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Abstract We show that an old conjecture of A. A. Suslin characterizing the
image of a Hurewicz map from Quillen K-theory in degree n to Milnor K-
theory in degree n admits an interpretation in terms of unstable A1-homotopy
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to 2 or 3. We do this by linking the relevant unstable A1-homotopy sheaf of
the general linear group to the stable A1-homotopy of motivic spheres.
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1 Introduction

The goal of this paper is to explore how concrete computations in A1-homotopy
theory of ostensibly geometric origin have bearing on torsion phenomena in
algebraic K-theory. More precisely, we investigate an old conjecture of Suslin,
the formulation of which we now recall. Suppose F is an infinite field. By
definition of the plus construction, for any integer n ≥ 1, the Hurewicz map
for the stable general linear group induces a morphism

K Q
n (F) := πn(BGL(F)+) −→ Hn(BGL(F)+)

∼
−→ Hn(BGL(F));

here and henceforth, homology is taken with integer coefficients, which are
suppressed from the notation. Suslin’s stabilization theorem [34, Theorem 3.4]
asserts:
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Motivic spheres and the image of the Suslin–Hurewicz map 41

(i) the stabilization maps BGLn(F) → BGLn+1(F) induce isomorphisms,
functorially in F , of the form Hi (BGLn(F)) −→ Hi (BGLn+1(F))

whenever i ≤ n; in particular, there is an induced isomorphism
Hn(BGLn(F)) → Hn(BGL(F));

(ii) the cokernel of the stabilization map Hn(BGLn−1(F)) → Hn(BGLn(F))

coincides, functorially in F , with K M
n (F),

the Milnor K-theory of the field F . Putting all these facts together, one obtains
a morphism

K Q
n (F) −→ Hn(BGL(F)) −→ Hn(BGLn(F)) −→ K M

n (F),

which is functorial in F . We will refer to this composite map as the Suslin–
Hurewicz map.

There is a natural graded ring homomorphism K M
∗ (F) → K Q

∗ (F) induced
by the identification K M

1 (F) = K Q
1 (F) and product maps in K-theory. Suslin

showed that the composite of the natural homomorphism and the Suslin–
Hurewicz homomorphism

K M
n (F) −→ K Q

n (F) −→ K M
n (F)

coincides with multiplication by (−1)n(n−1)!. It follows that the image of the
Suslin–Hurewicz map K Q

n (F) → K M
n (F) contains (n − 1)!K M

n (F). Suslin
went on to make the following conjecture.

Conjecture 1 (see [34, p. 370, after Corollary 4.4]) For any infinite field F,
the image of the Suslin–Hurewicz map K Q

n (F) → K M
n (F) coincides with

(n − 1)!K M
n (F).

Suslin refers to this conjecture as “very delicate”. As evidence for this
assessment, he analyzed the first interesting case of this conjecture, i.e., n = 3.
In that case, he showed the conjecture was equivalent to the degree 3 case of
the Milnor conjecture on quadratic forms, i.e., that the map K M

3 (F)/2 →

I 3(F)/I 4(F) is an isomorphism [34, Proposition 4.5].
Suslin’s conjecture was soon shown to hold in degree 3. Indeed, Merkurjev

and Suslin established it by careful analysis of indecomposable K3 of a field
(see [24, Proof of Proposition 11.10]). Independently, Rost established the
Milnor conjecture on quadratic forms in degree 3, building on work of Arason
[7]; his work remains unpublished [30], but see [15] for more detailed refer-
ences and some history. In conjunction with the equivalence that Suslin proved
(mentioned in the previous paragraph), Rost’s work presents another affirma-
tion of Suslin’s conjecture in degree 3. Nowadays, there are many proofs of
the Milnor conjecture on quadratic forms in all degrees, beginning with the
work of Orlov–Vishik–Voevodsky [27] (see also [21,29]).
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Remark 2 Merkurjev explained that Suslin also analyzed the n = 4 case of the
conjecture, but never published anything. Various results in K-theory imply
a positive answer to Suslin’s question for certain classes of fields (e.g., alge-
braically closed fields) but, excepting the degree 3 case, as far as we are aware,
there are no general results about Suslin’s conjecture.

The construction of the Suslin–Hurewicz map was generalized to local rings
with infinite residue fields by Nesterenko–Suslin [26, §4] and Guin [12, §4].
Moreover, the image of this more general map has the same properties as dis-
cussed above. While Suslin initially stated his conjecture only for infinite fields,
in light of the subsequent generalizations of the Suslin–Hurewicz homomor-
phism, it seems reasonable to replace the infinite field F by a local ring with
infinite residue field. In support of this generalization of Suslin’s conjecture,
we offer the following result.

Theorem 3 (See Theorem 3.19) If k is an infinite field having characteristic
unequal to 2 or 3, then Suslin’s conjecture holds in degree 5 for any essentially
smooth local k-algebra A, i.e., the Suslin–Hurewicz map K Q

5 (A) → K M
5 (A)

has image precisely 24K M
5 (A).

To establish Theorem 3, we compare the Suslin–Hurewicz homomorphism
with another map K Q

n (F) → K M
n (F) that naturally appeared in computations

of A1-homotopy sheaves of the general linear group [1]. The main goal of Sect.
2 is to establish this comparison, which is achieved in Theorem 2.18. The
results rely on the techniques of [5,6], building on ideas of F. Morel [23], and
recent work of Schlichting [32] which allow us to interpret the A1-homotopy
computations in terms of homology of certain discrete simplicial groups (in
brief, we analyze the effect of forcing the homology of the discrete general
linear group to be A1-invariant). Along the way, we establish some results about
group homology that might be of independent interest, e.g., Theorem 2.16.

Granted the results mentioned in the preceding paragraph, Suslin’s conjec-
ture for general n may be interpreted as a statement about the structure of
A1-homotopy sheaves of BGLn . Once reformulated in terms of A1-homotopy
sheaves, we establish Suslin’s conjecture in degree 5 by showing that the rel-
evant A1-homotopy sheaf computation may be related to a computation of an
unstable A1-homotopy sheaf of a motivic sphere, refining a key computation
of [8]. In particular, we establish the following result, which is one of the main
results of Sect. 3.

Theorem 4 (See Theorem 3.18) If k is a field that has characteristic unequal
to 2 or 3, then there is a short exact sequence of the form

0 −→ KM
5 /24 −→ πA1

4 (P1∧ 3
) −→ GW3

4 −→ 0.
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The key idea that permits this refinement is a comparison of unstable and
stable computations of A1-homotopy sheaves. The proof of Theorem 4 relies on
the beautiful computation of the first stable A1-homotopy sheaf of the motivic
sphere spectrum by Röndigs–Spitzweck–Østvær [31]. After the discussion of
Sect. 2, Suslin’s conjecture can be viewed as a statement about a measure
of deviation from stability in the A1-homotopy sheaves of the general linear
group (here, stabilization refers to the map from the general linear group to
the stable general linear group). The results of Sect. 3 then support the idea
that the measure of deviation from stability is itself already stable in the sense
of stable A1-homotopy theory. In particular, we hope the technique of proof
can be adapted to shed light on Suslin’s conjecture for other values of n.

Preliminaries/notation

Throughout the paper, k will denote a fixed base field. We write Smk for the
category of schemes that are separated, smooth and have finite type over Spec k.
We write Spck for the category of simplicial presheaves on Smk ; objects of this
category will typically be written using a script font (e.g., X ). Our notation
in Sect. 2 follows [5,6]; we summarize most of what we will need from these
papers in Sect. 2.1. For example, we will write RZar for the Zariski fibrant
replacement functor with respect to the injective Zariski local model structure
on Spck , and RNis for the corresponding construction in the Nisnevich local
model structure. Our notation for A1-homotopy sheaves follows that of [8] on
which this paper builds.

2 The Suslin–Hurewicz homomorphism revisited

The goal of this section is to compare two homomorphisms from Quillen K-
theory to Milnor K-theory: the first is the Suslin–Hurewicz homomorphism
described in the introduction, and the second, constructed in [1], arises natu-
rally in motivic homotopy theory (it is related to a homomorphism defined by
Suslin using Mennicke symbols). Using some ideas from A1-homotopy theory
and some recent results of M. Schlichting, we will demonstrate that the two
homomorphisms coincide.

In order to compare the two homomorphisms, we study homological
stabilization results for spaces constructed out of general linear groups; The-
orem 2.16 is related to the constructions of [13] who consider special linear
groups, though our proof is somewhat different (in particular, it uses results
of [5,6] in place of corresponding results from [23]). The main result of this
section is Theorem 2.18, which essentially shows that Suslin’s conjecture from
the introduction, may be reformulated as providing a precise description of an
A1-homotopy sheaf, building on the ideas of [1].

123



44 A. Asok et al.

2.1 The sheaf Sn via homology of simplicial groups

In [1], the first and second authors studied the A1-homotopy theory of BGLn .
Mirroring the situation for unitary groups in classical algebraic topology, there
is a range in which these homotopy sheaves are “stable” in the sense that they
agree with the A1-homotopy sheaves of the stable general linear group BGL ,
which may be described in terms of algebraic K-theory. The first homotopy
sheaf of BGLn lying outside of this stable range is that in degree n: this sheaf is
an extension of an algebraic K-theory sheaf by a “non-stable contribution”. For
n ≥ 3, the non-stable contribution depends on the parity of n and is phrased
in terms of a sheaf we called Sn+1 and, if n is even, an additional factor,
In+1. Ultimately, we will interpret Suslin’s conjecture from the introduction
as a statement about the structure of Sn+1. Before doing this, we recall the
construction and properties of Sn+1 in detail. Using the results of [5,6], we
provide a “concrete” interpretation of the sections of this sheaf over (suitable)
local rings in terms of homology of simplicial groups; this approach builds on
ideas of F. Morel.

Fiber sequences and homotopy sheaves

Suppose k is a field, and GLn is the general linear k-group scheme. Consider the
morphism of schemes GLn−1 → GLn sending an invertible (n−1)×(n−1)-
matrix M to the block matrix diag(M, 1). This morphism induces a map of
simplicial classifying spaces BGLn−1 → BGLn (thought of as simplicial
presheaves on Smk) that we will refer to as the stabilization map.

For every integer n ≥ 1 there is an A1-fiber sequence of the form

An \ 0 −→ BGLn−1 −→ BGLn

(we will refine and explain this fact in Proposition 2.3). Morel showed that
An \ 0 is A1-(n − 2)-connected and that πA1

n−1(A
n \ 0) ∼= KMW

n where KMW
n

is Morel’s unramified Milnor–Witt K-theory sheaf [23, Corollary 6.39].
By representability of algebraic K-theory in the A1-homotopy category,

one may show that πA1

i (BGLn) ∼= K
Q
i for 1 ≤ i ≤ n − 1, where K

Q
i is the

sheafification of the Quillen K-theory presheaf on Smk for the Nisnevich topol-
ogy. Stringing the associated long exact sequences in A1-homotopy sheaves
together for different values of n, one obtains a composite morphism

KMW
n+1 = πA1

n (An+1 \ 0) −→ πA1

n (BGLn) −→ πA1

n−1(A
n \ 0) = KMW

n .

This composite map KMW
n+1 → KMW

n is multiplication by η if n is even and
0 if n is odd by [1, Lemma 3.5]. Using the quotient map KMW

n → KM
n (the
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Motivic spheres and the image of the Suslin–Hurewicz map 45

latter is an unramified Milnor K-theory sheaf), which corresponds to forming
the quotient by the subsheaf of multiples of η, one then obtains a commutative
diagram of the form

KMW
n+1

��

πA1

n (BGLn)

��

�� KMW
n

��

��

πA1

n−1(BGLn−1)

πA1

n (BGLn+1)
ψn

�� KM
n ;

where the dotted morphism exists for any n ≥ 2 ( [1, Lemma 3.5, Diagram
3.2]). Since πA1

n (BGLn+1) = K
Q
n , we conclude that

ψn : KQ
n −→ KM

n ,

and we repeat [1, Definition 3.6].

Definition 2.1 For any n ≥ 2, define Sn := coker(ψn).

The next result summarizes key properties of the sheaf Sn .

Proposition 2.2 Suppose n ≥ 2 is an integer.

1. There is a canonical morphism μn : KM
n → K

Q
n extending the map induced

by the isomorphism KM
1 = K

Q
1 and the product maps in K-theory.

2. The composite map ψn ◦ μn is multiplication by (n − 1)!.
3. The canonical epimorphism KM

n → KM
n /2 factors through an epimor-

phism Sn → KM
n /2.

4. The epimorphism KM
n → Sn factors through an epimorphism KM

n /(n −

1)! → Sn .

Proof The first statement is [1, Lemma 3.7], and the latter two statements
follow from [1, Corollary 3.11] and its proof. ⊓⊔

Homotopy of the singular construction

We now appeal to the results of [5,6] to recast the above results in terms of
homotopy of classifying spaces of simplicial groups. Suppose now that X is
a simplicial presheaf on Smk . Write �•

k for the cosimplicial affine k-simplex,
i.e., the cosimplicial object defined by n �→ Spec k[x0, . . . , xn]/〈

∑

i xi − 1〉

equipped with the usual coface and codegeneracy maps (see, e.g., [25, p. 88]).
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46 A. Asok et al.

In that case, one defines the singular construction on X as the diagonal of a
bisimplicial object:

SingA1
X := diag(Hom(�•

k, X )),

where Hom is the internal hom in the category of simplicial presheaves.
A list of properties of the singular construction is provided on [25, p. 87].

The map X → SingA1
X is a monomorphism and an A1-weak equivalence,

and SingA1
commutes with the formation of finite limits (in particular, finite

products). In the situations of interest to us, the simplicial presheaf SingA1
X

is already A1-local; the next result summarizes the facts we will need.

Proposition 2.3 Suppose n ≥ 1 is an integer and k is a field.

1. There is a Nisnevich local fiber sequence of the form

SingA1
(An \ 0) −→ SingA1

BGLn−1 −→ SingA1
BGLn.

2. For any smooth affine k-scheme U, the maps SingA1
(An \ 0)(U ) −→

RZar SingA1
(An \ 0)(U ) and SingA1

BGLn(U ) −→ RZar SingA1
BGLn(U )

are weak equivalences.
3. The spaces RZar SingA1

(An \ 0) and RZar SingA1
BGLn are both Nisnevich

local and A1-invariant.

Proof Observe that there is a simplicial fiber sequence

GLn/GLn−1 −→ BGLn−1 −→ BGLn

essentially by definition (see [6, § 2.3] and Lemma 2.3.1). Applying SingA1

to each term here, in light of [5, Theorem 5.2.1], we conclude that there is a
simplicial fiber sequence of the form

SingA1
GLn/GLn−1 −→ SingA1

BGLn−1 −→ SingA1
BGLn

by appeal to [6, Proposition 2.1.1]. The “projection onto the first column” map
GLn/GLn−1 → An \ 0 is a Zariski locally trivial morphism with affine space
fibers and thus by [6, Lemma 4.2.4] the induced map SingA1

GLn/GLn−1 →

SingA1
(An \ 0) is a weak equivalence after evaluation on affine schemes and

the first result follows. The second and third statements are then contained in
[5, Theorem 5.1.3] and [6, Theorem 2.3.2]. ⊓⊔

Corollary 2.4 Suppose k is a field, and A is the local ring of a smooth k-
scheme X at a point. The following statements hold:
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Motivic spheres and the image of the Suslin–Hurewicz map 47

1. πi (SingA1
(An \ 0)(A)) =

{

0 if 1 ≤ i ≤ n − 2.

KMW
n (A) if i = n − 1.

2. πi (SingA1
BGLn(A)) = K

Q
i (A) if 1 ≤ i ≤ n − 1.

Proof We know RZar SingA1
(An \ 0) is Nisnevich local and A1-invariant.

In particular, πA1

i (An \ 0) = aNisπi (RZar SingA1
(An \ 0)). By [23, Chap-

ter 6], we know that for any i > 0, the map aZarπi (RZar SingA1
(An \ 0)) →

aNisπi (RZar SingA1
(An \ 0)) is an isomorphism, i.e., the Zariski sheafification

of the presheaf of homotopy groups is already a Nisnevich sheaf. Thus, for A
as in the statement, we see that

πA1

i (An \ 0)(A) = πi (RZar SingA1
(An \ 0))(A) = πi (RZar SingA1

(An \ 0)(A)),

where the last equality follows essentially from the definition of RZar, i.e., from
the fact that RZar SingA1

(An \ 0) has Zariski stalks that are fibrant simplicial
sets.

On the other hand, for any smooth affine k-scheme U , the map SingA1
(An \

0)(U ) → RZar SingA1
(An \ 0)(U ) is a weak equivalence, it follows that the

same holds for U = Spec A. The result then follows from [23, Corollary 6.39]
as this computes the sheaf πA1

i (An \ 0) in the relevant cases.
The second statement is deduced in a similar fashion. Using the connectiv-

ity statement for SingA1
(An+i \ 0)(S) mentioned above, the stabilization map

RZar SingA1
BGLn → RZar SingA1

BGL is an (n − 1)-equivalence upon evalu-
ation at sections for A as in the statement. The latter space represents algebraic
K-theory by [23, §4 Theorem 3.13] (though see [33, Theorem 4 and Remark 2
p. 1162] for some mild corrections and to establish the statement in the gen-
erality we need). ⊓⊔

Remark 2.5 It follows immediately from Proposition 2.3(ii) and the argument
in the beginning of Corollary 2.4 that the Zariski sheafification of U �→

πi (SingA1
BGLn(U )) is already a Nisnevich sheaf. For example, the Zariski

sheaves K
Q
n and KM

n described in the previous section are already Nisnevich
sheaves. In addition, it follows that if A is the local ring of a smooth k-scheme
at a point, then πA1

n (BGLn)(Spec A) coincides with πn(SingA1
BGLn(A));

we will use this identification freely in the sequel. This provides the first link
between Sn+1 and the homotopy of SingA1

BGLn(A).

2.2 Homological stability and Milnor K-theory

Suslin’s conjecture is formulated in terms of homology of the classifying
spaces of the discrete groups GLn(F) and results about homological stabi-
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lization for these groups. In the previous section, we saw that the homotopy
of certain simplicial groups appeared naturally. Building on the homotopical
results of the previous section, we proceed to analyze relative homology of
the map SingA1

BGLn → SingA1
BGLn+1. These results are natural simplicial

counterparts of the results of Nesterenko–Suslin [26], which we quickly review.
In particular, we establish Lemma 2.7, which is a preliminary homological sta-
bilization result, and Lemma 2.9 which yields an analog of Suslin’s morphism
Hn(BGLn(F)) → K M

n (F) in the context of homology of SingA1
BGLn .

Review of some results of Nesterenko–Suslin

We now recall some results of Suslin as extended by Nesterenko–Suslin/Guin.
The maps GLm × GLn → GLm+n given by block sum:

(X1, X2) �−→

(

X1 0
0 X2

)

induce maps of classifying spaces BGLm × BGLn
∼= B(GLn × GLm) →

BGLm+n . For any commutative unital ring A, these maps induce external
product maps Hm(BGLm(A)) ⊗ Hn(BGLn(A)) → Hn+m(BGLn+m(A))

which are studied in [34, §] and [26, §3]. These external products map equip
⊕

n≥0 Hn(BGLn(A)) with the structure of a ring.
A result of Suslin [34, Corollary 2.7.2], generalized by Nesterenko–

Suslin/Guin, shows that for any local ring A with infinite residue field, the
exterior product map

H1(BGL1(A))×n −→ Hn(BGLn(A))

factors through a map

θ : KM
n (A) −→ Hn(BGLn(A))/Hn(BGLn−1(A)).

Suslin constructed an explicit splitting of this map [34, Corollaries 2.4.1 and
2.7.4] and concluded in [34, Theorem 3.4] that θ is an isomorphism. This result
was generalized in [26, Theorem 3.25].

Definition 2.6 The map sn , defined as the composite

Hn(BGLn(A)) −→ Hn(BGLn(A))/Hn(BGLn−1(A))
θ−1

−→ KM
n (A),

will be called Suslin’s morphism.
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Motivic spheres and the image of the Suslin–Hurewicz map 49

The maps sn just described can be put together to yield:

⊕

n≥0

sn :
⊕

n≥0

Hn(BGLn(A)) −→
⊕

n≥0

KM
n (A).

By appeal to [34, Lemma 2.6.1] and [26, Lemma 3.23], the direct sum on the
left hand side has naturally the structure of a graded ring. In fact, this ring is
graded commutative (essentially because the direct sum operation on vector
spaces is symmetric monoidal). It is well known that the Milnor K-theory ring
is graded commutative as well. By [26, Corollary 3.28],

⊕

n≥0 sn is in fact a
homomorphism of graded rings.

Weak homological stability

We now analyze an analog of Suslin’s homomorphism after applying the sin-
gular construction.

Lemma 2.7 Suppose n ≥ 1 is an integer, k is a field and A is an essentially
smooth local k-algebra. The morphism:

Hi (SingA1
BGLn(A)) −→ Hi (SingA1

BGLn+1(A))

is an isomorphism for i ≤ n − 1 and split surjective for i = n.

Proof For n as in the statement, the fact that the map in question is an isomor-
phism for i ≤ n −1 and surjective for i = n follows by combining the relative
Hurewicz theorem and the connectivity estimate for SingA1

(An+1 \ 0)(A) in
Corollary 2.4.

To construct the splitting, we proceed as follows. Consider the following
diagram

Hn(BGLn(A)) ��

��

Hn(BGLn+1(A))

��

�� · · · �� Hn(BGL(A))

��

Hn(SingA
1
BGLn(A)) �� Hn(SingA

1
BGLn+1(A)) �� · · · �� Hn(SingA

1
BGL(A)),

where the horizontal maps are the stabilization maps and the vertical maps are
induced by the map from a simplicial presheaf to its singular construction.

The maps in the first row may be determined by appealing to [12,26,34].
In particular, they prove (see [34, Theorem 3.4(c)] and [26, Theorem 3.25]
[12, Théorème 1]) that for any local ring A with infinite residue field, the
map Hn(BGLn(A)) → Hn(BGLn+ j (A)) is an isomorphism for any integer
j ≥ 1. Thus, all the maps in the top row are isomorphisms.
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We claim that the map BGL(A) → SingA1
BGL(A) is actually a homology

isomorphism. To see this, recall that SingA1
BGL(A) represents Karoubi–

Villamayor K-theory of A. The homotopy groups of the space SingA1
BGL(A)

are precisely the Karoubi–Villamayor K-theory groups [35, Definition 11.4].
Since Karoubi–Villamayor K-theory coincides with Quillen K-theory for reg-
ular rings [35, Corollary 12.3.2], by appeal to the “+ = Q”-theorem [35,
Corollary 7.2], we conclude that SingA1

BGL(A) can be taken as a model for
the plus construction of BGL(A) and the claim follows.

Combining these observations, we conclude that the composite map

Hn(BGLn(A)) −→ Hn(BGL(A)) −→ Hn(SingA1
BGL(A))

is an isomorphism. On the other hand, using the homology stabilization results
for the singular construction we mentioned at the beginning of this proof, we
conclude that Hn(SingA1

BGLn+1(A)) → Hn(SingA1
BGL(A)) is an isomor-

phism. Therefore, the composite map

Hn(BGLn(A)) −→ Hn(BGLn+1(A)) −→ Hn(SingA1
BGLn+1(A))

is also an isomorphism. By commutativity of the left-most square, we con-
clude that the inclusion map Hn(BGLn) → Hn(SingA1

BGLn) is injective
and provides a splitting of the stabilization map as claimed. ⊓⊔

Remark 2.8 The fact that the homotopy groups of the space SingA1
BGL(A)

give Karoubi–Villamayor K-theory that we have taken as a definition of the
latter actually goes back to Rector [28]. That the latter definition of Karoubi–
Villamayor K-theory coincides with Quillen K-theory is originally due to
Gersten [11, Theorem 3.13]. The fact that the singular construction of BGL
represents algebraic K -theory in the A1-homotopy category originates with
Morel [19, Chapter 3].

Milnor K-theory and the relative Hurewicz theorem

There is another way to link Milnor K-theory and the stabilization map
SingA1

BGLn−1 → SingA1
BGLn via the relative Hurewicz theorem, which

we now describe. Again, assume k is a field, and begin by observing that, if A
is an essentially smooth local k-algebra, then π1(SingA1

BGLn(A)) = Gm(A)

for any integer n ≥ 1; this follows, e.g., from the second point of Corollary 2.4.
There is an action of π1(SingA1

BGLn−1(A)) on the homotopy groups of the
homotopy fiber of the map SingA1

BGLn−1(A) → SingA1
BGLn(A), i.e., on

πi (SingA1
(An \ 0)(A)). The relative Hurewicz theorem describes the relative
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homology of the above map in the first non-vanishing degree as a quotient of
the relative homotopy group by this action.

Lemma 2.9 For any field k and any essentially smooth local k-algebra A,
there is a short exact sequence of the form

Hn(SingA1
BGLn−1(A)) −→ Hn(SingA1

BGLn(A))
δn

−→ KM
n (A).

Proof It follows from [2, p. 2590] and the proof of [3, Proposition 3.5.1] that
the action of Gm(A) on πn−1(SingA1

(An \ 0)(A)) is the standard action of
Gm(A) on KMW

n (A). The quotient of KMW
n (A) by the standard action is the

quotient by the subgroup of η-divisible elements and therefore is KM
n (A). ⊓⊔

Remark 2.10 Recall that one may extend the definition of Milnor K-theory
to local rings (e.g., [26, §3]). The affirmation of the Gersten conjecture for
Milnor K-theory for regular local rings containing a field [16, Theorem 7.1]
allows us to conclude that the evident map K M

n (A) → KM
n (A) is actually an

isomorphism, when A is a regular local ring. We use this identification without
further mention in what follows.

2.3 The Suslin–Hurewicz morphism and the stabilization theorem

Suppose now k is a field, and A is an essentially smooth local k-algebra with
infinite residue field. We now compare Suslin’s morphism sn to the boundary
map δn in the relative Hurewicz theorem of Lemma 2.9. In light of Suslin’s
stabilization theorem we can identify the target of sn with the relative homol-
ogy group Hn(BGLn(A), BGLn−1(A)). Thus, functoriality of the singular
construction and the relative homology exact sequence in conjunction with
Lemma 2.9 and [26, Theorem 3.25] yield the following commutative diagram
of exact sequences:

Hn(BGLn−1(A)) ��

��

Hn(BGLn(A))
sn

��

��

KM
n (A) ��

��

Hn−1(BGLn−1(A))

��

��

Hn(SingA1
BGLn−1(A)) �� Hn(SingA1

BGLn(A))
δn

�� KM
n (A) �� Hn−1(SingA1

BGLn−1(A)) �� · · ·

and our goal is to study the maps KM
n (A) → KM

n (A). The above diagram can
be very explicitly analyzed for small values of n.

Lemma 2.11 The map BGL1 → SingA1
BGL1 is the identity map of simpli-

cial presheaves.

Proof By definition, the usual bar model of BGL1 is a simplicial object with i-
simplices given by G×i

m . Since Hom(�n, G
×i

m ) = G
×i

m , it follows directly from
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the definition of SingA1
that the map BGL1 → SingA1

BGL1 is the identity
map. ⊓⊔

Lemma 2.12 If k is a field, and if A is an essentially smooth local k-algebra
with infinite residue field, then the map BGL2(A) → SingA1

BGL2(A)

induces an isomorphism on homology in degrees ≤ 2.

Proof By appeal to Lemma 2.11 we conclude that the map H1(SingA1
BGL1(A))

→ H1(SingA1
BGL2(A)) is an isomorphism. It follows from Lemma 2.9 that

the map δ2 is surjective and that there is a commutative diagram of exact
sequences of the form

H2(BGL1(A)) ��

∼

��

H2(BGL2(A))
s2

��

��

KM
2 (A) ��

��

0

H2(SingA1
BGL1(A)) �� H2(SingA1

BGL2(A))
δ2

�� KM
2 (A) �� 0

Now the map H2(BGL2(A)) → H2(SingA1
BGL2(A)) is split injective

by Lemma 2.7. Therefore, the composite of this splitting and the map
H2(BGL2(A)) → KM

2 (A) is surjective. A diagram chase thus implies that
the vertical map KM

2 (A) → KM
2 (A) is also surjective. Then, the five lemma

implies that H2(BGL2(A)) → H2(SingA1
BGL2(A)) must be surjective as

well and so it is an isomorphism. ⊓⊔

Comparison of stabilization maps

To analyze the comparison maps in general, we will make use of an auxiliary
space, which we now describe. Following Schlichting [32, §6], for a k-scheme
U , we define Ẽn(U ) to be the maximal perfect subgroup of the kernel of
the map GLn(Ŵ(U, OU )) → π0(SingA1

GLn(Ŵ(U, OU ))). By construction,
Ẽn(U ) is a subgroup of SLn(U ) since it maps to zero in the commutative group
GLn(U )/SLn(U ) = OU (U )×. If either n ≥ 3 or n = 2 and the residue fields
of smooth k-schemes have > 3 elements, then the inclusion of presheaves
Ẽn → SLn becomes an isomorphism after Zariski sheafification [32, Lemma
6.5] and Ẽn(U ) is a presheaf of perfect groups. We write BGL+

n for the
simplicial presheaf obtained by appeal to the functorial version of the plus
construction [9, Chapter VII §6] applied to BGLn and the presheaf of perfect
groups Ẽn . The next result is essentially contained in [32, Corollary 6.16] and
the discussion immediately preceding that statement.

Proposition 2.13 Suppose k is an infinite field. If n ≥ 1 is an integer, then the
following statements hold.
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1. The map BGLn → SingA1
BGLn factors through BGL+

n and these fac-
torizations are functorial in n.

2. The map LA1 BGLn → LA1 BGL+
n is split in the simplicial homotopy

category.

Proof The first statement is immediate from the definition of Ẽn and the
definition of the plus construction. For the second statement, observe that
BGLn → SingA1

BGLn is an A1-weak equivalence, and the target is A1-
local by [6]. Therefore, this map becomes a simplicial weak equivalence after
A1-localization. The second point then follows immediately from the first. ⊓⊔

Proposition 2.14 Suppose k is an infinite field. For any n ≥ 2, the map on
simplicial homotopy fibers induced by the square

BGL+
n−1

��

��

BGL+
n

��

SingA1
BGLn−1 �� SingA1

BGLn

induces an isomorphism on homotopy sheaves in degrees ≤ n − 1.

Proof Suppose k is an infinite field and A is an essentially smooth local k-
algebra. Write Fn for the homotopy fiber of the map in the top row. By [32,
Theorem 5.38], one knows that the presheaves π i (Fn)(A) vanish for i ≤ n −2
and have Zariski sheafification KMW

n for i = n − 1. Likewise, Proposition 2.3

states that the homotopy fiber of the bottom horizontal map is SingA1
(An \ 0).

Corollary 2.4 shows that this homotopy fiber is also (n − 2)-connected and
has (n − 1)-st Zariski homotopy sheaf isomorphic to KMW

n in degree i − 1.
To establish the result, it suffices to show that the induced map KMW

n →

KMW
n is an isomorphism. By Proposition 2.13 it this map is actually split

injective. The endomorphism ring of KMW
n coincides with (KMW

n )−n(k) ∼=
GW(k) for any n ≥ 1 by Lemma 3.14. Since the ring GW (k) contains no
idempotents besides 0 or 1 by [17, Theorem 3.9] (see Example 3.11 for details),
it follows that our map KMW

n → KMW
n is an isomorphism, as required. ⊓⊔

Lemma 2.15 Suppose k is an infinite field. For any integer n ≥ 1, the map of
presheaves π1(BGL+

n ) → π1(SingA1
BGLn) is an isomorphism after Zariski

sheafification.

Proof For a commutative ring R, we know that π1(BGL+
n (R)) = GLn(R)/

Ẽn(R) by definition, and [32, Lemma 6.5] implies that the Zariski sheafifica-
tion of Ẽn coincides with that of SLn . In particular, the map GLn/Ẽn → Gm
given by the determinant is an isomorphism after Zariski sheafification.
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Likewise, the Zariski sheafification of π1(SingA1
BGLn) coincides with Gm .

Now the map in question factors through the natural map π1(BGLn) →

π1(SingA1
BGLn) by Proposition 2.13. However, the map π1(BGLn) →

π1(SingA1
BGLn) is the map sending GLn(R) to the quotient by the subgroup

of matrices homotopic to the identity, and the result follows. ⊓⊔

Refined weak homotopy invariance results

Theorem 2.16 If k is an infinite field, and A is an essentially smooth local
k-algebra then the following statements hold.
1. There is a commutative diagram having exact rows:

Hn(BGLn−1(A)) ��

��

Hn(BGLn(A)) ��

��

KM
n (A) ��

��

0

Hn(SingA
1
BGLn−1(A)) �� Hn(SingA

1
BGLn(A))

δn
�� KM

n (A) �� 0,

in particular, δn is surjective.
2. The maps Hi (SingA1

BGLn(A)) → Hi (SingA1
BGLn+1(A)) are isomor-

phisms for i ≤ n.
3. The maps Hi (BGLn(A)) → Hi (SingA1

BGLn(A)) are isomorphisms
when i ≤ n.

Proof The diagram in question arises from the long exact sequence in relative
homology. The maps BGLn → SingA1

BGLn factor through BGL+
n compati-

bly with n by Proposition 2.13. Observe that Hn(BGL+
n (A), BGL+

n−1(A)) ∼=

KM
n (A)by [32, Theorem 5.38] and Lemma 2.15 and the same relative Hurewicz

argument as in Lemma 2.9. Moreover, the induced map

Hn(BGL+
n (A), BGL+

n−1(A)) −→ Hn(SingA1
BGLn(A), SingA1

BGLn−1(A))

is an isomorphism. In other words, there is a commutative diagram of exact
sequences of the form:

Hn(BGL+
n−1(A)) ��

��

Hn(BGL+
n (A)) ��

��

KM
n (A) ��

��

0

Hn(SingA1
BGLn−1(A)) �� Hn(SingA1

BGLn(A))
δn

�� KM
n (A) �� 0.

where the map KM
n (A) → KM

n (A) is an isomorphism. Since the maps
BGLn(A) → BGL+

n (A) are homology isomorphisms, the result follows.
It follows immediately that δn is surjective.
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The fact that δn is surjective implies the map Hn(SingA1
BGLn(A)) →

Hn(SingA1
BGLn+1(A)) is an isomorphism, i.e., Point (2). Thus, we conclude

that the stabilization map Hn(SingA1
BGLn(A)) → Hn(SingA1

BGL(A)) is
an isomorphism as well. In the proof of Lemma 2.7, we established that the
map Hn(BGLn(A)) → Hn(SingA1

BGL(A)) is an isomorphism, and this map
factors through the map Hn(BGLn(A)) → Hn(SingA1

BGLn(A)), which we
therefore also conclude is an isomorphism; thus Point (3) is established. ⊓⊔

Remark 2.17 If the map Hi (BGLn(A)) → Hi (SingA1
BGLn(A)) is an iso-

morphism in degrees ≤ n, we say weak homotopy invariance holds for the
(integral) homology of GLn in degrees ≤ n [13, Definition 2.3]. The notion of
weak homotopy invariance was introduced by F. Morel in his approach to the
Friedlander–Milnor conjecture (cf. [22], though this notion does not explicitly
appear there). In particular, Theorem 2.16 implies that weak homotopy invari-
ance holds in degrees ≤ n for GLn over local rings. In contrast, if one replaces
GLn by SL2, one knows that weak homotopy invariance fails in degree 3, e.g.,
by [13, Theorem 1].

The comparison theorem

Theorem 2.18 Assume k is an infinite field, n ≥ 1 is an integer, and A is an
essentially smooth local k-algebra.

1. There is an exact sequence of the form

KQ
n (A) −→ KM

n (A) −→ Sn(A) −→ 0,

where the leftmost map is the Suslin–Hurewicz homomorphism.
2. Suslin’s conjecture holds in degree n if and only if the canonical surjection

KM
n /(n − 1)!(A) → Sn(A) is an isomorphism.

Proof For Point (1), recall from the proof of Lemma 2.7 that the map
BGL+(A) → SingA1

BGL(A) is a weak equivalence. On the other hand,
Theorem 2.16, and functoriality of the Hurewicz map yield a commutative
diagram of the form

πn(BGL+(A)) ��

��

Hn(BGL+(A)) ��

��

Hn(BGLn(A)) ��

��

KM
n (A) ��

��

0

πn(SingA1
BGL(A)) �� Hn(SingA1

BGL(A)) �� Hn(SingA1
BGLn(A))

δn
�� KM

n (A) �� 0

where all the vertical morphisms are isomorphisms. Thus, the Suslin–Hurewicz
morphism coincides with the composite in the bottom row under these isomor-
phisms; we call this composite ψ ′

n .
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Next, we claim that the composite in the bottom row coincides with the
morphism ψn . Indeed, this is essentially a consequence of functoriality of
the relative Hurewicz morphism. To this end, observe that the stabiliza-
tion map πn(SingA1

BGLn+1(A)) ∼= πn(SingA1
BGL(A)) is an isomorphism

by Lemma 2.7. The relative Hurewicz map πn−1(SingA1
(An \ 0)(A)) →

Hn−1(SingA1
BGLn(A), SingA1

BGLn−1(A)) coincides with the standard quo-
tient map KMW

n (S) → KM
n (S) by the proof of Lemma 2.9. By functoriality

of (relative) Hurewicz maps, we therefore have a commutative square of the
form

πn(SingA1
BGLn(A)) ��

��

KMW
n (A)

��

Hn(SingA1
BGLn(A)) �� KM

n (A).

Now, the map ψn is defined by factorization through the stabilization map
πn(SingA1

BGLn(A)) → πn(SingA1
BGLn+1(A)). Using the splitting of

Lemma 2.7, it follows immediately that the map
Hn(SingA1

BGLn(A)) → KM
n (A) also factors through the stabilization map

Hn(SingA1
BGLn(A)) → Hn(SingA1

BGLn+1(A)).

Combining these observations and appealing again to functoriality of Hurewicz
maps, we conclude that ψn coincides with ψ ′

n .
Point (2) follows immediately from Point (1). ⊓⊔

3 The sheaf πA1

4
(S

3+3α) revisited

In the previous section, we showed that Suslin’s conjecture from the intro-
duction was equivalent to showing that the natural epimorphism KM

n → Sn

induced an isomorphism KM
n /(n − 1)! → Sn . In this section, we verify this

assertion in the case n = 5. To do this, we proceed in two steps.
We refine [8, Theorem 5.2.5], which describes the A1-homotopy sheaf

πA1

4 (P1∧ 3
) under certain restrictions on the base field in two ways. By analyz-

ing real and ℓ-adic realizations, we show that most of the restrictions on the
base field in the statement of [8, Theorem 5.2.5] are superfluous. The outcome
of this analysis is a description of the sheaf πA1

4 (P1∧ 3
) that parallels that of

πA1

n (BGLn) in Sect. 2.1: it may be described as an extension of a sheaf defined
in terms of higher Grothendieck–Witt theory by a “non-stable” part, which is
related to the sheaf S5 analyzed in the previous section (though we caution the
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reader that “non-stable” is in quotes here to distinguish it from analyzing what
happens after P1-stabilization, which will also be of interest to us).

Second, by comparing our refined description to the stable results of [31], we
are able to conclude that S5 coincides with KM

5 /24. The main computational
result is achieved in Theorem 3.18. We conclude with Theorem 3.19, which
shows Suslin’s conjecture holds in degree 5 under appropriate hypotheses.

3.1 The degree map and realization

In this section, we establish some preliminary results about real realization of
homotopy groups and, in particular, the interaction between real realization
and module structures on A1-homotopy sheaves.

Compositions in A1-homotopy groups

Fix an integer p ≥ 2. For any integer q ≥ 0 we may consider the motivic sphere
S p+qα . The abelian group [S p+qα, S p+qα]A1 of A1-homotopy endomorphisms
of S p+qα admits a natural ring structure via composition. If q = 0, this ring
is isomorphic to Z since the simplicial p-sphere S p is already A1-local and
thus the A1-homotopy classes of maps coincide with those in the simplicial
homotopy category. If q > 0, this ring is isomorphic to KMW

0 (k) by Morel’s
computations. More generally, we recall the following result of Morel’s.

Lemma 3.1 ([23, Corollary 6.43]) If p ≥ 2 is an integer and r, q ≥ 0 are
integers, then

[S p+qα, S p+rα] =

⎧

⎪

⎨

⎪

⎩

KMW
r−q (k) if r > 0

Z if r = q = 0

0 otherwise.

Note that Gm-suspension induces group homomorphisms

[S p+qα, S p+rα]A1 −→ [S p+(q+1)α, S p+(r+1)α]A1 .

If q, r > 0, then these maps are isomorphisms. If r = q = 0, then the map
is the unit map Z → KMW

0 (k), while if r = 0 and q �= 0, the map is the zero
map.

Given a third integer s ≥ 0, composition yields homomorphisms

[S p+rα, S p+sα]A1 × [S p+qα, S p+rα]A1 −→ [S p+qα, S p+sα]A1

( f, g) �−→ f ◦ g.
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These maps are bilinear and associative and compatible with Gm-suspension
as described above. In particular, we obtain an N×N-graded ring structure on
⊕

q,r≥0[S
p+qα, S p+rα]A1 .

Real realization of endomorphism rings

If k is a field and k →֒ R is an embedding, then sending a smooth k-scheme
X to the topological space X (R) equipped with its usual structure of a real
manifold extends to a functor

R : H•(k) −→ H•.

At the level of homotopy categories, this functor was exposed in [25, §3 pp.
121–122] and was later described in terms of a Quillen adjunction in [10, §5.3].
It follows from the construction of [10] that real realization is a simplicial
functor of simplicial model categories.

Since the real realization of Gm is homotopy equivalent to S0, it follows that
the real realization of S p+qα is S p for any q ≥ 0. Therefore, by functoriality,
real realization induces a ring homomorphism

R :
⊕

q,r≥0

[S p+qα, S p+rα]A1 −→ [S p, S p] = Z.

We now analyze this ring homomorphism; we begin with the degree (0, 0)-part.
Following [23, p. 53], set ǫ = −〈−1〉 ∈ KMW

0 (k) . The element ǫ represents
the A1-homotopy class of the endomorphism of S2+2α obtained by switching
the two factors of Gm under the identification [S2+2α, S2+2α]A1 ∼= KMW

0 (k)

[20, Lemma 6.1.1(2)].
The next result is a straightforward consequence of the description of the

Grothendieck–Witt ring of the real numbers combined with the fact that the
real realization of ǫ is the identity map S2 → S2.

Lemma 3.2 For any integers p, q, p ≥ 2, q ≥ 0, the ring map [S p+qα, S p+qα]

→ [S p, S p] induced by real realization is an isomorphism if q = 0 and the
surjection Z[ǫ]/(ǫ2 − 1) → Z given by evaluation at 1 if q �= 0.

The groups KMW
q (R) are generated by the expressions [a] for a ∈ R× and

an element η. Therefore, to understand real realization more generally, we
need to understand the real realizations of these elements.

Proposition 3.3 The following statements hold about real realization:
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1. For any a ∈ R×,

R([a]) =

{

0 if a > 0, and

1 if a < 0;

2. For any a ∈ R×,

R(〈a〉) =

{

1 if a > 0, and

−1 if a < 0; and

3. If η : S1+2α → S1+α is the motivic Hopf map, then R(η) = −2.

Proof For the first point, by definition [a] is the stabilization of the map S0
k →

Gm sending the non-base-point of S0
k to the element a ∈ Gm(k). It follows

that if a > 0, then the real realization of this map is the constant map, which
has degree 0. Likewise, if a < 0, then the real realization of this map is the
identity map S0 → S0, whose suspensions all have degree 1.

For the second point, consider the element 〈a〉 ∈ KMW
0 (R). If a > 0, then

〈a〉 ∼= 〈1〉 = 1 and is sent to 1 under real realization. If a < 0, then 〈a〉 ∼= 〈−1〉.
Since R(ǫ) = 1 by Lemma 3.2, it follows that R(〈−1〉) = −1.

Finally, since 〈−1〉 = 1 + η[−1] and real realization is a ring homomor-
phism, we conclude that R(η) = −2 from the discussion above. ⊓⊔

Given these preliminary results, we may state the main result about realiza-
tion we will use.

Proposition 3.4 Suppose n ≥ 2 is an integer. For any integer j > 0, the image
of the homomorphism given by real realization

im(πA1

n−1+ jα(Sn−1+nα)(R) → πn−1(Sn−1)) =

{

(1) if j < n;

(2n− j ) if j ≥ n
.

More precisely, for j = n the map factors as GW(R) → W(R)
sgn
→ Z.

Proof In every case, the source group is KMW
n− j (R). If j < n, this group contains

the (n − j)-fold product [−1] · · · [−1] and the result follows immediately
from Proposition 3.3(1) and compatibility of real realization with the product
structures described above.

If j = n, the result follows from Lemma 3.2. If j > n, then the source
of the map is the free abelian group generated by η j−n and the result follows
from Proposition 3.3(3). ⊓⊔
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Étale realization

We refer the reader to [14] for a detailed discussion of étale realization. Let
us quickly summarize the main points. If ℓ is prime, one begins by defining
an ℓ-complete étale realization functor on the category of schemes: given a
scheme X , its étale realization is an ℓ-complete pro-simplicial set that we
will denote by Ét(X). The construction has the property that a morphism of
schemes f : X → Y induces a weak equivalence Ét(X) → Ét(Y ) if and only if
f ∗ : H∗

ét(Y ; Z/(ℓ)) → H∗
ét(X; Z/(ℓ)) is an isomorphism. By [14], if k is a field

and ℓ is different from the characteristic of k, the assignment X �→ Ét(X) on
smooth k-schemes extends to a functor on the pointed A1-homotopy category
H•(k); abusing notation slightly, we will also denote this functor by Ét. If k
is furthermore separably closed, it follows from the Künneth isomorphism in
étale cohomology with Z/(ℓ)-coefficients that the functor Ét preserves finite
products and smash products of pointed spaces. Moreover, by construction,
the functor Ét commutes with the formation of homotopy colimits.

Assume now that k is separably closed and write R for the ring of Witt
vectors in k. Choose an algebraically closed field K and fix embeddings R →֒

K and C →֒ K . For any split reductive group G, these morphism yield maps
of the form:

Gk −→ G R ←− G K −→ GC

which we will use to compare the étale realization over k with complex real-
ization.

Lemma 3.5 If k is a separably closed field having characteristic p and ℓ is a
prime different from p, then for any integers i, j ≥ 0,

Ét(Si+ jα) ∼= (Si+ j )∧ℓ .

Proof The comparison maps described before the statement applied to G =

Gm yield identifications Ét(Gm) ∼= (Gm(C))∧ℓ
∼= (S1)∧ℓ . The étale realization

of the simplicial circle is also (S1)∧ℓ since étale realization preserves homotopy
colimits and the simplicial circle can be realized as a homotopy pushout of
the diagram ∗ ← S0

k → ∗. To conclude, we use the fact that étale realization
preserves smash products of pointed spaces. ⊓⊔

Remark 3.6 In contrast to the case of real realization, over a separably closed
field, the étale realization of the endomorphisms of the motivic sphere are
determined wholly by the realization of the identity map and the realization
of η.
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3.2 Realization of some homotopy sheaves of spheres

The purpose of this section is to describe the behavior of various homotopy
sheaves of spheres under real and étale realization. In particular, we analyze
the R-realization homomorphism πA1

3+ jα(S2+3α)(R) → π3(S2) and correct
[3, Corollary 5.4.1]. Along the way, we remind the reader of the computation
of this A1-homotopy sheaf, which will appear in subsequent sections.

The computation of πA1

3+ jα(S2+3α) revisited

We begin by recalling some results about A1-fiber sequences from [3, §4.2].
First, for any integer n ≥ 1 there is a pull-back diagram of linear algebraic
groups

Sp2n ��

��

SL2n+1

��

Sp2n+2 �� SL2n+2.

This diagram yields isomorphisms of k-schemes SL2n+2/

Sp2n+2
∼= SL2n+1/Sp2n . If we define Xn = SL2n/Sp2n , then by [3, Proposi-

tion 4.2.2] we obtain A1-fiber sequences of the form

Xn −→ Xn+1 −→ A2n+1 \ 0. (3.1)

In the case n = 2, there is an exceptional isomorphism X2 = SL4/Sp4
∼=

SL3/SL2 and thus X2 is A1-weakly equivalent to A3 \ 0, yielding an A1-fiber
sequence

S2+3α ≃ A3 \ 0 −→ X3 −→ A5 \ 0 ≃ S4+5α.

The schemes Xn are symmetric varieties, and X∞ := colimn≥0 Xn is a
model for the A1-connected component of the base-point in the space GL/Sp
arising in higher Grothendieck–Witt theory [33]. In particular, as observed in
[3, Proposition 4.2.2], πA1

i (Xn) ∼= GW3
i+1 for i ≤ 2n − 2, at least if we work

over a field having characteristic unequal to 2. Using the long exact sequence
in A1-homotopy sheaves associated with the above fiber sequence, there is an
associated exact sequence of the form

GW3
5 −→ KMW

5 −→ πA1

3 (S2+3α) −→ GW3
4 −→ 0.

123



62 A. Asok et al.

The cokernel of the morphism GW3
5 → KMW

5 is called F5 in [3, The-
orem 4.3.1], and it is observed that F5 is a quotient of the fiber product
S5 ×KM

5 /2 I5 =: T5 from [1, Theorem 3.14].

Behavior of πA1

3+ jα(S2+3α) under realization

There are natural homeomorphisms Xn(R) ≈ SL2n(R)/Sp2n(R). Replacing
the groups by their homotopy equivalent maximal compact subgroups, we
obtain weak equivalences of the form

Xn(R) ≃ SO(2n)/U (n).

Furthermore, the fiber sequence (3.1) corresponds under R-realization to the
fiber sequence

Xn(R) −→ Xn+1(R) −→ S2n. (3.2)

While real realization need not necessarily preserve fiber sequences, it follows
from this observation that the real realization of Xn → Xn+1 → A2n+1 \ 0 is
sent to a fiber sequence by real realization.

In a range depending on n, the homotopy groups of Xn+1(R) may be com-
puted by means of real Bott periodicity. For instance, the stabilization map

π3(X3(R)) = π3(SO(6)/U (3)) −→ π3(SO/U ) = π3(O/U ) = 0

is an isomorphism. We therefore obtain, from a portion of the long exact
homotopy sequence of (3.2), a presentation

π4(X3(R)) → π4(S4) → π3(S2) → 0.

Since π4(S4) ∼= π3(S2) ∼= Z, we conclude that the map π4(S4) → π3(S2) is
an isomorphism.

Let j ≥ 0. One obtains a ladder diagram from the long exact homotopy
sequences of (3.1) and (3.2) and the R realization map R:

�� πA
1

4+ jα(S4+5α)(R)
f

��

ρ′

��

πA
1

3+ jα(S2+3α)(R) ��

ρ

��

πA
1

3+ jα(X3)(R) ��

��

0

�� π4(S4)
∼=

�� π3(S2) �� 0 �� 0.

(3.3)
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According to [3, Proposition 5.2.1], f is surjective when j ≥ 5, and is an
isomorphism when j ≥ 6. The next result describes the image of the middle
map and corrects [3, Corollary 5.4.1].

Proposition 3.7 For any integer j ≥ 0, the image of the homomorphism given
by R-realization satisfies

im(πA1

3+ jα(S2+3α)(R) → π3(S2)) =

{

(1) if j < 5

(2 j−5) if j ≥ 5.

Proof In view of the commutativity of Diagram 3.3, and the observation that
f is an isomorphism when f ≥ 6, this result is an immediate consequence of
the corresponding fact for ρ′, which is contained in Proposition 3.4. ⊓⊔

Remark 3.8 We remind the reader that S2+3α is A1-weakly equivalent to A3 \

{0}. It is known that π3+5α(S2+3α) ∼= Z/(24) ×Z/(2) W as a GW-module [3,
Proposition 5.2.1], but this will not be needed in the sequel.

3.3 The EHP sequence and homotopy sheaves of S
3+3α

The sheaf πA1

4+ jα(S3+3α) is computed from πA1

3+ jα(S2+3α) by appeal to the
simplicial EHP sequence of [8, Theorem 3.3.13]. In particular, for any base
field k, there is a short exact sequence of the form

πA1

5+ jα(S5+6α)
Pk

−→ πA1

3+ jα(S2+3α)
Ek

−→ πA1

4+ jα(S3+3α) −→ 0, (3.4)

where the morphism P is induced by composition with the Whitehead square
of the identity. By construction, this sequence is natural in k. In [8, Theo-
rem 5.2.5], after some preliminary results, the image of Pk in Diagram 3.4 is
identified; our goal is to perform a similar analysis of the EHP sequence here.

By [23, Corollary 6.43], πA1

5+ jα(S5+6α) ∼= KMW
6− j . On the other hand, the

description of πA1

3+ jα(S2+3α) for large j follows from [3, Lemma 5.1.1]:

πA1

3+ jα(S2+3α) ∼= I6− j for j ≥ 6 and the latter sheaf coincides with the
sheaf W. Granted these two facts, the EHP exact sequence above takes the
form:

πA1

5+6α(S5+6α)
Pk

�� πA1

3+6α(S2+3α)
Ek

�� πA1

4+6α(S3+3α) �� 0

KMW
0 W.

(3.5)
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On the map Pk

There are identifications HomKMW
0

(KMW
0 , W) ∼= W(k) ∼= HomGW(k)(GW(k),

W(k)). Via these identifications, the map Pk of (3.5) determines an element
[Pk] of W(k). The next result gives some conditions equivalent to the surjec-
tivity of Pk .

Lemma 3.9 The following are equivalent:

1. The map Pk is surjective;
2. The element [Pk] generates W(k) as a GW(k) module;
3. The element [Pk] is a unit of W(k);
4. The map Pk(k) is surjective.

Proof The equivalence of the first and second statements follows from the fact
that Pk is a morphism of KMW

0 -modules in conjunction with the identifications

HomKMW
0

(KMW
0 , W) ∼= W(k) ∼= HomGW(k)(GW(k), W(k))

mentioned above. The last identification also immediately implies the equiv-
alence of the second and third statements. The equivalence of the second and
fourth statements follows from evaluation on k. ⊓⊔

We now prove some descent and ascent results relating the maps Pk for
different classes of fields.

Lemma 3.10 The following statements hold:

1. If K/k is a field extension, and if Pk is surjective, then PK is surjective as
well.

2. If k is not formally real, ks is a separable closure of k and Pks is surjective,
then Pk is surjective.

3. If PR is surjective, then PQ is surjective.

Proof In each case, we appeal to the equivalent conditions of Lemma 3.9: the
map Pk is surjective if and only if the element [Pk] is a unit of W(k). The
latter statement may be checked by appeal to a classical result of Pfister [18,
Theorem 8.7].

For the first point, the definition of Pk is natural in k, which is to say that
[PK ] is the image of [Pk] under the functorial ring map W(k) → W(K ). Since
the element [Pk] is a unit, so too is [PK ].

For the second point we know W(ks) = Z/(2), and W(k) → W(ks) is the
dimension map (modulo 2). By [18, Theorem VIII.8.7], the class [Pk] ∈ W(k)

is a unit if and only if it remains a unit in W(ks) under this map.
For the third point, begin by observing that the field Q is formally real and has

a unique real closure, the field Ralg of real algebraic numbers. By [18, Theorem
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VIII.8.7]; the class [PQ] ∈ W(Q) is a unit if and only if [PRalg ] ∈ W(Ralg) is
a unit. Moreover, a form q is a unit if and only if its signature with respect to
the unique ordering of Ralg is ±1. Since this last statement can be checked by
passing to R, we conclude. ⊓⊔

A vanishing result

We are now in a position to strengthen [8, Proposition 5.2.3].

Proposition 3.11 If k is a field having characteristic unequal to 2, then
πA1

4+6α(S3+3α) = 0.

Proof Contemplating the exact sequence in Diagram (3.5), by appeal to Lem-
mas 3.9 and 3.10(1), it suffices to show that [Pk] is a unit for k any prime
field. We treat the characteristic zero case in Lemma 3.12 and the positive
characteristic case in Lemma 3.13. ⊓⊔

Lemma 3.12 The element [PQ] ∈ W(Q) is a unit.

Proof By Lemma 3.10(3), it is sufficient to show that the map PR(R) in the
following diagram, obtained by evaluating (3.4), is surjective:

πA1

5+6α(S5+6α)(R)
PR(R)

�� πA1

3 (S2+3α)
ER(R)

�� πA1

4 (S3+3α)
HR(R)

�� 0

Z[ǫ]/(ǫ2 − 1) Z

the equality on the left is contained in Lemma 3.2.
Since R-realization is functorial and the real realization of the relevant por-

tion of the simplicial EHP sequence coincides with the corresponding portion
of the EHP sequence of the real points, we obtain a commuting diagram of
exact sequences

πA1

5+6α(S5+6α)(R)
P

��

��

πA1

3+6α(S2+3α)(R)
E

��

ρ

��

πA1

4+6α(S3+3α)(R) ��

��

0

π5(S5)
|P|

�� π3(S2) �� π4(S3) �� 0.

It is well known that the lower sequence takes the form Zι5 → Zηtop →

Z/(2) → 0, and in particular that |P|(ι5) = 2ηtop.
The rest of the argument is a diagram chase. Write PR(1) = n. We wish to

show that n = ±1. The left hand vertical map is the surjection Z[ǫ]/(ǫ2−1) →
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Z given by evaluation at 1, again by Lemma 3.2; it sends the class of the identity
map to the class of the identity. Therefore, 2Zηtop is the image of the composite

map πA1

5+6α(S5+6α)(R) → π3(S2).
We showed in Proposition 3.7 that the image of the map ρ is 2Zηtop. Fol-

lowing the left hand square in the clockwise direction, we see that the image
of the composite map πA1

5+6α(S5+6α)(R) → π3(S2) is 2nZηtop. Consequently,
n = ±1 as required. ⊓⊔

Lemma 3.13 If k is a finite field having characteristic unequal to 2, then [Pk]

is a unit.

Proof By appeal to Lemma 3.10(2), it is sufficient to show that the map Pks (ks)

is surjective.

πA
1

5+6α(S5+6α)(ks)
Pks (ks )

�� πA
1

3+6α(S2+3α)(ks)
Eks (ks )

�� πA
1

4+6α(S3+3α)(ks) �� 0

Z Z/(2).

(3.6)

Take ℓ = 2. By appeal to Lemma 3.5 and functoriality of étale realization, we
obtain a commutative diagram of the form:

πA
1

5+6α(S5+6α)(ks)
Pks (ks )

��

��

πA
1

3+6α(S2+3α)(ks)
Eks (ks )

��

ρ

��

πA
1

4+6α(S3+3α)(ks) ��

��

0

π11(S11)∧2
|P|

�� π9(S5)∧2
�� π10(S6)∧2

�� 0.

The sequenceπ11(S11) → π9(S5) → π10(S6) → 0 is a portion of the classical
EHP exact sequence, and one knows that π11(S11) = Z, π9(S5) = Z/(2) and
π10(S6) = 0 and thus this sequence remains exact after 2-completion, i.e.,
the diagram above is a commutative diagram of exact sequences. Therefore,
we conclude that |P| is necessarily surjective. Indeed, the identity map lies in
the image of the leftmost vertical arrow, and so the composite map Z/2 ∼=

πA1

5+6α(S5+6α)(ks) → π9(S5)∧2
∼= Z/(2) is surjective, whence it is also an

isomorphism. It follows immediately that Pks (ks) is surjective. ⊓⊔

Some results on strictly A1-invariant sheaves

The vanishing result of Proposition 3.11 can be used to deduce information
about the sheaves πA1

4+ jα(S3+3α) for j < 6 by appeal to some technical results

123



Motivic spheres and the image of the Suslin–Hurewicz map 67

on strongly A1-invariant sheaves that were established in [8, §5.1]. We restate
the necessary results here for the convenience of the reader; in what follows
Hom is taken in the category of Nisnevich sheaves of abelian groups.

Lemma 3.14 ([8, Lemma 5.1.3]) Suppose M is a strictly A1-invariant sheaf.

1. For any integer n ≥ 1, there are isomorphisms

Hom(KMW
n , M) ∼= M−n(k).

2. If n ≥ 2, the evident map Hom(KMW
n , M) → Hom(KMW

n−1, M−1) induced
by contraction is an isomorphism compatible with the identification of
Point (1).

Lemma 3.15 ( [8, Lemma 5.1.5]) Fix a base field k. If φ : KMW
n → M is a

morphism of sheaves such that φ− j = 0, then

1. Assuming n ≥ j ≥ 0, the morphism φ is trivial; and
2. Assuming 0 ≤ n < j , the morphism φ factors through a morphism

KMW
n /I j → M.

The computation

Granted the results above, we are now in a position to establish our refinement
of [8, Theorem 5.2.5]. Recall from 3.4 that there is an exact sequence of the
form

πA1

5+ jα(S5+6α)
Pk

−→ πA1

3+ jα(S2+3α)
Ek

−→ πA1

4+ jα(S3+3α) −→ 0.

The sheaf πA1

3+ jα(S2+3α) was described in greater detail at the beginning of

Sect. 3.2: for j = 0 it is an extension of GW3
4 by a sheaf called F5. Since

πA1

5 (S5+6α) = KMW
6 , Hom(KMW

6 , GW3
4) = (GW3

4)−6 by Lemma 3.14, and
(GW3

4)−6 = 0 by [3, Proposition 3.4.3], we conclude that (i) the image of the

map KMW
6 → πA1

3 (S2+3α) is contained in F5 and (ii) πA1

3 (S2+3α) → GW3
4

factors through a map πA1

4 (S3+3α) → GW3
4.

Proposition 3.16 There is an exact sequence

S5 −→ πA1

4 (S3+3α) −→ GW3
4 −→ 0 (3.7)

which becomes short exact after 4-fold contraction.
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Proof At the beginning of Sect. 3.2 we recalled from [3, Theorem 4.3.1]
the fact that there is a morphism T5 → F5 that becomes an isomor-
phism after 4-fold contraction. In particular, we conclude that the map
Hom(KMW

6 , T5) → Hom(KMW
6 , F5) is an isomorphism by Lemma 3.14.

Therefore, the map KMW
6 → F5 from the EHP sequence lifts uniquely to a

morphism KMW
6 → T5. By definition, T5 is a fiber product of S5 and I5 along

KM
5 /2 and there is an exact sequence of the form

0 −→ I6 −→ T5 −→ S5 −→ 0.

However, since Hom(KMW
6 , S5) = 0 by combining [1, Lemma 2.7 and Corol-

lary 3.11]. Therefore, the image of the map KMW
6 → T5 factors through a

map KMW
6 → I6.

Now, we appeal to Proposition 3.11. Indeed, it follows from this vanishing
result that the map

πA1

5+6α(S5+6α) −→ πA1

3+6α(S2+3α)

is necessarily surjective. Unwinding the definitions, we conclude that the map
KMW

6 → I6 of the previous paragraph is surjective, and we obtain the required
exact sequence. Exactness after 4-fold contraction is immediate from [3, The-
orem 4.3.1]. ⊓⊔

Comparison with the stable result

In order to complete the calculation of πA1

4 (S3+3α) stated in the introduction,
we compare with calculations that have been carried out P1-stably in [31]. To
this end, recall that there is a stabilization map S3+3α → �∞

P1�
∞
P1 S3+3α . By

[4, Theorem 4.4.5] there are a sequence of morphisms S(n−1)+nα → �−n
P1 O

that stabilize to the degree map from the motivic sphere spectrum. As a con-
sequence, the following diagram commutes:

πA1

4 (S3+3α) ��

��

GW3
4

πA1

4 (�∞
P1�

∞
P1 S3+3α) �� GW3

4.

In combination with Proposition 3.16 we observe that there is an exact
sequence of strictly A1-invariant sheaves of the form

KM
5 /24 −→ πA1

4 (S3+3α) −→ GW3
4 −→ 0.
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Moreover, both the groups appearing in this extension are stably non-trivial.
Now, suppose k is a field having characteristic exponent p and consider

Z[ 1
p ]. Work of Röndigs, Spitzweck and Østvær [31, Theorem 5.5] establishes

a short exact sequence of the form:

0 −→ KM
5 /24 ⊗ Z[

1

p
] −→ πA1

4 (�∞
P1�

∞
P1 S3+3α) ⊗ Z[

1

p
]

−→ GW3
4 ⊗ Z[

1

p
] −→ 0. (3.8)

We note here that in [31] the Hermitian K-theory spectrum is denoted KQ;
we have chosen to follow Schlichting’s notation since it was consistent with
[8]. Furthermore, the computation in [31] does not look exactly like this, but
their statement implies this one because the map out of πA1

4 (�∞
P1�

∞
P1 S3+3α)

in their description is the unit map from the sphere spectrum to the spectrum
KQ.

In light of the discussion above involving [4, Theorem 4.4.5], the stabiliza-
tion map then induces a commutative diagram of the form:

KM
5 /24

f
��

�� πA1

4 (S3+3α) ��

��

GW3
4

�� 0

0 �� KM
5 /24 �� πA1

4 (�∞
P1�

∞
P1 S3+3α) �� GW3

4
�� 0;

(3.9)

some comments are in order about this morphism of exact sequences. We have
suppressed the tensoring with Z[1/p] on the two terms on the left in the bottom
row since p will, momentarily, be taken to be different from 2 or 3; our goal
is to analyze the left-hand vertical map and, to this end, we use the following
result about endomorphisms of unramified Milnor K-theory sheaves.

Lemma 3.17 Let n ≥ 0 and let m be a nonnegative integer. Then

Hom(KM
n /m, KM

n /m) = Z/(m)

generated by the identity map.

Proof The case n = 0 is trivial. We observe that if n ≥ 1, then by Lemma 3.14,
Hom(KM

n /m, KM
n /m) is a subgroup of (KM

n /m)−n = KM
0 /m = Z/(m). But

the n-fold contraction functor sends the identity map in Hom(KM
n /m, KM

n /m)

to a generator of Hom(KM
0 /m, KM

0 /m) = Z/(m). ⊓⊔

For an integer n ≥ 2, set

νn := �(n−2)+(n−2)αν : S((n+1)+(n+2)α) → Sn+nα.
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We will abuse notation and write ν for the P1-stable homotopy class cor-
responding to ν. With this notation, we now establish Theorem 4 from the
introduction.

Theorem 3.18 Let k be a field having characteristic different from 2 or 3.

1. There is a short exact sequence of the form:

0 �� KM
5 /24

ν3∗
�� πA1

4 (S3+3α) �� GW3
4

�� 0.

2. For any integer n ≥ 4, the morphism νn∗ : KMW
n+2 → πA1

n+1(Sn+nα) factors

through an injection 0 → KM
n+2/24 → πA1

n+1(Sn+nα).

Proof We would like to deduce that Diagram (3.9) is essentially an isomor-
phism of short exact sequences. First of all, we show f is an isomorphism.
By Lemma 3.17, it suffices to check this after 5-fold contraction. The diagram
becomes

Z/(24)

f−5

��

�� πA1

4+5α(S3+3α) ��

��

0

��

�� 0

0 �� Z/(24) �� πA1

4+5α(�∞
P1�

∞
P1 S3+3α) �� 0 �� 0.

(3.10)

Since Z/(24) is independent of the field, we may verify f is an isomorphism
after passage to an algebraically closed field. In characteristic 0, it follows
from [31, Remark 5.7] or [8, Corollary 5.2.7] that the Z/(24) in both the
source and the target of f−5 is generated by the motivic Hopf map ν3. Since
24 is divisible only by 2 and 3, it follows using étale realization and lifting
from characteristic 0 that ν generates the stable group. Thus, in either case, the
map sends a generator to a generator and must be an isomorphism. Therefore,
the induced map KM

5 /24 → KM
5 /24 is an isomorphism. Since there is an

epimorphism KM
5 /24 → S5 factoring this isomorphism, we also conclude

that S5
∼= KM

5 /24.
The second point is established in an entirely similar fashion and we leave

the details to the reader. In brief, [31, Theorem 5.5] gives a computation of
πA1

n+1(�
∞
P1�

∞
P1 Sn+nα) for arbitrary integers n. Thus, one simply repeats the

arguments above and again appeals to Lemma 3.17 to conclude. ⊓⊔

Suslin’s conjecture in degrees 3 and 5

We now analyze Suslin’s conjecture, using the ideas developed above. In
Remark 3.20 we discuss Suslin’s conjecture in degree 3 in our context. The
next result establish Theorem 3 from the introduction.
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Theorem 3.19 For any infinite field k having characteristic unequal to 2 or
3 and any essentially smooth local k-algebra A, the Suslin–Hurewicz map
K Q

5 (A) → K M
5 (A) has image precisely 4!K M

5 (A).

Proof In the proof of Theorem 3.18 we showed that the canonical epimorphism
KM

5 /24 → S5 is an isomorphism of strictly A1-invariant sheaves. The result
then follows immediately from Theorem 2.18 by evaluation at stalks (recall
that A1-homotopy sheaves have the property that the Zariski sheafification is
already a Nisnevich sheaf, and so one may evaluate at Zariski stalks). ⊓⊔

Remark 3.20 Our techniques also show that the Milnor conjecture on quadratic
forms implies Suslin’s conjecture in degree 3, though we leave the details to
the interested reader. Granted Theorem 2.18, Suslin’s conjecture is essentially
contained in F. Morel’s identification of πA1

2 (BGL2) = KMW
2 [23, Theorem

7.20]. In more detail, Morel showed that the Milnor–Witt K-theory sheaves
KMW

n may be realized as the fiber product sheaves KM
n ×KM

n /2 In . Granted
the Milnor conjecture on quadratic forms, there are associated short exact
sequences 0 → In+1 → KMW

n → KM
n → 0 and 0 → 2KM

n → KMW
n →

In → 0. The long exact sequence in A1-homotopy sheaves associated with
the A1-fiber sequence A3 \ 0 → BGL2 → BGL3 takes the form

πA1

3 (BGL3) −→ KMW
3 −→ KMW

2 −→ KM
2 −→ 0.

By appealing to étale and real realization along the lines of the proof of
Lemma 3.13, one may check if k is a field having characteristic unequal to 2,
the epimorphism KMW

2 → KM
2 is the canonical epimorphism with kernel I3

and the induced map KMW
3 → I3 is the canonical epimorphism with kernel

2KM
3 . It follows that the image of πA1

3 (BGL3) in KMW
3 , i.e., the image of ψ3,

is precisely 2KM
3 , i.e., Suslin’s conjecture holds in degree 3.
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