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Abstract: The Upper Mississippi River Basin (UMRB) is an important ecosystem located in the north 
central U.S. that is experiencing a range of ecological stresses. Simulation models are a key tool for 
evaluating UMRB ecosystem-related problems including the Soil and Water Assessment Tool (SWAT). 
This study focused on the application of SWAT within Hydrologic and Water Quality System (HAWQS) 
on-line platform, which supports rapid development of SWAT projects for U.S. watersheds. To date, 
testing of SWAT models developed in HAWQS has been extremely limited including the effects of 
different climate-related inputs. Thus the focus of this study was to test the effects of the: (1) Hargreaves 
(HG) and Penman-Monteith (PM) PET methods, and (2) Livneh climate dataset, which exists external to 
HAWQS, and the National Climatic Data Center (NCDC) and Parameter-elevation Regressions on 
Independent Slopes Model (PRISM) climate datasets, which are available in HAWQS. The Livneh data 
was found to result in the highest average annual water yield of 380.6 mm when executed with the PM 
method but the lowest estimated water yield of 193.9 mm in combination with the HG method in 
response to 23-year uncalibrated simulations. Higher annual ET and PET values were predicted with HG 
method versus the PM method for all three weather datasets in response to the uncalibrated simulations, 
due primarily to higher HG-based estimates during the growing season. Based on these results, it was 
found that the HG method is the preferred PET option for the UMRB. Initial calibration of SWAT was 
performed using the Livneh data and HG method for three Mississippi River main stem gauge sites, 
which was followed by spatial validation at 10 other gauge sites located within the UMRB stream 
network. Overall satisfactory results were found for the calibration and validation gauge sites, with the 
majority of R2 values ranging between 0.61 and 0.82, Nash-Sutcliffe modeling efficiency (NSE) values 
ranging between 0.50 and 0.79, and Kling-Gupta efficiency (KGE) values ranging between 0.61 to 0.84. 
The results of an additional experimental suite of six scenarios, which represented different combinations 
of climate data sets and calibrated parameters, revealed that suggested statistical criteria were again 
satisfied by the different scenario combinations. Overall, the PRISM data exhibited the strongest overall 
reliability for the UMRB.

Key words: SWAT model; Climate dataset; UMRB; HAWQS; Hargreaves method; Penman- 
Monteith method
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1. Introduction

The Upper Mississippi River Basin (UMRB) was proclaimed both a “nationally significant 

ecosystem” and a “nationally significant commercial navigation system” in the Water Resources 

Development Act that was passed by the U.S. Congress in 1986 (Weitzell et al., 2003; USACE, 2016). 

However, extensive alterations to the UMRB stream system, which began during the middle of the 19th 

century to support commercial navigation, continue to conflict with ecosystem services goals (USACE, 

2016). These stream system modifications, in conjunction with large-scale land use change throughout 

much of the region, have resulted in a degraded UMRB ecosystem and loss of native aquatic diversity 

(Weitzell et al., 2003). Other pervasive ecosystem stresses are prevalent in the UMRB stream system 

including degraded water quality (Bouska et al., 2018; Christianson et al., 2018; Sprague et al., 2011, 

Jones et al., 2018), and increasing flood levels and damage (Criss and Shock, 2001; Criss and Luo, 2017).

A wide range approaches have been implemented to support efforts to mitigate habitat decline, 

pollution, flooding, and/or other UMRB ecosystem related problems, including habitat restoration 

(USACE, 2016), biological and habitat surveys (Weitzell et al., 2003), nutrient loss reduction strategies 

(Christianson et al., 2018) and in-stream monitoring (Royer et al., 2006; Sprague et al., 2011; Jones,

2018) . Applications of simulation models have also emerged as key tools in evaluating UMRB 

ecosystem-related problems including The Soil and Water Assessment Tool (SWAT) ecohydrological 

model (Arnold et al., 1998; 2012; Williams et al., 2008; Bieger et al., 2017) which has been extensively 

applied worldwide for a wide range of watershed scales, environmental conditions and water resource 

problems (Gassman et al., 2007; 2014; Tuppad et al., 2011; Krysanova and White, 2015; Bressiani et al., 

2015; Tan et al., 2019; CARD, 2019). SWAT has been used to analyze several UMRB-focused water 

quantity and/or water quality issues as described in numerous previous studies (e.g., Jha et al., 2004;

2006; Demissie et al., 2012a; Srinivasan et al., 2010; Rabotyagov et al., 2010; Kling et al., 2014; Qi et al.,

2019) . The model has also been applied in dozens of studies for smaller stream systems within the UMRB 

(e.g., Hanratty and Stefan, 1998; Vache et al., 2002; Kirsch et al.., 2002; Chaplot et al., 2004; Green and
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Wang, 2008; Jha et al., 2010; Beeson et al., 2014; Almendinger et al., 2014; Teshager et al., 2016; 

Getahun and Keefer, 2016; Gassman et al., 2017; Schilling et al., 2019).

SWAT has been adopted within several decision support tools (DSTs; e.g., Barnhart et al., 2018) 

including the USEPA Hydrologic and Water Quality System (HAWQS) on-line platform (Yen et al., 

2016; USEPA, 2019). The HAWQS platform provides the capability of building SWAT projects 

relatively quickly for U.S. watersheds of any scale using pre-loaded climate, land use, management, soil, 

topographic and other pertinent data layers. SWAT models are constructed in HAWQS by using 

hydrologic unit codes (HUCs) to delineate a study region that have been defined by the USGS and other 

federal agencies (USGS, 2013). The HUC8, HUC10 or HUC12 levels (USGS, 2013) can be chosen in 

HAWQS (Yen et al., 2016) which are commonly referred to as 8-, 10- or 12-digit watersheds. Yen et al. 

(2016) note that “preliminary calibration” have been conducted for parameters incorporated in HAWQS 

and Barnhart et al. (2018) state that HAWQS is an example of a “widely used and tested watershed-based 

DST.” However, only three studies to date report results of SWAT applications built in HAWQS (Y en et 

al., 2016; Fant et al., 2017; Yuan et al., 2018), which were supported with limited model testing. The 

Initial testing results of these HAWQS-based SWAT models strongly suggest that more in-depth testing 

is needed to better establish ideal input parameter values and/or sources for different regions including the 

UMRB, for SWAT projects built in HAWQS.

Thus it is extremely relevant in this study to investigate further testing of a UMRB SWAT model 

built in HAWQS, in the context of U.S. Department of Energy (USDOE) sponsored research focused on 

assessing climate simulations in conjunction with the energy-land-water nexus (USDOE, 2019). An 

important component of this research is the evaluation of different baseline (historical) measured climate 

data sources and potential evapotranspiration (PET) methods, within the HAWQS-based SWAT model 

created for the UMRB. The evaluation of inputs from alternative climate data sources is fundamentally 

important in determining the accuracy of SWAT for representing hydrological processes of a given 

watershed system as documented in numerous previous studies (e.g., Roth and Lemann, 2016; Tan et al., 

2017; Vu et al., 2018; Qi et al., 2019). Assessment of simulated evapotranspiration (ET) is also critical
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due to the influence of ET on the overall hydrologic balance, crop yields and agricultural management at 

the watershed scale (Alemayehu et al., 2016; Aouissi et al., 2016; Tie et al., 2018; Valle Junior et al.,

2020). The assessment of climate data sources and PET methods in this study is foundational for future 

applications of HAWQS-based UMRB SWAT models within the USDOE sponsored research project and 

other potential applications focused on various ecosystem related problems as described above.

Previous evaluations of climate data effects on SWAT UMRB hydrologic predictions are limited to 

the research reported by Qi et al. (2019), who compared the impacts on estimated streamflow between 

National Climatic Data Center (NCDC) data (NOAA, 2019) data and two versions of the NASA North 

American Land Data Assimilation System Phase Two (NLDAS2) data (Xia et al., 2012). The evaluation 

of climate data sources in this study included three data sets that spanned > 20 years: (1) NCDC data and 

the Parameter-elevation Regressions on Independent Slopes Model (PRISM) data (PCG, 2019; USDA- 

NRCS, 2019), which are both available in HAWQS, and (2) Livneh data (Livneh, 2013), which must be 

accessed external to HAWQS (ESRL, 2019). In addition, two other key inputs to the SWAT UMRB 

assessment were evaluated in this study. First, the effects of two PET methods on streamflow and ET 

estimates were also investigated which are standard options available in SWAT: Hargreaves (Hargreaves 

and Samani, 1985) and Penman-Monteith (Monteith, 1965; Allen et al., 2006). Second, the influence of 

different land use types on UMRB hydrology were analyzed for baseline conditions, in combination with 

the three climate data sets and two PET methods,.

In summary, the specific objectives of this research were to compare: (1) the temporal and spatial 

differences of the NCDC, PRISM and Livneh climate data sets, (2) the impacts of using the Hargreaves 

(HG) versus the Penman-Monteith (PM) PET methods on SWAT UMRB streamflow and ET estimates, 

(3) the impacts of different land use types on UMRB baseline hydrology, and (4) the effects of the three 

different climate datasets in combination with the two PET methods on UMRB streamflow estimates.
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2. Description of the Study Region

The UMRB originates from Lake Itasca in northern Minnesota and outlets at the confluence of 

the Ohio and Mississippi Rivers near the town of Cairo in southern Illinois (Fig. 1). The UMRB stream 

system drains a total of 491,700 km2, which includes large portions of five states (Illinois, Iowa, 

Minnesota, Missouri and Wisconsin) and small portions of three other states (Indiana, Michigan and 

South Dakota). Nearly 1,400 km of the Upper Mississippi River is commercially navigable, between St. 

Paul, Minnesota and the confluence with the Ohio River, which is facilitated by a system of 29 

locks/dams and dredging to maintain a minimum channel depth of 2.7 m (UMRBA, 2019). The region is 

designated as code 07 at the 2-digit watershed level (USGS, 2013) and is further delineated into 131 8­

digit subwatersheds and 5,729 12-digit subwatersheds (Panagopoulos et al., 2015). The basin outlet is 

often assumed to be a gauge site located near Grafton, Illinois in SWAT modeling studies, which drains 

an area of 447,802 km2 (119 8-digit watersheds) and is located just upstream of the confluence of the 

Mississippi and Missouri Rivers.

The major land use in the UMRB is cropland (44.7%), which is dominated by rotations of corn 

(27.5%) and soybean (17.2%). There are smaller areas of wheat, oats and other crops in the UMRB but 

those are excluded in this HAWQS modeling framework. Other important land use categories include 

forest (20.1%), grassland (16.2%), water and wetlands (9.9%) and urban/developed areas (9.1%). Annual 

precipitation averaged over 830 mm across the UMRB during the 23-year simulation period (1983 to 

2005) used in this study, and ranged from < 600 mm in the northwest part of the basin to > 1,000 mm in 

the southern area of the basin, depending on the source of precipitation data (Fig. 2). Average daily 

temperatures in the region generally range from 4.0 °C to 5.5 °C in the northern part of the basin to 11.5 

°C to 13.0 °C in the south (Fig. 3). However, distinctly colder average temperatures are indicated by the 

NCDC dataset for a subset of specific 8-digit watersheds in the northwest and central parts of the UMRB, 

as compared to the PRISM and Livneh datasets (these lower temperatures are likely an anomaly in the 

NCDC data as discussed in section 4.2). The soil types range from heavy, poorly drained clay soil to 

light, well-drained sands, with silty loam and loam soils covering about 66% of the total UMRB area

5



151

152
153
154
155

156

157
158

159

160

161

162

163

164

Kilometers

North Dakota

StCroix Falls^tL

DuraJorda
South Dakota

uscod

Nebraska

Calibration Stations

Validation Stations

Rivers Missouri

Study Area of UMRB 

HUC-8 Watersheds
Kentucky

Figure 1. The location of the Upper Mississippi River Basin (UMRB) with 8-digit watersheds, and gauge 
sites over the study region.

(Demissie et al., 2012b). The topography is characterized by flat to gently rolling terrain, with 

55% of the area having less than a 2% slope and an average elevation of 280 m.

3. Previous SWAT Applications Reported for the UMRB

A total of 41 previous studies (Table 1) were documented (CARD, 2019) that reported 

simulation of the UMRB using SWAT. Four of the studies report SWAT applications for the entire 

MARB that included the UMRB as a major subregion (Kannan et al., 2019; Santhi et al., 2014; White et 

al., 2014; Yuan et al., 2018) and three other studies report Com Belt region results that include SWAT 

analyses for the combined UMRB and Ohio-Tennessee River Basin (OTRB) systems (Kling et al., 2014; 

Panagopoulos et al., 2015; 2017). The studies listed in Table 1 focused on a range of themes including
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Figure 2. Distribution of average annual precipitation amounts values by climate data set 
and 8-digit watersheds across the UMRB for the time period of 1983 to 2005.

Figure 3. Distribution of average daily temperature values by climate data set and 8-digit 
watersheds across the UMRB for the time period of 1983 to 2005.

model testing, climate change impacts on streamflow or water quality, and BMP, land use change or 

biofuel cropping production impacts on water quality. . The only UMRB application that reported the 

effects of different climate sources on UMRB streamflow was Qi et al. (2019) and none of the studies 

reported the impacts of different PET methods.

There is a considerable distribution of reported SWAT subwatershed and HRU structures (Table 

1), ranging from a relatively coarse delineation of 119 subwatersheds and 474 HRUs (Takle et al., 2005) 

to an extremely detailed subdivision of 5,732 subwatersheds and 136,079 HRUs (Feng et al., 2018). Most 

of the studies state that model testing was performed using streamflow data collected at a gauge site 

located near Grafton, IE. A smaller subset of studies report expanded calibration and/or validation at

7



181 Table 1. Focus, structure, SWAT version and total gauge sites used for model testing in previous SWAT-based UMRB studies

Study Focus of study Subwatersheds/
HRUs

SWAT
version

Testing at 
Grafton, IL

Streamflow 
testing sites 

Cal/Val

Pollutant testing
sites

Cal/Val
Arnold et al., 2000 Hydrologic testing and evaluation 131/NRa,b NR Noc 0/1 0/0

Deb et al., 2015 Biofuel crops and climate change 131/14,568 2009 Yes 0/1 0/1

Demissie et al., 2012ad Biofuel crop impacts on water quality 131/14,200 2005 Yes 3/7 3/7

Eisner et al., 2017e
Climate change impacts from 9 hydrologic 
models used for major river systems NR NR Noc 1/1 0/0

Feng et al., 2017 Suitability of marginal land for biofuel 
crop production NR NR No 0/0 0/0

Feng et al., 2018 Biofuel crop production on marginal land 5,732/136,079 2012 Yes 13/13 0/0

Gu et al., 2015 Biofuel crop impacts on water quality 131/2,730 2005f Noc 0/0g 0/0

Gosling et al., 2017e
Predicted changes in runoff due to multiple 
global warming scenarios NR NR Noc 1/1 0/0

Hattermann et al., 2017e
Climate change impacts on hydrological 
model output for major river systems NR NR Noc 1/1 0/0

Huang et al., 2017e
Comparison of 9 hydrologic models that 
were applied to major river systems NR NR Noc 1/1 0/0

Jha et al., 2004 Climate change impacts on streamflow 119g/474h NR Yes 1/1 0/0

Jha et al., 2006 Climate change impacts on streamflow 119g/NR 2000f Yes 1/1 0/0

Jha et al., 2015 Climate change impacts on nitrate loads 131/18,000 2005 Yes 1/0 0/0

Kannan et al., 2008 Automatic calibration approach 131/NR NR No 0/0 0/0

Kannan et al., 2019 Calibration approaches/issues NR 2000f Yes 5/5 0/0

Kling et al., 2014 BMP impacts on water quality 5,279/5,279i 2009f NoJ 0/0j 0/0j

Krysanova &
Hattermann, 2017e

Summary of comparing hydrologic and 
climate models for 12 major river systems NR NR Noc 1/1 0/0

Li et al., 2017 Drought impacts on ecosystem services 157/6,686 2009f Yes 13/13 0/0

8



182 Table 1. Continued

Study Focus of study Subwatersheds/
HRUs

SWAT
version

Testing at 
Grafton, IL

Streamflow 
testing sites 

Cal/Val

Pollutant testing 
sites

Cal/Val
Li et al., 2019 Climate change impacts on BMP effects NR 2009f Yes 13/13 6/6

Panagopoulos et al., 2014 Climate change impacts on BMP effects 5,279/5,279i 2012 Yes 12/0 0/0

Panagopoulos et al., 2015 Calibration and validation approach 5,279/5,279i 2012 Yes 12/12 6/6

Panagopoulos et al., 2017 Biofuel crop impacts on water quality 5,279/5,279i 2012 Noj 0/0j 0/0j

Qi et al., 2019a Climate source impacts on streamflow 131/NR 2012 Yes 11/11 0/0

Qi et al., 2019b Enhanced freeze-thaw cycle processes 131/14,568 2012k Yes 1/0 0/0

Qi et al., 2020 Water quality testing and evaluation 131/14,568 2012l Yes 0/3m 0/3m

Rabotyagov et al., 2010 Analyses of least cost of BMPs 131/NR NR No 0/0 0/0

Rajib & Merweade, 2017 Land use change impacts on hydrology 260/NR NR Yes 10/2 0/0

Santhi et al. 2008 Calibration and validation approach 131/NR NR No 0/0n 0/0

Santhi et al., 2014° Phosphorous transport in stream system NRp 2005q Yes 5/5 5/5

Secchi et al., 2011 Land use change impacts on water quality 131/2,730 2005f Yes 1/1 1/1

Srinivasan et al., 2010 Uncalibrated baseline streamflow testing 131/14,568 2009r Yes 0/11m 0/0

Takle et al., 2005 Climate change impacts on streamflow 119/474 2000f Yes 0/0s 0/0

Takle et al., 2010 Climate change impacts on streamflow NR 2000f Yes 0/0s 0/0

Vetter et al., 2017e Climate change uncertainty within 
hydrologic models used for major rivers NR NR Noc 1/1 0/0

Wang et al., 2011o Crop production impacts on sediment loss NRp 2005 Yes 5/5 0/0

White et al., 2014o Nutrient loads delivered to stream system, 
including effects of BMPs 131t/NRb 2005o Yes 7/4 7/4

Whittaker et al., 2015 Land use change impacts on water quality 131/NR 2009u Yes 0/0/ 0/1

Wu et al., 2012ad Biofuel crop impacts on water quality 131/14,200 2005 Yes 3/7 3/7

Wu et al., 2012b Climate change impacts on streamflow 187g/972 99.2v Yes 1/1 0/0

9
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Table 1. Continued

Study Focus of study Subwatersheds/
HRUs

SWAT
version

Testing at 
Grafton, IL

Streamflow 
testing sites 

Cal/Val

Pollutant testing 
sites

Cal/Val

Wu & Tanaka, 2005 Reducing nitrate loads in stream system 118g/1,410 2000 Yes 0/1 0/1

Yuan et al., 2018 Estimating nitrate loads for Mississippi 
stream system using multiple models 131"/NR 2012w NR NR NR

aNR = not reported.
bSpecific HRU data are not reported in these studies; however Arnold et al. (2000) note that approximately 16 HRUs were delineated per subwatershed and 
White et al. (2014) state that a range of 40 to 99 HRUs were delineated in a given subwatershed.
cThe gauge used for model testing in these studies was located near Alton, IL, which is located several km south of Grafton, IL (and below the confluence of the 
Mississippi and Missouri Rivers) and captures a drainage area of 444,185 km2 (Huang et al., 2017).
dThe model structure, gauge testing sites and model testing results used in these studies were reported in Demissie et al. (2012b).
eThese six studies were part of a special issue published in Climatic Change (https://link.springer.com/journal/10584/141/3/page/1). Results of applying SWAT 
for the UMRB are reported in these six studies. SWAT testing statistics are reported in supporting documentation that can be accessed at Huang et al., 2017b. 
fThe SWAT model version was inferred from citations to SWAT documentation reported in the respective study.
gThese SWAT models were constructed with the outlet at Grafton, IL and thus excluded the subwatersheds that drain to the Mississippi River below Grafton.
""Inferred from information reported in Takle et al. (2005).
iA dominant HRU approach was used that resulted in one HRU per subwatershed.
jModel testing was based on the results reported in Panagopoulos et al. (2015).
kStandard SWAT model used in study was SWAT2012, Revision 664; modified version of SWAT called TSWAT.
'A standard SWAT2012 version
mUncalibrated simulations were performed in these studies; Srinivasan et al. (2010) list “calibrated statistics” in Table 9 of their study for comparison purposes. 
nStreamflow testing was not reported although mean NSE and R2 statistics were reported for water balance indicators determined for all 131 subwatersheds. 
oAn interface between the Agricultural Policy/Environmental extender (APEX) model ( Gassman et al., 2010) and SWAT was used in these studies. 
pIt is inferred that the model structure used in these studies is based on what is reported in White et al. (2014).
qModel version based on personal communication with M. White, Grassland Soil and Water Research Laboratory, USDA-ARS, Temple, TX.
"Model version was not directly reported in study but confirmed in later study published by Deb et al. (2014).
Model testing was based on previously reported information in either Jha et al. (2004) or Jha et al. (2006).
"Almost all of the entire MaRb were simulated in these studies; i.e., White et al. (2014) simulated a total of 848 USGS 8-digit watersheds (USGS, 2013) and 
Yuan et al. simulated total of 821 USGS 8-digit subwatersheds. It is assumed that 131 of the 8-digit watershed were used to represent the UMRB in both studies. 
uSWAT model structure based on previously developed model described by Srinivasan et al. (2010). 
vThe authors report using a modified version of SwAt 99.2 in their study.
vThe model version was not directly reported in the study but the modeling system was constructed via the Hydrologic and Water Quality System (HAWQS) that 
currently provides the option of using four different releases of the SWAT2012 model (Srinivasan, 2019).
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additional gauge sites (Table 1). Ten of the studies report some level of pollutant load testing at specific 

gauge sites (Table 1). Some of the studies provide comparisons of SWAT predicted loads versus 

observed or other estimated loads at the 8-digit watershed level (e.g., Arnold et al., 2000; Kannan et al., 

2008; White et al., 2014; Jha et al., 2015).

The majority of the studies report both calibration and validation testing results at Grafton and/or 

other gauge locations, and include evaluations based on the Coefficient of Determination (R2) and/or 

Nash-Sutcliffe Efficiency (NSE) statistics (Krause et al., 2005). Tabulation of computed R2 and NSE 

statistics, which measure how accurately simulated streamflows replicated measured streamflow, are 

shown by frequency in Table 2 for a daily time step (usual SWAT time step), and aggregated monthly and 

annual time periods. Roughly 90% of the NSE and R2 statistics represented in Table 2 exceed 0.5 and 0.6, 

respectively, which satisfies satisfactory or better model performance criteria suggested by Moriasi et al. 

(2007; 2015). The distribution of statistics in Table 2 also generally mirror previous similar statistical 

compilations reported in several review studies (Gassman et al., 2007, 2014; Tuppad et al., 2011;

Bressiani et al., 2015; Tan et al., 2019). Some of the weaker validation statistics reflect more stringent 

applications of un-calibrated SWAT models reported by Srinivasan et al. (2010) and Qi et al. (2020).

The composite results of previous studies (Table 2) confirm that applications of different versions 

of SWAT have been generally successful in replicating observed streamflows at Grafton, IL and at other 

gauge sites, for both calibration and validation. The majority of model testing was performed using a 

split-time approach (Arnold et al., 2012), where calibration and validation were conducted for the same 

gauge locations based on observed streamflow data collected during two different time periods. Spatial 

validation, where calibration is performed for different gauge sites versus the gauges used for validation, 

was performed only in support of the analyses by White et al. (2014), and for Demissie et al. (2012a) and 

Wu et al. (2012a) as reported in their corresponding supporting documentation (Demissie et al., 2012b). A 

spatial validation approach was adopted in this study as described in more detail below.
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Table 2. Distribution of statistics comparing simulated streamflows versus measured streamflows 
that were reported in SWAT UMRB studies by time steps and frequency rangesa,b

Daily Monthly Annual
Frequency Calibration Validation Calibration Validation Calibration Validation 

Range NSE R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE R2

0.90-1.00 1 3 3 5 7 11 6 27

0.80-0.89 12 23 23 35 6 6 8 9

0.70-0.79 1 1 1 3 43 44 27 29 1 6 3

0.60-0.69 1 2 28 24 19 19 7

0.50-0.59 1 17 4 13 8 2 4

0.40-0.49 3 4 10 7 3

0.30-0.39 1 2 5 2

0.20-0.29 1 2 1 2

0.10-0.19 3 2

0.00-0.09 1

<0 1

aData based on the following studies: Arnold et al. (2000), Deb et al. (2015), Feng et al. (2018), Huang et al.
(2017b), Jha et al. (2004), Jha et al. (2006), Jha et al. (2015), Kannan et al. (2019), Li et al. (2017), Panagopoulos et 
al. (2014), Panagopoulos et al. (2015), Qi et al. (2019a; 2019b; 2020); Rajib & Merweade (2017), Santhi et al. 
(2014), Secchi et al. (2011), Srinivasan et al. (2010), Wang et al. (2011), Wu et al. (2012b)
Calibration was not performed by Srinivasan et al. (2010) and Qi et al. (2020); statistic from those two studies are 
reported here as validation

4. Methods and Materials

4.1. SWAT/HAWQS model configuration and simulation scenarios

The development of the UMRB SWAT model was performed in HAWQS, which provides 

interactive web interfaces, maps and preloaded data layers including stream network, land use and land 

management, soil, climatic, point sources, historical climate, future climate projections, atmospheric 

deposition and reservoir data (Srinivasan, 2019). The sources of these input data and the date 

(month/year) are listed in HAWQS (2017). Users can assign preferred parameter values at HRU, 

subwatershed and/or overall basin levels, respectively. In addition, HAWQS is technically capable of 

providing preliminarily calibrated parameters as default values, although the level of testing supporting 

these parameter values is very limited as previously noted. In this study, the default parameters values set
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by HAWQS for the UMRB SWAT model were considered to be uncalibrated baseline data (Table 3), and 

output from this baseline model are referred to as uncalibrated results. The files created for this 

uncalibrated baseline UMRB SWAT model were also downloaded from HAWQS after the initial model 

construction, which allows additional parameter modification using the SWAT editor program or other 

external software.

The SWAT model was configured for the UMRB at the 8-digit watershed level within the HAWQS 

platform, resulting in 119 8-digit watersheds that encompass the previously described 447,802 km2 area 

that drains to Grafton, IL (the outlet is the 8-digit watershed identified as HUC07110009). A total of 

34,630 HRUs were initially configured within the 119 subwatersheds when the UMRB SWAT model was 

first constructed within HAWQS. HRU thresholds of 1 km2 were then applied to the land use, soil type 

and slope classes to eliminate minor land uses, soils, and slopes in each subwatershed. The application of 

the thresholds resulted in a total of 30,812 HRUs for the baseline UMRB SWAT model and subsequent 

calibrated versions of the UMRB model.

The SWAT simulations were performed from 1981 to 2005; the first 2 years served as an 

initialization period. This 25-year simulation period reflects a consistent time period available in all three 

data sets (see Section 4.3). Two sets of six simulations each were then performed as scenarios (Table 4) 

The first set of simulations were executed without calibration using the baseline UMRB model, to provide 

an initial comparison of water balance and streamflow estimates between the three climate data sets and 

two ET methods that were not influenced by any adjustments in SWAT input parameters. These scenarios 

were based on the baseline UMRB SWAT model that was executed with the HAWQS default input 

parameters (Table 3). This allowed the weather inputs (including daily precipitation, daily maximum 

temperature and minimum temperature) to be held constant while varying the PET methods, so that the 

effects of the PET methods on the hydrologic outputs can be discerned. The initial uncalibrated SWAT 

model was constructed using the Penman-Monteith (PM) PET method, which is the default PET option 

that is used in HAWQS (scenarios PRISM(PM), NCDC(PM) and Livneh(PM) in Table 4). The
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uncalibrated SWAT model was then executed with the HG PET method (scenarios PRISM(HG), 

NCDC(HG) and Livneh(HG) in Table 4), to provide a further basis of comparison (Section 5.1).

The second phase of simulations were based on calibration and validation, which was initially 

performed using the Livneh climate data and HG PET method. The Livneh data were chosen for the 

initial calibration due to the fact that the data set has served in a historical climate role for a suite of 

downscaled climate projections (Pierce, 2016), that may be analyzed as part of the broader research 

initiative (DOE, 2019). The HG method was selected because the annual ratio of ET/precipitation was > 

0.7 for HG method versus approximately 0.6 for PM method. The HG method ET/precipitation ratio of 

0.7 was more consistent with the UMRB region ratio reported by Liu et al. (2013), who estimated ET and 

runoff for the major basins that contribute steamflow to the Gulf of Mexico. Calibration was performed 

for the three calibration gauge sites shown in Fig 1 and Table 5: St. Paul, Clinton and Grafton. Spatial 

validation was then performed by performing an additional simulation with the calibrated model, without 

any further adjustments to the SWAT input parameters, and comparing simulated versus observed 

streamflows at the other 10 “hydrologically independent” gauge sites (Fig 1 and Table 5). Each of the 10 

hydrologically independent sub-regions corresponds to either the most upstream part of the main stem 

(Royalton for Mississippi River) or a major tributary flowing into the main stem (i.e., the Skunk, St. 

Croix, Chippewa, Rock, Wisconsin, Iowa, Des Moines, Minnesota or Illinois Rivers). Table 5 

summarizes the information related to the monitoring points.

Following calibration and validation, six additional experimental scenarios (Table 4) were 

evaluated, which were again based on monthly streamflow output from 1983 to 2005. These scenarios 

provided further assessment of the performance of SWAT in response to the three climate datasets, HG 

method, and calibrated parameters listed in Table 3 (that are described in more detail in Section 5.3). 

These second set of six scenarios were further split into two subsets, which were demarcated as follows:

(1) the first subset of three scenarios was based on the calibrated parameters (Table 3) obtained with the 

previously described Livneh climate dataset and HG method (scenario Livneh-calibrated, in Table 4), 

versus (2) a second set of three scenarios that were performed using calibrated parameters (Table 3)
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308 Table 3. Calibration input parameters, default values in HAWQS, allowable ranges, type of calibration adjustment and final calibrated values.

Parameters Description Type of Default values Allowable ranges Calibrated value Calibrated value
change3 in HAWQS Min Max for Livneh for PRISM

CN2
Initial SCS runoff curve number for moisture 
condition II R 22 - 84 -0.1 0.1 0.0985 0.0526

ALPHA_BF Baseflow alpha factor (1/days) V 0.023 - 0.85 0 1 0.9 0.999
GW_DELAY Groundwater delay time (days) A 25 - 323 -30 90 -12 6.880

GWQMN Threshold depth of water in shallow aquifer 
required for return flow to occur (mm) A 0.7 - 900 -1000 1000 -422 -577

GW_REVAP Groundwater "revap" coefficient V 0.01 - 0.1066 0.02 0.1 0.04 0.053

RCHRG_DP Deep aquifer percolation fraction
Threshold depth of water in the shallow

A 0.01 - 0.33 -0.05 0.05 0.027 0.044

REVAPMN aquifer for "revap" or percolation to the deep 
aquifer to occur (mm)

A 264.6; 500 -750 750 206 -24

ALPHA_BF_D Alpha factor for groudwater recession curve V 0 0 1 0.25 0.32of the deep aquifer (1/day)
ESCO Soil evaporation compensation factor V 0.808 - 0.98 0.6 0.1 0.92-0.95 0.93-0.98

CANMX Maximum canopy storage (mm) V 15.4 0 25 2b 2b

SLSOIL Slope length for lateral subsurface flow (m) V 0 0 150 6.375 28
LAT_TTIME Lateral flow travel time (days) V 0 0 200 153 186

SOL_AWC Available water capacity of the soil layer 
(mm H2O/mm soil) R 0.01 - 0.42 -0.05 0.05 0.038c -0.034c

SFTMP Snowfall temperature (°C) V 1 -5 1 0.175 3.53

SMTMP Snow melt base temperature (°C) V 0.5 0 3 0.68 0.29

SMFMX Melt factor for snow on June 21 (mmH20/°C 
-day) V 4.5 2 4.5 3.99 4.42

SMFMN Melt factor for snow on December 21 (mm
H2O/°C -day) V 4.5 0 2.5 0.07 2.37

TIMP Snow pack temperature lag factor V 1 0 1 0.55 0.38
309 aR indicates that an existing parameter value is multiplied by (1+ a given value), V indicates that the existing parameter value is to be replaced by a given
310 value, and A indicates that a given value is added to the existing parameter value.
311 bFor various forest (FRSD, FRSE and FRST) landuse.
312 cFor the first soil layer.
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313
314

Table 4. Description of the SWAT scenarios executed with baseline (HAWQS default parameters) 
versus scenarios that were calibrated parameters.

Scenario name Climate dataset PET method Input parameters Calibration dataset

PRISM(PM) PRISM PM HAWQS default NAa

NCDC(PM) NCDC PM HAWQS default NA

Livneh(PM) Livneh PM HAWQS default NA

PRISM(HG) PRISM HG HAWQS default NA

NCDC(HG) NCDC HG HAWQS default NA

Livneh(HG) Livneh HG HAWQS default NA

Livneh-calibrated Livneh HG Calibrated Livneh

PRISM-Livneh PRISM HG Calibrated Livneh

NCDC-Livneh NCDC HG Calibrated Livneh

PRISM-calibrated PRISM HG Calibrated PRISM

Livneh-PRISM Livneh HG Calibrated PRISM

NCDC-PRISM NCDC HG Calibrated PRISM

315 aNA = not applicable
316

317 Table 5. The USGS gauge sites used for streamflow calibration and validation in this study, including
318 location, gauge site IDs, hydrologic units and reported drainage area.

Gauge site River State Used for USGS Station Hydrologic
Unit

Drainage Area
(km2)

St. Paul Mississippi MN Calibration 05331000 7010206 95312

Clinton Mississippi IA Calibration 05420500 7080101 221703

Grafton Mississippi IL Calibration 05587450 7110009 443665

Augusta Skunk IA Validation 05474000 7080107 11168

St. Croix Falls St. Croix WI Validation 05340500 7030005 16162

Durand Chippewa WI Validation 05369500 7050005 23336

Joslin Rock IL Validation 05446500 7090005 24732

Muscoda Wisconsin WI Validation 05407000 7070005 26936

Royalton Mississippi MN Validation 05446500 7010201 30044

Wapello Iowa IA Validation 05446500 7080209 32375

Keosauqua Des Moines IA Validation 05446500 7100009 36358

Jordan Minnesota MN Validation 05446500 7020012 41958

Valley City Illinois IL Validation 05446500 7130011 69264

319
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obtained with the PRISM climate dataset in combination with the HG method (scenarios PRISM- 

calibrated, Livneh-PRISM and NCDC-PRISM in Table 4).

This suite of scenarios thus provided an approach of further testing SWAT with the three different 

climate data sets using two different sets of calibration parameters that represent two different potential 

baseline climate data sets: Livneh versus PRISM. The Livneh-calibrated and PRISM-calibrated scenarios 

depict obvious conventional SWAT calibration simulations using the climate data sets that the model was 

calibrated with. However, the PRISM-Livneh, NCDC-Livneh, Livneh-PRISM and NCDC-PRISM 

scenarios reflect atypical SWAT simulations that consist of executing the model with a different climate 

data set than was used for the calibration process. These additional scenarios provide additional insight 

into the sensitivity and performance of SWAT in response to different climate inputs for the UMRB.

4.2. Description of Climate Datasets

Daily precipitation and temperature data obtained from the NCDC, PRISM and Livneh climate 

datasets were used to simulate UMRB streamflow. Brief summaries of these datasets are provided below 

followed by further analysis of the apparent anomalies in the NCDC temperature data revealed by Fig 3.

(1) NCDC: NCDC dataset consists of daily weather variables from the Global Historical 

Climatology Network (GHCN)-Daily of land-based weather stations. The dataset was developed via 

processing steps of data collection, quality control, and archival and removal of biases associated with 

factors such as urbanization and changes in instrumentation through time (Menne et al., 2012). The 

NCDC dataset in HAWQS spans the time period of 1961 to 2010.

(2) PRISM: PRISM was developed by the PRISM Climate Group at Oregon State University (PCG, 

2019) and is officially endorsed by the U.S. Department of Agriculture Natural Resources Conservation 

Service (USDA-NRCS, 2019). PRISM data are defined on a 2.5 min degree grid, which calculates a 

climate-elevation regression for each grid cell of digital elevation model (DEM). Stations included in the 

regression are assigned weights based primarily on the similarity of physiographic characteristics (Daly et 

al., 2008; Gao et al., 2017). PRISM data are available in HAWQS for the time period of 1981 to 2015.
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(3) Livneh: Livneh dataset is derived from observations at NCDC cooperative observer (COOP) 

stations across the continental United States (CONUS). Both temperature and precipitation were gridded 

to 1/16° using the synergraphic mapping system (SYMAP) algorithm (Livneh et al., 2013; ESRL, 2019). 

Long-term daily climatic data are provided in the Livneh dataset for 1981 to 2010 (ESRL, 2019).

4.2.1. UMRB climate data distributions and NCDC temperature data anomalies

The spatial distributions of average annual precipitation and air temperature from 1983 to 2005 

(Fig. 2 and Fig. 3) provide further insights regarding the differences between the weather datasets. The 

trends in spatial distribution of precipitation across the UMRB are similar between the NCDC, PRISM 

and Livneh datasets (Fig. 2), with highest annual precipitations occurring in the southeast versus the 

lowest annual precipitation in the northwest. The trends in spatial distribution of annual average 

temperature across the UMRB are also similar among three weather datasets (Fig.3), with a clear gradient 

of increasing temperature from the north to south. However, the distribution of the NCDC temperature 

data reveals that some subwatersheds in the northwest and central part of the UMRB manifest cooler 

average annual temperatures versus subwatersheds in the most northern part of the region; i.e., 

subwatersheds located in far eastern South Dakota, southeast Minnesota, northern Iowa and southwest 

Wisconsin (Fig. 3). These “cooler subwatersheds” do not manifest in the PRISM and Livneh data. Thus, 

it is likely that these cooler subwatersheds are anomalies in the NCDC data that may be due to errors in 

the original measured observations and/or that occurred during the interpolation and averaging of the data 

to create pseudo-stations at the 8-digit watershed level, both of which would have occurred prior to 

inclusion within HAWQS. In contrast, the PRISM and Livneh data were processed for each subwatershed 

by using their gridded cell values, which provides a more continuous temperature surface for creating a 

single set of subwatershed temperature data. The revelation of the apparent NCDC temperature anomalies 

warrants further review and probable correction of the data. However, it is unlikely that these errors 

greatly affected estimates of UMRB streamflow.
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4.3. PET estimation methods

The PET concept was introduced by Thornthwaite (1948) as part of a climate classification scheme. 

PET was defined as the rate of evapotranspiration without any limits imposed by the supply of water. 

Numerous methods have been developed to estimate PET. The PM method (Monteith, 1965; Allen et al., 

2006) and HG method (Hargreaves and Samani, 1985) are two of the PET options available in SWAT and 

were tested in this study.

The PM equation combines components that account for the energy needed to sustain evaporation, 

the strength of mechanism required to remove the water vapor, and aerodynamic and surface resistance 

terms. The PM equation is:

XE=
A'(H net ~G ) + Palr •Cp • [< -^ ] /

A + r(1 + /C / ra )
(1)

where AE is the latent heat flux density (MJ m-2 d-1), E is the depth rate evaporation (mm d-1), A is the 

slope of the saturation vapor pressure-temperature curve de/dT (kPa °C-1), Hnet is the net radiation (MJ m-2 

d-1), G is the heat flux density to the ground (MJ m-2 d-1), pair is the air density (kg m-3), Cp is the specific

heat at constant pressure (MJ kg-1 °C-1), e°2 is the saturation vapor pressure of air at height z (kPa), ez is

the water vapor pressure of air at height z (kPa), y is the psychrometric constant (kPa °C-1), rc is the plant 

canopy resistance (s m-1), and ra is the diffusion resistance of the air layer (aerodynamic resistance; s m-1). 

The original HG equation (Hargreaves and Samani, 1985) is the form used in SWAT as follows:

XE„ =apa-d+-.(Hne, -G) (2)

where A is the latent heat of vaporization (MJ kg-1), Eo is the potential evapotranspiration (mm d-1), 

apet is a coefficient, A is the slope of the saturation vapor pressure-temperature curve de/dT (kPa °C-1), y is 

the psychrometric constant (kPa °C-1), Hnet is the net radiation (MJ m-2 d-1), and G is the heat flux density 

to the ground (MJ m-2 d-1).
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The PM and HG methods vary considerably in the amount of required inputs. The PM method 

requires solar radiation, air temperature, relative humidity and wind speed but the HG method requires air 

temperature only. Daily solar radiation, relative humidity and wind speed inputs were generated by the 

weather generator within SWAT, because daily precipitation and air temperature are the only measured 

climatic data available.

4.4. Calibration approach and evaluation criteria

The SWAT-CUP platform (Abbaspour, 2015; SWAT, 2019) is a software package with a web-based 

interface, which facilitates automatic calibration and/or uncertainty analyses for SWAT applications via 

manipulation of the large number of text files associated with a typical SWAT project (prior to the release 

of SWAT+; see Bieger et al., 2017). SWAT-CUP allows users to control the initial range of parameters 

and supports the most accurate identification of the parameter optimum values by automatic or manual 

calibration of SWAT projects. There are several algorithms incorporated in SWAT-CUP to help with the 

automatic calibration process: Sequential Uncertainty Fitting (SUFI-2), Particle Swarm Optimization 

(PSO), Generalized Likelihood Uncertainty Estimation (GLUE), Parameter Solution (ParaSol), and 

Markov Chain Monte Carlo (MCMC). The SUFI-2 algorithm was used for model calibration in this 

study. This algorithm can map all of the uncertainties for each parameter (expressed as uniform 

distributions or ranges) and attempts to capture most of the measured data within the 95% prediction 

uncertainty (95PPU) of the model in an iterative process. It requires fewer simulations to complete a 

calibration/uncertainty project (Y ang et al., 2008) and is highly recommended for the calibration of 

SWAT models (Arnold et al., 2012).

Parallel processing was also used in this study, since it can speed up the calibration process by 

parallelizing the simulations in SUFI-2. The speed of the parallel processing depends on the 

characteristics of the computer. For example, if the computer has 8 central processing units (CPUs), the 

parallel processing module can utilize all 8 CPUs so that a 200-run iteration can be divided into 8 

simultaneous runs of 25 each per CPU. For a large-scale SWAT model, the utilization of the parallel
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processing option results in substantially faster overall simulation times versus using just a single 200-run 

CPU submission.

The SUFI-2 algorithm was set to identify the optimum parameters by using the Nash-Sutcliffe 

modeling efficiency (NSE) statistic (Krause et al., 2005) as the key objective function. However, the 

results were also evaluated according to the coefficient of determination (R2; Krause et al., 2005), percent 

bias (PBIAS; Moriasi et al., 2007) and Kling-Gupta efficiency (KGE; Gupta et al., 2009). Values for 

NSE, R2 and PBIAS on a monthly scale were evaluated per criteria suggested by Moriasi et al. (2007; 

2015); i.e., NSE values >0.50, R2 values > 0.6 and PBIAS values <±25% (Moriasi et al., 2007) or ^ + 

15% (Moriasi et al., 2015) are judged to be satisfactory. Patil and Stieglitz (2015) implied that simulated 

values could be regarded as satisfactory with a KGE value >0.6. The KGE statistics are designed to 

provide an improved criterion by incorporating error compensation for the bias and variability 

components (Roy et al., 2014; Zhu, et al., 2016). Graphical comparisons between the simulated and 

measured streamflow values were also used to assess the accuracy of the model output.

5. Results and Discussion

5.1. Climate dataset analysis

Table 6 lists the daily mean temperature (°C), average annual precipitation (mm) and other 

uncalibrated average annual water balance components (mm) that were predicted for the UMRB using the 

three weather datasets and two PET methods during the 23-year simulation period. The Livneh data set 

was found to have the largest average annual amount of precipitation (837.2 mm) and highest daily mean 

temperature (8.2 °C) among the three weather datasets. In contrast, the respective average annual 

precipitation for the NCDC and PRISM data sets was 836.1 mm and 831.5 mm, and the respective daily 

mean NCDC and PRISM temperatures were 8.0 °C and 7.9 °C. Overall, there were small differences in 

the annual average precipitation (5.7 mm maximum) and temperature (0.3°C maximum).
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Table 6. Average annual values (mm) of hydrological components and daily mean temperature (°C) over the UMRB, for the different combinations
of climate data and PET methods, based on the applications of the uncalibrated HAWQS SWAT model during 1983 to 2005.

Scenario Precipitation
Daily mean 
temperature

surface
runoff

lateral
flow

Groundwater
flow

Soil
water ET PET

Water
yield ET/Pa WY/Pb

PRISM(PM) 831.5 8.0 204.6 40.9 25.7 267.9 508.2 856.9 323.7 0.56 0.43

NCDC(PM) 836.1 7.9 227.2 46.7 30.5 285.5 470.6 764.2 363.1 0.61 0.39

Livneh(PM) 837.2 8.2 235.7 49.6 35.0 295.2 451.7 707.8 380.6 0.54 0.45

PRISM(HG) 831.5 8.0 141.9 24.0 18.3 231.4 620.4 958.6 212.4 0.74 0.26

NCDC(HG) 836.1 7.9 145.3 26.2 18.7 238.3 615.9 934.9 219.7 0.75 0.26

Livneh(HG) 837.2 8.2 128.1 22.7 18.8 228.9 641.7 961.3 193.9 0.77 0.23
aET/P = the ratio of annual ET/Precipitation 
bWY/P= the ratio of annual Water yield/Precipitation
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The Livneh data also generated the largest amounts of surface runoff, lateral flow, groundwater, soil 

water and water yield when simulated in combination with the PM method (Table 6). The predicted 

annual average water yield for the Livneh data was 380.6 mm, versus 323.7 mm for PRISM and 363.1 

mm for NCDC. This was due primarily because the Livneh data produced the lowest estimated annual 

average PET of 707.8 mm among the three weather datasets, as compared to 856.9 mm and 746.2 mm for 

PRISM and NCDC, respectively. The different weather data set inputs resulted in maximum differences 

of 56.9 mm in water yield and 149.2 mm in PET for the uncalibrated simulations. These trends are also 

reflected in the ratios of annual ET/precipitation (ET/P) and annual water yield/precipitation (WY /P) 

reported in Table 6; e.g., the lowest ET/P and WY/P ratios were found for Livneh(PM) and Livneh(HG), 

respectively,

Considerably higher annual ET and PET values were estimated when the three weather data sets 

were simulated in combination with the HG method, resulting in much lower predicted water yield and 

key water yield components; i.e., surface runoff, lateral flow and groundwater flow (Table 6). There was 

also considerable variation in the responses of the three weather datasets to the two PET methods, 

especially for the Livneh data set. The Livneh data resulted in the lowest estimated ET and PET when 

used in combination with the PM method, but produced the highest ET and PET estimates when 

simulated with the HG method (Table 6). Consequently, the Livneh data generated the highest and lowest 

water yields when executed with the PM and HG methods, respectively.

In addition to comparing the spatial distribution of average annual precipitation and temperature, 

the differences between the monthly mean precipitation and daily mean temperature during the 23-year 

uncalibrated SWAT simulations are presented in Fig.4. The PRISM data generated smaller amounts of 

precipitation as compared to the NCDC data in most months, especially during the May to September 

growing season. The cumulative difference between PRISM and NCDC during the growing season 

accounted for 85% of the total annual average difference between the two data sets. However, the Livneh 

data precipitation amounts were larger versus NCDC for most months, except for March, August, 

November and December. The Livneh data precipitation amount was greater during the growing season,
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Figure 4. Box plots of monthly differences for (a) precipitation and (b) daily mean temperature. For
precipitation, percent difference (%) is displayed. Temperature values displayed are the absolute 
difference (°C).

while it was slightly smaller during the non-growing season, relative to the NCDC data. With regard to daily 

temperature, there are distinct seasonal variations between the monthly differences. Both PRISM and Livneh 

tend to be warmer during the summer months and colder during the winter period, as compared to the NCDC 

data. Fig. 4 further shows that the Livneh data had the highest daily temperature among three weather datasets 

in spring and summer, while the PRISM data set results in the lowest temperature in winter.

5.2. Land use data analysis

Table 7 represents average annual precipitation (mm), ET (mm) and water yield to the reach 

(mm) predicted for different UMRB land uses using the three weather datasets and two PET methods 

during the 23-year simulation period. The average annual amount of precipitation for urban areas was 

847.6 mm, which was greater than the corresponding annual average precipitation levels of 843.7 mm for 

cropland, 832.1 mm for grassland and 820.8 mm for forest. The differences in the annual average 

precipitation (from 3.9 to 26.8 mm) are primarily caused by the uneven spatial distribution of both 

precipitation and land use.

The highest ET levels were predicted for the composite urban areas when the PM method was 

simulated in combination with the three weather datasets. On average, the annual ET for the urban areas 

was 526.6 mm, versus 513.1 mm for cropland, 493.4 mm for grassland and 383.5 mm for forest (Table 7).
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494 Table 7. Average annual values (mm) of hydrological components for different land uses, based on the application of the uncalibrated HAWQS
495 SWAT model during 1983 to 2005.

PET Land use
Precipitation ET Water yield

method PRISM NCDC Livneh Average PRISM NCDC Livneh Average PRISM NCDC Livneh Average

Cropland 843.7 848.0 848.8 846.9 546.9 502.3 490.2 513.1 296.7 344.6 356.5 332.6

Forest 820.8 826.4 827.5 824.9 409.3 381.5 359.7 383.5 408.5 440.7 461.6 436.9
PM

Grassland 832.1 835.7 838.0 835.3 525.5 488.6 466.0 493.4 304.4 343.1 366.1 337.9

Urban area 847.6 852.8 853.5 851.3 556.5 521.4 502.0 526.6 293.4 332.4 351.5 325.8

Cropland 843.7 848.0 848.8 846.9 613.9 602.5 643.4 620.0 229.6 245.1 205.4 226.7

Forest 820.8 826.4 827.5 824.9 674.5 682.4 695.9 684.3 147.3 144.9 132.6 141.6
HG

Grassland 832.1 835.7 838.0 835.3 586.8 587.9 613.8 596.2 243.2 245.4 221.9 236.8

Urban area 847.6 852.8 853.5 851.3 630.3 632.3 660.9 641.2 219.6 222.5 194.8 212.3
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In contrast, forest was predicted to have the highest annual water yield of 436.9 mm, followed by 

grassland (337.9 mm), cropland (332.6 mm) and urban area (325.8 mm). Also, the forest areas tend to 

generate more runoff in response to the Livneh climate data as compared to the NCDC or PRISM climate 

data. This is in accord with the variation of runoff for the whole UMRB in Table 6.

Among all land use types, the predicted ET amounts ranked from high to low as follows: forest 

(684.3 mm) > urban areas (641.2 mm) > cropland (620.0 mm) > grassland (596.2 mm). The highest 

annual average water yield was produced by grassland (236.8 mm), as compared to 226.7 mm, 212.3 mm 

and 141.6 mm for cropland, urban areas and forest, respectively. Overall, Table 7 shows that the 

estimated impacts of land use on the hydrology varied considerably in response to the different climate 

data sets and/or PET methods. For example, the highest and lowest annual average water yields were 

estimated to be generated by forested areas when simulated with PM and HG methods, respectively. With 

HG method, it is indicated that cropland (dominated by corn and soybean) may increase streamflow 

because of decreased evapotranspiration. The results of HG method are consistent with the work of Zhang 

and Schilling (2006) that assessed the effect of land use on streamflow in Mississippi River.

5.3. PET methods analysis

Fig 5 shows the monthly variations of ET, PET and water yield predicted by the six uncalibrated 

SWAT scenarios (Table 4), which again are averaged over the period of 1983 to 2005. The experimental 

results show that the predicted annual distribution of ET and PET vary quite similarly in response to the 

two PET methods. Both the ET and PET start rising after January in the winter period, peak in July, and 

then descend during the remaining fall and winter months (Fig 5a-b). During the growing season (May to 

September), the SWAT-predicted ET and PET amounts calculated with HG are considerably higher 

versus the corresponding PM-based estimates. However, the gap between the HG- and PM-estimates is 

much smaller during the non-growing season and become virtually negligible in winter. The predicted 

water yield patterns are similar for the two PET methods, except that the peaks occur in June and the 

ascents to and declines from the peaks are more gradual (Fig 5c). The HG method generated smaller
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Figure 5. Monthly variations for (a) ET, (b) PET, and (c) Water Yield, based on the applications of the 
uncalibrated HAWQS SWAT model during 1983-2005. Colors denote the PET method used: black are 
Penman-Monteith method, red are Hargreaves method.
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Figure 6. Ratio of ET/PET along with precipitation based on the applications of the uncalibrated 
HAWQS SWAT model from 1983 to 2005, on an (a)annual basis, and (b) growing season basis. Colors 
denote the PET method used: black are Penman-Monteith method, red are Hargreaves method.

water yields as compared to the PM method, but the differences are greater during the growing season. 

The ratio of ET/PET relative to corresponding precipitation from 1983 to 2005 are presented respectively 

on an annual basis and growing season basis in Fig. 6. Fig. 6a reveals that the ET/PET ratios steadily 

increased as precipitation increased. Consistently higher ratios of ET/PET were predicted with the HG 

method across the full range of precipitation amounts. Ratios of ET/PET estimated with the PM 

method range from 0.52 to 0.69 on annual scales while ratios of ET/PET predicted with the HG method

range from 0.53 to 0.74. This result underscores that the HG method results in a higher rainfall use 

efficiency for the SWAT UMRB model. The ET/PET ratios reveal a similar tendency during the growing 

season periods (Fig. 6b). The ET/PET ratios are predicted to be higher during the growing season due to
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the growth of the crops. In general, lower ET/PET ratios imply that crops and other vegetation are not 

supplied with sufficient water needed for ET and growth, and thus may experience greater water stresses 

(Chen et al., 2010).

5.4. Flow calibration and validation

Table 3 lists the allowable ranges and types of calibration adjustments that were performed for 

the selected calibration parameters. Surface runoff and baseflow were calibrated simultaneously. The 

primary calibration parameters adjusted for surface runoff were the curve numbers (CN2), which 

represented different land conditions. Seven parameters related to groundwater (ALPHA_BF, 

GW_DELAY, GWQMN, GW_REVAP, RCHRG_DP and REVAPMN) were adjusted to improve the 

agreement between observed and simulated streamflows (Table 3). Five snow parameters (SFTMP, 

SMTMP, SMFMX, SMFMN and TIMP) were also adjusted in this study (Table 3) to better reflect 

snowmelt magnitude and hydrograph shapes.

The Last two columns in Table 5 represent the two different sets of calibrated parameter values 

that were obtained for the respective Livneh-calibrated and PRISM-calibrated scenarios. The subset of 

calibration parameters and allowable ranges were the same for the Livneh- and PRISM-based calibration 

processes. Because the performance of the PRISM and Livneh data sets were similar within SWAT (Fig. 2 

and Fig. 3), consistent adjustment trends occurred for the majority of the parameters. For example, values 

of CN2, ALPHA_BF and RCHRG_DP increased for both scenario calibrations relative to default values 

in HAWQS. However, different trends in the final calibrated values resulted for a smaller subset of 

parameters between the two calibration phases; e.g. GW_DELAY and REVAPMN, where the calibrated 

values decreased for one calibration phase versus increased values for the other calibration phase (both 

calibration processes resulted in positive values for both parameters). This does not mean those two sets 

of parameters are contradictory. It should be noted that the goal of the SUFI-2 algorithm application is not 

to find the so-called “best simulation” in such a stochastic procedure but instead to find the 95PPU that
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brackets some or most of the observed data (Abbaspour, 2015). Hence, the calibrated values (Table 3) 

do not represent the “best parameter” but rather the fitted value within a certain range.

Time series plots of measured versus simulated total streamflow on an aggregated monthly time 

scale for the three calibration sites (Fig. 1) in response to the Livneh-calibrated scenario are presented in 

Fig. 7. The solid blue triangles represent the measured monthly streamflow that was derived from daily 

measured streamflows (USGS, 2019). The black solid line represents the simulated flow based on the 

uncalibrated baseline SWAT model (using default HAWQS input parameters). The baseline SWAT 

model generally tracked the seasonal variance pattern including the peaks and recessions, although there 

is an obvious underestimation of the observed streamflows by the simulated streamflows for all three 

calibration gauge sites (St. Paul, Clinton and Grafton). The red solid line represents the predicted monthly 

streamflow after calibration was completed. The calibration process resulted in increased predicted 

streamflows including peak streamflow estimates that are more consistent with observed peak 

streamflows during the summer periods, although some peak streamflows were still underestimated 

(especially for Grafton). Winter low streamflow periods were generally still underpredicted, especially 

versus the observed streamflows for Clinton during November to February. Overall, the magnitude and 

temporal variation of the simulated streamflows matched the measured streamflows, indicating a realistic 

representation of the observed hydrographs by the model.

Table 7 presents the statistical results for comparison of the SWAT simulated monthly 

streamflows versus corresponding observed streamflows for both the calibration and validation gauge 

sites under Livneh-calibrated scenario. The results indicate satisfactory monthly NS values (>0.5 per the 

criteria suggested by Moriasi et al., 2007; 2015) for all the 3 calibration gauges and most of the 10 

validation gauge sites within the UMRB. However, NS values were <0.5 for the two UMRB subregions 

that drain to Muscoda and Royalton (Table 7). Weaknesses were also reflected in the other statistics 

calculated for these two regions. This may be due in part to an under-representation of the impact of
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Figure 7. Monthly flows at calibration gauge sites. Observed are measured flow data from USGS 
stations, uncalibrated are flow outputs of uncalibrated HAWQS/SWAT model when using Livneh 
dataset, and calibrated are simulated flow after calibrating.

natural lakes and/or wetlands in the two regions, which can attenuate peak streamflows and maintain 

considerable storage of streamflows in low-flow periods. The percentages of these lake and wetland land 

uses, which are not captured well by the current HAWQS wetlands parameterization, are the highest for 

the Muscoda and Royalton drainage areas among the 10 different validation gauge sites.

The R2 statistics ranged from 0.54 to 0.81, which indicates that the majority of the simulated 

streamflow trends replicated the counterpart observed streamflows well, considering the R2 criteria of 0.6 

proposed by Moriasi et al. (2015). Almost all of the PBIAS results (Table 8) are acceptable per the 

criterion of ±25% deviation suggested by Moriasi (2007), except for Valley City (37.30%). Most of
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Table 8. Monthly streamflow statistics for calibration and validation gauge sites.

Gauge site Used for R2 NSE PBIAS KGE

St.Paul Calibration 0.78 0.77 5.95 0.76

Clinton Calibration 0.76 0.58 7.07 0.70

Grafton Calibration 0.76 0.66 19.74 0.73
Augusta Validation 0.80 0.73 -8.36 0.62

St.Croix Falls Validation 0.54 0.54 -0.37 0.61

Durand Validation 0.66 0.60 13.22 0.75
Joslin Validation 0.75 0.70 6.64 0.84

Muscoda Validation 0.61 0.30 17.12 0.64

Royalton Validation 0.65 0.29 -20.31 0.58

Wapello Validation 0.82 0.77 3.11 0.66
Keosauqua Validation 0.68 0.62 -14.74 0.57

Jordan Validation 0.81 0.79 6.30 0.73
Valley City Validation 0.81 0.50 37.30 0.52

the PBIAS results also meet the more stringent criteria of ±15% proposed by Moriasi et al. (2015), with 

the exception being Grafton (19.74%), Muscoda (17.12%), Royalton (-20.31%) and Valley City 

(37.30%). The positive PBIAS that was calculated for the majority of gauge sites reveals that there was an 

underestimation bias for the simulated streamflows. The KGE values for three calibration stations 

were >0.7; i.e., 0.76, 0.70 and 0.73 for St. Paul, Clinton and Grafton, respectively (Table 7). For the 

validation locations, the lowest KGE value was 0.52 for Valley City while the highest KGE was 0.84 for 

Joslin. All of the computed KGE statistics met the criteria of 0.6 suggested by Patil and Stieglitz (2015), 

except the KGE values determined for Royalton (0.58), Keosauqua (0.57) and Valley City (0.52). Overall, 

the validation statistics verify the calibration process and were even stronger for some gauge sites.

5.5. Comparison of Model performance evaluation

Fig. 8 summarizes all of the evaluated criteria values for six calibrated scenarios (Table 4) and the 

ensemble mean at the 10 validation gauge sites (Fig. 1 and Table 5). Statistical values that are considered 

“satisfactory” lie within the rose color background in Fig. 8a-d. Almost all of the R2 values are acceptable
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Figure 8. The summary of 4 criteria values for 10 validation gauge sites. The rose background 
indicates the “Satisfactory” performance range for each criterion. The rose background in 8c 
depicts the ±25% PBIAS criteria suggested by Moriasi et al. (2007) while the dashed lines in 8c 
represent the ±15% PBIAS criteria reported by Moriasi et al. (2015).

(>0.6) with the exception of the St. Croix Falls station in Wisconsin (Fig. 8a). For Augusta and Valley 

City, the mean R2 values are > 0.8, which indicates a strong linear relationship between observed flow 

and simulation flow. The NSE values determined for the sites of Augusta, Durand, Wapello, Keosauqua, 

Jordan and Valley City are all satisfactory (>0.5) as shown in Fig. 8b. For Muscoda and Royalton, the 

NSE values were found to be unacceptable for most of the scenarios, which indicates that additional 

calibration is likely required for these two independent basins. The majority of PBIAS values are within 

the “satisfactory” range (<±25%) as suggested by Moriasi et al. (2007) except for the gauge site located at
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Valley City, where streamflows are considerably underestimated resulting in a PBIAS > 40% (Fig. 8c). 

However, Fig. 8c also shows that some of the computed PBIAS values for seven other gauge sites lie 

outside of the more stringent criteria of ±15% proposed by Moriasi et al. (2015). Fig. 8d reveals that most 

of the KGE mean values for the six scenarios are > 0.6 except for St.Croix Falls, Royalton and Valley 

City. There are also some large differences between scenarios in the KGE criterion for specific gauge 

sites. For example, the KGE statistics range from 0.75 to 0.85 for the Livneh-calibrated, PRISM-Livneh 

and NCDC-Livneh scenarios versus 0.5 to 0.6 for the PRISM-calibrated, Livneh-PRISM and NCDC- 

PRISM scenarios at Joslin.

Most of the statistics for the PRISM-Livneh and NCDC-Livneh scenarios are very close to the 

corresponding statistics found for the Livneh-calibrated scenario. This implies that the PRISM and NCDC 

data are adaptable to the model that was calibrated with the Livneh data despite some minor differences in 

the calculated statistics (Fig. 8). Likewise, application of the NCDC data and Livneh data also result in 

similar effects for the calibrated model driven by PRISM data. The model performance was very strong at 

some gauge sites in response to different climate datasets. For example, the statistics determined for the 

Augusta and Wapello stations all lie in the satisfactory range. However, unacceptable results, according to 

the criteria suggested by Moriasi et al. (2007; 2015) occurred for some stations for one or more evaluation 

criteria; e.g., R2 and NSE values at St.Croix Falls, NSE at Muscoda, and NSE and KGE at Royalton. This 

may have been caused by the weakness of model adaptability to spatial variability at the subwatershed 

level. It should also be noted that for some gauge sites, the model estimated streamflow value was even 

more precise with the alternative climate datasets than with the driving dataset; i.e., NSE and KGE values 

for the PRISM-Livneh and NCDC-Livneh scenarios are both higher than the Livneh-calibrated scenario 

at Augusta, Durand and Valley City. These differences in model performance that occurred between the 

three climate datasets are likely due primarily to differences in the spatial distribution of precipitation and 

temperature (Fig. 3). However, it is possible that accuracy in precipitation and temperature measurements 

also effect the ability of SWAT to replicate UMRB streamflows; e.g., the previously described apparent
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errors in the NCDC temperature for the subset of subwatersheds in the western and central part of the 

basin.

It can be concluded that the execution of the UMRB SWAT model resulted in different 

performance levels across all of the calibrated experimental scenarios. However, it is difficult to compare 

or rank the six different scenarios in a straight forward way. To overcome this issue and to provide 

additional insights regarding the outcomes of statistical analysis, a Global Performance Indicator (GPI) is 

introduced to assess the combined effects of the individual statistical indicators (Behar et al., 2015; 

Despotovic et al., 2015; Jamil and Akhtar, 2017). The values of all the statistical indicator are scaled 

between 0 and 1.

These scaled indicators are then subtracted from their corresponding median values respectively. 

Finally, the obtained differences are summed up using appropriate weight factors. The GPI indicator i is 

defined as

opi,=Za (y, - y„) (3)
j=1

where y j is the median of scaled values of indicator j, yij- is the scaled value of indicator j for scenario i,

aj equals 1 for the indicator PBIAS, and equals -1 for other 3 indicators. As illustrated in Eq. (3), the

GPI in this study is a multiplication of four statistical factors: R2, NSE, PBIAS and KGE. A higher value 

of GPI indicates improved accuracy of a scenario between the observed data and simulated data.

The GPI rankings of the six calibrated experimental scenarios at the 10 validation gauge sites are 

reported in Table 8. For instance, the NCDC-PRISM scenario was ranked first at Augusta while the 

Livneh-calibrated scenario ranked sixth. The best overall performing climate dataset based on the highest 

consistent rank was PRISM, due to average rankings of the PRISM-Livneh scenario and PRISM- 

calibrated scenarios of 2.2 and 2.8 (Table 8), respectively. In contrast, the NCDC-Livneh and NCDC- 

PRISM scenarios were ranked 3.5 and 4.0, respectively. The Livneh data was ranked in the last positions 

among the three climate datasets on average, with 4.1 for Livneh-calibrated and 4.4 for Livneh-PRISM.
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684 Table 8. Ranking of scenarios according to GPI at 10 validation gauge sites.
685

Scenario Augusta St.Croix
Falls Durand Joslin Muscoda Royalton Wapello Keosauqua Jordan Valley

City
Average
ranking

Livneh-calibrated 6 3 3 3 4 4 4 5 3 5 4.0

PRISM-Livneh 2 2 2 1 3 5 1 4 1 1 2.2

NCDC-Livneh 4 1 1 2 2 6 6 6 5 2 3.5

PRISM-calibrated 3 4 4 4 1 3 2 1 4 3 2.9

Livneh-PRISM 5 6 6 6 6 1 3 3 2 6 4.4

NCDC-PRISM 1 5 5 5 5 2 5 2 6 4 4.0

686
687

35



688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

This does not mean that the Livneh data can not be applied in the UMRB SWAT model but it may result 

in a weaker performance than PRISM or NCDC in some subwatersheds. The Livneh data is also highly 

ranked at some stations; i.e., it was ranked in the third place at St.Croix Falls, Joslin and Jordan for the 

Livneh-calibrated scenario, and in first place at Royalton for the Livneh-PRISM scenario.

5.6. Reflections on results relative to previous UMRB SWAT studies

The NSE and R2 calibration/validation statistical results computed between the SWAT-simulated 

and measured streamflows in this study compare favorably with corresponding statistics reported in 

previous studies that mostly ranged between 0.5 and 0.9 (Table 2). The primary exceptions were 

validation gauge sites located in the northern part of the UMRB system (Joslin, Muscoda, Royalton and 

St. Croix Falls) that manifested weaker statistics (Table 5 and Figure 8). This was likely due in part to the 

more rigorous spatial validation approach used in this study in which the calibrated parameters (Table 3), 

that were determined for 3 gauge sites (Figure 1 and Table 5), were then simulated for the 10 validation 

sites (Figure 1 and Table 5) without any further adjustments. In addition, two other reasons may have 

contributed to the weaker results within the HAWQS-based SWAT simulations of these northern 

subregions: (1) the lack of accounting for ponds, wetlands and other non-stream water bodies (as 

previously noted), which may have particularly affected the water balance results at these specific gauge 

sites, and (2) inadequate representation of forest growth parameters and algorithms, which has been 

documented as a weakness in previously reported SWAT applications (Yang et al., 2018; Yang and 

Zhang, 2016) and would be of particular importance in these northern subregions because forest is a 

dominant land use in the areas that drain to these gauge sites.

The most directly comparable previous study to the application reported here was the analysis 

described by Qi et al. (2019), who compared the effects of the NCDC, NLDAS2 and partial-NLDAS2 

climate data sets on SWAT streamflow predictions for 11 gauge sites within the UMRB. They found that 

all three climate data sets resulted in satisfactory replication of UMRB measured streamflows, but that the 

NLDAS2 data set produced the most accurate results relative to the other two data sets which was likely 

due to the inclusion of measured solar radiation, relative humidity, and wind speed data (versus just
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measured precipitation, minimum temperature and maximum temperature data). Their findings are similar 

to what was found in this study; i.e, all three climate data sets produced acceptable results but the PRISM 

climate data set generated the most accurate SWAT-streamflow predictions compared to the NCDC and 

Livneh climate data sets. Overall, the Qi et al. (2019) statistical results were generally stronger than the 

comparative statistics computed in this study. This may have been partly due to the fact that Qi et al. 

calibrated and validated SWAT streamflows using a split-time approach for each of the 11 gauge sites 

included in their application. Qi et al. also accounted for subsurface tile drainage in UMRB subregions 

that are characterized by low slope and poorly drained soils; tile drainage was not incorporated in the 

HAWQS-based SWAT models developed for this study. Subsurface tile drains are primary sources of 

discharge water and soluble nutrients (e.g., nitrate) to stream networks in intensely tile areas as 

documented in several previous studies that focused on UMRB subwatersheds (Jha et al., 2010; Beeson et 

al., 2014; Panagopoulos et al., 2015; Teshager et al., 2016; Gassman et al., 2017; Jones et al., 2018; 

Schilling et al., 2019).

In summary, the SWAT models that were developed relatively rapidly within HAWQS for this 

study were successful in replicating UMRB streamflows for most of the gauge sites that were evaluated 

within the calibration or spatial validation phases. However, future improvements are needed to better 

represent specific aspects of the UMRB system including incorporation of non-stream water bodies and 

subsurface tile drainage. These and other improvements can provide improved estimates of streamflow as 

well as more accurate depiction of nutrient and other pollutant transport in the region.

6. Conclusions

The SWAT model was developed for the UMRB by using the on-line data and other resources 

provided by HAWQS. The uncalibrated model was used to evaluate the impacts of three spatial climate 

datasets (PRISM, NCDC and Livneh) and two PET estimation methods (HG and PM) on UMRB 

hydrologic processes. A comparison of climate datasets showed that the Livneh data had the highest 

precipitation and temperature levels during the growing season from May to September. The differences 

in precipitation and temperature inputs between the three climate data sets results are a primary factor in

37



740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

the SWAT-estimated differences in streamflow, ET and other hydrological outputs. Regarding the impact 

of the two PET methods, higher annual ET and PET values were calculated with HG method versus the 

PM method for all three climate data sets. This is because the SWAT-predicted ET and PET amounts are 

considerably higher with HG method versus the corresponding PM-based estimates during the growing 

season.

The UMRB SWAT scenario performances were evaluated on a monthly time step according to four 

statistics: coefficient of determination (R2), percent bias (PBIAS), Nash-Sutcliffe modeling efficiency 

(NSE) and Kling-Gupta efficiency (KGE). Parallel processing and spatial validation were used in the 

calibration and validation of such a large hydrologic system, which improved the execution speed greatly 

and captured the spatial variation in runoff. The results of the calibration and validation phases showed 

that the SWAT model based on the Livneh dataset and HG method replicated streamflows well at most of 

the monitoring stations (three calibration points and ten validation points), indicating that the model could 

adequately predict long-term water yield in UMRB. After replacing the Livneh dataset with PRISM and 

NCDC, the model performances for validation points are still satisfactory on the whole despite some 

differences that occurred per the computed statistics. This substitutability between weather datasets also 

revealed that the calibrated SWAT model, which was based on the PRISM data, resulted in in mostly 

satisfactory results. In addition, the Global Performance Indicator (GPI) was used so that all six of the 

experimental scenarios that were based on a calibrated version of the model could be evaluated with a 

single parameter and easily ranked. Based on the ranking of GPI, the PRISM data was found to be the 

strongest climate data set among the three climate data sets.

However, uncertainties in the available climate data and variations in other spatial data need to be 

further evaluated and improved for large-scale watershed modeling such as the UMRB system simulated 

here. This is especially true for the NCDC climate data which exhibited unexpected anomalies in the 

temperature data (Figure 3) that should be resolved in future versions of HAWQS. In addition, 

incorporation of non-stream water bodies, subsurface tile drainage and other aspects of the UMRB
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system, that were not simulated in this study, are needed to more accurately simulate streamflows and 

pollutant transport throughout the stream network.

Based on the results of this study, the HG method would be recommended to be applied in the 

UMRB SWAT model because it resulted in a higher range of predicted ET/precipitation ratios which is 

more consistent with the limited estimates reported for the region (Liu et al., 2013). It is also 

recommended that the PRISM climate data be selected for UMRB SWAT applications built in HAWQS 

based on the results obtained in this study. The results of this study also confirm that future users of 

HAWQS should conduct testing of any SWAT models built in the system, regardless of the watershed 

that is being analyzed.
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