 0.5 and 0.9 (Table 2). The primary exceptions were  
696 validation gauge sites located in the northern part of the UMRB system (Joslin, Muscoda, Royalton and  
697 St. Croix Falls) that manifested weaker statistics (Table 5 and Figure 8). This was likely due in part to the  
698 more rigorous spatial validation approach used in this study in which the calibrated parameters (Table 3),  
699 that were determined for 3 gauge sites (Figure 1 and Table 5), were then simulated for the 10 validation  
700 sites (Figure 1 and Table 5) without any further adjustments. In addition, two other reasons may have  
701 contributed to the weaker results within the HAWQS-based SWAT simulations of these northern  
702 subregions: (1) the lack of accounting for ponds, wetlands and other non-stream water bodies (as  
703 previously noted), which may have particularly affected the water balance results at these specific gauge  
704 sites, and (2) inadequate representation of forest growth parameters and algorithms, which has been  
705 documented as a weakness in previously reported SWAT applications (Yang et al., 2018; Yang and  
706 Zhang, 2016) and would be of particular importance in these northern subregions because forest is a  
707 dominant land use in the areas that drain to these gauge sites.

708 The most directly comparable previous study to the application reported here was the analysis  
709 described by Qi et al. (2019), who compared the effects of the NCDC, NLDAS2 and partial-NLDAS2  
710 climate data sets on SWAT streamflow predictions for 11 gauge sites within the UMRB. They found that  
711 all three climate data sets resulted in satisfactory replication of UMRB measured streamflows, but that the  
712 NLDAS2 data set produced the most accurate results relative to the other two data sets which was likely  
713 due to the inclusion of measured solar radiation, relative humidity, and wind speed data (versus just

714 measured precipitation, minimum temperature and maximum temperature data). Their findings are similar  
715 to what was found in this study; i.e, all three climate data sets produced acceptable results but the PRISM  
716 climate data set generated the most accurate SWAT-streamflow predictions compared to the NCDC and  
717 Livneh climate data sets. Overall, the Qi et al. (2019) statistical results were generally stronger than the  
718 comparative statistics computed in this study. This may have been partly due to the fact that Qi et al.  
719 calibrated and validated SWAT streamflows using a split-time approach for each of the 11 gauge sites  
720 included in their application. Qi et al. also accounted for subsurface tile drainage in UMRB subregions  
721 that are characterized by low slope and poorly drained soils; tile drainage was not incorporated in the  
722 HAWQS-based SWAT models developed for this study. Subsurface tile drains are primary sources of  
723 discharge water and soluble nutrients (e.g., nitrate) to stream networks in intensely tile areas as  
724 documented in several previous studies that focused on UMRB subwatersheds (Jha et al., 2010; Beeson et  
725 al., 2014; Panagopoulos et al., 2015; Teshager et al., 2016; Gassman et al., 2017; Jones et al., 2018;  
726 Schilling et al., 2019).

727 In summary, the SWAT models that were developed relatively rapidly within HAWQS for this  
728 study were successful in replicating UMRB streamflows for most of the gauge sites that were evaluated  
729 within the calibration or spatial validation phases. However, future improvements are needed to better  
730 represent specific aspects of the UMRB system including incorporation of non-stream water bodies and  
731 subsurface tile drainage. These and other improvements can provide improved estimates of streamflow as  
732 well as more accurate depiction of nutrient and other pollutant transport in the region.

## 733 **6. Conclusions**

734 The SWAT model was developed for the UMRB by using the on-line data and other resources  
735 provided by HAWQS. The uncalibrated model was used to evaluate the impacts of three spatial climate  
736 datasets (PRISM, NCDC and Livneh) and two PET estimation methods (HG and PM) on UMRB  
737 hydrologic processes. A comparison of climate datasets showed that the Livneh data had the highest  
738 precipitation and temperature levels during the growing season from May to September. The differences  
739 in precipitation and temperature inputs between the three climate data sets results are a primary factor in

740 the SWAT-estimated differences in streamflow, ET and other hydrological outputs. Regarding the impact  
741 of the two PET methods, higher annual ET and PET values were calculated with HG method versus the  
742 PM method for all three climate data sets. This is because the SWAT-predicted ET and PET amounts are  
743 considerably higher with HG method versus the corresponding PM-based estimates during the growing  
744 season.

745 The UMRB SWAT scenario performances were evaluated on a monthly time step according to four  
746 statistics: coefficient of determination ( $R^2$ ), percent bias (PBIAS), Nash-Sutcliffe modeling efficiency  
747 (NSE) and Kling-Gupta efficiency (KGE). Parallel processing and spatial validation were used in the  
748 calibration and validation of such a large hydrologic system, which improved the execution speed greatly  
749 and captured the spatial variation in runoff. The results of the calibration and validation phases showed  
750 that the SWAT model based on the Livneh dataset and HG method replicated streamflows well at most of  
751 the monitoring stations (three calibration points and ten validation points), indicating that the model could  
752 adequately predict long-term water yield in UMRB. After replacing the Livneh dataset with PRISM and  
753 NCDC, the model performances for validation points are still satisfactory on the whole despite some  
754 differences that occurred per the computed statistics. This substitutability between weather datasets also  
755 revealed that the calibrated SWAT model, which was based on the PRISM data, resulted in mostly  
756 satisfactory results. In addition, the Global Performance Indicator (GPI) was used so that all six of the  
757 experimental scenarios that were based on a calibrated version of the model could be evaluated with a  
758 single parameter and easily ranked. Based on the ranking of GPI, the PRISM data was found to be the  
759 strongest climate data set among the three climate data sets.

760 However, uncertainties in the available climate data and variations in other spatial data need to be  
761 further evaluated and improved for large-scale watershed modeling such as the UMRB system simulated  
762 here. This is especially true for the NCDC climate data which exhibited unexpected anomalies in the  
763 temperature data (Figure 3) that should be resolved in future versions of HAWQS. In addition,  
764 incorporation of non-stream water bodies, subsurface tile drainage and other aspects of the UMRB

765 system, that were not simulated in this study, are needed to more accurately simulate streamflows and  
766 pollutant transport throughout the stream network.

767 Based on the results of this study, the HG method would be recommended to be applied in the  
768 UMRB SWAT model because it resulted in a higher range of predicted ET/precipitation ratios which is  
769 more consistent with the limited estimates reported for the region (Liu et al., 2013). It is also  
770 recommended that the PRISM climate data be selected for UMRB SWAT applications built in HAWQS  
771 based on the results obtained in this study. The results of this study also confirm that future users of  
772 HAWQS should conduct testing of any SWAT models built in the system, regardless of the watershed  
773 that is being analyzed.

774

## 775 **Acknowledgements**

776 This research was partially funded by U.S. Department of Energy Initiative, Award No. DESC0016438,  
777 “A Hierarchical Evaluation Framework for Assessing Climate Simulations Relevant to the Energy-Water-  
778 Land Nexus”, and by U.S. Department of Energy Initiative, Award No. DESC0016605, “An Integrated  
779 Assessment of Regional Climate-Water-Energy-Land-Decision Modeling.” Appreciation is also  
780 expressed to the China Scholarship Council for providing support to lead author Chen to conduct research  
781 at Iowa State University from September 2018 to September 2019 and to the USEPA Office of Water for  
782 their ongoing support of different aspects related to HAWQS. Finally, we acknowledge our late colleague  
783 Raymond W. Arritt, whose scientific leadership and curiosity greatly influenced the design and  
784 implementation of this study before his untimely death occurred in October, 2018.

785

786 **References**

787 Abbaspour, K.C. 2015. SWAT-CUP: SWAT calibration and uncertainty programs – a user manual.  
788 Eawag, Swiss Federal Institute of Aquatic Science and Technology: Dübendorf, Switzerland. Available  
789 at: <https://swat.tamu.edu/software/swat-cup/>.

790

791 Alemayehu, T., van Griensven, A., Bauwens, W., 2016. Evaluating CFSR and WATCH data as input to  
792 SWAT for the estimation of the potential evapotranspiration in a data-scarce eastern-African catchment.  
793 Journal of Hydrologic Engineering. 21(3). [https://doi.org/10.1061/\(ASCE\)HE.1943-5584.00013](https://doi.org/10.1061/(ASCE)HE.1943-5584.00013).

794

795 Allen, R.G., W.O. Pruitt, J.L. Wright, T.A. Howell, F. Ventura, R. Snyder, D. Itenfisu, P. Steduto, J.  
796 Berengena, J.B. Yrisarry, M. Smith, L.S. Pereira, D. Raes A. Perrier, I. Alves, I. Walter and R. Elliott.  
797 2006. A recommendation on standardized surface resistance for hourly calculation of reference ETo by  
798 the FAO56 Penman-Monteith method. Agricultural Water Management. 81: 1-22. Doi:  
799 [10.1016/j.agwat.2005.03.007](https://doi.org/10.1016/j.agwat.2005.03.007).

800

801 Almendinger, J.E., M.S. Murphy and J.S. Ulrich. 2014. Use of SWAT to scale sediment delivery from  
802 field to watershed in an agricultural landscape with topographic depressions. Journal of Environmental  
803 Quality. 43(1): 9-17. Doi: [10.2134/jeq2011.0340](https://doi.org/10.2134/jeq2011.0340).

804

805 Aouissi, J., Benabdallah, S., Lili Chabaâne, Z. and Cudennec, C., 2016. Evaluation of potential  
806 evapotranspiration assessment methods for hydrological modelling with SWAT—Application in data-  
807 scarce rural Tunisia. Agricultural Water Management, 174: 39-51.  
808 <https://doi.org/10.1016/j.agwat.2016.03.004>

809

810 Arnold, J.G., D.N. Moriasi, P.W. Gassman, K.C. Abbaspour, M.J. White, R. Srinivasan, C. Santhi, R.D.  
811 Harmel, A. van Griensven, M.W. Van Liew, N. Kannan and M.K. Jha. 2012. SWAT: Model use,  
812 calibration, and validation. Transactions of the ASABE. 55(4): 1491-1508. Doi: [10.13031/2013.42256](https://doi.org/10.13031/2013.42256).

813

814 Arnold, J.G., R.S. Muttiah, R. Srinivasan and P.M. Allen. 2000. Regional estimation of base flow and  
815 groundwater recharge in the Upper Mississippi River Basin. Journal of Hydrology. 227(1-4): 21-40. Doi:  
816 [10.1016/S0022-1694\(99\)00139-0](https://doi.org/10.1016/S0022-1694(99)00139-0).

817

818 Arnold, J.G., R. Srinivasan, R.S. Muttiah and J.R. Williams. 1998. Large area hydrologic modeling and  
819 assessment part I: Model development. Journal of the American Water Resources Association. 34(1):  
820 73-89. Doi: [10.1111/j.1752-1688.1998.tb05961.x](https://doi.org/10.1111/j.1752-1688.1998.tb05961.x).

821

822 Barnhart, B.L., H.E. Golden, J.R. Kasprzyk, J.J. Pauer, C.E. Jones, K.A. Sawicz, N. Hoghooghi, M.  
823 Simon, R.B. McKane, P.M. Mayer, A.N. Piscopo, D.L. Ficklin, J.J. Halama, P.B. Pettus and B.  
824 Rashleigh. 2018. Embedding co-production and addressing uncertainty in watershed modeling decision-  
825 support tools: Successes and challenges. Environmental Modelling & Software. 109: 368-379. Doi:  
826 [10.1016/j.envsoft.2018.08.025](https://doi.org/10.1016/j.envsoft.2018.08.025).

827

828 Beeson, P.C., A.M. Sadeghi, M.W. Lang, M.D. Tomer and C.S.T. Daughtry. 2014. Sediment delivery  
829 estimates in water quality models altered by resolution and source of topographic data. Journal of  
830 Environmental Quality. 43(1): 26-36. Doi: [10.2134/jeq2012.0148](https://doi.org/10.2134/jeq2012.0148).

831

832 Behar, O., Khellaf, A. and Mohammedi, K., 2015. Comparison of solar radiation models and their  
833 validation under Algerian climate – The case of direct irradiance. Energy Conversion and Management,  
834 98: 236-251. Doi: [10.1016/j.enconman.2015.03.067](https://doi.org/10.1016/j.enconman.2015.03.067).

835  
836 Bieger, K., J.G. Arnold, H. Rathjens, M.J. White, D.D. Bosch, P.M. Allen, M. Volk and R. Srinivasan.  
837 2017. Introduction to SWAT+, a completely restructured version of the Soil and Water Assessment Tool.  
838 Journal of the American Water Resources Association. 53(1): 115–130. Doi: 10.1111/1752-1688.12482.  
839  
840 Bouska, K.L., J. Houser, N.R. De Jager and J. Hendrickson. 2018. Developing a shared understanding of  
841 the Upper Mississippi River: The foundation of an ecological resilience assessment. *Ecology and Society*  
842 23(2): 6. Doi: 10.5751/ES-10014-230206.  
843  
844 Bressiani, D. de A., P.W. Gassman, J.G. Fernandes, L.H.P. Garbossa, R. Srinivasan, N.B. Bonumá and  
845 E.M. Mendiondo. 2015. A review of Soil and Water Assessment Tool (SWAT) applications in Brazil:  
846 Challenges and prospects. *International Journal of Agricultural and Biological Engineering*. 8(3): 9-35.  
847 Doi: 10.3965/j.ijabe.20150803.1765.  
848  
849 CARD. 2019. SWAT literature database for peer-reviewed journal articles. Center for Agricultural and  
850 Rural Development, Iowa State University, Ames, Iowa. Available at:  
851 [https://www.card.iastate.edu/swat\\_articles/](https://www.card.iastate.edu/swat_articles/).  
852  
853 Cherkauer, K.A. and D.P. Lettenmaier. 1999. Hydrologic effects of frozen soils in the Upper Mississippi  
854 River basin. *Journal of Geophysical Research: Atmospheres*. 104(D16): 19599-19610. Doi:  
855 10.1029/1999JD900337.  
856  
857 Chaplot, V., A. Saleh, D.B. Jaynes and J. Arnold. 2004. Predicting water, sediment and NO<sub>3</sub>-N loads  
858 under scenarios of land-use and management practices in a flat watershed. *Water, Air, and Soil Pollution*.  
859 154 (1-4): 271-293. Doi: 10.1023/B:WATE.0000022973.60928.30.  
860  
861 Chen, L., Wang, J., Wei, W., Fu, B. and Wu, D., 2010. Effects of landscape restoration on soil water  
862 storage and water use in the Loess Plateau Region, China. *Forest Ecology and Management*, 259(7):  
863 1291-1298. Doi: 10.1016/j.foreco.2009.10.025.  
864  
865 Christianson, R., L. Christianson, C. Wong, M. Helmers, G. McIsaac, D. Mulla and M. McDonald. 2018.  
866 Beyond the nutrient strategies: Common ground to accelerate agricultural water quality improvement in  
867 the upper Midwest. *Journal of Environmental Management*. 206:1072-1080. Doi:  
868 10.1016/j.jenvman.2017.11.051.  
869  
870 Criss, R.E. and M. Luo. 2017. Increasing risk and uncertainty of flooding in the Mississippi River Basin.  
871 *Hydrological Processes*. 31: 1283–1292. Doi: 10.1002/hyp.11097.  
872  
873 Criss, R.E. and E.L. Shock. 2001. Flood enhancement through flood control. *Geology*. 29(10): 875–878.  
874 Doi: 10.1130/0091-7613(2001)029<0875:FETFC>2.0.CO;2.  
875  
876 Daly, C. et al., 2008. Physiographically sensitive mapping of climatological temperature and precipitation  
877 across the conterminous United States. *INTERNATIONAL JOURNAL OF CLIMATOLOGY*, 28(15):  
878 2031-2064. Doi: 10.1002/joc.1688.  
879  
880 Deb, D., P. Tuppad, P. Daggupati, R. Srinivasan and D. Varma. 2015. Spatio-temporal impacts of biofuel  
881 production and climate variability on water quantity and quality in Upper Mississippi River Basin. *Water*.  
882 7(4): 3283-3305. Doi: 10.3390/w7073283.  
883

884 Demissie, Y., E. Yan and M. Wu. 2012a. Assessing regional hydrology and water quality implications of  
885 large-scale biofuel feedstock production in the upper Mississippi River basin. *Environmental Science &*  
886 *Technology*. 46: 9174-9182. Doi: 10.1021/es300769k.  
887

888 Demissie, Y., E. Yan, M. Wu and Z. Zhang. 2012b. Watershed modeling of potential impacts of biofuel  
889 feedstock production in the Upper Mississippi River Basin. Report ANL/EVS/AGEM/TR-12-07. Argonne  
890 National Laboratory: Argonne, IL. Available at: <http://www.ipd.anl.gov/anlpubs/2012/08/73898.pdf>.  
891

892 Despotovic, M., Nedic, V., Despotovic, D. and Cvetanovic, S., 2015. Review and statistical analysis of  
893 different global solar radiation sunshine models. *Renewable and Sustainable Energy Reviews*, 52: 1869-  
894 1880. Doi: 10.1016/j.rser.2015.08.035.  
895

896 Eisner, S., M. Flörke, A. Chamorro, P. Daggupati, C. Donnelly, J. Huang, Y. Hundecha, H. Koch, A.  
897 Kalugin, I. Krylenko, V. Mishra, M. Piniewski, L. Samaniego, O. Seidou, M. Wallner and V. Krysanova.  
898 2017. An ensemble analysis of climate change impacts on streamflow seasonality across 11 large river  
899 basins. *Climatic Change*. 141(3): 401-417. Doi: 10.1007/s10584-016-1844-5.  
900

901 Ellet, C. 1852. Report on the overflows of the delta of the Mississippi. War Department: Washington,  
902 D.C. Available at: <https://biotech.law.lsu.edu/la/geology/REPORT-ON-THE-OVERFLOWS-OF-THE-DELTA-OF-THE-MISSISSIPPI.pdf>.  
904

905 ESRL. 2019. Livneh daily CONUS near-surface gridded meteorological and derived hydrometeorological  
906 data. Earth System Research Laboratory, National Oceanic and Atmospheric Administration, U.S.  
907 Department of Commerce: Boulder, CO. Available at:  
908 <https://www.esrl.noaa.gov/psd/data/gridded/data.livneh.html>.  
909

910 Fant, C., R. Srinivasan, B. Boehlert, L. Rennels, S.C. Chapra, K.M. Strzepek, J. Corona, A. Allen and J.  
911 Martinich. 2017. Climate change impacts on US water quality using two models: HAWQS and US  
912 Basins. *Water*. 9(2): 118. Doi: 10.3390/w9020118.  
913

914 Feng, Q., I. Chaubey, R. Cibin, B. Engel, K.P. Sudheer, J. Volenec and N. Omani. 2018. Perennial  
915 biomass production from marginal land in the Upper Mississippi River Basin. *Land Degradation &*  
916 *Development*. 29(6): 1748-1755. Doi: 10.1002/ldr.2971.  
917

918 Feng, Q., I. Chaubey, B. Engel, R. Cibin, K.P. Sudheer and J. Volenec. 2017. Marginal land suitability for  
919 switchgrass, Miscanthus and hybrid poplar in the Upper Mississippi River Basin (UMRB). *Environmental*  
920 *Modelling & Software*. 93: 356-365. Doi: 10.1016/j.envsoft.2017.03.027.  
921

922 Gao, J., Sheshukov, A.Y., Yen, H. and White, M.J., 2017. Impacts of alternative climate information on  
923 hydrologic processes with SWAT: A comparison of NCDC, PRISM and NEXRAD datasets. *CATENA*,  
924 156: 353-364. Doi: 10.1016/j.catena.2017.04.010.  
925

926 García, A.M., R.B. Alexander, J.G. Arnold, L. Norfleet, M.J. White, D.M. Robertson, and G. Schwarz.  
927 2016. Regional effects of agricultural conservation practices on nutrient transport in the Upper  
928 Mississippi River Basin. *Environmental Science Technology*. 50(13): 6991-7000 Doi:  
929 10.1021/acs.est.5b03543.  
930

931 Gassman, P.W., M.R. Reyes, C.H. Green and J.G. Arnold. 2007. The Soil and Water Assessment Tool:  
932 Historical development, applications, and future research directions. *Transactions of the ASABE*. 50(4):  
933 1211-1250. Doi: 10.13031/2013.23634.  
934

935 Gassman, P.W., A.M. Sadeghi and R. Srinivasan. 2014. Applications of the SWAT Model Special  
936 Section: Overview and Insights. *Journal of Environmental Quality*. 43(1): 1-8. Doi:  
937 10.2134/jeq2013.11.0466.

938

939 Gassman, P.W., A.M. Valcu-Lisman, C.L. Kling, S.K. Mickelson, Y. Panagopoulos, R. Cibin, I.  
940 Chaubey, C.F. Wolter and K.E. Schilling. 2017. Assessment of bioenergy cropping scenarios for the  
941 Boone River watershed in north central Iowa, United States. *Journal of the American Water Resources  
942 Association*. 53(6): 1336-1359. Doi: 10.1111/1752-1688.12593.

943

944 Gassman, P.W., J.R. Williams, X. Wang, A. Saleh, E. Osei, L.M. Hauck, R.C. Izaurralde and J.D.  
945 Flowers. 2010. The Agricultural Policy/Environmental EXtender (APEX) model: An emerging tool for  
946 landscape and watershed environmental analyses. *Transactions of the ASABE*. 53(3): 711-740. Doi:  
947 10.13031/2013.30078.

948

949 Getahun, E. and L. Keefer. 2016. Integrated modeling system for evaluating water quality benefits of  
950 agricultural watershed management practices: Case study in the Midwest. *Sustainability of Water Quality  
951 and Ecology*. 8: 14-29. Doi: 10.1016/j.swaqe.2016.06.002.

952

953 Gosling, S.N., J. Zaherpour, N.J. Mount, F.F. Hattermann, R. Dankers, B. Arheimer, L. Breuer, J. Ding, I.  
954 Haddeland, R. Kumar, D. Kundu, J. Liu, A. van Griensven, T.L.E. Veldkamp, T. Vetter, X. Wang and X.  
955 Zhang. 2017. A comparison of changes in river runoff from multiple global and catchment-scale  
956 hydrological models under global warming scenarios of 1 °C, 2 °C and 3 °C. *Climatic Change*. 141(3):  
957 577-595. Doi: 10.1007/s10584-016-1773-3

958

959 Green, M.B. and D. Wang. 2008. Watershed flow paths and stream water nitrogen-to-phosphorus ratios  
960 under simulated precipitation regimes. *Water Resources Research*. 44: 1-13. Doi:  
961 10.1029/2007WR006139.

962

963 Gu, R.R., M.K. Sahu and M.K. Jha. 2015. Simulating the impacts of bio-fuel crop production on nonpoint  
964 source pollution in the Upper Mississippi River Basin. *Ecological Engineering*. 74: 223-229. Doi:  
965 10.1016/j.ecoleng.2014.10.010.

966

967 Gupta, H.V., Kling, H., Yilmaz, K.K. and Martinez, G.F., 2009. Decomposition of the mean squared error  
968 and NSE performance criteria: Implications for improving hydrological modelling. *Journal of Hydrology*,  
969 377(1-2): 80-91. Doi: 10.1016/j.jhydrol.2009.08.003.

970

971 Hanratty, M.P. and H.G. Stefan. 1998. Simulating climate change effects in a Minnesota agricultural  
972 watershed. *Journal of Environmental Quality*. 27: 1524-1532. Doi:  
973 10.2134/jeq1998.00472425002700060032x.

974

975 Hargreaves G.H. and Z.A. Samani. 1985. Reference crop evapotranspiration from temperature. *Applied  
976 Engineering in Agriculture*. 1(2): 96-99. Doi: 10.13031/2013.26773.

977

978 Hattermann, F.F., V. Krysanova, S N. Gosling, R. Dankers, P. Daggupati, C. Donnelly, M. Flörke, S.  
979 Huang, Y. Motovilov, S. Buda, T. Yang, C. Müller, G. Leng, Q. Tang, F.T. Portmann, S. Hagemann, D.  
980 Gerten, Y. Wada, Y. Masaki, T. Alemayehu, Y. Satoh and L. Samaniego. 2017. Cross-scale  
981 intercomparison of climate change impacts simulated by regional and global hydrological models in  
982 eleven large river basins. *Climatic Change*. 141(3): 561-576. Doi: 10.1007/s10584-016-1829-4.

983

984 HAWQS. 2017. HAWQS v1.0: Inputs. Texas A&M AgriLife Research, Texas A&M University: College  
985 Station, Texas: Available at: <https://hawqs.tamu.edu/content/docs/HAWQS-Input-Database-Citation.pdf>.

986  
987 Huang, S., R. Kumar, M. Flörke, T. Yang, Y. Hundecha, P. Kraft, C. Gao, A. Gelfan, S. Liersch, A.  
988 Lobanova, M. Strauch, F. van Ogtrop, J. Reinhardt, U. Haberlandt and V. Krysanova. 2017. Evaluation of  
989 an ensemble of regional hydrological models in 12 large-scale river basins worldwide. *Climatic Change*.  
990 141(3): 381-397. Doi: 10.1007/s10584-016-1841-8.

991  
992 Jamil, B. and Akhtar, N., 2017. Estimation of diffuse solar radiation in humid-subtropical climatic region  
993 of India: Comparison of diffuse fraction and diffusion coefficient models. *Energy*, 131: 149-164. Doi:  
994 10.1016/j.energy.2017.05.018.

995  
996 Jha, M., J.G. Arnold, P.W. Gassman, F. Giorgi and R.R. Gu. 2006. Climate change sensitivity assessment  
997 on Upper Mississippi River Basin streamflows using SWAT. *Journal of the American Water Resources  
998 Association*. 42(4): 997-1016. Doi: 10.1111/j.1752-1688.2006.tb04510.x.

999  
1000 Jha, M.K., P.W. Gassman and Y. Panagopoulos. 2015. Regional changes in nitrate loadings in the Upper  
1001 Mississippi River Basin under predicted mid-century climate. *Regional Environmental Change*. 15(3):  
1002 449-460. Doi: 10.1007/s10113-013-0539-y.

1003  
1004 Jha, M., Z. Pan, E.S. Takle and R. Gu. 2004. Impacts of climate change on streamflow in the Upper  
1005 Mississippi River Basin: A regional climate model perspective. *Journal of Geophysical Research*. 109:  
1006 D09105. Doi: 10.1029/2003JD003686.

1007  
1008 Jha, M., K.E. Schilling, P.W. Gassman and C.F. Wolter. 2010. Targeting land-use change for nitrate-  
1009 nitrogen load reductions in an agricultural watershed. *Journal of Soil and Water Conservation*. 65(6): 342-  
1010 352. Doi: 10.2489/jswc.65.6.342.

1011  
1012 Jones, C.S., J.K. Nielsen, K.E. Schilling and L.J. Weber. 2018. Iowa stream nitrate and the Gulf of  
1013 Mexico. *PLoS ONE* 13(4): e0195930. Doi: 10.1371/journal.pone.0195930.

1014  
1015 Kannan, N., C. Santhi and J.G. Arnold. 2008. Development of an automated procedure for estimation of  
1016 the spatial variation of runoff in large river basins. *Journal of Hydrology*. 359(1-2): 1-15. Doi:  
1017 10.1016/j.jhydrol.2008.06.001.

1018  
1019 Kannan, K., C. Santhi, M.J. White, S. Mehan, J.G. Arnold and P.W. Gassman. 2019. Some challenges in  
1020 hydrologic model calibration for large-scale studies: A case study of SWAT model application to  
1021 Mississippi-Atchafalaya River Basin. *Hydrology*. 6(1): 17. Doi: 10.3390/hydrology6010017.

1022  
1023 Kirsch, K., A. Kirsch, and J.G. Arnold. 2002. Predicting sediment and phosphorus loads in the Rock  
1024 River Basin using SWAT. *Transactions of the ASAE*. 45(6): 1757-1769. Doi: 10.13031/2013.11427.

1025  
1026 Kling, C.L., Y. Panagopoulos, S.S. Rabotyagov, A.M. Valcu, P.W. Gassman, T. Campbell, M.J. White,  
1027 J.G. Arnold, R. Srinivasan, M.K. Jha, J.J. Richardson, L.M. Moskal, R.E. Turner and N.N. Rabalais.  
1028 2014. LUMINATE: Linking agricultural land use, local water quality and Gulf of Mexico hypoxia.  
1029 *European Review of Agricultural Economics*. 41(3): 431-459. Doi: 10.1093/erae/jbu009.

1030  
1031 Krause, P., D.P. Boyle and F. Bäse. 2005. Comparison of different efficiency criteria for hydrological  
1032 model assessment. *Advances in Geosciences*. 5: 89-97. Doi: 10.5194/adgeo-5-89-2005.

1033  
1034 Krysanova, V. and F.F. Hattermann. 2017. Intercomparison of climate change impacts in 12 large river  
1035 basins: Overview of methods and summary of results. *Climatic Change*. 141(3): 363-379. Doi:  
1036 10.1007/s10584-017-1919-y.

1037  
1038 Krysanova V. and M. White. 2015. Advances in water resources assessment with SWAT—an overview.  
1039 Hydrological Sciences Journal. 60(5): 771-783. Doi: 10.1080/02626667.2015.1029482.  
1040  
1041 Li, P., R.L Muenich, I. Chaubey and X. Wei. 2019. Evaluating agricultural BMP effectiveness in  
1042 improving freshwater provisioning under changing climate. Water Resources Management. Doi:  
1043 10.1007/s11269-018-2098-y.  
1044  
1045 Li, P., N. Omani, I. Chaubey and X. Wei. 2017. Evaluation of drought implications on ecosystem  
1046 services: Freshwater provisioning and food provisioning in the Upper Mississippi River Basin.  
1047 International Journal of Environmental Research and Public Health. 14(5): 496. Doi:  
1048 10.3390/ijerph14050496.  
1049  
1050 Liu, M., H. Tian, Q. Yang, J. Yang, X. Song, S.E. Lohrenz and W.-J. Cai. 2013. Long-term trends in  
1051 evapotranspiration and runoff over the drainage basins of the Gulf of Mexico during 1901–2008. Water  
1052 Resources Research. 49:1988–2012. Doi: 10.1002/wrcr.20180.  
1053  
1054 Livneh B., E.A. Rosenberg, C. Lin, B. Nijssen, V. Mishra, K.M. Andreadis, E.P. Maurer and D.P.  
1055 Lettenmaier. 2013. A long-term hydrologically based dataset of land surface fluxes and states for the  
1056 conterminous United States: Update and extensions, *Journal of Climate*. 26(23): 9384–9392. Doi:  
1057 10.1175/JCLI-D-12-00508.1.  
1058  
1059 McLellan, E., D. Robertson, K. Schilling, M. Tomer, J. Kostel, D. Smith and K. King. 2015. Reducing  
1060 nitrogen export from the Corn Belt to the Gulf of Mexico: Agricultural strategies for remediating hypoxia.  
1061 *Journal of the American Water Resources Association*. 51(1): 263-289. Doi: 10.1111/jawr.12246.  
1062  
1063 Menne, M.J., Durre, I., Vose, R.S., Gleason, B.E. and Houston, T.G., 2012. An Overview of the Global  
1064 Historical Climatology Network-Daily Database. *Journal of Atmospheric and Oceanic Technology*, 29(7):  
1065 897-910. Doi: 10.1175/JTECH-D-11-00103.1.  
1066  
1067 Monteith, J.L. 1965. Evaporation and environment. In: The state and movement of water in living  
1068 organisms, XIXth Symposium. Society for Experimental Biology, Swansea, United Kingdom. Cambridge  
1069 University Press: London, United Kingdom.  
1070  
1071 Moriasi, D.N., J.G. Arnold, M.W. Van Liew, R.L. Bingner, R.D. Harmel and T. Veith. 2007. Model  
1072 evaluation guidelines for systematic quantification of accuracy in watershed simulations. *Transactions of*  
1073 *the ASABE*. 50(3): 885-900. Doi: 10.13031/2013.23153.  
1074  
1075 Moriasi, D.N., M.W. Gitau, N. Pai and P. Daggupati. 2015. Hydrologic and water quality models:  
1076 performance measures and evaluation criteria. *Transactions of the ASABE*. 58(6): 1763-1785. Doi:  
1077 10.13031/trans.58.10715.  
1078  
1079 NOAA. 2019. Climate data online. National Centers for Environmental Information, National Oceanic  
1080 and Atmospheric Administration: Ashville, NC. Available at: <https://www.ncdc.noaa.gov/cdo-web/>.  
1081  
1082 Panagopoulos, Y., P.W. Gassman, R.W. Arritt, D.E. Herzmann, T.D. Campbell, M.K. Jha, C.L. Kling, R.  
1083 Srinivasan, M. White and J. G. Arnold. 2014. Surface water quality and cropping systems sustainability  
1084 under a changing climate in the Upper Mississippi River Basin. *Journal of Soil and Water Conservation*.  
1085 69(6): 483-494. Doi: 10.2489/jswc.69.6.483.  
1086

1087 Panagopoulos, Y., P.W. Gassman, M.K. Jha, C.L. Kling, T. Campbell, R. Srinivasan, M. White and J.G.  
1088 Arnold. 2015. A refined regional modeling approach for the Corn Belt - experiences and  
1089 recommendations for large-scale integrated modeling. *Journal of Hydrology*. 524: 348–366. Doi:  
1090 10.1016/j.jhydrol.2015.02.039.

1091

1092 Panagopoulos, Y., P.W. Gassman, C.L. Kling, R. Cibin and I. Chaubey. 2017. Water quality assessment  
1093 of large-scale bioenergy cropping scenarios for the Upper Mississippi and Ohio-Tennessee River basins.  
1094 *Journal of the American Water Resources Association*. 53(6): 1355-1367. Doi: 10.1111/1752-  
1095 1688.12594.

1096

1097 Patil, S.D. and Stieglitz, M., 2015. Comparing spatial and temporal transferability of hydrological model  
1098 parameters. *Journal of Hydrology*, 525: 409-417. Doi: 10.1016/j.jhydrol.2015.04.003.

1099

1100 PCG. 2019. PRISM Climate Data. PRISM Climate Group, Northwest Alliance for Computational Science  
1101 and Engineering, Oregon State University: Corvallis, OR. Available at:  
1102 <http://www.prism.oregonstate.edu/>.

1103

1104 Pierce, D.W. 2016. LOCA statistical downscaling (localized constructed analogs): Training (observed)  
1105 data sets. Scripps Institution of Oceanography: La Jolla, CA. Available at: <http://loca.ucsd.edu/training-observed-data-sets/>.

1106

1107

1108 Qi, J., Q. Wang and X. Zhang. 2019a. On the use of NLDAS2 weather data for hydrologic modeling in  
1109 the Upper Mississippi River Basin. *Water*. 11(5): 960. Doi: 10.3390/w11050960.

1110

1111 Qi, J., X. Zhang and Q. Wang. 2019b. Improving hydrological simulation in the Upper Mississippi River  
1112 Basin through enhanced freeze-thaw cycle representation. *Journal of Hydrology*. 571: 605-618. Doi:  
1113 10.1016/j.jhydrol.2019.02.020.

1114

1115 Rabotyagov, S., T. Campbell, M. Jha, P.W. Gassman, J. Arnold, L. Kurkalova, S. Secchi, H. Feng and  
1116 C.L. Kling. 2010. Least-cost control of agricultural nutrient contributions to the Gulf of Mexico hypoxic  
1117 zone. *Ecological Applications*. 20(6): 1542-1555. Doi: 10.1890/08-0680.1.

1118

1119 Rabotyagov, S.S., C.L. Kling, P.W. Gassman, N.N. Rabalais, and R.E. Turner. 2014. The economics of  
1120 dead zones: Linking externalities from the land to their consequences in the sea. *Review of  
1121 Environmental Economics and Policy*. 8(1): 58-79. Doi: 10.1093/reep/ret024.

1122

1123 Rajib, A. and V. Merwade. 2017. Hydrologic response to future land use change in the Upper Mississippi  
1124 River Basin by the end of 21st century. *Hydrological Processes*. 31: 3645-3661. Doi: 10.1002/hyp.11282.

1125

1126 Roy, S., Banerjee, R. and Bose, P.K., 2014. Performance and exhaust emissions prediction of a CRDI  
1127 assisted single cylinder diesel engine coupled with EGR using artificial neural network. *Applied Energy*,  
1128 119: 330-340. Doi: 10.1016/j.apenergy.2014.01.044.

1129

1130 Roth, V. and Lemann. T., 2016. Comparing CFSR and conventional weather data for discharge and soil  
1131 loss modelling with SWAT in small catchments in the Ethiopian Highlands. *Hydrology and Earth System  
1132 Sciences*. 20: 921-934. <https://doi.org/10.5194/hess-20-921-2016>.

1133

1134 Royer, T.V., M.B. David and L.E. Gentry. 2006. Timing of riverine export of nitrate and phosphorus  
1135 from agricultural watersheds in Illinois: Implications for reducing nutrient loading to the Mississippi  
1136 River. *Environmental Science & Technology*. 40(13): 4126-4131. Doi: 10.1021/es052573n.

1137

1138 Santhi, C., Kannan, N., Arnold, J.G. and Di Luzio, M., 2008. Spatial calibration and temporal validation  
1139 of flow for regional scale hydrologic modeling. JOURNAL OF THE AMERICAN WATER  
1140 RESOURCES ASSOCIATION, 44(4): 829-846. Doi: 10.1111/j.1752-1688.2008.00207.x.  
1141

1142 Santhi, C., M. White, J.G. Arnold, L. Norfleet, J. Atwood, R. Kellogg, N. Kannan, X. Wang, M. Di  
1143 Luzio, J.R. Williams and T. Gerik. 2014. Estimating the effects of agricultural conservation practices on  
1144 phosphorus loads in the Mississippi-Atchafalaya River Basin. Transactions of the ASABE. 57(5): 1339-  
1145 1357. Doi: 10.13031/trans.57.10458.  
1146

1147 Schilling, K.E., P.W. Gassman, A. Arenas-Amado, C.S. Jones and J. Arnold. 2019. Quantifying the  
1148 contribution of tile drainage to basin-scale water yield using analytical and numerical models. Science of  
1149 the Total Environment. 657: 297-309. Doi: 10.1016/j.scitotenv.2018.11.340.  
1150

1151 Secchi, S., P.W. Gassman, M. Jha, L. Kurkalova and C.L. Kling. 2011. Potential water quality changes  
1152 due to corn expansion in the Upper Mississippi River Basin. Ecological Applications. 21(4): 1068-1084.  
1153 Doi: 10.1890/09-0619.1.  
1154

1155 Sprague, L.A., R.M. Hirsch, and B.T. Aulenbach, 2011. Nitrate in the Mississippi River and Its  
1156 Tributaries. 1980 to 2008: Are We Making Progress? Environmental Science & Technology. 45  
1157 (17): 7209-7216. Doi: 10.1021/es201221s.  
1158

1159 Srinivasan, R. X. Zhang and J. Arnold. 2010. SWAT ungauged: Hydrological budget and crop yield  
1160 predictions in the Upper Mississippi River Basin. Transactions of the ASABE. 53(5): 1533-1546. Doi:  
1161 10.13031/2013.34903.  
1162

1163 Srinivasan, R. 2019. HAWQS user guide: Version 1.1. Spatial Sciences Laboratory, Texas A&M  
1164 AgriLife Research: College Station, TX. Available at: <https://epahawqs.tamu.edu/>.  
1165

1166 SWAT. 2019. SWAT-CUP: SWAT-CUP is a calibration/uncertainty or sensitivity program interface for  
1167 SWAT. Texas A&M AgriLife Research, Texas A&M University: College Station, Texas: Available at:  
1168 <https://swat.tamu.edu/software/swat-cup/>.  
1169

1170 Takle, E.S., M. Jha and C.J. Anderson. 2005. Hydrological cycle in the Upper Mississippi River basin:  
1171 20th century simulations by multiple GCMs. Geophysical Research Letters. 32(18): L18407. Doi:  
1172 10.1029/2005GL023630.  
1173

1174 Takle, E.S., M. Jha, E. Lu, R.W. Arritt, W.J. Gutowski and the NARCCAP Team. 2010. Streamflow in  
1175 the upper Mississippi river basin as simulated by SWAT driven by 20th Century contemporary results of  
1176 global climate models and NARCCAP regional climate models. Meteorologische Zeitschrift. 19(4): 341-  
1177 346. Doi: 10.1127/0941-2948/2010/0464.  
1178

1179 Tan, M.L., Gassman, P.W. and Cracknell, A.P., 2017. Assessment of three long-term gridded climate  
1180 products for hydro-climatic simulations in tropical river basins. Water. 9(3): 229.  
1181 <https://doi.org/10.3390/w9030229>.  
1182

1183 Tan, M.L., P.W. Gassman, R. Srinivasan, J.G. Arnold and X. Yang. 2019. A review of SWAT studies in  
1184 Southeast Asia: Applications, challenges and future directions. Water. 11(5): 914. Doi:  
1185 10.3390/w11050914.  
1186

1187 Teshager, A.D., P.W. Gassman, J.T. Schoof and S. Secchi. 2016. Assessment of impacts of agricultural  
1188 and climate change scenarios on watershed water quantity and quality, and crop production. *Hydrology*  
1189 and *Earth System Sciences*. 20(8): 3325-3342. Doi: 10.5194/hess-20-3325-2016.

1190

1191 Thornthwaite, C.W. 1948. An approach toward a rational classification of climate. *Geographical Review*  
1192 38: 55-94. Doi: 10.2307/210739.

1193

1194 Tie, Q., Hu, H., Tian, F. and Holbrook, N.M., 2018. Comparing different methods for determining forest  
1195 evapotranspiration and its components at multiple temporal scales. *Science of The Total Environment*,  
1196 633: 12-29. <https://doi.org/10.1016/j.scitotenv.2018.03.082>.

1197

1198 Tuppad, P., K.R. Douglas-Mankin, T. Lee, R. Srinivasan and J.G. Arnold. 2011. Soil and Water  
1199 Assessment Tool (SWAT) hydrologic/water quality model: Extended capability and wider adoption.  
1200 *Transactions of the ASABE*. 54(5): 1677-1684. Doi: 10.13031/2013.34915.

1201

1202 Turner, R.E. and N.N. Rabalais. 2019. The Gulf of Mexico. In: *World Seas: An Environmental  
1203 Evaluation* (Ed.: C. Sheppard). Academic Press: Amsterdam, The Netherlands.  
1204 Doi: 10.1016/B978-0-12-805068-2.00022-X.

1205

1206 UMRBA. 2019. River and Basin Facts. Upper Mississippi River Basin Association: Bloomington, MN.  
1207 Available at: <http://www.umrba.org/facts.htm>.

1208

1209 USACE. 2016. Report to congress: Upper Mississippi River restoration program. U.S. Army Corps of  
1210 Engineers: Rock Island District, Rock Island, IL. Available at:  
1211 [https://www.umesc.usgs.gov/ltrmp/documents/2016\\_umrr RTC %20final.pdf](https://www.umesc.usgs.gov/ltrmp/documents/2016_umrr RTC %20final.pdf).

1212

1213 USDA-NRCS. 2019. PRISM. National Water and Climate Center, Natural Resources Conservation  
1214 Service, U.S. Department of Agriculture: Portland, Oregon. Available at:  
1215 <https://www.wcc.nrcs.usda.gov/climate/prism.html>.

1216

1217 USDOE. 2019. A hierarchical evaluation framework for assessing climate simulations relevant to the  
1218 energy-water-land nexus. U.S. Department of Energy, Office of Science, Climate and Environmental  
1219 Sciences Division: Washington, D.C. Available at:  
1220 <https://climatedevelopmentscience.energy.gov/projects/hierarchical-evaluation-framework-assessing->  
1221 [climate-simulations-relevant-energy-water-land](https://climatedevelopmentscience.energy.gov/projects/hierarchical-evaluation-framework-assessing-).

1222

1223 USEPA. 2019. Hydrologic and Water Quality System: A national watershed and water quality assessment  
1224 tool. U.S. Environmental Protection Agency: Washington, D.C. Available at: <https://epahawqs.tamu.edu/>.

1225

1226 USGS, 2013. Federal Standards and Procedures for the National Watershed Boundary Dataset (WBD).  
1227 Techniques and Methods 11-A3, Chapter 3 of Section A, Federal Standards Book 11, Collection and  
1228 Delineation of Spatial Data, Fourth Edition. U.S. Department of the Interior, U.S. Geological Survey,  
1229 Reston, VA and U.S. Department of Agriculture, Natural Resources Conservation Service, Washington,  
1230 D.C., 63 pp. Available at: <http://pubs.usgs.gov/tm/11/a3/>.

1231

1232 USGS. 2019. USGS Surface-Water Daily Data for the Nation. U.S. Department of the Interior, U.S.  
1233 Geological Survey, Reston, VA. Available at: [https://waterdata.usgs.gov/nwis/dv/?referred\\_module=sw](https://waterdata.usgs.gov/nwis/dv/?referred_module=sw).

1234

1235 Vaché, K.B., J.M. Eilers and M.V. Santelman. 2002. Water quality modeling of alternative agricultural  
1236 scenarios in the U.S. Corn Belt. *Journal of the American Water Resources Association*. 38(3): 773-787.  
1237 Doi: 10.1111/j.1752-1688.2002.tb00996.x.

1238 Valle Júnior, L. C. G., Ventura, T. M., Gomes, R. S. R., de S. Nogueira, J., de A. Lobo, F., Vourlitis, G.  
1239 L. and Rodrigues, T. R., 2020. Comparative assessment of modelled and empirical reference  
1240 evapotranspiration methods for a brazilian savanna. *Agricultural Water Management*, 232: 106040.  
1241 <https://doi.org/10.1016/j.agwat.2020.106040>.

1242

1243 Van Meter, K.J., P. Van Cappellen and N.B. Basu. 2018. Legacy nitrogen may prevent achievement of  
1244 water quality goals in the Gulf of Mexico. *Science*. 360(6387): 427–430. Doi: 10.1126/science.aar4462.

1245

1246 Vetter, T., J. Reinhardt, M. Flörke, A. van Griensven, F. Hattermann, S. Huang, H. Koch, I. G.  
1247 Pechlivanidis, S. Plötner, O. Seidou, B. Su, R.W. Vervoort and V. Krysanova. 2017. Evaluation of  
1248 sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river  
1249 basins. *Climatic Change*. 141(3): 419-433. Doi: 10.1007/s10584-016-1794-y.

1250

1251 Vu, T., Li, L. and Jun, K., 2018. Evaluation of Multi-Satellite Precipitation Products for Streamflow  
1252 Simulations: A Case Study for the Han River Basin in the Korean Peninsula, East Asia. *Water*, 10(5):  
1253 642. <https://doi.org/10.3390/w10050642>.

1254

1255 Wang, X., N. Kannan, C. Santhi, S.R. Potter, J.R. Williams and J.G. Arnold. 2011. Integrating APEX  
1256 output for cultivated cropland with SWAT simulation for regional modeling. *Transactions of the ASABE*.  
1257 54(4): 1281-1298. Doi: 10.13031/2013.39031.

1258

1259 Weitzell, R.E, M.L. Khoury, P. Gagnon, B. Schreurs, D. Grossman and J. Higgins. 2003.  
1260 Conservation Priorities for Freshwater Biodiversity in the Upper Mississippi River Basin.  
1261 Nature Serve and The Nature Conservancy: Arlington, VA. Available at:  
1262 <https://www.conservationgateway.org/Files/Pages/conservation-priorities-f.aspx>.

1263

1264 White, M.J., C. Santhi, N. Kannan, J.G. Arnold, D. Harmel, L. Norfleet, P. Allen, M. DiLuzio, X. Wang,  
1265 J. Atwood, E. Haney and M. Vaughn Johnson. 2014. Nutrient delivery from the Mississippi River to the  
1266 Gulf of Mexico and effects of cropland conservation. *Journal of Soil and Water Conservation*. 69(1): 26-  
1267 40. Doi: 10.2489/jswc.69.1.26.

1268

1269 Whittaker, G., B.L. Barnhart, R. Srinivasan and J.G. Arnold. 2015. Cost of areal reduction of gulf  
1270 hypoxia through agricultural practice. *Science of the Total Environment*. 505: 149-153. Doi:  
1271 10.1016/j.scitotenv.2014.09.101.

1272

1273 Williams, J.R., J.G. Arnold, J.R. Kiniry, P.W. Gassman and C.H. Green. 2008. History of model  
1274 development at Temple, Texas. *Hydrological Sciences Journal*. 53(5): 948-960. Doi:  
1275 10.1623/hysj.53.5.948.

1276

1277 Wu, M., Y. Demissie and E. Yan. 2012a. Simulated impact of future biofuel production on water quality  
1278 and water cycle dynamics in the Upper Mississippi river basin. *Biomass & Bioenergy*. 41: 44-56. Doi:  
1279 10.1016/j.biombioe.2012.01.030.

1280

1281 Wu, Y., S. Liu and O.I. Abdul-Aziz. 2012b. Hydrological effects of the increased CO<sub>2</sub> and climate  
1282 change in the Upper Mississippi River Basin using a modified SWAT. *Climatic Change*. 110(3-4): 977-  
1283 1003. Doi: 10.1007/s10584-011-0087-8.

1284

1285 Wu, J. and K. Tanaka. 2005. Reducing nitrogen runoff from the Upper Mississippi River Basin to control  
1286 hypoxia in the Gulf of Mexico: Easements or taxes?. *Marine Resource Economics*. 20(2): 121-144.

1287

1288 Xia, Y., K. Mitchell, M. Ek, J. Sheeld, B. Cosgrove, E. Wood, L. Luo, C. Alonge, H. Wei and J. Meng.  
1289 2012. Continental-scale water and energy flux analysis and validation for the North American Land Data  
1290 Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products.  
1291 *Journal of Geophysical Research Atmospheres*. 117(D3): D03110. Doi: 10.1029/2011JD016051.  
1292

1293 Yang, Q., J.E. Almendinger, X. Zhang, M. Huang, X. Chen, G. Leng, Y. Zhou, K. Zhao, G.R. Asrar, R.  
1294 Srinivasan and X. Li. 2018. Enhancing SWAT simulation of forest ecosystems for water resource  
1295 assessment: A case study in the St. Croix River basin. *Ecological Engineering*. 120: 422-431. Doi:  
1296 10.1016/j.ecoleng.2018.06.020.  
1297

1298 Yang, J., Reichert, P., Abbaspour, K.C., Xia, J. and Yang, H., 2008. Comparing uncertainty analysis  
1299 techniques for a SWAT application to the Chaohe Basin in China. *Journal of Hydrology*, 358(1-2): 1-23.  
1300 Doi: 10.1016/j.jhydrol.2008.05.012.  
1301

1302 Yang, Q. and X. Zhang. 2016. Improving SWAT for simulating water and carbon fluxes of forest  
1303 ecosystems. *Science of the Total Environment*. 569-570: 1478-1488. Doi:  
1304 10.1016/j.scitotenv.2016.06.238.  
1305

1306 Yen, H., P. Daggupati, M.J. White, R. Srinivasan, A. Gossel, D. Wells and J.G. Arnold. 2016.  
1307 Application of large-scale, multi-resolution watershed modeling framework using the Hydrologic and  
1308 Water Quality System (HAWQS). *Water*. 8(4): 164. Doi: 10.3390/w8040164.  
1309

1310 Yuan, Y., R. Wang, E. Cooter, L. Ran, P. Daggupati, D. Yang, R. Srinivasan and A. Jalowska. 2018.  
1311 Integrating multimedia models to assess nitrogen losses from the Mississippi River Basin to the Gulf of  
1312 Mexico. *Biogeosciences*. 15(23): 7059-7076. Doi: 10.5194/bg-15-7059-2018.  
1313

1314 Zhang, Y.K. and Schilling, K.E., 2006. Increasing streamflow and baseflow in Mississippi River since the  
1315 1940s: Effect of land use change. *Journal of Hydrology*, 324(1-4): 412-422. Doi:  
1316 10.1016/j.jhydrol.2005.09.033.  
1317

1318 Zhu, Z., Chen, Z., Chen, X. and He, P., 2016. Approach for evaluating inundation risks in urban drainage  
1319 systems. *Science of The Total Environment*, 553: 1-12. Doi: 10.1016/j.scitotenv.2016.02.025.  
1320

1321

1322