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Abstract—Cryptographic protocols are often implemented at
upper layers of communication networks, while error-correcting
codes are employed at the physical layer. In this paper, we con-
sider utilizing readily-available physical layer functions, such as
encoders and decoders, together with shared keys to provide a
threshold-type security scheme. To this end, the effect of phys-
ical layer communication is abstracted out and the channels
between the legitimate parties, Alice and Bob, and the eaves-
dropper Eve are assumed to be noiseless. We introduce a model
for threshold-secure coding, where Alice and Bob communicate
using a shared key in such a way that Eve does not get any
information, in an information-theoretic sense, about the key
as well as about any subset of the input symbols of size up to
a certain threshold. Then, a framework is provided for con-
structing threshold-secure codes form linear block codes while
characterizing the requirements to satisfy the reliability and
security conditions. Moreover, we propose a threshold-secure
coding scheme, based on Reed-Muller (RM) codes, that meets
security and reliability conditions. Furthermore, it is shown
that the encoder and the decoder of the scheme can be imple-
mented efficiently with quasi-linear time complexity. In partic-
ular, a low-complexity successive cancellation decoder is shown
for the RM-based scheme. Also, the scheme is flexible and can
be adapted given any key length.

I. INTRODUCTION

Conventional cryptosystems are often designed to be
computationally secure by relying on unproven assumptions
of hardness of mathematical problems. Information-theoretic
security methods provide an alternative approach by con-
structing codes for keyless secure communication, as in
wiretap channels introduced in the seminal work of Wyner
[1]. Since then, various types of wiretap channels have
been considered in the literature [2], [3], and using different
coding schemes as in [4], [5].

Several approaches to provide security in the physical
layer assuming shared secret keys have been considered
in the literature. For instance, a variation of the wiretap
channel model, where a shared secret key is assumed to be
constantly generated by Alice and Bob, is studied in [6].
Another approach is to design an encryption scheme that
utilizes properties of certain modulation schemes such as
orthogonal frequency-division multiplexing (OFDM) to en-
sure security, see, e.g., [7]–[9]. Other related works include
using channel reciprocity properties [10], classical stream
ciphers at the physical layer [11], introducing artificial noise
[12], multiple-input and multiple-output (MIMO) systems
[13], public-key based McEliece cryptosystem [14], and us-
ing error-correcting codes for encryption [15], [16]. These

prior works either consider noisy channels as in the wire-
tap channel model, or utilize cryptographic primitives being
evaluated using cryptographic measures rather than informa-
tion theoretical measures to ensure security. Another related
line of research is secure network coding, where a wiretap-
per has access to a certain number of edges in a network
over which a source wishes to communicate messages se-
curely. Several works have considered information-theoretic
security measures while designing network codes, see e.g.,
[17], [18].

Utilizing error-correcting codes to provide security in
the physical layer enables sharing hardware resources
between reliability and security schemes in low-cost de-
vices. Consequently, this leads to a promising approach
for low-complexity applications, such as Internet-of-Things
(IoT) networks. In this paper, we consider using block
codes to provide a threshold-type security scheme. A fixed
key is assumed to be securely shared between the legiti-
mate parties Alice and Bob a priori. Alice communicates to
Bob over a noiseless channel and her transmissions reach
an eavesdropper Eve, also through a noiseless channel, as
shown in Figure 1. The security condition in this model is
described as follows. Alice encodes her message using the
shared key while ensuring that Eve does not obtain any in-
formation about the key as well as about any subset of
the input message symbols of size up to a certain thresh-
old t. Such condition is referred to as t-threshold security
condition. The considered threshold-type security becomes
relevant in applications where the knowledge of most, if
not all, of the individual data symbols is needed in or-
der to deduce meaningful knowledge about the content of
the message. Examples of this type of data includes mea-
surement numbers, network commands, address of data in
a dataset, as well as barcodes or data in any application
where the data symbols are already scrambled, hashed, or
masked prior to being encoded. Furthermore, ensuring the
security of the key in the model guarantees that it can be,
theoretically, used infinitely many times without leaking any
information about it to Eve.

In the setup considered in this paper, we completely devi-
ate from physical-layer security protocols by assuming noise-
less channels. However, we still describe the schemes as a
communication setup in physical layer with the aim of, even-
tually, integrating such schemes with physical layer encod-
ing and decoding. To this end, a general scheme using lin-
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Figure 1. System setup for the proposed coding scheme.

ear block codes for the t-threshold-secure coding scheme
is shown. Furthermore, we describe a specific construction
based on RM codes [19] that meets the threshold security
conditions, and show low-complexity quasi-linear encoder
and decoder to reliably retrieve the message using the shared
key.

The rest of the paper is organized as follows. In Section II
we describe our setup and formulate the reliability and secu-
rity conditions based on information theoretic measures. The
proposed coding scheme based on linear codes is described
in detail and its security and reliability are evaluated in Sec-
tion III. Then we describe an explicit coding scheme based
on RM codes together with an encoder and a successive-
cancellation decoder in Section IV. Finally, we conclude our
work in Section V, and discuss some directions for future
work.

II. SYSTEM MODEL

A system model is considered in which Alice wishes to
securely communicate with Bob, both are legitimate parties,
through a noiseless channel. The eavesdropper, namely Eve,
is tapping into that channel and observes all the bits that are
transmitted over it as shown in Figure 1. Alice and Bob share
a common key sequence k of length k, that can be used for
encoding and decoding of message m of length m. Elements
of both the key and the message symbols are from alphabet
of size q, where q is a prime power. Some known permuta-
tion π(.) of Alice’s message m and key k is fed as the input
to the encoder denoted as u = π(k,m) of length n = m+ k
to produce a codeword c of length m. The distributions of
elements in m, and k are assumed to be independent and
uniform. Alice then transmits the codeword c to Bob over
the noiseless channel. Bob receives the codeword and de-
codes it using the key k to retrieve m. Eve observes c and
tries to extract information about the message elements in
m as well as the key sequence k. In this setup, Alice and
Bob agree on the encoder and the decoder a priori, which
are also disclosed to Eve.

In this model, the security condition is that although parts
of input u are disclosed to Eve, from information-theoretic
point of view, no information about any subset of size up
to a certain parameter t of the input symbols will be leaked

to Eve. This is in contrast with the traditional measure of
information-theoretic security where one wants the mutual
information between the entire message block and Eve’s ob-
servation to be almost zero. In a sense, we consider a sub-
block-wise measure of information-theoretic security. We aim
at designing encoder and a decoder for a noiseless channel
that utilizes a shared key k to encode a message m such that
the following conditions are met:

1) Reliability: Bob is able to decode the message using the
key with probability one, i.e.,

H(m|c,k) = 0. (1)

2) Key security: the codeword c does not reveal any infor-
mation about the key k, i.e.,

I(k; c) = 0. (2)

3) t-threshold security: for any v ⊆ {u1,u2,..., un} with
|v| = t, we have

H(v|c) = H(v), (3)

where t is a design parameter specified later.
Remark 1. Note that the secrecy capacity of the model in
Figure 1, even with a relaxed security condition of I(m, c) ≈
0, is zero [1]. In a related work [6], a source of common
randomness is required to generate a key with some rate
Rk to ensure non-zero secrecy capacity. However, here, a
key of a fixed length is used repeatedly. In a sense, this im-
plies that the key rate is zero as the message length grows
large. In addition to that, this model aims to look at sub-
blocks of the message rather than the entire message. It is
worth noting that this model subsumes some well-known se-
curity schemes. For example, the perfectly secure one-time-
pad (OTP) encryption is a code with threshold t = m, hence,
we have H(m|c) = H(m). Another keyless type of work
is known as unconditionally-secure all-or-nothing transform
(AONT) [20]. Some works study the case where the eaves-
dropper observes a vector z whose elements are a subset of
size m− t of the set of elements of c, where c is of length
m. The security condition translates to H(v|z) = H(v) for
all v of size t as in [21].

A formal definition of the threshold security parameter t
follows

Definition 1: The threshold security parameter t for an
encoder whose input is u and output is c is defined as

t=max({|v| | ∀v⊆{u1,u2,...,un} s.t. H(v|c)=H(v)}).
(4)

Now, we are ready to define a code that is t-threshold secure
code.

Definition 2: We say a code is t-threshold secure if it meets
the reliability and security conditions, where t is as defined
in Definition 1.



III. CODING SCHEMES

With a slight abuse of terminology, we refer to a scheme
meeting the reliability and security conditions, as described
in Section II as a coding scheme. When constructing the cod-
ing scheme, we aim to design an encoder and a decoder as
well as specifying the code. For an input u = π(k,m) the
encoder produces a codeword c as follows

c = uW = π(k,m)W (5)

where W is an n×m matrix with n = m+ k. Such matrix
is the transpose of a generator matrix G of a linear block
code.

Consider a [n,m, dmin]q linear code with generator ma-
trix G, i.e., a linear code whose elements are from alphabet
of size q, of rate R = m/n, and minimum distance dmin. In
our coding scheme, we require that n = m+ k because the
channel is noiseless, which implies that there is no need for
redundancy symbols. We aim at using G to produce a matrix
W such that the reliability and security conditions are met.
One can assume that the length of the key is less than the
length of the message; otherwise, if k ⩾ m, then the straight-
forward perfectly-secure one-time pad meets the conditions
for t = m. Let us denote the indices of the rows W that are
dedicated for the message as A ⊆ [m+k]

def
= {1, 2, ...,m+k},

and the rows dedicated for the the key k as Ac = [m+k]\A.
The codeword c is then expressed as follows:

c = mWA + kWAc . (6)

The choice of π(.) which corresponds to the choice of A and
Ac is critical in ensuring security and reliability conditions.
Hence, we have the following definition.

Definition 3: A code, as described above, is called proper
if its matrix satisfies the following requirements:

1) The resulting submatrix WA is full row rank, i.e.,
rank(WA) = m.

2) The resulting submatrix WAc is also full row rank, i.e.,
rank(WAc) = k.

An example of codes that are not proper is the turbo code
[22] whose generator matrix can be written in the form G =
[Im A1 A2] where Im is the identity matrix whose columns
are dedicated to the message while the rest is dedicated for
the key. It is known that A2 is some row-permuted version
of A1, where such permutation may not necessarily result in
[A1 A2]

T being a full row-rank matrix, hence it shows that
such code is not proper. A code that is not proper will result
in a lower equivocation rate for Eve about the message as
will be evident throughout this section.

Next, we show that if the code is proper, then it meets the
reliability condition, as specified in (1), and the key security
conditions, as specified in (2) and (3). The following lemma
shows that the reliability condition is satisfied:

Lemma 1: Assuming the code is proper, as defined in
Definition 3, Bob can recover the message with probability

one under maximum a posteriori (MAP) decoding. In other
words,

H(m|c,k) = 0. (7)

Proof: We use (6) to show that if Bob has c and k, and
since WA is full rank, then Bob can subtract kWAc from c
then find m from WA, which has a unique solution.

In the next theorem, we show that a proper code meets
the key security condition, as specified in (2). Note that this
condition is crucial as even a very small leakage of the key k
can lead to the entire key being revealed to Eve, after using
the scheme several times, thereby compromising the security
of the message.

Theorem 2: Assuming the code is proper, as defined in
Definition 3, the codeword c, with elements from alphabet
of size q, leaks no information about the key k, i.e.,

I(k; c) = 0 (8)

Proof: The proof is by observing the following set of
equalities:

I(k; c) = H(c)−H(c|k) (9)
= m log2(q)−H(mWA + kWAc |k) (10)
= m log2(q)−H(mWA) (11)
= log2(q)(m− rank(WA)) (12)
= 0, (13)

where (10) holds by (6) and the uniformity of the key
and message symbols, (11) holds because m and k are
independent, (12) is by noting that elements of m are uni-
formly distributed and independent, and (13) holds because
rank(WA) = m since the encoder is proper, as mentioned
in Definition 3.

The following well-known lemma is instrumental in char-
acterizing the threshold security of the linear-code-based
scheme:

Lemma 3: [23] For a [n,m, dmin]q linear code with gen-
erator matrix G, any submatrix of G of size m × (n − s)
obtained by deleting some columns indexed by D ⊆ [n] such
that |D| = s, where s = dmin − 1, has full row rank, i.e.,

rank(GDc) = m. (14)

Proof: This is a direct consequence of the fact that de-
coding is successful for any number of erasures up to s =
dmin − 1.

Theorem 4: A code generated by a matrix W, which is the
transpose of a generator matrix G of a [n,m, dmin]q linear
code, satisfies

H(v|c) = H(v), (15)

for any v ⊆ {u1, u2, ..., un} such that |v| = t = dmin − 1.



Proof: Let us denote v with elements of u indexed by
B = {i1, i2, ..., it} ⊆ [n], and ũ with elements of u indexed
by Bc = [n] \ B. Then we have the following:

I(v; c) = H(c)−H(c|v) (16)
= m log2(q)−H(ũWBc + vWB|v) (17)
= m log2(q)−H(ũWBc) (18)
= log2(q)(m− rank(WBc)) (19)
= 0, (20)

where (17) follows because of uniformity of codewords and
expansion of random variables, (18) is due to the indepen-
dence of v and ũ, (19) holds due to the uniformity of ũ, and
(20) holds due to the property of the generator matrix of the
linear code as mentioned in Lemma 3 if t = dmin−1. Since
the mutual information is zero, then it implies that the t-
threshold security criteria is met for parameter t = dmin−1,
i.e.,

H(v|c) = H(v), (21)

for any v such that |v| = t = dmin − 1.
Next, we need to show that t = dmin − 1 is the maxi-

mum for which the security condition holds. To prove this,
we need to show this condition does not hold for some v if
t > dmin − 1. Consider a codeword generated by the linear
code that has the minimum Hamming weight with non-zero
elements at indices denoted by F = {i1, i2, ..., idmin

}. Then
we have the following:

H(ui1 , ..., uidmin
|c) = H(ui1 , ..., uidmin−1

|c)
+H(uidmin

|c, ui1 , ..., uidmin−1
) (22)

= H(ui1 , ..., uidmin−1
|c) (23)

̸= H(ui1 , ..., uidmin
), (24)

where (22) follows from the chain rule of entropy, and (23)
follows because there exists some linear combination of
{c1, c2, ..., cm}, which are elements of the vector c, such that
the eavesdropper can find

∑︁m
i=1 λici =

∑︁
j∈F uj . Hence

the second term becomes zero, since there is no uncertainty
about uidmin

given c and {ui1 , ..., uidmin−1
}. Therefore, as

in (24), the relationship does not hold for dmin and we
conclude that t = dmin − 1.

Corollary 5: For any t-threshold secure coding scheme,
constructed from linear block codes, of message length m,
key length k, and code length n = m+ k, we have t ⩽ k.

Proof: The proof follows by Theorem 4 and Singleton
bound.

Next, we characterize Eve’s equivocation about the entire
message m after observing the codeword as follows

Corollary 6: If the code is proper, then the passive eaves-
dropper Eve’s equivocation about the entire encoded message
m after observing the codeword is equal to the entropy of
the key, i.e.,

H(m|c) = k log2(q). (25)

Proof: We have the following

H(m|c) = H(m)−H(c) +H(c|m) (26)
=H(kWAc + mWA|m) (27)
= H(kWAc) (28)
= k log2(q) (29)

where (27) follows due to the uniformity of messages and
codewords, and expansion of random vectors, (28) holds be-
cause of independence of m and k, and (29) holds because
the matrix WAc is full row rank, since the code is proper.
This results in probability of successfully retrieving the en-
tire message block by Eve of q−k.

Now that we have shown the properties that the proposed
coding scheme satisfies, we need to show that such coding
schemes exist, while maximizing the threshold t as stated in
Corollary 5, provided that q is large enough. To prove the
existence of such codes, we utilize maximum distance sepa-
rable (MDS) codes to arrive at the following theorem.

Theorem 7: For any message length m and key length k,
there exists a proper code with threshold t = k, provided
that the alphabet size q ⩾ m+ k + 1.

Proof: To prove the theorem, we give an example of
a code that is shown to be proper with t = k. We utilize
Reed-Solomon (RS) codes, which are a well-known family
of codes that are maximum distance separable (MDS) codes,
i.e., dmin = n−m+ 1 = k + 1 [23]. For any [n,m, dmin]q
RS code, all we need to show is that the matrix W which is
the transpose of the generator matrix G of the RS code can
be used to construct a proper code. One of the properties
of MDS codes is that every set of m columns of the ma-
trix G are linearly independent [23, Proposition 11.4]. Rows
of W correspond to columns of G, hence, any choice of m
columns of G will have rank m, and the remaining k < m
columns of G will also have rank k. Therefore, The code
generated by W is proper, with threshold t = k.

Remark 2. Randomization of the codeword corresponding
to a specific message is possible by shortening the message
m and adding some random symbols s, and feeding the new
vector m̄ = π1(m, s) as the message to the encoder.

IV. LOW-COMPLEXITY CONSTRUCTION

In this section, we focus on designing codes to meet
the reliability and security conditions while providing a
linear/quasi-linear complexity for encoding and decoding.
To this end, we consider Reed-Muller (RM) codes due to
their recursive construction and low-complexity decoder.
In addition, since they are designed with the objective of
maximizing the minimum distance, given the particular re-
cursive structure, we can achieve high threshold t for the
t-threshold security.

A. Encoder

First, we briefly describe Reed-Muller codes. A RM(r,s)
is a [2s,

∑︁r
i=0

(︁
s
i

)︁
, 2s−r]2 linear code whose generator ma-



trix G can be generated by keeping the rows with the Ham-
ming weight of at least 2s−r from the matrix FT = (F⊗s

2 )T ,
where ⊗ denotes the Kronecker product, T is the transpose
operator, and F2 is the following kernel matrix

F2 =

[︃
1 0
1 1

]︃
. (30)

It is well-known that Reed-Muller codes are built recur-
sively using different constructions [23]. Though there are
different ways of constructing such generator matrix, the
above description helps us choose the message and bit in-
dices, which is the next step towards designing a code that
is proper. Due to the recursive structure of F, it is straight-
forward to see that indices of rows with lowest weight from
F correspond to indices with columns with highest column
weight from F and vice versa. When building the matrix G
from FT we choose the set of indices of the rows deleted
as Ac to denote the rows of W dedicated for the key, while
the rest are used as the message indices A. Hence, we have
the following proposition

Proposition 8: The choice of the sets A, and Ac as men-
tioned above results in a proper code.

Proof: To prove this proposition, it suffices to show
that WA and WAc are both full row rank.

First, we start by showing WA is full row rank. This can
be easily seen as Ac denotes deleted columns and rows ded-
icated for the key from F. For a triangular matrix, the sub-
matrix generated by removing any columns and rows with
the same indices results in a triangular matrix. Hence, W
contains m columns indexed by A, and after removing the
rows with the indices Ac, the resulting matrix is triangular
and full row rank. Hence, the first condition is satisfied, i.e.,
the matrix WA is full row rank.

As for the matrix WAc being full row rank, we will show
it using induction. But first, we require k ⩽ m as we men-
tioned before. We re-write the parameters k =

∑︁r
i=0

(︁
s
i

)︁
,

and m =
∑︁s

i=r+1

(︁
s
i

)︁
. This also leads to having, at most,

r =
⌊︁
s−1
2

⌋︁
. From the 2s × 2s matrix F, let us have a sub-

matrix WAc = F(s, r) which contains the
∑︁r

i=0

(︁
s
i

)︁
rows

dedicated for the key from F with same number of lowest-
weight columns removed. Let us also have another matrix
F′(s, r) which contains the

∑︁r
i=0

(︁
s
i

)︁
rows dedicated for the

key from F with only
∑︁r−1

i=0

(︁
s
i

)︁
lowest weight columns re-

moved. Due to the structured construction of the matrix F,
it can be easily seen that we can express F(s, r) as follows:

F(s, r) =
[︃

F(s− 1, r − 1) 0
F′(s− 1, r) F(s− 1, r)

]︃
(31)

where the row rank of this matrix is the sum of the row rank
of [F(s− 1, r− 1) 0] and [F′(s− 1, r) F(s− 1, r)] due to
their intersection being the zero vector, which can be directly
seen because of F(s− 1, r). Next, we prove that the matrix
F(s, r) is full row rank.

Now, we now state our claim: the matrix F(s, r) is full
row rank for s ⩾ 2, i.e., rank(F(s, r)) =

∑︁r
i=0

(︁
s
i

)︁
.

Step 1: We show the base cases hold for s = 2 and r =
0, then for s = 3 and r = 1. For s = 2 and r = 0, the
rank of the matrix F(2, 0) is 1. As for s = 3 and r = 1 the
rank of the matrix F(3, 1) is 4. Hence the two base cases are
validated.

Step 2: We state our induction hypothesis. Let us assume
that matrix F(s, r) has full row rank for s ⩾ 2.

Step 3: First, for odd s with corresponding parameter r,
we have the following matrix:

F(s+ 1, r) =

[︃
F(s, r − 1) 0

F′(s, r) F(s, r).

]︃
(32)

We need to show that rank(F(s + 1, r)) =
∑︁r

i=0

(︁
s+1
i

)︁
.

First, let us start with F(s, r), which is full row rank based
on our induction hypothesis, i.e., rank(F(s, r)) =

∑︁r
i=0

(︁
s
i

)︁
.

As for F(s, r − 1), which contains a subset of the rows in
F(s, r) with additional columns, it is also full row rank be-
cause F(s, r) is full row rank according to our induction
hypothesis. Hence, we have rank(F(s, r − 1)) =

∑︁r−1
i=0

(︁
s
i

)︁
.

Therefore,

rank(F(s+ 1, r)) = rank(F(s, r − 1))

+ rank(F(s, r)) (33)

=

r−1∑︂
i=0

(︃
s

i

)︃
+

r∑︂
i=0

(︃
s

i

)︃
(34)

=

r∑︂
i=0

(︃
s+ 1

i

)︃
(35)

which is equal to the number of rows in F(s+ 1, r). Hence
it is full row rank.

As for even s with corresponding parameter r, we need
to show the following matrix is full row rank

F(s+ 1, r + 1) =

[︃
F(s, r) 0

F′(s, r + 1) F(s, r + 1)

]︃
(36)

First, we have rank(F(s, r)) =
∑︁r

i=0

(︁
s
i

)︁
which holds

based on our induction hypothesis. As for rank(F′(s, r+1)),
we can see that the matrix F′(s, r + 1) has

∑︁r
i=0

(︁
s
i

)︁
rows

that are in F(s, r), however, when considering such rows in
the matrices [F(s, r) 0] and [F′(s, r+ 1) F(s, r+ 1)] such
rows are independent from all other rows in [F(s, r) 0] due
to the intersection of the subspaces spanned by rows of the
two matrices being the zero vector. In addition to that, there
are

(︁
s

r+1

)︁
additional rows in F′(s, r+1) that are linearly in-

dependent from the remaining rows due to the structure of
the zero blocks in such matrix which is of similar fashion



to (31). We can find the rank of F(s+ 1, r + 1) as follows

rank(F(s+ 1, r + 1)) = rank(F(s, r))
+ rank(F′(s, r + 1)) (37)

=

r∑︂
i=0

(︃
s

i

)︃
+

r∑︂
i=0

(︃
s

i

)︃
+

(︃
s

r + 1

)︃
(38)

=

r∑︂
i=0

(︃
s

i

)︃
+

r+1∑︂
i=0

(︃
s

i

)︃
(39)

=

r+1∑︂
i=0

(︃
s+ 1

i

)︃
. (40)

Hence, F(s+1, r+1) is full row rank, and the statement is
verified by induction for the maximum length key, i.e., r =⌊︁
s−1
2

⌋︁
. For shorter keys, it is straightforward to see that for

any r′ < r, a matrix F(s, r′) whose rows are a subset of the
F(s, r) rows with additional columns appended at different
locations, such matrix is still full row rank.

Therefore, such choice of rows dedicated for the key and
the message bits results in a proper code.

It is worth noting that such construction of the matrix W
is closely related to the construction of the generator matrix
for polar codes [24]. For polar codes, choice of rows to be
removed from the matrix F is done according to some param-
eter that is calculated recursively. As for Reed-Muller codes
as described, the Hamming weight of rows can be calculated
in a similar recursive manner as polar code parameters due
to the structure of the matrix. This approach has been shown
to be done in quasi-linear time complexity [24].

B. Decoder

The decoder used to decode the message utilizing the
shared key is known as the successive-cancellation decoder.
Again, as Reed-Muller codes are closely related to the polar
codes, a decoder similar to the one described in [24] is used
here. For the above coding scheme, we describe the decoder
to retrieve u = π(k,m), which can then be used to re-
trieve the message bits. The decoder described in Algorithm
1 takes the key bits k the codeword z = zn1 = π(ek, c),
indices of the key bits Ac and a recursion index i as in-
puts, and outputs the vector u = [u1, u2, ..., un] = π(k,m)
from which the message can be retrieved m = uA, and
hn
1 = uF⊗ log2(n).
The following claim verifies that the decoder success-

fully outputs the message bits with probability 1 for any
key length.

Claim 9: The coding construction described can be
successfully decoded using the aforementioned successive-
cancellation decoder for any key length k.

Proof: First, let us denote the input to the succes-
sive cancellation decoder as the codeword including the

Algorithm 1 Successive-cancellation decoder
1: Initialization: i = 1.
2: Input: k, zn

1 = π(ek, c), Ac, i.
3: Output: hn

1 , u = [u1, u2, ...un].
4: if n = 2 then
5: if z2 = e then
6: ui = ki
7: else
8: ui = z2
9: end if

10: if z1 = e then
11: ui−1 = ki−1

12: else
13: ui−1 = ui ⊕ z1
14: end if
15: hn

1 = [ui−1 ⊕ ui, ui]
16: else
17: h′ ← Decoder(k2, znn/2+1,A

c
2, 2i)

18: z̄n/21 = zn/21 ⊕ h′

19: h′′ ← Decoder(k1, z̄n/21 ,Ac
1, 2i− 1)

20: hn
1 = [h′′ ⊕ h′,h′]

21: end if
22: return hn

1

erasures zn1 = π(ek, c) = [zn/21 , znn/2+1] where c is the
codeword, ek is an erasure vector of length k at locations
denoted by Ac, which as mentioned before corresponds
to the location of the key bits at the encoder. The vector
z is divided into two halves: zn/21 = [z1, z2, ..., zn/2] and
znn/2+1 = [zn/2+1, zn/2+2, ..., zn] to be decoded recursively.
We use induction hypothesis to show such claim as follows:

Step 1: For our base step, let us have n = 21. We need
to show decoding is successful for any k. We start with k =
0, i.e., no erasures at the input of the decoder. We build a
binary tree where the right leaf is z2 = c2 = u2, then we
find u1 = z1 ⊕ z2. Now, we show it succeeds for k = 1 for
both possible cases for Ac. First, let us consider that z1 = e
and z2 = c1, which corresponds to u1 = k1, and u2 = m1.
In this case, the decoder outputs u1 = k1 and u2 = z2. For
the other case where z1 = c1 and z2 = e, which corresponds
to u1 = m1, and u2 = k1. The decoder first corrects the
erasure, assigning u2 = k1, then computes u1 = m1 = u2⊕
z1 = k1 ⊕ z1. Finally, we show it succeeds for k = 2 where
both z1 and z2 are erased, then u1 = k1 and u2 = k2 and
the decoder is successful.

Step 2: Now, we state our induction hypothesis. Let us
assume that our statement in the claim is correct for n = 2l

and for any k erasures and k key bits at locations Ac , i.e.,
the decoder is successful for any k erasures and k key bits.

Step 3: We now show that the claim is true for n = 2l+1

and any k = i+ j. Let us split the key indices Ac into two
sets, Ac

1 and Ac
2, with sizes |Ac

1| = i and |Ac
2| = j. The set



Ac
1 contains the indices of the key bits k1 in zn/2

1 , and Ac
2

contains the indices of the key bits k2 in zn
n/2+1. First, we

start with the right leaf of the binary tree, i.e., znn/2+1, which
has j erasures and j known key bits located at Ac

2. The de-
coder is then run on this leaf, which has an input of length
n′ = 2l and k = j erasures and key bits k2 located at Ac

2.
The decoder succeeds according to our induction hypothesis.
The right leaf then passes un

n/2+1G⊗l⊕ zn/21 = h′⊕ zn/21 =

z̄n/21 to the left leaf. The decoder is then run on z̄n/21 , which
is of length n′ = 2l and has i erasures and i known key
bits k1 both are located at Ac

1. The decoder is successful on
this leaf based on our induction hypothesis. Hence, the de-
coder is successful for n = 2l+1. Therefore, by induction,
the claim is proven.

V. CONCLUSION

In this work, we propose a model for threshold-secure
coding with a shared key such that specific conditions for
reliability and security based on information-theoretic mea-
sures are met. The specification of such model includes
a threshold parameter which is to be designed based on
the application for such coding scheme. In addition to
that, a novel method utilizing error-correcting linear codes
for constructing threshold-secure coding schemes is intro-
duced, where the threshold parameter t is shown to be
directly related to the minimum distance of the linear code.
Furthermore, a low-complexity coding scheme based on
Reed-Muller linear codes was described. Its encoder is
generated recursively and has been shown to satisfy the
conditions for a proper code. The successive-cancellation
decoder was also described, and its success has also been
shown.

A possible directions for future work is to design cod-
ing schemes based on punctured Reed-Muller codes to al-
low for more flexible rates. Moreover, studying t-threshold-
secure coding schemes in combination with noisy physical
layer channels in order to design protocols that can correct
errors of physical layer while providing threshold security is
another future direction.
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