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Abstract: The Upper Mississippi River Basin (UMRB) is an important ecosystem located in the north
central U.S. that is experiencing a range of ecological stresses. Simulation models are a key tool for
evaluating UMRB ecosystem-related problems including the Soil and Water Assessment Tool (SWAT).
This study focused on the application of SWAT within Hydrologic and Water Quality System (HAWQS)
on-line platform, which supports rapid development of SWAT projects for U.S. watersheds. To date,
testing of SWAT models developed in HAWQS has been extremely limited including the effects of
different climate-related inputs. Thus the focus of this study was to test the effects of the: (1) Hargreaves
(HG) and Penman-Monteith (PM) PET methods, and (2) Livneh climate dataset, which exists external to
HAWQS, and the National Climatic Data Center (NCDC) and Parameter-elevation Regressions on
Independent Slopes Model (PRISM) climate datasets, which are available in HAWQS. The Livneh data
was found to result in the highest average annual water yield of 380.6 mm when executed with the PM
method but the lowest estimated water yield of 193.9 mm in combination with the HG method in
response to 23-year uncalibrated simulations. Higher annual ET and PET values were predicted with HG
method versus the PM method for all three weather datasets in response to the uncalibrated simulations,
due primarily to higher HG-based estimates during the growing season. Based on these results, it was
found that the HG method is the preferred PET option for the UMRB. Initial calibration of SWAT was
performed using the Livneh data and HG method for three Mississippi River main stem gauge sites,
which was followed by spatial validation at 10 other gauge sites located within the UMRB stream
network. Overall satisfactory results were found for the calibration and validation gauge sites, with the
majority of R* values ranging between 0.61 and 0.82, Nash-Sutcliffe modeling efficiency (NSE) values
ranging between 0.50 and 0.79, and Kling-Gupta efficiency (KGE) values ranging between 0.61 to 0.84.
The results of an additional experimental suite of six scenarios, which represented different combinations
of climate data sets and calibrated parameters, revealed that suggested statistical criteria were again
satisfied by the different scenario combinations. Overall, the PRISM data exhibited the strongest overall
reliability for the UMRB.

Key words: SWAT model; Climate dataset; UMRB; HAWQS; Hargreaves method; Penman-
Monteith method
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1. Introduction

The Upper Mississippi River Basin (UMRB) was proclaimed both a “nationally significant
ecosystem” and a “nationally significant commercial navigation system™ in the Water Resources
Development Act that was passed by the U.S. Congress in 1986 (Weitzell et al., 2003; USACE, 2016).
However, extensive alterations to the UMRB stream system, which began during the middle of the 19th
century to support commercial navigation, continue to conflict with ecosystem services goals (USACE,
2016). These stream system modifications, in conjunction with large-scale land use change throughout
much of the region, have resulted in a degraded UMRB ecosystem and loss of native aquatic diversity
(Weitzell et al., 2003). Other pervasive ecosystem stresses are prevalent in the UMRB stream system
including degraded water quality (Bouska et al., 2018; Christianson et al., 2018; Sprague et al., 2011,
Jones et al., 2018), and increasing flood levels and damage (Criss and Shock, 2001; Criss and Luo, 2017).

A wide range approaches have been implemented to support efforts to mitigate habitat decline,
pollution, flooding, and/or other UMRB ecosystem related problems, including habitat restoration
(USACE, 2016), biological and habitat surveys (Weitzell et al., 2003), nutrient loss reduction strategics
(Christianson et al., 2018) and in-stream monitoring (Royer et al., 2006; Sprague et al., 2011; Jones,
2018). Applications of simulation models have also emerged as key tools in evaluating UMRB
ecosystem-related problems including The Soil and Water Assessment Tool (SWAT) ecohydrological
model (Arnold et al., 1998; 2012; Williams et al., 2008; Bieger et al., 2017) which has been extensively
applied worldwide for a wide range of watershed scales, environmental conditions and water resource
problems (Gassman ¢t al., 2007; 2014; Tuppad et al., 2011; Krysanova and White, 2015; Bressiani et al.,
2015; Tan et al., 2019; CARD, 2019). SWAT has been used to analyze several UMRB-focused water
quantity and/or water quality issues as described in numerous previous studies (¢.g., Jhaet al., 2004;
2006; Demissie et al., 2012a; Srinivasan et al., 2010; Rabotyagov et al., 2010; Kling et al., 2014; Qi et al,,
2019). The model has also been applied in dozens of studies for smaller stream systems within the UMRB

(c.g., Hanratty and Stefan, 1998; Vaché et al., 2002; Kirsch et al.., 2002; Chaplot et al., 2004; Green and
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Wang, 2008; Jha et al., 2010; Beeson et al., 2014; Almendinger ¢t al., 2014; Teshager et al., 2016;
Getahun and Keefer, 2016; Gassman et al., 2017; Schilling et al., 2019).

SWAT has been adopted within several decision support tools (DSTs; ¢.g., Barnhart et al., 2018)
including the USEPA Hydrologic and Water Quality System (HAWQS) on-line platform (Yen et al.,
2016; USEPA, 2019). The HAWQS platform provides the capability of building SWAT projects
relatively quickly for U.S. watersheds of any scale using pre-loaded climate, land use, management, soil,
topographic and other pertinent data layers. SWAT models are constructed in HAWQS by using
hydrologic unit codes (HUCs) to delineate a study region that have been defined by the USGS and other
federal agencies (USGS, 2013). The HUC8, HUC10 or HUCI12 levels (USGS, 2013) can be chosen in
HAWQS (Yen et al., 2016) which are commonly referred to as 8-, 10- or 12-digit watersheds. Yen et al.
(2016) note that “preliminary calibration™ have been conducted for parameters incorporated in HAWQS
and Barnhart et al. (2018) state that HAWQS is an example of a “widely used and tested watershed-based
DST.” However, only three studies to date report results of SWAT applications built in HAWQS (Yen et
al., 2016; Fant et al., 2017; Yuan et al., 2018), which were supported with limited model testing. The
Initial testing results of these HAWQS-based SWAT models strongly suggest that more in-depth testing
is needed to better establish ideal input parameter values and/or sources for different regions including the
UMRB, for SWAT projects built in HAWQS.

Thus it is extremely relevant in this study to investigate further testing of a UMRB SWAT model
built in HAWQS, in the context of U.S. Department of Energy (USDOE) sponsored research focused on
assessing climate simulations in conjunction with the energy-land-water nexus (USDOE, 2019). An
important component of this research is the evaluation of different baseline (historical) measured climate
data sources and potential evapotranspiration (PET) methods, within the HAWQS-based SWAT model
created for the UMRB. The evaluation of inputs from alternative climate data sources is fundamentally
important in determining the accuracy of SWAT for representing hydrological processes of a given
watershed system as documented in numerous previous studies (e.g., Roth and Lemann, 2016; Tan et al,

2017; Vuetal., 2018; Qi et al., 2019). Assessment of simulated evapotranspiration (ET) is also critical
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due to the influence of ET on the overall hydrologic balance, crop yields and agricultural management at
the watershed scale (Alemayehu et al., 2016; Aouissi et al., 2016; Tie et al., 2018; Valle Janior et al .,
2020). The assessment of climate data sources and PET methods in this study is foundational for future
applications of HAWQS-based UMRB SWAT models within the USDOE sponsored research project and
other potential applications focused on various ecosystem related problems as described above.

Previous evaluations of climate data effects on SWAT UMRB hydrologic predictions are limited to
the research reported by Qi et al. (2019), who compared the impacts on estimated streamflow between
National Climatic Data Center (NCDC) data (NOAA, 2019) data and two versions of the NASA North
American Land Data Assimilation System Phase Two (NLDAS2) data (Xia et al., 2012). The evaluation
of climate data sources in this study included three data sets that spanned > 20 years: (1) NCDC data and
the Parameter-clevation Regressions on Independent Slopes Model (PRISM) data (PCG, 2019; USDA-
NRCS, 2019), which are both available in HAWQS, and (2) Livneh data (Livneh, 2013), which must be
accessed external to HAWQS (ESRL, 2019). In addition, two other key inputs to the SWAT UMRB
assessment were evaluated in this study. First, the effects of two PET methods on streamflow and ET
estimates were also investigated which are standard options available in SWAT: Hargreaves (Hargreaves
and Samani, 1985) and Penman-Monteith (Monteith, 1965; Allen et al., 2006). Second, the influence of
different land use types on UMRB hydrology were analyzed for baseline conditions, in combination with
the three climate data sets and two PET methods,.

In summary, the specific objectives of this research were to compare: (1) the temporal and spatial
differences of the NCDC, PRISM and Livneh climate data sets, (2) the impacts of using the Hargreaves
(HG) versus the Penman-Monteith (PM) PET methods on SWAT UMRB streamflow and ET estimates,
(3) the impacts of different land use types on UMRB baseline hydrology, and (4) the effects of the three

different climate datasets in combination with the two PET methods on UMRB streamflow estimates.
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2. Description of the Study Region

The UMRB originates from Lake Itasca in northern Minnesota and outlets at the confluence of
the Ohio and Mississippi Rivers near the town of Cairo in southern Illinois (Fig. 1). The UMRB stream
system drains a total of 491,700 km?, which includes large portions of five states (Illinois, Iowa,
Minnesota, Missouri and Wisconsin) and small portions of three other states (Indiana, Michigan and
South Dakota). Nearly 1,400 km of the Upper Mississippi River is commercially navigable, between St.
Paul, Minnesota and the confluence with the Ohio River, which is facilitated by a system of 29
locks/dams and dredging to maintain a minimum channel depth of 2.7 m (UMRBA, 2019). The region is
designated as code 07 at the 2-digit watershed level (USGS, 2013) and is further delineated into 131 8-
digit subwatersheds and 5,729 12-digit subwatersheds (Panagopoulos et al., 2015). The basin outlet is
often assumed to be a gauge site located near Grafton, Illinois in SWAT modeling studies, which drains
an area of 447,802 km? (119 8-digit watersheds) and is located just upstream of the confluence of the
Mississippi and Missouri Rivers.

The major land use in the UMRB is cropland (44.7%), which is dominated by rotations of corn
(27.5%) and soybean (17.2%). There are smaller areas of wheat, oats and other crops in the UMRB but
those are excluded in this HAWQS modeling framework. Other important land use categories include
forest (20.1%), grassland (16.2%), water and wetlands (9.9%) and urban/developed areas (9.1%). Annual
precipitation averaged over 830 mm across the UMRB during the 23-year simulation period (1983 to
2005) used in this study, and ranged from < 600 mm in the northwest part of the basin to > 1,000 mm in
the southern area of the basin, depending on the source of precipitation data (Fig. 2). Average daily
temperatures in the region generally range from 4.0 °C to 5.5 °C in the northern part of the basin to 11.5
°C to 13.0 °C in the south (Fig. 3). However, distinctly colder average temperatures are indicated by the
NCDC dataset for a subset of specific 8-digit watersheds in the northwest and central parts of the UMRB,
as compared to the PRISM and Livneh datasets (these lower temperatures are likely an anomaly in the
NCDC data as discussed in section 4.2). The soil types range from heavy, poorly drained clay soil to

light, well-drained sands, with silty loam and loam soils covering about 66% of the total UMRB arca
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Figure 1. The location of the Upper Mississippi River Basin (UMRB) with 8-digit watersheds, and gauge
sites over the study region.

(Demissie et al., 2012b). The topography is characterized by flat to gently rolling terrain, with

55% of'the area having less than a 2% slope and an average elevation of280 m.

3. Previous SWAT Applications Reported for the UMRB

A total of41 previous studies (Table 1) were documented (CARD, 2019) that reported
simulation ofthe UMRB using SWAT. Four ofthe studies report SWAT applications for the entire
MARB that included the UMRB as a major subregion (Kannan et al., 2019; Santhi et al., 2014; White et
al., 2014; Yuan et al., 2018) and three other studies report Com Belt region results that include SWAT
analyses for the combined UMRB and Ohio-Tennessee River Basin (OTRB) systems (Kling et al., 2014;

Panagopoulos et al., 2015; 2017). The studies listed in Table | focused on a range ofthemes including



165

166
167

168

169

170

171

172

173

174

175

176

111

178

179

180

Figure 2. Distribution of average annual precipitation amounts values by climate data set
and 8-digit watersheds across the UMRB for the time period of 1983 to 2005.

Figure 3. Distribution of average daily temperature values by climate data set and 8-digit
watersheds across the UMRB for the time period of 1983 to 2005.
model testing, climate change impacts on streamflow or water quality, and BMP, land use change or
biofuel cropping production impacts on water quality. . The only UMRB application that reported the
effects of different climate sources on UMRB streamflow was Qi et al. (2019) and none ofthe studies
reported the impacts of different PET methods.

There is a considerable distribution ofreported SWAT subwatershed and HRU structures (Table
1), ranging from a relatively coarse delineation of 119 subwatersheds and 474 HRUs (Takle et al., 2005)
to an extremely detailed subdivision of5,732 subwatersheds and 136,079 HRUs (Feng et al., 2018). Most
ofthe studies state that model testing was performed using streamflow data collected at a gauge site

located near Grafton, IE. A smaller subset of studies report expanded calibration and/or validation at



Table 1. Focus, structure, SWAT version and total gauge sites used for model testing in previous SWAT-based UMRB studies

Subwatersheds/ SWAT Testing at Strqz ow Pollutapt testing
Study Focus of study HRUs version  Grafton IL testing sites sites
’ Cal/Val Cal/Val
Arnold et al., 2000 Hydrologic testing and evaluation 131/NR®P NR No° 0/1 0/0
Deb ctal., 2015 Biofuel crops and climate change 131/14,568 2009 Yes 0/1 0/1
Demissie et al., 2012a? Biofuel crop impacts on water quality 131/14,200 2005 Yes 3/7 3/7
Eisner et al., 2017¢ Climate change 1mp.acts.from 9 hydrologic NR NR No® U1 0/0
models used for major river systems
Feng ct al., 2017 Suitability of marginal land for biofuel NR NR No 0/0 0/0
crop production
Fengetal., 2018 Biofuel crop production on marginal land 5,732/136,079 2012 Yes 13/13 0/0
Guetal., 2015 Biofuel crop impacts on water quality 131/2,730 2005¢ No° 0/08 0/0
Gosling et al., 2017¢ Predicted changes in runoff due to multiple NR NR No® 11 0/0
global warming scenarios
Hattermann et al,, 2017¢  Cumate change impacts on hydrological NR NR No® 1/1 0/0
model output for major river systems
Huang et al., 2017° Comparison of 9 hydrologic models that NR NR No* 11 0/0
were applied to major river systems
Jha et al., 2004 Climate change impacts on streamflow 1198/474h NR Yes 1/1 0/0
Jha et al., 2006 Climate change impacts on streamflow 1198/NR 2000f Yes 1/1 0/0
Jhaetal, 2015 Climate change impacts on nitrate loads 131/18,000 2005 Yes 1/0 0/0
Kannan et al., 2008 Automatic calibration approach 131/NR NR No 0/0 0/0
Kannan et al., 2019 Calibration approaches/issues NR 2000f Yes 5/5 0/0
Kling et al., 2014 BMP impacts on water quality 5.279/5.279! 2009* No’ 0/07 0/07
Krysanova & Summary of comparing hydrologic and o
Hattermann, 2017¢ climate models for 12 major river systems NR NR No 1 0/0
Lietal, 2017 Drought impacts on ecosystem services 157/6,686 2009* Yes 13/13 0/0
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Table 1. Continued

Study Focus of study Suvav{alt{eIrjs:leds/ ngrsﬁ)i gf:l;tt?f ?i tset;fi?gis]i?ez POHut%SliIg;eSUHg
’ Cal/Val Cal/Val
Lietal, 2019 Climate change impacts on BMP effects NR 2009f Yes 13/13 6/6
Panagopoulos et al., 2014  Climate change impacts on BMP effects 5,279/5,279! 2012 Yes 12/0 0/0
Panagopoulos et al., 2015  Calibration and validation approach 5,279/5,279! 2012 Yes 12/12 6/6
Panagopoulos et al., 2017 Biofuel crop impacts on water quality 5,279/5,279! 2012 Nol 0/0 0/0]
Qietal, 2019a Climate source impacts on streamflow 131/NR 2012 Yes 11/11 0/0
Qietal., 2019 Enhanced freeze-thaw cycle processes 131/14,568 2012 Yes 1/0 0/0
Qiectal, 2020 Water quality testing and evaluation 131/14,568 2012! Yes 0/3™ 0/3™
Rabotyagov et al., 2010 Analyses of least cost of BMPs 131/NR NR No 0/0 0/0
Rajib & Merweade, 2017  Land use change impacts on hydrology 260/NR NR Yes 10/2 0/0
Santhi et al. 2008 Calibration and validation approach 131/NR NR No o/o" 0/0
Santhi et al., 2014° Phosphorous transport in stream system NRP 20054 Yes 5/5 5/5
Secchi et al., 2011 Land use change impacts on water quality 131/2,730 2005¢ Yes 1/1 11
Srinivasan et al., 2010 Uncalibrated baseline streamflow testing 131/14,568 2009* Yes 0/11™ 0/0
Takle et al., 2005 Climate change impacts on streamflow 119/474 2000f Yes 0/0° 0/0
Takle et al., 2010 Climate change impacts on streamflow NR 2000f Yes 0/0° 0/0
Vetter et al., 2017¢ E;ﬁjfg;gﬁ%g;g‘fse“z“f‘z z;%ifﬁvers NR NR No® 11 0/0
Wang et al, 2011° Crop production impacts on sediment loss NRP 2005 Yes 5/5 0/0
White et al., 2014° E‘;ﬁgﬂ;‘gﬂ:ﬁ:ggﬁ%g stream system. 3 qyNRe 2005° Yes /4 /4
Whittaker et al., 2015 Land use change impacts on water quality 131/NR 2009 Yes 0/0/ 0/1
Wu et al., 2012a? Biofuel crop impacts on water quality 131/14,200 2005 Yes 3/7 3/7
Wuetal., 2012b Climate change impacts on streamflow 1878/972 99.2v Yes 1/1 0/0
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Table 1. Continued

Subwatersheds/ SWAT Testing at Streamflow Pollutant testing

Study Focus of study . testing sites sites
HRUs version Grafton, IL Cal/Val Cal/Val

Wu & Tanaka, 2005 Reducing nitrate loads in stream system 1188/1,410 2000 Yes 0/1 0/1

Yuan et al., 2018 Estimating nitrate loads for Mississippi 131YNR 2012¥ NR NR NR

stream system using multiple models

*NR = not reported.

Specific HRU data are not reported in these studies; however Amold et al. (2000) note that approximately 16 HRUs were delineated per subwatershed and
White et al. (2014) state that a range of 40 to 99 HRUs were delineated in a given subwatershed.

°The gauge used for model testing in these studies was located near Alton, IL, which is located several km south of Grafton, IL (and below the confluence of the
Mississippi and Missouri Rivers) and captures a drainage area of 444,185 km? (Huang et al., 2017).

4The model structure, gauge testing sites and model testing results used in these studies were reported in Demissie et al. (2012b).

*These six studies were part of a special issue published in Climatic Change (https://link springer.com/journal/10584/141/3/page/1). Results of applying SWAT
for the UMRB are reported in these six studies. SWAT testing statistics are reported in supporting documentation that can be accessed at Huang et al., 2017b.
fThe SWAT model version was inferred from citations to SWAT documentation reported in the respective study.

gThese SWAT models were constructed with the outlet at Grafton, IL and thus excluded the subwatersheds that drain to the Mississippi River below Grafton.
"nferred from information reported in Takle et al. (2005).

'A dominant HRU approach was used that resulted in one HRU per subwatershed.

Model testing was based on the results reported in Panagopoulos et al. (2015).

kStandard SWAT model used in study was SWAT2012, Revision 664; modified version of SWAT called TSWAT.

IA standard SWAT2012 version

mUncalibrated simulations were performed in these studies; Srinivasan et al. (2010) list “calibrated statistics™ in Table 9 of their study for comparison purposes.
nStreamflow testing was not reported although mean NSE and R? statistics were reported for water balance indicators determined for all 131 subwatersheds.
°An interface between the Agricultural Policy/Environmental eXtender (APEX) model ( Gassman et al., 2010) and SWAT was used in these studies.

PIt is inferred that the model structure used in these studies is based on what is reported in White et al. (2014).

Model version based on personal communication with M. White, Grassland Soil and Water Research Laboratory, USDA-ARS, Temple, TX.

"Model version was not directly reported in study but confirmed in later study published by Deb et al. (2014).

*Model testing was based on previously reported information in either Jha et al. (2004) or Jha et al. (2006).

tAlmost all of the entire MARB were simulated in these studies; i.e., White et al. (2014) simulated a total of 848 USGS 8-digit watersheds (USGS, 2013) and
Yuan et al. simulated total of 821 USGS 8-digit subwatersheds. It is assumed that 131 of the 8-digit watershed were used to represent the UMRB in both studies.
"SWAT model structure based on previously developed model described by Srinivasan et al. (2010).

YThe authors report using a modified version of SWAT 99.2 in their study.

YThe model version was not directly reported in the study but the modeling system was constructed via the Hydrologic and Water Quality System (HAWQS) that
currently provides the option of using four different releases of the SWAT2012 model (Srinivasan, 2019).
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additional gauge sites (Table 1). Ten of the studies report some level of pollutant load testing at specific
gauge sites (Table 1). Some of the studies provide comparisons of SWAT predicted loads versus
observed or other estimated loads at the 8-digit watershed level (e.g., Arnold et al., 2000; Kannan et al
2008; White et al., 2014; Jha et al., 2015).

The majority of the studies report both calibration and validation testing results at Grafton and/or
other gauge locations, and include evaluations based on the Coefficient of Determination (R*) and/or
Nash-Sutcliffe Efficiency (NSE) statistics (Krause et al., 2005). Tabulation of computed R? and NSE
statistics, which measure how accurately simulated streamflows replicated measured streamflow, are
shown by frequency in Table 2 for a daily time step (usual SWAT time step), and aggregated monthly and
annual time periods. Roughly 90% of the NSE and R” statistics represented in Table 2 exceed 0.5 and 0.6,
respectively, which satisfies satisfactory or better model performance criteria suggested by Moriasi et al.
(2007; 2015). The distribution of statistics in Table 2 also generally mirror previous similar statistical
compilations reported in several review studies (Gassman et al., 2007, 2014; Tuppad et al., 2011;
Bressiani et al., 2015; Tan et al., 2019). Some of the weaker validation statistics reflect more stringent
applications of un-calibrated SWAT models reported by Srinivasan et al. (2010) and Qi et al. (2020).

The composite results of previous studies (Table 2) confirm that applications of different versions
of SWAT have been generally successful in replicating observed streamflows at Grafton, IL and at other
gauge sites, for both calibration and validation. The majority of model testing was performed using a
split-time approach (Amold et al., 2012), where calibration and validation were conducted for the same
gauge locations based on observed streamflow data collected during two different time periods. Spatial
validation, where calibration is performed for different gauge sites versus the gauges used for validation,
was performed only in support of the analyses by White et al. (2014), and for Demissie et al. (2012a) and
Wu et al. (2012a) as reported in their corresponding supporting documentation (Demissie et al., 2012b). A

spatial validation approach was adopted in this study as described in more detail below.
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Table 2. Distribution of statistics comparing simulated streamflows versus measured streamflows
that were reported in SWAT UMRB studies by time steps and frequency ranges™"
Daily Monthly Annual
Frequency  Calibration Validation Calibration Validation Calibration Validation
Range NSE R? NSE R? NSE R? NSE R? NSE R? NSE R?

0.90-1.00 1 3 3 5 7 11 6 27
0.80-0.89 12 23 23 35 6 6 8 9
0.70-0.79 1 1 1 3 43 44 27 29 1 6 3
0.60-0.69 1 2 28 24 19 19 7
0.50-0.59 1 17 4 13 8 2 4
0.40-0.49 3 4 10 7 3
0.30-0.39 1 2 5 2
0.20-0.29 1 2 1 2
0.10-0.19 3 2
0.00-0.09 1

<0 1

aData based on the following studies: Arnold et al. (2000), Deb et al. (2015), Feng et al. (2018), Huang et al.
(2017b), Jha et al. (2004), Jha et al. (2006), Jha et al. (2015), Kannan et al. (2019), Li et al. (2017), Panagopoulos et
al. (2014), Panagopoulos et al. (2015), Qi et al. (2019a; 2019b; 2020); Rajib & Merweade (2017), Santhi et al.
(2014), Secchi et al. (2011), Srinivasan et al. (2010), Wang et al. (2011), Wu et al. (2012b)

bCalibration was not performed by Srinivasan et al. (2010) and Qi et al. (2020); statistic from those two studies are
reported here as validation

4. Methods and Materials

4.1. SWAT/HAWQS model configuration and simulation scenarios

The development of the UMRB SWAT model was performed in HAWQS, which provides
interactive web interfaces, maps and preloaded data layers including stream network, land use and land
management, soil, climatic, point sources, historical climate, future climate projections, atmospheric
deposition and reservoir data (Srinivasan, 2019). The sources of these input data and the date
(month/year) are listed in HAWQS (2017). Users can assign preferred parameter values at HRU,
subwatershed and/or overall basin levels, respectively. In addition, HAWQS is technically capable of
providing preliminarily calibrated parameters as default values, although the level of testing supporting

these parameter values is very limited as previously noted. In this study, the default parameters values set

12
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by HAWQS for the UMRB SWAT model were considered to be uncalibrated baseline data (Table 3), and
output from this baseline model are referred to as uncalibrated results. The files created for this
uncalibrated baseline UMRB SWAT model were also downloaded from HAWQS after the initial model
construction, which allows additional parameter modification using the SWAT editor program or other
external software.

The SWAT model was configured for the UMRB at the 8-digit watershed level within the HAWQS
platform, resulting in 119 8-digit watersheds that encompass the previously described 447,802 km? area
that drains to Grafton, IL (the outlet is the 8-digit watershed identified as HUC07110009). A total of
34,630 HRUs were initially configured within the 119 subwatersheds when the UMRB SWAT model was
first constructed within HAWQS. HRU thresholds of 1 km?* were then applied to the land use, soil type
and slope classes to eliminate minor land uses, soils, and slopes in each subwatershed. The application of
the thresholds resulted in a total of 30,812 HRUs for the baseline UMRB SWAT model and subsequent
calibrated versions of the UMRB model.

The SWAT simulations were performed from 1981 to 2005; the first 2 years served as an
initialization period. This 25-year simulation period reflects a consistent time period available in all three
data sets (see Section 4.3). Two sets of six simulations each were then performed as scenarios (Table 4)
The first set of simulations were executed without calibration using the baseline UMRB model, to provide
an initial comparison of water balance and streamflow estimates between the three climate data sets and
two ET methods that were not influenced by any adjustments in SWAT input parameters. These scenarios
were based on the baseline UMRB SWAT model that was executed with the HAWQS default input
parameters (Table 3). This allowed the weather inputs (including daily precipitation, daily maximum
temperature and minimum temperature) to be held constant while varying the PET methods, so that the
effects of the PET methods on the hydrologic outputs can be discerned. The initial uncalibrated SWAT
model was constructed using the Penman-Monteith (PM) PET method, which is the default PET option

that is used in HAWQS (scenarios PRISM(PM), NCDC(PM) and Livneh(PM) in Table 4). The
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uncalibrated SWAT model was then executed with the HG PET method (scenarios PRISM(HG),
NCDC(HG) and Livneh(HG) in Table 4), to provide a further basis of comparison (Section 5.1).

The second phase of simulations were based on calibration and validation, which was initially
performed using the Livneh climate data and HG PET method. The Livneh data were chosen for the
initial calibration due to the fact that the data set has served in a historical climate role for a suite of
downscaled climate projections (Pierce, 2016), that may be analyzed as part of the broader research
initiative (DOE, 2019). The HG method was selected because the annual ratio of ET/precipitation was >
0.7 for HG method versus approximately 0.6 for PM method. The HG method ET/precipitation ratio of
0.7 was more consistent with the UMRB region ratio reported by Liu et al. (2013), who estimated ET and
runoff for the major basins that contribute steamflow to the Gulf of Mexico. Calibration was performed
for the three calibration gauge sites shown in Fig 1 and Table 5: St. Paul, Clinton and Grafton. Spatial
validation was then performed by performing an additional simulation with the calibrated model, without
any further adjustments to the SWAT input parameters, and comparing simulated versus observed
streamflows at the other 10 “hydrologically independent™ gauge sites (Fig 1 and Table 5). Each of the 10
hydrologically independent sub-regions corresponds to either the most upstream part of the main stem
(Royalton for Mississippi River) or a major tributary flowing into the main stem (i.¢., the Skunk, St.
Croix, Chippewa, Rock, Wisconsin, lowa, Des Moines, Minnesota or Illinois Rivers). Table 5
summarizes the information related to the monitoring points.

Following calibration and validation, six additional experimental scenarios (Table 4) were
evaluated, which were again based on monthly streamflow output from 1983 to 2005. These scenarios
provided further assessment of the performance of SWAT in response to the three climate datasets, HG
method, and calibrated parameters listed in Table 3 (that are described in more detail in Section 5.3).
These second set of six scenarios were further split into two subsets, which were demarcated as follows:
(1) the first subset of three scenarios was based on the calibrated parameters (Table 3) obtained with the
previously described Livneh climate dataset and HG method (scenario Livneh-calibrated, in Table 4),

versus (2) a second set of three scenarios that were performed using calibrated parameters (Table 3)
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308  Table 3. Calibration input parameters, default values in HAWQS, allowable ranges, type of calibration adjustment and final calibrated values.

Parameters Description Type of Default values Allowable ranges Calibrated value  Calibrated value
P change® m HAWQS Min Max for Livneh for PRISM

N2 Imt@l .SCS runoff curve number for moisture R ) -84 01 0.1 0.0985 0.0526
condition I

ALPHA BF Baseflow alpha factor (1/days) V 0.023 - 0.85 0 1 09 0.999

GW_DELAY Groundwater delay time (days) A 25-323 -30 90 -12 6.880

GWOMN Thre.shold depth of water in shallow aquifer A 0.7 - 900 -1000 1000 42 577
required for return flow to occur (mm)

GW_REVAP Groundwater "revap" coefficient V 0.01 - 0.1066 0.02 0.1 0.04 0.053

RCHRG DP Deep aquifer percolation fraction A 0.01-0.33 -0.05 0.05 0.027 0.044
Threshold depth of water in the shallow

REVAPMN aquifer for "revap" or percolation to the deep A 264.6; 500 =750 750 206 -24
aquifer to occur (mm)
Alpha factor for groudwater recession curve

ALPHA BF D of the deep aquifer (1/day) Vv 0 0 1 0.25 0.32

ESCO Soil evaporation compensation factor V 0.808 - 0.98 0.6 0.1 0.92-0.95 0.93-0.98

CANMX Maximum canopy storage (mm) \Y 15.4 0 25 20 20

SLSOIL Slope length for lateral subsurface flow (m) V 0 0 150 6.375 28

LAT TTIME Lateral flow travel time (days) A% 0 0 200 153 186

soL awc ~ Available water capacity of the soil layer R 0.01 - 0.42 0.0 0.05 0.038° -0.034°

= (mm H;O/mm soil)

SFTMP Snowfall temperature (°C) V 1 -5 1 0.175 3.53

SMTMP Snow melt base temperature (°C) V 0.5 0 3 0.68 0.29

SMFMX {\(/{Z;t)factor for snow on June 21 (mmH,0/°C v 45 ) 45 3.99 442
Melt factor for snow on December 21 (mm

SMFMN H,0/°C -day) v 4.5 0 2.5 0.07 2.37

TIMP Snow pack temperature lag factor V 1 0 1 0.55 0.38

309  °R indicates that an existing parameter value is multiplied by (1+ a given value), V indicates that the existing parameter value is to be replaced by a given
310  value, and A indicates that a given value is added to the existing parameter value.

311  °For various forest (FRSD, FRSE and FRST) landuse.

312 ‘For the first soil layer.
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313 Table 4. Description of the SWAT scenarios executed with baseline (HAWQS default parameters)
314  versus scenarios that were calibrated parameters.
Scenario name Climate dataset PET method Input parameters Calibration dataset
PRISM(PM) PRISM PM HAWQS default NA®
NCDC(PM) NCDC PM HAWQS default NA
Livneh(PM) Livneh PM HAWQS default NA
PRISM(HG) PRISM HG HAWQS default NA
NCDCHG) NCDC HG HAWQS default NA
Livneh(HG) Livneh HG HAWQS default NA
Livneh-calibrated Livneh HG Calibrated Livneh
PRISM-Livneh PRISM HG Calibrated Livneh
NCDC-Livneh NCDC HG Calibrated Livneh
PRISM-calibrated PRISM HG Calibrated PRISM
Livneh-PRISM Livneh HG Calibrated PRISM
NCDC-PRISM NCDC HG Calibrated PRISM
315 *NA =not applicable
316
317  Table 5. The USGS gauge sites used for streamflow calibration and validation in this study, including
318  location, gauge site IDs, hydrologic units and reported drainage area.
Gauge site River State Used for  USGS Station Hyc{r}i)lli(t)gic Drail(lljl Iiez)Area
St. Paul Mississippi MN Calibration 05331000 7010206 95312
Clinton Mississippi IA Calibration 05420500 7080101 221703
Grafton Mississippi IL Calibration 05587450 7110009 443665
Augusta Skunk 1A Validation 05474000 7080107 11168
St. Croix Falls St. Croix WI Validation 05340500 7030005 16162
Durand Chippewa WI Validation 05369500 7050005 23336
Joslin Rock IL Validation 05446500 7090005 24732
Muscoda Wisconsin WI Validation 05407000 7070005 26936
Royalton Mississippi MN Validation 05446500 7010201 30044
Wapello lowa 1A Validation 05446500 7080209 32375
Keosauqua Des Moines IA Validation 05446500 7100009 36358
Jordan Minnesota MN Validation 05446500 7020012 41958
Valley City Mlinois IL Validation 05446500 7130011 69264
319
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obtained with the PRISM climate dataset in combination with the HG method (scenarios PRISM-
calibrated, Livneh-PRISM and NCDC-PRISM in Table 4).

This suite of scenarios thus provided an approach of further testing SWAT with the three different
climate data sets using two different sets of calibration parameters that represent two different potential
baseline climate data sets: Livneh versus PRISM. The Livneh-calibrated and PRISM-calibrated scenarios
depict obvious conventional SWAT calibration simulations using the climate data sets that the model was
calibrated with. However, the PRISM-Livnch, NCDC-Livneh, Livneh-PRISM and NCDC-PRISM
scenarios reflect atypical SWAT simulations that consist of executing the model with a different climate
data set than was used for the calibration process. These additional scenarios provide additional insight
into the sensitivity and performance of SWAT in response to different climate inputs for the UMRB.

4.2. Description of Climate Datasets

Daily precipitation and temperature data obtained from the NCDC, PRISM and Livneh climate
datasets were used to simulate UMRB streamflow. Brief summaries of these datasets are provided below
followed by further analysis of the apparent anomalies in the NCDC temperature data revealed by Fig 3.

(1) NCDC: NCDC dataset consists of daily weather variables from the Global Historical
Climatology Network (GHCN)-Daily of land-based weather stations. The dataset was developed via
processing steps of data collection, quality control, and archival and removal of biases associated with
factors such as urbanization and changes in instrumentation through time (Menne et al., 2012). The
NCDC dataset in HAWQS spans the time period of 1961 to 2010.

(2) PRISM: PRISM was developed by the PRISM Climate Group at Oregon State University (PCG,
2019) and is officially endorsed by the U.S. Department of Agriculture Natural Resources Conservation
Service (USDA-NRCS, 2019). PRISM data are defined on a 2.5 min degree grid, which calculates a
climate-clevation regression for each grid cell of digital elevation model (DEM). Stations included in the
regression are assigned weights based primarily on the similarity of physiographic characteristics (Daly et

al., 2008; Gao et al., 2017). PRISM data are available in HAWQS for the time period of 1981 to 2015.
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(3) Livneh: Livneh dataset is derived from observations at NCDC cooperative observer (COOP)
stations across the continental United States (CONUS). Both temperature and precipitation were gridded
to 1/16° using the synergraphic mapping system (SYMAP) algorithm (Livneh et al., 2013; ESRL, 2019).

Long-term daily climatic data are provided in the Livneh dataset for 1981 to 2010 (ESRL, 2019).

4.2.1. UMRB climate data distributions and NCDC temperature data anomalies

The spatial distributions of average annual precipitation and air temperature from 1983 to 2005
(Fig. 2 and Fig. 3) provide further insights regarding the differences between the weather datasets. The
trends in spatial distribution of precipitation across the UMRB are similar between the NCDC, PRISM
and Livneh datasets (Fig. 2), with highest annual precipitations occurring in the southeast versus the
lowest annual precipitation in the northwest. The trends in spatial distribution of annual average
temperature across the UMRB are also similar among three weather datasets (Fig.3), with a clear gradient
of increasing temperature from the north to south. However, the distribution of the NCDC temperature
data reveals that some subwatersheds in the northwest and central part of the UMRB manifest cooler
average annual temperatures versus subwatersheds in the most northern part of the region; i.¢.,
subwatersheds located in far castern South Dakota, southeast Minnesota, northern Iowa and southwest
Wisconsin (Fig. 3). These “cooler subwatersheds” do not manifest in the PRISM and Livneh data. Thus,
it is likely that these cooler subwatersheds are anomalies in the NCDC data that may be due to errors in
the original measured observations and/or that occurred during the interpolation and averaging of the data
to create pseudo-stations at the 8-digit watershed level, both of which would have occurred prior to
inclusion within HAWQS. In contrast, the PRISM and Livneh data were processed for each subwatershed
by using their gridded cell values, which provides a more continuous temperature surface for creating a
single set of subwatershed temperature data. The revelation of the apparent NCDC temperature anomalies
warrants further review and probable correction of the data. However, it is unlikely that these errors

greatly affected estimates of UMRB streamflow.
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4.3. PET estimation methods

The PET concept was introduced by Thornthwaite (1948) as part of a climate classification scheme.
PET was defined as the rate of evapotranspiration without any limits imposed by the supply of water.
Numerous methods have been developed to estimate PET. The PM method (Monteith, 1965; Allen et al .,
2006) and HG method (Hargreaves and Samani, 1985) are two of the PET options available in SWAT and
were tested in this study.

The PM equation combines components that account for the energy needed to sustain evaporation,
the strength of mechanism required to remove the water vapor, and acrodynamic and surface resistance
terms. The PM equation is:

_A.(Hnet _G)+pair .Cp .|:ezo_ez:|/ra
- A+y-(1+r./r,)

AL (D

where AL is the latent heat flux density (MJ m d™), £ is the depth rate evaporation (mm d'), A is the
slope of the saturation vapor pressure-temperature curve de/dl’ (kPa °C™"), H,., is the net radiation (MJ m™

d™"), G is the heat flux density to the ground (MJ m™ d™'), pu:- is the air density (kg m™), ¢, is the specific
heat at constant pressure (MJ kg °C™), €; is the saturation vapor pressure of air at height z (kPa), €, is

the water vapor pressure of air at height z (kPa), y is the psychrometric constant (kPa °C™), . is the plant
canopy resistance (s m™), and 7, is the diffusion resistance of the air layer (acrodynamic resistance; s m™).
The original HG equation (Hargreaves and Samani, 1983) is the form used in SWAT as follows:

A

AE, =a, - —-
A+y

(Hnel _G) (2)

pet )

where A is the latent heat of vaporization (MJ kg™), Ej is the potential evapotranspiration (mm d'),
aper 18 a coefficient, A is the slope of the saturation vapor pressure-temperature curve de/dT (kPa °C™?), y is
the psychrometric constant (kPa °C™"), H,. is the net radiation (MJ m? d!), and G is the heat flux density

to the ground MJ m=2d™").
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The PM and HG methods vary considerably in the amount of required inputs. The PM method
requires solar radiation, air temperature, relative humidity and wind speed but the HG method requires air
temperature only. Daily solar radiation, relative humidity and wind speed inputs were generated by the
weather generator within SWAT, because daily precipitation and air temperature are the only measured
climatic data available.

4.4. Calibration approach and evaluation criteria

The SWAT-CUP platform (Abbaspour, 2015; SWAT, 2019) is a software package with a web-based
interface, which facilitates automatic calibration and/or uncertainty analyses for SWAT applications via
manipulation of the large number of text files associated with a typical SWAT project (prior to the release
of SWATH+; see Bieger et al., 2017). SWAT-CUP allows users to control the initial range of parameters
and supports the most accurate identification of the parameter optimum values by automatic or manual
calibration of SWAT projects. There are several algorithms incorporated in SWAT-CUP to help with the
automatic calibration process: Sequential Uncertainty Fitting (SUFI-2), Particle Swarm Optimization
(PSO), Generalized Likelihood Uncertainty Estimation (GLUE), Parameter Solution (ParaSol), and
Markov Chain Monte Carlo (MCMC). The SUFI-2 algorithm was used for model calibration in this
study. This algorithm can map all of the uncertainties for each parameter (expressed as uniform
distributions or ranges) and attempts to capture most of the measured data within the 95% prediction
uncertainty (95PPU) of the model in an iterative process. It requires fewer simulations to complete a
calibration/uncertainty project (Yang et al., 2008) and is highly recommended for the calibration of
SWAT models (Arold et al., 2012).

Parallel processing was also used in this study, since it can speed up the calibration process by
parallelizing the simulations in SUFI-2. The speed of the parallel processing depends on the
characteristics of the computer. For example, if the computer has 8 central processing units (CPUs), the
parallel processing module can utilize all 8 CPUs so that a 200-run iteration can be divided into 8

simultanecous runs of 25 each per CPU. For a large-scale SWAT model, the utilization of the parallel
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processing option results in substantially faster overall simulation times versus using just a single 200-run
CPU submission.

The SUFI-2 algorithm was set to identify the optimum parameters by using the Nash-Sutcliffe
modeling efficiency (NSE) statistic (Krause et al., 2005) as the key objective function. However, the
results were also evaluated according to the coefficient of determination (R*; Krause et al., 2003), percent
bias (PBIAS; Moriasi et al., 2007) and Kling-Gupta efficiency (KGE; Gupta et al., 2009). Values for
NSE, R? and PBIAS on a monthly scale were evaluated per criteria suggested by Moriasi et al. (2007;

2015); i.e., NSE values >0.50, R? values > 0.6 and PBIAS values <+25% (Moriasi et al., 2007) or <+

15% (Moriasi et al., 2015) are judged to be satisfactory. Patil and Stieglitz (2015) implied that simulated
values could be regarded as satisfactory with a KGE value >0.6. The KGE statistics are designed to
provide an improved criterion by incorporating error compensation for the bias and variability
components (Roy et al., 2014; Zhu, et al., 2016). Graphical comparisons between the simulated and

measured streamflow values were also used to assess the accuracy of the model output.

5. Results and Discussion

5.1. Climate dataset analysis

Table 6 lists the daily mean temperature (°C), average annual precipitation (mm) and other
uncalibrated average annual water balance components (mm) that were predicted for the UMRB using the
three weather datasets and two PET methods during the 23-year simulation period. The Livneh data set
was found to have the largest average annual amount of precipitation (837.2 mm) and highest daily mean
temperature (8.2 °C) among the three weather datasets. In contrast, the respective average annual
precipitation for the NCDC and PRISM data sets was 836.1 mm and 831.5 mm, and the respective daily
mean NCDC and PRISM temperatures were 8.0 °C and 7.9 °C. Overall, there were small differences in

the annual average precipitation (5.7 mm maximum) and temperature (0.3°C maximum).

21



441  Table 6. Average annual values (mm) of hydrological components and daily mean temperature (°C) over the UMRB, for the different combinations
442 of climate data and PET methods, based on the applications of the uncalibrated HAWQS SWAT model during 1983 to 2005.

Scenario Precipitation tlzililloyegteuarz Srt;fgif lilts:;‘l Gro?(:lvtvater v?a(l)tielr ET PET \;Ztlflr ET/P* WY/PP
PRISM(PM) 831.5 8.0 204.6 409 257 2679 5082 8569 323.7 0.56 0.43
NCDC(PM) 836.1 7.9 2272 46.7 30.5 2855 4706 7642 363.1 0.61 0.39
Livneh(PM) 837.2 8.2 235.7 49.6 35.0 2952 4517 7078 380.6 0.54 0.45
PRISM(HG) 831.5 8.0 141.9 24.0 18.3 2314 6204 958.6 212.4 0.74 0.26
NCDC(HG) 836.1 7.9 1453 26.2 18.7 238.3 6159 9349 219.7 0.75 0.26
Livneh(HG) 837.2 8.2 128.1 227 18.8 2289 6417 9613 193.9 0.77 0.23

443 aET/P = the ratio of annual ET/Precipitation
444  PWY/P= the ratio of annual Water yield/Precipitation
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The Livneh data also generated the largest amounts of surface runoff, lateral flow, groundwater, soil
water and water yield when simulated in combination with the PM method (Table 6). The predicted
annual average water yield for the Livneh data was 380.6 mm, versus 323.7 mm for PRISM and 363.1
mm for NCDC. This was due primarily because the Livneh data produced the lowest estimated annual
average PET of 707.8 mm among the three weather datasets, as compared to 856.9 mm and 746.2 mm for
PRISM and NCDC, respectively. The different weather data set inputs resulted in maximum differences
of 56.9 mm in water yield and 149.2 mm in PET for the uncalibrated simulations. These trends are also
reflected in the ratios of annual ET/precipitation (ET/P) and annual water yield/precipitation (WY/P)
reported in Table 6; ¢.g., the lowest ET/P and WY/P ratios were found for Livneh(PM) and Livneh(HG),
respectively,

Considerably higher annual ET and PET values were estimated when the three weather data sets
were simulated in combination with the HG method, resulting in much lower predicted water yield and
key water vield components; i.c., surface runoff, lateral flow and groundwater flow (Table 6). There was
also considerable variation in the responses of the three weather datasets to the two PET methods,
especially for the Livneh data set. The Livneh data resulted in the lowest estimated ET and PET when
used in combination with the PM method, but produced the highest ET and PET estimates when
simulated with the HG method (Table 6). Consequently, the Livneh data generated the highest and lowest
water yields when executed with the PM and HG methods, respectively.

In addition to comparing the spatial distribution of average annual precipitation and temperature,
the differences between the monthly mean precipitation and daily mean temperature during the 23-year
uncalibrated SWAT simulations are presented in Fig.4. The PRISM data generated smaller amounts of
precipitation as compared to the NCDC data in most months, especially during the May to September
growing season. The cumulative difference between PRISM and NCDC during the growing season
accounted for 85% of the total annual average difference between the two data sets. However, the Livneh
data precipitation amounts were larger versus NCDC for most months, except for March, August,

November and December. The Livneh data precipitation amount was greater during the growing season,

23



471
472

473
474
475
476
477
478
479
480
481

482
483

484

485

486

487

488

489

490

491

492

493

1 IPRISM-WCOC
I I Livnch-NCDC

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Figure 4. Box plots of monthly differences for (a) precipitation and (b) daily mean temperature. For
precipitation, percent difference (%) is displayed. Temperature values displayed are the absolute
difference (°C).

while it was slightly smaller during the non-growing season, relative to the NCDC data. With regard to daily
temperature, there are distinct seasonal variations between the monthly differences. Both PRISM and Livneh
tend to be warmer during the summer months and colder during the winter period, as compared to the NCDC
data. Fig. 4 further shows that the Livneh data had the highest daily temperature among three weather datasets

in spring and summer, while the PRISM data set results in the lowest temperature in winter.

5.2. Land use data analysis

Table 7 represents average annual precipitation (mm), ET (mm) and water yield to the reach
(mm) predicted for different UMRB land uses using the three weather datasets and two PET methods
during the 23-year simulation period. The average annual amount ofprecipitation for urban areas was
847.6 mm, which was greater than the corresponding annual average precipitation levels of 843.7 mm for
cropland, 832.1 mm for grassland and 820.8 mm for forest. The differences in the annual average
precipitation (from 3.9 to 26.8 mm) are primarily caused by the uneven spatial distribution ofboth
precipitation and land use.

The highest ET levels were predicted for the composite urban areas when the PM method was
simulated in combination with the three weather datasets. On average, the annual ET for the urban areas

was 526.6 mm, versus 513.1 mm for cropland, 493.4 mm for grassland and 383.5 mm for forest (Table 7).
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494

Table 7. Average annual values (mm) of hydrological components for different land uses, based on the application of the uncalibrated HAWQS

495 SWAT model during 1983 to 2005.
PET Land use Precipitati.on ET . Water yigld
method PRISM NCDC Livneh Average PRISM NCDC Livneh Average PRISM NCDC  Livneh  Average
Cropland 843.7 848.0 848.8 846.9 546.9 502.3 490.2 513.1 296.7 344.6 356.5 332.6
Forest 820.8 826.4 827.5 824.9 409.3 381.5 359.7 383.5 408.5 440.7 461.6 436.9
™ Grassland 832.1 835.7 838.0 835.3 5255 488.6 466.0 4934 304.4 343.1 366.1 337.9
Urban arca 847.6 852.8 8535 851.3 556.5 5214 502.0 526.6 2934 3324 3515 325.8
Cropland 843.7 848.0 848.8 846.9 613.9 602.5 643.4 620.0 229.6 245.1 205.4 226.7
Forest 820.8 826.4 827.5 824.9 674.5 682.4 695.9 684.3 147.3 144.9 132.6 141.6
Ho Grassland 832.1 835.7 838.0 835.3 586.8 587.9 613.8 596.2 243.2 245.4 221.9 236.8
Urban arca 847.6 852.8 8535 851.3 630.3 632.3 660.9 641.2 219.6 2225 194.8 212.3
496
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In contrast, forest was predicted to have the highest annual water yield of 436.9 mm, followed by
grassland (337.9 mm), cropland (332.6 mm) and urban area (325.8 mm). Also, the forest areas tend to
generate more runoff in response to the Livneh climate data as compared to the NCDC or PRISM climate
data. This is in accord with the variation of runoff for the whole UMRB in Table 6.

Among all land use types, the predicted ET amounts ranked from high to low as follows: forest
(684.3 mm) > urban arcas (641.2 mm) > cropland (620.0 mm) > grassland (596.2 mm). The highest
annual average water yield was produced by grassland (236.8 mm), as compared to 226.7 mm, 212.3 mm
and 141.6 mm for cropland, urban areas and forest, respectively. Overall, Table 7 shows that the
estimated impacts of land use on the hydrology varied considerably in response to the different climate
data sets and/or PET methods. For example, the highest and lowest annual average water yields were
estimated to be generated by forested arecas when simulated with PM and HG methods, respectively. With
HG method, it is indicated that cropland (dominated by corn and soybean) may increase streamflow
because of decreased evapotranspiration. The results of HG method are consistent with the work of Zhang

and Schilling (2006) that assessed the effect of land use on streamflow in Mississippi River.

5.3. PET methods analysis

Fig 5 shows the monthly variations of ET, PET and water yield predicted by the six uncalibrated
SWAT scenarios (Table 4), which again are averaged over the period of 1983 to 2005. The experimental
results show that the predicted annual distribution of ET and PET vary quite similarly in response to the
two PET methods. Both the ET and PET start rising after January in the winter period, peak in July, and
then descend during the remaining fall and winter months (Fig 5a-b). During the growing season (May to
September), the SWAT-predicted ET and PET amounts calculated with HG are considerably higher
versus the corresponding PM-based estimates. However, the gap between the HG- and PM-estimates is
much smaller during the non-growing season and become virtually negligible in winter. The predicted
water yield patterns are similar for the two PET methods, except that the peaks occur in June and the

ascents to and declines from the peaks are more gradual (Fig 5¢). The HG method generated smaller
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Figure 5. Monthly variations for (a) ET, (b) PET, and (c¢) Water Yield, based on the applications of the
uncalibrated HAWQS SWAT model during 1983-2005. Colors denote the PET method used: black are
Penman-Monteith method, red are Hargreaves method.
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Figure 6. Ratio of ET/PET along with precipitation based on the applications of the uncalibrated
HAWQS SWAT model from 1983 to 2005, on an (a)annual basis, and (b) growing season basis. Colors
denote the PET method used: black are Penman-Monteith method, red are Hargreaves method.

water yields as compared to the PM method, but the differences are greater during the growing season.
The ratio of ET/PET relative to corresponding precipitation from 1983 to 2005 are presented respectively
on an annual basis and growing season basis in Fig. 6. Fig. 6a reveals that the ET/PET ratios steadily
increased as precipitation increased. Consistently higher ratios of ET/PET were predicted with the HG
method across the full range ofprecipitation amounts. Ratios of ET/PET estimated with the PM

method range from 0.52 to 0.69 on annual scales while ratios of ET/PET predicted with the HG method
range from 0.53 to 0.74. This result underscores that the HG method results in a higher rainfall use
efficiency for the SWAT UMRB model. The ET/PET ratios reveal a similar tendency during the growing

season periods (Fig. 6b). The ET/PET ratios are predicted to be higher during the growing season due to
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the growth of the crops. In general, lower ET/PET ratios imply that crops and other vegetation are not
supplied with sufficient water needed for ET and growth, and thus may experience greater water stresses
(Chen et al., 2010).

5.4. Flow calibration and validation

Table 3 lists the allowable ranges and types of calibration adjustments that were performed for
the selected calibration parameters. Surface runoff and baseflow were calibrated simultaneously. The
primary calibration parameters adjusted for surface runoff were the curve numbers (CN2), which
represented different land conditions. Seven parameters related to groundwater (ALPHA BF,

GW _DELAY, GWQMN, GW_REVAP, RCHRG DP and REVAPMN) were adjusted to improve the
agreement between observed and simulated streamflows (Table 3). Five snow parameters (SFTMP,
SMTMP, SMFMX, SMFMN and TIMP) were also adjusted in this study (Table 3) to better reflect
snowmelt magnitude and hydrograph shapes.

The Last two columns in Table 5 represent the two different sets of calibrated parameter values
that were obtained for the respective Livneh-calibrated and PRISM-calibrated scenarios. The subset of
calibration parameters and allowable ranges were the same for the Livneh- and PRISM-based calibration
processes. Because the performance of the PRISM and Livneh data sets were similar within SWAT (Fig. 2
and Fig. 3), consistent adjustment trends occurred for the majority of the parameters. For example, values
of CN2, ALPHA BF and RCHRG_DP increased for both scenario calibrations relative to default values
in HAWQS. However, different trends in the final calibrated values resulted for a smaller subset of
parameters between the two calibration phases; e.g. GW_DELAY and REVAPMN, where the calibrated
values decreased for one calibration phase versus increased values for the other calibration phase (both
calibration processes resulted in positive values for both parameters). This does not mean those two sets
of parameters are contradictory. It should be noted that the goal of the SUFI-2 algorithm application is not

to find the so-called “best simulation™ in such a stochastic procedure but instead to find the 95PPU that
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brackets some or most of the observed data (Abbaspour, 2015). Hence, the calibrated values (Table 3)
do not represent the “best parameter” but rather the fitted value within a certain range.

Time series plots of measured versus simulated total streamflow on an aggregated monthly time
scale for the three calibration sites (Fig. 1) in response to the Livneh-calibrated scenario are presented in
Fig. 7. The solid blue triangles represent the measured monthly streamflow that was derived from daily
measured streamflows (USGS, 2019). The black solid line represents the simulated flow based on the
uncalibrated baseline SWAT model (using default HAWQS input parameters). The baseline SWAT
model generally tracked the seasonal variance pattern including the peaks and recessions, although there
is an obvious underestimation of the observed streamflows by the simulated streamflows for all three
calibration gauge sites (St. Paul, Clinton and Grafton). The red solid line represents the predicted monthly
streamflow after calibration was completed. The calibration process resulted in increased predicted
streamflows including peak streamflow estimates that are more consistent with observed peak
streamflows during the summer periods, although some peak streamflows were still underestimated
(especially for Grafton). Winter low streamflow periods were generally still underpredicted, especially
versus the observed streamflows for Clinton during November to February. Overall, the magnitude and
temporal variation of the simulated streamflows matched the measured streamflows, indicating a realistic
representation of the observed hydrographs by the model.

Table 7 presents the statistical results for comparison of the SWAT simulated monthly
streamflows versus corresponding observed streamflows for both the calibration and validation gauge
sites under Livneh-calibrated scenario. The results indicate satisfactory monthly NS values (>0.5 per the
criteria suggested by Moriasi et al., 2007; 2015) for all the 3 calibration gauges and most of the 10
validation gauge sites within the UMRB. However, NS values were <0.5 for the two UMRB subregions
that drain to Muscoda and Royalton (Table 7). Weaknesses were also reflected in the other statistics

calculated for these two regions. This may be due in part to an under-representation of the impact of
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Figure 7. Monthly flows at calibration gauge sites. Observed are measured flow data from USGS
stations, uncalibrated are flow outputs of uncalibrated HAWQS/SWAT model when using Livneh
dataset, and calibrated are simulated flow after calibrating.
natural lakes and/or wetlands in the two regions, which can attenuate peak streamflows and maintain
considerable storage of streamflows in low-flow periods. The percentages ofthese lake and wetland land
uses, which are not captured well by the current HAWQS wetlands parameterization, are the highest for
the Muscoda and Royalton drainage areas among the 10 different validation gauge sites.

The R2 statistics ranged from 0.54 to 0.81, which indicates that the majority ofthe simulated
streamflow trends replicated the counterpart observed streamflows well, considering the R2 criteria of 0.6

proposed by Moriasi et al. (2015). Almost all ofthe PBIAS results (Table 8) are acceptable per the

criterion of+25% deviation suggested by Moriasi (2007), except for Valley City (37.30%). Most of
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Table 8. Monthly streamflow statistics for calibration and validation gauge sites.

Gauge site Used for R? NSE PBIAS KGE
St.Paul Calibration 0.78 0.77 595 0.76
Clinton Calibration 0.76 0.58 7.07 0.70
Grafton Calibration 0.76 0.66 19.74 0.73
Augusta Validation 0.80 0.73 -8.36 0.62

St.Croix Falls Validation 0.54 0.54 -0.37 0.61
Durand Validation 0.66 0.60 13.22 0.75
Joslin Validation 0.75 0.70 6.64 0.84
Muscoda Validation 0.61 0.30 17.12 0.64
Royalton Validation 0.65 0.29 -20.31 0.58
Wapello Validation 0.82 0.77 3.11 0.66

Keosauqua Validation 0.68 0.62 -14.74 0.57
Jordan Validation 0.81 0.79 6.30 0.73

Valley City Validation 0.81 0.50 3730 0.52

the PBIAS results also meet the more stringent criteria of £15% proposed by Moriasi et al. (2015), with
the exception being Grafton (19.74%), Muscoda (17.12%), Royalton (-20.31%) and Valley City
(37.30%). The positive PBIAS that was calculated for the majority of gauge sites reveals that there was an
underestimation bias for the simulated streamflows. The KGE values for three calibration stations
were >0.7; 1.e., 0.76, 0.70 and 0.73 for St. Paul, Clinton and Grafton, respectively (Table 7). For the
validation locations, the lowest KGE value was 0.52 for Valley City while the highest KGE was 0.84 for
Joslin. All of the computed KGE statistics met the criteria of 0.6 suggested by Patil and Stieglitz (2015),
except the KGE values determined for Royalton (0.58), Keosauqua (0.57) and Valley City (0.52). Overall,
the validation statistics verify the calibration process and were even stronger for some gauge sites.

5.5. Comparison of Model performance evaluation

Fig. 8 summarizes all of the evaluated criteria values for six calibrated scenarios (Table 4) and the
ensemble mean at the 10 validation gauge sites (Fig. 1 and Table 5). Statistical values that are considered

“satisfactory” lie within the rose color background in Fig. 8a-d. Almost all of the R? values are acceptable
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Figure 8. The summary of 4 criteria values for 10 validation gauge sites. The rose background
indicates the “Satisfactory” performance range for each criterion. The rose background in 8c
depicts the £25% PBIAS criteria suggested by Moriasi et al. (2007) while the dashed lines in 8c
represent the £15% PBIAS criteria reported by Moriasi et al. (2015).

(>0.6) with the exception ofthe St. Croix Falls station in Wisconsin (Fig. 8a). For Augusta and Valley
City, the mean R2 values are > 0.8, which indicates a strong linear relationship between observed flow
and simulation flow. The NSE values determined for the sites of Augusta, Durand, Wapello, Keosauqua,
Jordan and Valley City are all satisfactory (>0.5) as shown in Fig. 8b. For Muscoda and Royalton, the
NSE values were found to be unacceptable for most ofthe scenarios, which indicates that additional
calibration is likely required for these two independent basins. The majority of PBIAS values are within

the “satisfactory” range (<t25%) as suggested by Moriasi et al. (2007) except for the gauge site located at
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Valley City, where streamflows are considerably underestimated resulting in a PBIAS > 40% (Fig. 8c¢).
However, Fig. 8c also shows that some of the computed PBIAS values for seven other gauge sites lie
outside of the more stringent criteria of £15% proposed by Moriasi et al. (2015). Fig. 8d reveals that most
of the KGE mean values for the six scenarios are > 0.6 except for St.Croix Falls, Royalton and Valley
City. There are also some large differences between scenarios in the KGE criterion for specific gauge
sites. For example, the KGE statistics range from 0.75 to 0.85 for the Livneh-calibrated, PRISM-Livneh
and NCDC-Livneh scenarios versus 0.5 to 0.6 for the PRISM-calibrated, Livneh-PRISM and NCDC-
PRISM scenarios at Joslin.

Most of the statistics for the PRISM-Livneh and NCDC-Livneh scenarios are very close to the
corresponding statistics found for the Livneh-calibrated scenario. This implies that the PRISM and NCDC
data are adaptable to the model that was calibrated with the Livneh data despite some minor differences in
the calculated statistics (Fig. 8). Likewise, application of the NCDC data and Livneh data also result in
similar effects for the calibrated model driven by PRISM data. The model performance was very strong at
some gauge sites in response to different climate datasets. For example, the statistics determined for the
Augusta and Wapello stations all lie in the satisfactory range. However, unacceptable results, according to
the criteria suggested by Moriasi et al. (2007; 2015) occurred for some stations for one or more evaluation
criteria; e.g., R* and NSE values at St.Croix Falls, NSE at Muscoda, and NSE and KGE at Royalton. This
may have been caused by the weakness of model adaptability to spatial variability at the subwatershed
level. It should also be noted that for some gauge sites, the model estimated streamflow value was even
more precise with the alternative climate datasets than with the driving dataset; i.¢., NSE and KGE values
for the PRISM-Livneh and NCDC-Livneh scenarios are both higher than the Livneh-calibrated scenario
at Augusta, Durand and Valley City. These differences in model performance that occurred between the
three climate datasets are likely due primarily to differences in the spatial distribution of precipitation and
temperature (Fig. 3). However, it is possible that accuracy in precipitation and temperature measurements

also effect the ability of SWAT to replicate UMRB streamflows; ¢.g., the previously described apparent
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errors in the NCDC temperature for the subset of subwatersheds in the western and central part of the
basin.

It can be concluded that the execution of the UMRB SWAT model resulted in different
performance levels across all of the calibrated experimental scenarios. However, it is difficult to compare
or rank the six different scenarios in a straight forward way. To overcome this issue and to provide
additional insights regarding the outcomes of statistical analysis, a Global Performance Indicator (GPI) is
introduced to assess the combined effects of the individual statistical indicators (Behar et al., 2015;
Despotovic et al., 2015; Jamil and Akhtar, 2017). The values of all the statistical indicator are scaled
between 0 and 1.

These scaled indicators are then subtracted from their corresponding median values respectively.
Finally, the obtained differences are summed up using appropriate weight factors. The GPI indicator i is

defined as
4
GPL, =Y a.(J,-y;) 3)
j=1

where y ;- 1s the median of scaled values of indicator j, J, is the scaled value of indicator j for scenario 7,

@, equals 1 for the indicator PBIAS, and equals -1 for other 3 indicators. As illustrated in Eq. (3), the

GPI in this study is a multiplication of four statistical factors: R?, NSE, PBIAS and KGE. A higher value
of GPI indicates improved accuracy of a scenario between the observed data and simulated data.

The GPI rankings of the six calibrated experimental scenarios at the 10 validation gauge sites are
reported in Table 8. For instance, the NCDC-PRISM scenario was ranked first at Augusta while the
Livneh-calibrated scenario ranked sixth. The best overall performing climate dataset based on the highest
consistent rank was PRISM, due to average rankings of the PRISM-Livneh scenario and PRISM-
calibrated scenarios of 2.2 and 2.8 (Table 8), respectively. In contrast, the NCDC-Livneh and NCDC-
PRISM scenarios were ranked 3.5 and 4.0, respectively. The Livneh data was ranked in the last positions

among the three climate datasets on average, with 4.1 for Livneh-calibrated and 4.4 for Livneh-PRISM.
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634 Table 8. Ranking of scenarios according to GPI at 10 validation gauge sites.

685
Scenario Augusta Stl.:Calrlos ix Durand  Joslin  Muscoda Royalton Wapello Keosauqua  Jordan Vgli};y f;leﬁ?fge

Livneh-calibrated 6 3 3 3 4 4 4 5 3 5 4.0
PRISM-Livneh 2 2 2 1 3 5 1 4 1 1 22
NCDC-Livneh 4 1 1 2 2 6 6 6 5 2 35
PRISM-calibrated 3 4 4 4 1 3 2 1 4 3 29
Livneh-PRISM 5 6 6 6 6 1 3 3 2 6 4.4
NCDC-PRISM 1 5 5 5 5 2 5 2 6 4 4.0
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This does not mean that the Livneh data can not be applied in the UMRB SWAT model but it may result
in a weaker performance than PRISM or NCDC in some subwatersheds. The Livneh data is also highly
ranked at some stations; i.€., it was ranked in the third place at St.Croix Falls, Joslin and Jordan for the
Livneh-calibrated scenario, and in first place at Royalton for the Livneh-PRISM scenario.

5.6. Reflections on results relative to previous UMRB SWAT studies

The NSE and R? calibration/validation statistical results computed between the SWAT-simulated
and measured streamflows in this study compare favorably with corresponding statistics reported in
previous studies that mostly ranged between 0.5 and 0.9 (Table 2). The primary exceptions were
validation gauge sites located in the northern part of the UMRB system (Joslin, Muscoda, Royalton and
St. Croix Falls) that manifested weaker statistics (Table 5 and Figure 8). This was likely due in part to the
more rigorous spatial validation approach used in this study in which the calibrated parameters (Table 3),
that were determined for 3 gauge sites (Figure 1 and Table 5), were then simulated for the 10 validation
sites (Figure 1 and Table 5) without any further adjustments. In addition, two other reasons may have
contributed to the weaker results within the HAWQS-based SWAT simulations of these northern
subregions: (1) the lack of accounting for ponds, wetlands and other non-stream water bodies (as
previously noted), which may have particularly affected the water balance results at these specific gauge
sites, and (2) inadequate representation of forest growth parameters and algorithms, which has been
documented as a weakness in previously reported SWAT applications (Yang et al., 2018; Yang and
Zhang, 2016) and would be of particular importance in these northern subregions because forest is a
dominant land use in the areas that drain to these gauge sites.

The most directly comparable previous study to the application reported here was the analysis
described by Qi et al. (2019), who compared the effects of the NCDC, NLDAS?2 and partial-NLDAS2
climate data sets on SWAT streamflow predictions for 11 gauge sites within the UMRB. They found that
all three climate data sets resulted in satisfactory replication of UMRB measured streamflows, but that the
NLDAS? data set produced the most accurate results relative to the other two data sets which was likely
due to the inclusion of measured solar radiation, relative humidity, and wind speed data (versus just
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measured precipitation, minimum temperature and maximum temperature data). Their findings are similar
to what was found in this study; i.e, all three climate data sets produced acceptable results but the PRISM
climate data set generated the most accurate SWAT-streamflow predictions compared to the NCDC and
Livneh climate data sets. Overall, the Qi et al. (2019) statistical results were generally stronger than the
comparative statistics computed in this study. This may have been partly due to the fact that Qi et al.
calibrated and validated SWAT streamflows using a split-time approach for each of the 11 gauge sites
included in their application. Qi et al. also accounted for subsurface tile drainage in UMRB subregions
that are characterized by low slope and poorly drained soils; tile drainage was not incorporated in the
HAWQS-based SWAT models developed for this study. Subsurface tile drains are primary sources of
discharge water and soluble nutrients (¢.g., nitrate) to stream networks in intensely tile areas as
documented in several previous studies that focused on UMRB subwatersheds (Jha et al., 2010; Beeson et
al., 2014; Panagopoulos et al., 2015; Teshager et al., 2016; Gassman et al., 2017; Jones et al., 2018;
Schilling et al., 2019).

In summary, the SWAT models that were developed relatively rapidly within HAWQS for this
study were successful in replicating UMRB streamflows for most of the gauge sites that were evaluated
within the calibration or spatial validation phases. However, future improvements are needed to better
represent specific aspects of the UMRB system including incorporation of non-stream water bodies and
subsurface tile drainage. These and other improvements can provide improved estimates of streamflow as
well as more accurate depiction of nutrient and other pollutant transport in the region.

6. Conclusions

The SWAT model was developed for the UMRB by using the on-line data and other resources
provided by HAWQS. The uncalibrated model was used to evaluate the impacts of three spatial climate
datasets (PRISM, NCDC and Livneh) and two PET estimation methods (HG and PM) on UMRB
hydrologic processes. A comparison of climate datasets showed that the Livneh data had the highest
precipitation and temperature levels during the growing season from May to September. The differences
in precipitation and temperature inputs between the three climate data sets results are a primary factor in

37



740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

the SWAT-estimated differences in streamflow, ET and other hydrological outputs. Regarding the impact
of the two PET methods, higher annual ET and PET values were calculated with HG method versus the
PM method for all three climate data sets. This is because the SWAT-predicted ET and PET amounts are
considerably higher with HG method versus the corresponding PM-based estimates during the growing
season.

The UMRB SWAT scenario performances were evaluated on a monthly time step according to four
statistics: coefficient of determination (R?), percent bias (PBIAS), Nash-Sutcliffe modeling efficiency
(NSE) and Kling-Gupta efficiency (KGE). Parallel processing and spatial validation were used in the
calibration and validation of such a large hydrologic system, which improved the execution speed greatly
and captured the spatial variation in runoff. The results of the calibration and validation phases showed
that the SWAT model based on the Livneh dataset and HG method replicated streamflows well at most of
the monitoring stations (three calibration points and ten validation points), indicating that the model could
adequately predict long-term water yield in UMRB. After replacing the Livneh dataset with PRISM and
NCDC, the model performances for validation points are still satisfactory on the whole despite some
differences that occurred per the computed statistics. This substitutability between weather datasets also
revealed that the calibrated SWAT model, which was based on the PRISM data, resulted in in mostly
satisfactory results. In addition, the Global Performance Indicator (GPI) was used so that all six of the
experimental scenarios that were based on a calibrated version of the model could be evaluated with a
single parameter and easily ranked. Based on the ranking of GPI, the PRISM data was found to be the
strongest climate data set among the three climate data sets.

However, uncertainties in the available climate data and variations in other spatial data need to be
further evaluated and improved for large-scale watershed modeling such as the UMRB system simulated
here. This is especially true for the NCDC climate data which exhibited unexpected anomalies in the
temperature data (Figure 3) that should be resolved in future versions of HAWQS. In addition,

incorporation of non-stream water bodies, subsurface tile drainage and other aspects of the UMRB
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system, that were not simulated in this study, are needed to more accurately simulate streamflows and
pollutant transport throughout the stream network.

Based on the results of this study, the HG method would be recommended to be applied in the
UMRB SWAT model because it resulted in a higher range of predicted ET/precipitation ratios which is
more consistent with the limited estimates reported for the region (Liu et al., 2013). It is also
recommended that the PRISM climate data be selected for UMRB SWAT applications built in HAWQS
based on the results obtained in this study. The results of this study also confirm that future users of
HAWQS should conduct testing of any SWAT models built in the system, regardless of the watershed

that is being analyzed.
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