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Abstract Predicting developmental outcomes from regulatory DNA sequence and transcription17

factor patterns remains an open challenge in physical biology. Using stripe 2 of the even-skipped18

gene in Drosophila embryos as a case study, we dissect the regulatory forces underpinning a key19

step along the developmental decision-making cascade: the generation of cytoplasmic mRNA20

patterns via the control of transcription in individual cells. Using live imaging and computational21

approaches, we found that the transcriptional burst frequency is modulated across the stripe to22

control the mRNA production rate. However, we discovered that bursting alone cannot23

quantitatively recapitulate the formation of the stripe, and that control of the window of time over24

which each nucleus transcribes even-skipped plays a critical role in stripe formation. Theoretical25

modeling revealed that these regulatory strategies—bursting and the time window—obey different26

kinds of regulatory logic, suggesting that the stripe is shaped by the interplay of two distinct27

underlying molecular processes.28

29

Introduction30

During embryonic development, tightly choreographed patterns of gene expression—shallow31

gradients, sharp steps, narrow stripes—specify cell fates (Gilbert, 2010). The correct positioning,32

sharpness, and amplitude of these patterns of cytoplasmic mRNA and protein ensure the reliable33

determination of animal body plans (Peter and Davidson, 2015). Yet, despite decades of work34

mapping the gene regulatory networks that drive development and extensive efforts to dissect35

the regulatory logic of the enhancer elements that dictate the behavior of these networks, the36

precise prediction of how gene expression patterns and developmental outcomes are driven by37

transcription factor concentrations remains a central challenge in the field (Vincent et al., 2016).38

Predicting developmental outcomes demands a quantitative understanding of the flow of39

information along the central dogma: how input transcription factors dictate the output rate of40

1 of 69

.CC-BY 4.0 International licensecertified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which was notthis version posted June 20, 2019. . https://doi.org/10.1101/335919doi: bioRxiv preprint 

hggarcia@berkeley.edu
chris.wiggins@columbia.edu
https://doi.org/10.1101/335919
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to bioRxiv

mRNA production, how this rate of mRNA production dictates cytoplasmic patterns of mRNA,41

and how these mRNA patterns lead to protein patterns that feed back into the gene regulatory42

network. While the connection between transcription factor concentration and output mRNA43

production rate has been the subject of active research over the last three decades (Lawrence44

et al., 1987; Driever and Nusslein-Volhard, 1988; Small et al., 1991; Struhl et al., 1992; Jiang and45

Levine, 1993; Gray et al., 1994; Jaeger et al., 2004; Segal et al., 2008; Levine et al., 2014; Garcia46

et al., 2016; Vincent et al., 2016; Sayal et al., 2016), the connection between this output rate and47

the resulting cytoplasmic patterns of mRNA has remained largely unexplored. For example, a stripe48

of cytoplasmic mRNA within an embryo could arise as a result of radically different transcriptional49

dynamics at the single-nucleus level (Figure 1A). Specifically, if individual nuclei along this stripe50

modulate their average RNA polymerase loading rate, then graded control of the mean rate of51

transcription results: nuclei in the middle of the stripe transcribe at a higher average rate than nuclei52

on the stripe boundaries (Figure 1B). We identify this graded transcriptional control strategy with the53

analog control of gene expression. Alternatively, transcription factors could exert control over the54

length of time a nucleus is transcriptionally active (Figure 1C). In this binary control scheme—akin to55

an on/off switch that dictates whether a nucleus is transcriptionally active or quiescent—individual56

nuclei transcribe at the same average rate regardless of their position along the stripe, but for57

different lengths of time. Finally, some nuclei might not engage in transcription at all during the58

formation of the pattern (Figure 1D). Here, a larger fraction of nuclei engage in mRNA production in59

the stripe center than in the boundaries. Any of these scenarios, or some combination thereof, can60

explain the formation of a cytoplasmic mRNA pattern.61

Figure 1. Models of pattern formation by single-cell transcriptional activity. (A) Cytoplasmic mRNA
patterns could arise from transcription factors exerting control over (B) the mean transcription rate, (C) the
transcriptional time window dictating when a nucleus is transcriptionally active or quiescent, (D) the fraction of
active nuclei, or some combination thereof.

In order to uncover the quantitative contribution of these three regulatory strategies to pattern62

formation, and to determine whether other regulatory strategies are at play, it is necessary to63

measure the rate of RNA polymerase loading in individual nuclei, in real time, in a living embryo.64
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However, to date, most studies have relied on fixed-tissue techniques such as mRNA FISH and65

immunofluorescence in order to obtain snapshots of the cytoplasmic distributions of mRNA and66

protein as development progresses (Jaeger et al., 2004; Fakhouri et al., 2010; Parker et al., 2011;67

Estrada et al., 2016; Crocker et al., 2016; Verd et al., 2017; Park et al., 2018). Such techniques68

are virtually silent regarding the regulation of single-cell gene expression over time, and are thus69

ill-suited to the study of how spatiotemporal variations in transcriptional dynamics give rise to70

patterns of cytoplasmic mRNA.71

In this work, we investigated how single-cell transcriptional activity leads to the formation of72

stripe 2 of the widely studied even-skipped (eve) gene in the developing fruit fly embryo (Small73

et al., 1992; Arnosti et al., 1996). We combined single-cell live imaging with theoretical modeling74

in order to study transcriptional activity at the single-cell level in real time, seeking a quantitative75

connection between the spatiotemporal regulation of transcription and the formation of cytoplasmic76

patterns of mRNA. Consistent with previous studies, we found that the rate of mRNA production77

is elevated in the center of the stripe (Bothma et al., 2014). Strikingly, however, we discovered78

that this analog control is alone insufficient to quantitatively recapitulate the formation of the79

stripe; binary control of the transcriptional time window (Figure 1C) is also necessary. Furthermore,80

we developed novel computational approaches to uncover the molecular underpinning of each81

regulatory strategy. We employed a memory-adjusted hidden Markov model (mHMM) to uncover82

variations in transcriptional dynamics in individual nuclei across space and time (Suter et al.,83

2011;Molina et al., 2013; Corrigan et al., 2016). We showed that, consistent with previous results,84

transcription factors control the rate of transcription by altering the frequency of transcriptional85

bursts (Fukaya et al., 2016; Zoller et al., 2018). Finally, we utilized logistic regressions to correlate86

eve stripe 2 transcriptional dynamics with changes in input transcription factor concentrations. This87

analysis revealed that the transcriptional time window adheres to different regulatory logic than88

transcriptional bursting: while repressor levels alone were sufficient to explain the early silencing of89

nucei in the anterior and posterior stripe flanks, the control of bursting among transcriptionally90

engaged nuclei depends upon the input concentrations of both activators and repressors. Thus,91

our findings point to the presence of two distinct regulatory mechanisms that control transcription92

and gene expression patterns in early development, showcasing the potential for theoretical93

modelling and biological numeracy to yield novel biological insights when coupled with precise and94

quantitative experimental observation.95

Results96

Predicting cytoplasmic mRNA distributions from transcriptional activity97

To predict how the transcriptional activity of individual nuclei dictates the formation of cytoplasmic98

patterns of mRNA, we began with a simple model that considers the balance between the rate of99

mRNA synthesis and degradation100

dmRNA
dt

(x, t) = pactive(x)
⏟⏞⏟⏞⏟
fraction of
active nuclei

R(x, t)
⏟⏟⏟
synthesis

− 
mRNA(x, t)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
degradation

, (1)

where mRNA(x, t) indicates the mRNA concentration at position x along the embryo at time t, R(x, t)101

corresponds to the mRNA synthesis rate averaged over multiple nuclei within the same position x,102

pactive(x) is the fraction of active nuclei (corresponding to the regulatory strategy shown in Figure 1D)103

and 
 is the degradation rate (see Appendix 1 for details of this derivation).104

In order to examine the quantitative consequences of the three potential regulatory strategies105

(Figure 1B-D), we adopted widespread assumptions in the modeling of transcriptional regulation106

(Phillips et al., 2013). First, we assumed that the degradation rate 
 is a constant and not under any107

kind of spatiotemporal control. Comparisons between model predictions and empirically measured108

levels of cytoplasmic mRNA suggest that this assumption is reasonable (see Appendix 2). Second,109
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we posited that at each position throughout the embryo the synthesis rate R(x, t) does not vary110

significantly in time such that it can be approximated by its time average R(x) = ⟨R(x, t)⟩. This111

assumption will be revised later in the text in order to account for the time-dependent regulation of112

the mean rate of transcription. Finally, we assumed that nuclei along the axis of the embryo start113

transcribing at time ton(x), and stop transcribing and enter a state of transcriptional quiescence at114

time toff (x). Under these assumptions, Equation 1 can be solved analytically, resulting in115

mRNA(x, t) =
R(x)



⏟⏟⏟
analog control of

mean transcription rate

×
(

e−
(t−min{toff (x),t}) − e−
(t−ton(x))
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
binary control of

transcriptional time window

× pactive(x)
⏟⏞⏟⏞⏟

control of the fraction
of active nuclei

. (2)

This equation makes precise predictions about how each regulatory strategy contributes to the116

formation of the cytoplasmic mRNA pattern. Thus, measuring how each quantity is regulated across117

the stripe allows us to predict their relative contributions to pattern formation.118

Binary control of the transcriptional time window is the primary driver of stripe119

formation120

In order to test the simple model of pattern formation put forward in Equation 2, we quantified121

transcription of stripe 2 of eve in the fruit fly. We imaged the transcription of an eve stripe 2 reporter122

using the MS2 system (Garcia et al., 2013; Lucas et al., 2013; Bothma et al., 2014). Transcripts of a123

reporter gene driven by the eve stripe 2 enhancer and the eve promoter contain repeats of a DNA124

sequence that, when transcribed, form stem loops (Bertrand et al., 1998). These stem loops are125

recognized by maternally provided MS2 coat protein fused to GFP (Figure 2A). As a result, sites of126

nascent transcript formation appear as fluorescent puncta within individual nuclei (Figure 2B and127

Video 1). This fluorescence can be calibrated using single-molecule FISH in order to estimate the128

number of RNA polymerase molecules actively transcribing the gene (see Materials and Methods129

and Garcia et al. (2013)). By aligning multiple embryos (Figure 2–Figure Supplement 1), we obtained130

the average number of actively transcribing RNA polymerase molecules as a function of time and131

position throughout the embryo (Figure 2C).132

Using the MS2 system, we quantified each potential regulatory strategy and determined its133

predicted contribution to pattern formation according to our model in Equation 2. We first used134

our data to estimate the time-averaged rate of RNA polymerase loading, R(x) (see Appendix 2 for135

details). We found that this rate is modulated along the axis of the embryo (Figure 3A and B; see136

also Video 2, Figure 3–Figure Supplement 1 and Materials and Methods): whereas in the center of137

the stripe RNA polymerase molecules are loaded at a rate of approximately 16 molecules/min, this138

loading rate decreases to about 8 molecules/min at the boundaries.139

Our data also revealed that the transcriptional time window is modulated along the stripe (Fig-140

ure 3–Figure Supplement 2A). Whereas the time at which each nucleus becomes transcriptionally141

active, ton(x), was constant across the stripe, with all nuclei becoming active 9 ± 4 min after the142

previous anaphase (Figure 3–Figure Supplement 2B), the time at which nuclei stop transcribing and143

become quiescent, toff (x), showed a strong modulation along the embryo’s axis (Figure 3–Figure144

Supplement 2C). As a result, the time window over which each punctum is engaged in transcription,145

Δt = toff − ton, is sharply modulated along the stripe (Figure 3C and D and Video 3), with nuclei146

in the stripe center transcribing for >30 min and nuclei on the boundaries only transcribing for147

approximately 10 min.148

Finally, our analysis also revealed themagnitude of the modulation of the fraction of active nuclei149

along the stripe. Most nuclei along the stripe were engaged in transcription. In the stripe center,150

around 90% of nuclei transcribed at some point during the nuclei cycle. This number reduced to151

about 70% at the boundaries (Figure 3E and F and Video 4).152

The analysis in Figure 3A-F reveals that each of the three regulatory strategies identified in153

Figure 1 is at play in the embryo, and that they all have the potential to contribute to pattern154
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Figure 2. Measuring transcriptional dynamics of eve stripe 2 formation using the MS2 system. (A)MS2
stem loops introduced in an eve stripe 2 reporter gene are bound by MS2 coat protein fused to GFP. (B) Sites of
nascent transcript formation appear as green fluorescent puncta whose intensity reports on the number of

actively transcribing RNA polymerase molecules. Nuclei are visualized through a fusion of RFP to Histone. (C)
Mean number of RNA polymerase molecules actively transcribing the gene as a function of space and time. (C,

data averaged over 11 embryos).

Figure 2–Figure supplement 1. Aligning stripes frommultiple embryos.
Figure 2–Figure supplement 2. Integrating MS2 Spots.

formation. However, these measurements alone cannot inform us on how much each of these155

strategies contributes to the cytoplasmic mRNA pattern. To quantify the degree to which each156

regulatory strategy contributes to the formation of eve stripe 2, we employed the model described157

in Equation 2.158

Figure 3G indicates the quantitative contribution of each regulatory strategy (each term on the159

right-hand side of Equation 2) to the formation of this cytoplasmic pattern. The cytoplasmic pattern160

of mRNA, corresponding to left-hand side of Equation 2, was obtained from our live-imaging data161

(see Appendix 2 for details). Regulation of the fraction of active nuclei along the embryo (Figure 3G,162

yellow) contributes negligibly to this mRNA pattern. In contrast, both the analog regulation of the163
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Figure 3. Regulatory strategies for pattern formation in eve stripe 2. (A,B) Time-averaged rate of mRNA
production, (C,D) transcriptional time window, and (E,F) fraction of active nuclei as a function of position along
the embryo. (G) Amplitude of the cytoplasmic mRNA distribution compared to the contributions to stripe
formation of the analog control of the mean transcription rate, the binary control of the transcriptional time

window, and the control of the fraction of active nuclei. The combined contribution from the analog and binary

strategies is also shown. See Figure 3–Figure Supplement 3 for details of how depicted profiles were derived
from raw data. (A,C,E, representative snapshots of an individual embryo 40 min into nuclear cycle 14; B,D,F,

average over 11 embryos, error bars indicate bootstrap estimate of the standard error of the mean).

Figure 3–Figure supplement 1. Mean transcriptional activity over time.
Figure 3–Figure supplement 2. Regulation of the transcriptional time window.

Figure 3–Figure supplement 3. Definition of stripe amplitude.
Figure 3–Figure supplement 4. Joint effect of mean rate, binary control, and fraction of active nuclei.

mean rate (Figure 3G, green) and the binary control of the transcriptional time window (Figure 3G,164

blue) make significant contributions to the overall pattern, with binary control playing the dominant165

role. We thus concluded that the joint effect of these two strategies (Figure 3G, brown) is sufficient166

to quantitatively recapitulate the stripe of cytoplasmic mRNA from single-cell transcriptional activity.167

Mean transcription rate is dictated by bursting through modulation of the rate of168

promoter turn on169

Are the binary and analog control strategies driven by distinct molecular mechanisms, or are they170

different manifestations of the same underlying process? To uncover the molecular mechanism171

behind the analog control of the mean rate of transcription, we analyzed the transcriptional172

activity of individual nuclei. Previous work demonstrated that the rate of gene expression at173
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individual loci within the eve stripe 2 pattern is highly stochastic (Bothma et al., 2014). Indeed, as174

shown in Figure 4A, our data revealed punctuated peaks and troughs in the number of active RNA175

polymerase molecules. These features have been related to the rate of RNA polymerase loading176

at the eve promoter by assuming that promoter loading is “burst-like”, with the promoter loading177

RNA polymerase molecules onto the gene at a constant rate over discrete periods of time (Bothma178

et al., 2014). This and other evidence from live imaging (Bothma et al., 2014; Fukaya et al., 2016;179

Desponds et al., 2016), as well as data from fixed-tissue approaches (Pare et al., 2009; Little et al.,180

2013; Xu et al., 2015; Zoller et al., 2018), support a minimal two-state model of promoter switching181

(Figure 4B): promoters switch stochastically between ON and OFF states with rates kon and koff . In182

this model, promoters in the ON state engage in mRNA production at rate r.183

Figure 4. Transcriptional bursting in eve stripe 2. (A) Single-nucleus measurements reveal that nuclei
transcribe in bursts. (B) Two-state model of bursting of a single promoter. (C) The same hidden rate of RNA
polymerase loading (bottom) can correspond to different observable numbers of RNA polymerase molecules

on the gene (top), such that standard Hidden Markov model approaches cannot be used to infer the hidden

promoter state. (D) Fluorescent puncta are composed of two distinct transcriptional loci within a
diffraction-limited spot, each corresponding to a sister chromatid. (E) Three-state model of promoter switching
within a fluorescent punctum that accounts for the combined action of both sister chromatids. (F) Effective
two-state model of transcriptional bursting. (A, error bars obtained from estimation background fluorescent

fluctuations; Materials and Methods and Garcia et al. (2013).)
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In the bursting model, the mean rate of transcription is given by the product of the fraction184

of time spent in the ON state with the transcription rate in this active state (Peccoud and Ycart,185

1995; Kepler and Elston, 2001; Sasai and Wolynes, 2003; Sanchez and Kondev, 2008; Sanchez et al.,186

2011; Xu et al., 2016)187

R(x)
⏟⏟⏟
mean

transcription rate

= r(x)
⏟⏟⏟

RNAP loading

rate

×
kon(x)

kon(x) + koff (x)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
fraction of time
in ON state

, (3)

where all parameters are allowed to vary as a function of position along the embryo, x (see188

Appendix 1 for details of this derivation). Thus, within this framework, the observed modulation189

of the mean rate of transcription across the stripe (Figure 3G, green) implies that one or more of190

these bursting parameters is subject to spatially controlled regulation. However, the mean rate191

trend alone is not sufficient to identify which of the three bursting parameters (kon, koff , and r) is192

being regulated by the input transcription factors in order to control the average transcription rate.193

Typically, the in vivomolecular mechanism of transcription factor action is inferred from mea-194

surements of transcriptional noise obtained through snapshots of dead and fixed embryos or195

cells using theoretical models (Zenklusen et al., 2008; So et al., 2011; Little et al., 2013; Jones et al.,196

2014; Senecal et al., 2014; Xu et al., 2015; Padovan-Merhar et al., 2015; Skinner et al., 2016; Bart-197

man et al., 2016; Zoller et al., 2018; Hendy et al., 2017). In contrast, MS2-based live imaging can198

directly inform on the dynamics of transcriptional bursting in real time. The MS2 approach, however,199

reports on the total number of actively transcribing RNA polymerase molecules and not on the200

instantaneous rate of RNA polymerase loading at the promoter, which is the relevant quantity for201

estimating kon, koff , and r. To date, approaches for extracting bursting parameters from such data in202

multicellular organisms have mainly relied on the manual analysis of single-nucleus transcriptional203

dynamics (Bothma et al., 2014; Fukaya et al., 2016) or autocorrelation-based methods that infer204

mean bursting parameters across ensembles of traces (Larson et al., 2011; Coulon et al., 2014;205

Desponds et al., 2016). A computational method for inferring the rates of RNA polymerase loading206

(Figure 4C, bottom) from the total number of actively transcribing RNA polymerase molecules in207

single cells (Figure 4C, top) is thus needed to obtain the bursting parameters.208

Hidden Markov models (HMMs) are widely used to uncover the dynamics of a system as it209

transitions through states that are not directly accessible to the observer (Bronson et al., 2009).210

However, our observable (the MS2 signal) does not correspond to the hidden variable of interest211

(the promoter state) in a one-to-one fashion (compare Figure 4C top and bottom). Instead, the212

observable MS2 signal reflects the net effect of promoter switching over a period equal to the213

time that an RNA polymerase molecule takes to transcribe the whole gene. Thus, instantaneous214

fluorescence does not just depend on the current promoter state; it exhibits a dependence on215

how active the promoter has been over a preceding window of time, which effectively constitutes216

a memory for recent promoter states (Choubey et al., 2015; Xu et al., 2016; Corrigan et al., 2016;217

Choubey, 2018; Choubey et al., 2018). Classic HMM approaches cannot account for this kind of218

system memory.219

In order to model the process of transcription and extract the kinetic parameters of promoter220

switching, we augmented classic HMMs to account for memory (details about implementation221

of the method are given in Appendix 3). Similar approaches were recently introduced to study222

transcriptional dynamics in cell culture and tissue samples (Suter et al., 2011;Molina et al., 2013;223

Zechner et al., 2014; Zoller et al., 2015; Hey et al., 2015; Bronstein et al., 2015; Corrigan et al.,224

2016; Featherstone et al., 2016). We used simulated data to establish that mHMM reliably extracts225

the kinetic parameters of transcriptional bursting from live-imaging data (Appendix 4), providing an226

ideal tool for dissecting the contributions from individual bursting parameters to observed patterns227

of transcriptional activity across space and time.228

Before applying our model to real-time transcriptional data, we had to account for the rapid229

replication of the D. melanogaster genome at the beginning of each nuclear cycle (Rabinowitz, 1941;230
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Shermoen et al., 2010), which leads to the presence of two distinct eve loci within each fluorescent231

spot (Figure 4D and Video 5). The first evidence of resolved chromatids appears as early as 8232

minutes into nuclear cycle 14 (Appendix 5–Figure 1)—coincident with the average onset time of233

transcription (Figure 3–Figure Supplement 2B). Moreover, our analysis indicates that replication234

of the relevant portion of the genome likely occurs in all eve-expressing nuclei by no later than235

10 minutes following mitosis (Appendix 5–Figure 2). Thus, we conclude that the vast majority of236

our data feature two distinct eve loci within each diffraction-limited transcription spot. Moreover,237

while the distance between sister loci varies over time (see, e.g. Figure 4D), they nonetheless stay in238

relatively close proximity to ensure their proper segregation from each other at the next mitosis239

(Senaratne et al., 2016) such that the fluorescent intensity signals extracted from our data reflect240

the integral over both loci (Figure 2–Figure Supplement 2). As a result, if we assume that each241

locus can be well-represented by a two-state model of transcriptional bursting, then an effective242

three-state model is needed to capture eve dynamics (Figure 4E). For ease of exposition, we present243

our main results in the context of an effective two-state model, in which, as detailed in Appendix 1,244

the system is considered to be in the ON state so long as either chromatid is bursting (Figure 4F).245

Note that none of our conclusions below are affected by this choice of an effective model as shown246

in Appendix 6 where we present full results for the three-state model.247

A typical experimental trace for a nucleus in the core of the stripe is shown in Figure 5A, along248

with its best fit, which corresponds to the mHMM-inferred promoter trajectory in Figure 5B. Our249

ability to infer the instantaneous promoter state in individual nuclei throughout development is250

further illustrated in Figure 5C and Video 6. These data revealed that, as development progresses251

and the stripe sharpens, the eve promoter continuously fluctuates between the ON and OFF states252

on a time scale of approximately 1-2 minutes.253

In order to infer time-averaged bursting parameter values, we grouped traces by position along254

the anterior-posterior axis. The rate of RNA polymerase loading, r, remained constant throughout255

the stripe (Figure 5D), suggesting that none of the transcription factors regulating eve stripe 2256

act on this kinetic parameter. Similarly, we noted no significant spatial modulation of the rate of257

switching out of the ON state, koff (Figure 5E). In contrast, the rate of switching into the ON state258

(also known as burst frequency), kon, was strongly up-regulated in the stripe center (Figure 5E).259

These observations suggested that, in order to enact analog control of the mean transcription rate,260

transcription factors act primarily on the rate of promoter turning on, consistent with previous261

results both in embryos (Xu et al., 2015; Desponds et al., 2016; Fukaya et al., 2016) and in single262

cells (So et al., 2011; Senecal et al., 2014; Padovan-Merhar et al., 2015; Bartman et al., 2016). This263

regulatory modality increases the fraction of time that loci near the stripe center spend in the ON264

state (Figure 5–Figure Supplement 1 and Zoller et al. (2018)).265

Binary control of the transcriptional timewindow is independent of transcriptional266

bursting267

Having determined that analog control of themean transcriptional rate is realized by themodulation268

of the burst frequency, kon, we next sought to uncover the molecular mechanism by which the269

binary regulation of the transcriptional time window is implemented. In one possible scenario,270

the onset of transcriptional quiescence at the end of the transcriptional time window would271

reflect a fundamental change to the molecular character of the transcriptional locus such that the272

bursting framework no longer applies. For instance, repressing transcription factors could induce273

an irreversible change in the local chromatin landscape that precludes further activator-mediated274

bursting, effectively silencing transcription (Figure 6A, top; Allis et al. (2015)). Alternatively, if the275

rates of promoter switching vary in time, then the time window could be explained without invoking276

an extra silenced state that is mechanistically distinct from the processes driving transcriptional277

bursting. In this scenario, one or multiple promoter-switching rates would change over time in278

order to progressively reduce the frequency, intensity, and/or duration of transcriptional bursts,279

abolishing all activity at the locus and leading to the observed quiescence. Such modulation could280
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Figure 5. Inferring bursting dynamics using a memory-adjusted Hidden Markov model. (A)
Representative experimental trace along with its best fit and (B) its most likely corresponding promoter state
trajectory. (C) Instantaneous visualization of promoter state in individual cells throughout development through
the false coloring of nuclei by promoter state (colors as in B). (D) The rate of initiation for each transcriptional
state is not significantly modulated along the embryo. (E) Our mHMM reveals that the transition rate between
the OFF and ON state (equivalent to the burst frequency) is up-regulated in the stripe center. (A, error bars

obtained from estimation of background fluorescent fluctuations, as described in Materials and Methods and

Garcia et al. (2013); D,E, error bars indicate the magnitude of the difference between the first and third
quartiles of mHMM inference results for bootstrap samples of experimental data taken across 11 embryos. See

Materials and Methods for details.)

Figure 5–Figure supplement 1. Fraction of time spent in each transcriptional state.

be achieved by downregulating kon, downregulating r, and/or upregulating koff (Figure 6A, bottom).281

In order to discriminate between these two possible scenarios, we split the stripe into the282

five regions shown in Figure 6B. For each region, we sought to determine whether the bursting283

dynamics varied over time in a manner that could explain the dynamics of entry into quiescence284

of individual nuclei (Figure 6C). To probe for this time-dependence in transcriptional bursting, we285

extended our mHMMmethod to obtain promoter-bursting parameters over discrete periods of286

time by performing inference on our live-imaging data using a sliding window (see Appendix 3287

for details). Our inference revealed that the rate of promoter turn on, kon, varied significantly in288

time (Figure 6D). Specifically, kon decreased in both the anterior and posterior stripe boundaries289

(black and red curves) as development progressed and the fraction of active nuclei decreased (grey290

shaded region), while loci in the stripe center (green and yellow curves) exhibited a significant291

increase in kon. Further, while relatively constant at most positions along the stripe, both the rate of292

RNA polymerase loading when in the ON state, r, and the rate of promoter turn off, koff , decreased293

slightly in (Figure 6E and F).294

These findings confirmed our time-averaged inference results (Figure 5D and E) indicating that295

kon was the primary kinetic pathway through which transcription factors influence eve stripe 2296

transcription dynamics. Moreover, the coincidence of the decrease in kon in flank nuclei with the297

onset of transcriptional quiescence (grey shaded region in Figure 6D) seemed to suggest that, at298

10 of 69

.CC-BY 4.0 International licensecertified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which was notthis version posted June 20, 2019. . https://doi.org/10.1101/335919doi: bioRxiv preprint 

https://doi.org/10.1101/335919
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to bioRxiv

Figure 6. Investigating the molecular character of transcriptional quiescence. (A) Two hypotheses
explaining promoter quiescence onset: (i) an irreversible transition into an alternative, transcriptionally silent

state and (ii) the modulation of one or more bursting parameters over time. (B) Division of the stripe into five
regions for our analysis of: (C) the fraction of quiescent nuclei, (D) the transition rate from OFF to ON, (E) the
rate of RNA polymerase loading when the promoter is in the ON state, and (F) the transition rate from ON to
OFF as a function of time and position along the stripe. Grey shaded region indicates the onset of

transcriptional quiescence. (C, error bars indicate bootstrap estimate of the standard error of the mean. D-F,

error bars indicate the magnitude of the difference between the first and third quartiles of mHMM inference

results for bootstrapped samples of experimental data. See Materials and Methods for details)

least in part, quiescence in the stripe flanks could be driven by the temporal modulation of bursting299

parameters (Figure 6A, bottom). However, other trends in our data results were not consistent with300

the view that a decrease in kon drives transcriptional quiescence. Although 70% and 50% of nuclei301
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in the regions directly anterior and posterior of the stripe center were quiescent by 40 min into302

the nuclear cycle (blue and yellow curves in Figure 6C), we detected no corresponding decrease303

in kon. In fact, kon actually increased in some inner regions of the stripe (Figure 6D)—a trend that304

would increase overall transcriptional activity and would therefore go against the establishment of305

transcriptional quiescence.306

The divergent outcomes observed in the central stripe regions, with the rate of transcriptional307

bursting remaining constant or increasing at eve loci within the engaged population of nuclei even308

as loci in neighboring nuclei turn off for good, runs counter to the hypothesis that quiescence309

is driven by the temporal modulation of the promoter switching parameters. It is conceivable310

that temporal changes in bursting parameters associated with the onset of quiescence occur too311

rapidly to be captured by our model. However, as discussed in Appendix 7, these changes would312

need to occur on the same time scale as bursting itself (1 to 3 min). Given that both the other313

temporal trends detected by our inference (Figure 6) and the shifts in the input transcription factors314

themselves (Appendix 8) unfold on significantly slower timescales (5-15 min), we concluded that315

while possible, a scenario were bursting dynamics are changing too quickly to detect is unlikely.316

The contradictory trends observed in the stripe center suggested that entry into transcriptional317

quiescencemight be akin to an irreversible transition into a silent state (Figure 6A, top), thus suggest-318

ing that binary control of the transcriptional time window and the transcriptional bursting driving319

the analog control of the mean transcription rate may arise from distinct molecular processes.320

Input-output analysis reveals distinct regulatory logic for bursting and the tran-321

scriptional time window322

eve stripe 2 is mainly established by the combined action of two activators, Bicoid and Hunchback,323

and two repressors, Giant and Krüppel (Frasch and Levine, 1987; Small et al., 1992; Arnosti et al.,324

1996). If transcriptional bursting and the transcriptional time window are controlled by distinct325

molecular mechanisms, then distinct forms of regulatory logic may be at play. For example, the326

Bicoid and Hunchback activators could control transcriptional bursting, while the Giant and Krüppel327

repressors could dictate the entry into the quiescent state. In order to reveal the molecular logic328

controlling each regulatory strategy, we sought to correlate the fraction of nuclei that have entered329

the quiescent state (Figure 7A) and the fraction of nuclei in the bursting ON state (Figure 7B) with330

the corresponding spatiotemporal patterns in the input concentrations of these four transcription331

factors.332

We measured Bicoid concentration profiles using a a well-established Bicoid-GFP fusion (Gregor333

et al., 2007) and obtained spatiotemporal concentration profiles for Krüppel, Giant, and Hunchback334

from published immunofluorescence data (Dubuis et al., 2013). We combined these data with our335

live-imaging data of eve stripe 2 transcriptional activity to generate an “average embryo” in which336

the concentration of all relevant inputs and the output transcriptional activity at each point in time337

and space were known (Figure 7C and Video 7). Building upon previous work (Ilsley et al., 2013),338

we utilized logistic regressions to probe the regulatory role played by each of these four factors in339

the spatiotemporal control of transcriptional bursting and the transcriptional time window. Logistic340

regression is a widely usedmethod of inferring predictive models in processes with binary outcomes.341

For example, in order to query the regulatory logic behind the control of the transcriptional time342

window, the model probes the impact of each transcription factor on the relative likelihood of a343

locus entering the quiescent state versus the likelihood of remaining transcriptionally engaged such344

that345

log

(

likelihood
(

transcriptionally quiescent
)

likelihood
(

transcriptionally engaged
)

)

= �0+�1
[

Bicoid
]

+�2
[

Hunchback
]

+�3
[

Giant
]

+�4
[

Krüppel
]

,

(4)

where the coefficients �n indicate the magnitude and nature (activating or repressing) of the346

transcription factor’s regulatory function. In estimating these coefficients, we used prior knowledge347
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about the function of each transcription factor, requiring Bicoid and Hunchback to play activating348

roles, and Krüppel and Giant to play repressing roles (Small et al., 1991, 1992). We used an349

analogous model to investigate the regulatory logic controlling transcriptional bursting by inferring350

the factors that determine the relative likelihood that nuclei are in the bursting ON versus the OFF351

state, likelihood (ON state)/likelihood (OFF state).352

Our analysis of the fraction of nuclei in the quiescent state revealed that no single transcription353

factor can explain quiescence dynamics (Figure 7D and E). However, a simple model in which354

increasing levels of the repressors Giant and Krüppel drive the onset of transcriptional quiescence355

in the anterior and posterior stripe flanks, respectively, recapitulated experimentally observed356

trends. The further addition of Hunchback and/or Bicoid had no impact on the model’s predictive357

power, suggesting that activator concentrations have no influence over the molecular processes358

responsible for silencing. Relaxing constraints on the functional role of each transcription factor–for359

instance, allowing the presumed activators to function as repressors–also provided no significant360

improvement over models presented here as shown in Appendix 8.361

We next turned our attention to the relationship between transcription factor levels and the362

fraction of nuclei in the ON state (Figure 7B). Unlike the transcriptional time window, repressor levels363

alone could not recapitulate the observed bursting profile; Hunchback levels were also necessary364

in order to fully capture the spatiotemporal bursting dynamics (Figure 7E and G). Specifically, we365

linked a rise in Hunchback concentration to an observed rise in the fraction of nuclei in the ON366

state in the stripe center between 30 and 35 min into the nuclear cycle (Figure 7B and F).367

Our input-output analysis thus revealed that bursting and the transcriptional time window368

exhibit significantly different forms of regulator logic: whereas repressor levels alone are sufficient369

to explain the transcriptional time window, the joint action of activators and repressors appears370

necessary to explain the observed patterns of transcriptional bursting. These results are consistent371

with the hypothesis that regulation of bursting and of the transcriptional time window occur via372

distinct molecular processes, therefore supporting a model in which the long-lived trancriptionally373

silent state observed in flank nuclei constitutes a distinct molecular state outside of the bursting374

model.375

Discussion376

In Drosophila development, information encoded in a handful of maternally deposited protein377

gradients propagates through increasingly complex layers of interacting genes, culminating in the378

specification of the adult body plan. The prediction of this cascade of developmental outcomes379

requires a quantitative understanding of the mechanisms that facilitate the flow of information380

along the central dogma. Here, we utilized live imaging in conjunction with theoretical modelling381

to shed light on a critical link in this cascade: how the regulation of transcriptional activity at the382

single-nucleus level gives rise to a spatiotemporal pattern of cytoplasmic mRNA.383

A priori, there are several distinct regulatory strategies at the single-cell level capable of generat-384

ing spatially differentiated patterns of cytoplasmic mRNA (Figure 1), each with distinct implications385

for the nature of the underlying molecular processes at play. Several recent studies have re-386

vealed that the average rate of transcription is mainly modulated across the embryo by tuning387

the frequency of transcriptional bursting (Lionnet et al., 2011; Bothma et al., 2014; Xu et al., 2015;388

Desponds et al., 2016; Fukaya et al., 2016; Zoller et al., 2018). Yet it has remained unclear whether389

this modulation of the rate of transcription (and thereby mRNA production) is the dominant modal-390

ity by which input concentrations of transcription factors drive the formation of patterns of gene391

expression, or if, instead, it is simply the most readily apparent mechanism among multiple distinct392

control strategies.393

In this work, we derived a simple theoretical model that predicts how the interplay between394

regulatory strategies at the single-cell level dictates the accumulation of cytoplasmic mRNA and395

the subsequent formation of a gene expression pattern (Equation 2), and tested its predictions396
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Figure 7. Probing the regulatory logic of bursting and the transcriptional time window. (A) Fraction of
nuclei in the transcriptionally quiescent state and (B) fraction of nuclei in the bursting ON state as a function of
time and position along the embryo. (C) Snapshot of input transcription factor levels and predicted evemRNA
levels of our “average” embryo. (D) Predicted fraction of quiescent nuclei for progressively more complex
regression models. The simplest model with the highest likelihood is outlined in purple. (E)Model likelihood
indicating that Krüppel and Giant levels are sufficient to recapitulate the fraction of quiescent nuclei in (D). (F)
Predicted fraction of nuclei in the ON state. The simplest and most likely model is highlighted in purple. (G)
Model scores reveal that Giant, Krüppel, and Hunchback recapitulate the bursting behavior in (F).
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experimentally by performing single-cell live-imaging measurements in developing embryos using397

the MS2 system. Our results revealed that the modulation of the mean rate of transcription398

alone is insufficient to recapitulate the formation of a sharp gene expression stripe (Figure 3F,399

green). We discovered that the window of time over which promoters engage in transcription is400

sharply controlled along the axis of the embryo (Figure 3C and D) and that the joint action of the401

analog control of the rate of transcription and the binary control of the duration of transcription is402

necessary and sufficient to quantitatively recapitulate most of the the full stripe profile (Figure 3F,403

brown).404

Here, we used biological numeracy as a driver for biological discovery: our discovery of the405

key role of the binary control of the transcriptional time window in pattern formation was only406

made possible by going beyond the qualitative description of pattern formation and demanding a407

quantitative agreement between our theoretical predictions and the experimental data (Phillips,408

2015). Further, our work emphasizes how the regulation of gene expression timing in development409

is as important as the regulation of the spatial extent of these patterns along the embryo. Thus,410

in order to make progress toward a quantitative and predictive picture of pattern formation in411

development, it is necessary to go beyond the widespread steady-state, static picture of pattern412

formation in development put forward by previous single-cell transcriptional activity studies that413

focused on the study of snapshots of fixed embryos (Pare et al., 2009; Little et al., 2013; Xu et al.,414

2015; Zoller et al., 2018) and embrace a dynamical description that acknowledges that development415

is a process that occurs outside of steady state (Berrocal et al., 2018).416

To determine whether the same molecular mechanisms dictate the analog control of the mean417

transcription rate and the binary control of the transcriptional time window, we utilized a variety418

of theoretical and computational tools in conjunction with our live-imaging data. Specifically, to419

uncover how the mean rate of transcription is regulated across the stripe, we developed a mHMM420

that is capable of inferring the instantaneous activity state of individual gene loci from MS2 traces.421

We used this mHMM to infer average promoter-switching parameters across the stripe (Figure 5).422

In agreement with previous measurements of various gene expression patterns (Xu et al., 2015;423

Desponds et al., 2016; Fukaya et al., 2016; Zoller et al., 2018), our results revealed that the the424

burst frequency (kon) is the main bursting parameter regulated by the input transcription factors425

across eve stripe 2. This increase in kon in the stripe center increases the fraction of time that nuclei426

spend in the active transcriptional state.427

Importantly, our mHMM algorithm is not limited to the eve stripe 2 system and should prove428

useful to infer the underlying regulatory kinetics of any gene that is tagged using approaches such429

as the MS2 or PP7 systems in any organism (Larson et al., 2011; Hocine et al., 2012; Fukaya et al.,430

2016). Further, the method could be used to infer the state of the ribosome as mRNA is being431

translated into protein in novel single-molecule in vivo translation assays (Morisaki et al., 2016;432

Wang et al., 2016; Yan et al., 2016; Wu et al., 2016). Thus, we envision that our method will be433

useful for the broader biophysical analysis of in vivo cellular processes at the single-molecule level.434

Having identified kon as the primary kinetic mode by which transcription factors modulate the435

mean rate of expression across eve stripe 2, we next sought to probe the relationship between436

bursting and the transcriptional time window (Figure 6A). We adapted our mHMM to go beyond437

time-independent models of promoter switching to infer the regulation of these rates across both438

space and time. We observed striking temporal trends indicating that the burst frequency responds439

dynamically to time-varying transcription factor inputs. However, we noted a significant disconnect440

between temporal trends in the burst frequency and the onset of transcriptional quiescence. In441

particular, kon either increased or remained constant near the stripe center even as a significant442

fraction of eve nuclei transitioned into quiescence (Figure 6C and D). We reasoned that the onset443

of transcriptional quiescence is likely not the result of a progressive reduction in burst frequency,444

amplitude, or duration, and that quiescence is instead driven by molecular processes that are445

distinct from those that regulate transcriptional bursting such as transcriptional silencing.446

To test this hypothesis, we utilized a logistic regression framework and time-resolved data for447
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the primary regulators of eve stripe 2 to query the regulatory logic exhibited by the time window448

and bursting, respectively (Appendix 8). Consistent with our time-resolved mHMM results, the two449

regulatory strategies responded to transcription factor concentrations in different ways. On the one450

hand, increasing levels of Giant and Krüppel were sufficient to explain the onset of transcriptional451

quiescence in the stripe flanks (Figure 7A and D). This observation points to a model in which452

repressor levels act unilaterally—without respect to coincident levels of activator proteins—to453

shut off transcription at loci in an (at least effectively) irreversible fashion. Conversely, the joint454

action of Giant, Krüppel, and Hunchback was necessary to recapitulate the observed pattern of455

transcriptional bursting (Figure 7B and F).456

This difference in the regulatory logic observed for the two strategies dissected in this work457

suggests that control of the transcriptional time window and the modulation of the average tran-458

scription rate arise from two distinct, orthogonal molecular mechanisms. Further, the striking459

absence of a direct functional role for Bicoid in the regulation of either phenomenon suggests that,460

while Bicoid is almost certainly necessary for the expression of eve stripe 2 (Small et al., 1992), it461

does not play a direct role in dictating the magnitude or duration of eve stripe 2 transcription. In462

this interpretation, Bicoid functions like a general transcription factor, facilitating the transcription463

of eve 2 without directly conferring spatiotemporal information.464

While the results of our input-output analysis provide valuable insights into the mechanisms465

driving the regulation of transcription of the eve stripe 2 enhancer, key questions remain about the466

molecular character of the underlying processes. For instance, while loci engaged in transcriptional467

bursting appear to continuously sense changes in transcription factor concentrations, it remains468

an open question whether loci continue to actively read out transcription factor concentrations469

following the onset of transcriptional quiescence. While the transition appears irreversible in our470

data, it is possible that quiescence is, in fact, reversible in principle, but simply not observed in471

practice because repressor levels increase over time in our region of interest. In such a scenario,472

the direct action of relatively short-lived repressor binding could function to silence the locus, and a473

reduction in repressor concentration would lead to a rapid reactivation of transcription. Alterna-474

tively, if repressor levels function more akin to a trigger to, say, induce a change in the chromatin475

state at the eve locus, this would imply that loci, once quiescent, cease to sense transcription476

factor concentrations and would fail to reactivate even if repressor levels decreased. Of course,477

intermediate cases could also be imagined.478

In order to further test these and other molecular hypotheses , it will be critical to move beyond479

spatiotemporal averages for transcription factor inputs (Figure 7C) and, instead, use live single-480

nucleus measurements to directly correlate input transcription factor concentration dynamics481

with the corresponding transcriptional activity at the single-cell level (Holloway and Spirov, 2017).482

Experimentally, we recently demonstrated the simultaneous measurement of inputs and outputs483

in single nuclei of a living fly embryo using novel genetically encoded LlamaTags (Bothma et al.,484

2018). We believe that utilizing this novel technique, in conjunction with the theoretical methods485

presented here, to query the effects of targeted disruptions to transcription factor binding domains486

on regulatory enhancers will constitute a powerful assay for querying transcription factor function487

at the molecular level. Thus, there are clear experimental and theoretical paths to uncovering488

the detailed quantitative mechanisms behind the molecular control of transcriptional bursting489

and quiescence in development. Such a quantitative description is a necessary step toward a490

predictive understanding of developmental decision-making that makes it possible to calculate491

developmental outcomes from knowledge of the nature of the transcription factor interactions492

within gene regulatory networks.493
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Materials and methods494

Cloning and transgenesis495

This work employed the same eve stripe 2 reporter construct developed by Bothma et al. (2014).496

This construct contains the even-skipped (eve) stripe 2 enhancer and promoter region (spanning497

-1.7 kbp to +50 bp) upstream of the yellow reporter gene. 24 repeats of the MS2 stem loop sequence498

were incorporated into the 5’ end of the reporter gene.499

Sample preparation and data collection500

Sample preparation followed procedures described in Bothma et al. (2014) and Garcia and Gregor501

(2018). In short, female virgins of yw;His-RFP;MCP-GFP (MCP, MS2 coat protein) were crossed to502

males bearing the reporter gene. Embryos were collected and mounted in halocarbon oil 27503

between a semipermeable membrane (Lumox film, Starstedt) and a coverslip. Data collection504

was performed using a Leica SP8 Laser Scanning Confocal Microscope. Average laser power505

on the specimen (measured at the output of a 10x objective) was 35 �W. Image resolution was506

256 × 512 pixels, with a pixel size of 212 nm and a pixel dwell time of 1.2 �s. The signal from each507

frame was accumulated over three repetitions. At each time point, a stack of 21 images separated508

by 500 nm were collected. Image stacks were collected at a time resolution of 21 seconds. The509

MCP-GFP and Histone-RFP were excited with a laser wavelength of 488 and 556 nm using a White510

Light Laser, respectively. Fluorescence was detected with two separate Hybrid Detectors (HyD)511

using the 498-546 nm and 566-669 nm spectral windows. Specimens were imaged for a minimum512

of 40 minutes into nuclear cleavage cycle 14.513

Image analysis514

Image analysis of live embryo movies was performed based on the protocol found in Garcia et al.515

(2013) with modifications to the identification of transcriptional spots, which were segmented516

using the Trainable Weka Segmentation plugin for FIJI using the FastRandomForest algorithm517

(Schindelin et al., 2012; Schneider et al., 2012; Arganda-Carreras et al., 2017; Witten et al., 2016).518

In comparison with a previous algorithm based on Difference of Gaussians (Little et al., 2013;519

Garcia et al., 2013; Bothma et al., 2014, 2015), this alternative spot segmentation approach was520

found to be superior for the detection of dim transcription spots—a feature critical to establishing521

the precise timing of the cessation of activity at transcriptional loci.522

Data processing523

Processed live-imaging movies were compiled from across 11 experiments (embryos) to form one524

master analysis set. While the position of eve stripe 2 along the anterior-posterior axis of the525

embryo was found to be consistent to within 1-2% of egg length, we sought to further reduce this526

embryo-to-embryo variation by defining new, “registered” AP axes for each experiment using the527

observed position and orientation of the mature stripe. To this end, an automated routine was528

developed to consistently establish the position and orientation of the eve stripe 2 center for each529

data set.530

This routine, described graphically in Figure 2–Figure Supplement 1, used observed spatial531

patterns of fluorescence measured from 30 minutes into nuclear cycle 14—the approximate time at532

which the mature stripe is first established (Bothma et al., 2014)— to the time of last observation533

(≥40 min) to find the natural position and orientation of the mature stripe. Generally, the eve stripes534

run roughly perpendicular to the anterior-posterior (AP) axis of the embryo; however, the approach535

allowed for the possibility that the true orientation of the eve 2 stripe deviated from the orientation536

implied by manual estimates of the anterior posterior axis. Thus, a variety of orientations for the537

natural stripe axis were considered, ranging between ± 15 degrees from the line perpendicular to538

the stripe with the manually specified anterior posterior axis. For each orientation, a sliding window539

of 4% embryo length in width was used to find the position along the proposed orientation that540
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captured the largest fraction of the total fluorescence emitted by the mature stripe. The orientation541

and position that maximized the amount of fluorescence captured within this window defined a542

line through the field of view that was taken as the stripe center. All anterior-posterior positions543

used for subsequent analyses were defined relative to this center line.544

Once the stripe centers for each set were established, fluorescence traces were interpolated545

to 20s resolution, with all times shifted to lie upon a common reference time grid. Traces near546

the edge of the field of view or that exhibited uncharacteristically large changes in fluorescence547

over a time step were flagged through a variety of automated and manual filtering steps. When548

necessary, these traces were removed from subsequent analyses to guard against the influence of549

non-biological artifacts.550

mHMM inference551

To account for finite RNA polymerase elongation times, a compound state Markov formalism552

was developed in which the underlying tw-promoter system—assumed to have three states (see553

Figure 4E,F)—was transformed into a system with 3w compound gene states, where w indicates554

the number of time steps needed for an RNA polymerase molecule to traverse the full transcript555

(see Appendix 9). These compound gene states played the role of the “hidden” states within556

the traditional HMM formalism. See Appendix 3 for details regarding the model’s architecture.557

Following this transformation from promoter states to compound gene states, it was possible to558

employ a standard version of the expectation-maximization (EM) algorithm, implemented using559

custom-written scripts in Matlab, to estimate bursting parameters from subsets of experimental560

traces (Appendix 3). The scripts are available at the GarciaLab/mHMM GitHub repository. Bootstrap561

sampling was used to estimate the standard error in our parameter estimates. Subsets of 8,000562

data points were used to generate time-averaged parameter estimates. In order to accurately563

capture the time-averaged dynamics across the entirety of nuclear cycle 14, the full length of each564

experimental trace was used for time averaged inference. Sample sizes for windowed inference565

varied due to data set limitations. When possible, samples of 4,000 points were used. Only data566

points falling within a 15 minute window centered about the time point of interest were included in567

windowed inference runs. Inference was not conducted for spatiotemporal regions for which fewer568

than 1,250 time points were available. A minimum of 10 bootstrap samples were used to estimate569

each parameter value reported in this work. Reported values represent the median taken across570

bootstrap samples.571

Input-output logistic regressions572

The input-output analysis presented in Figure 7 utilized input transcription factor data from im-573

munostaining experiments presented in Dubuis et al. (2013), as well as live measurements of a574

Bicoid-GFP fusion courtesy of Jonathan Liu and Elizabeth Eck. Logistic regression parameters were575

estimated in Matlab using the fmincon function. See Appendix 8 for further details.576

Bootstrap error calculation577

Bootstrap resampling was used frequently throughout this work to estimate the standard error578

in a variety of reported quantities, from trends estimated directly from raw experimental data579

in Figure 1 to mHMM inference results presented in Figure 5 and Figure 6. In this procedure,580

multiple bootstrap replicates, yiboot are generated by sampling with replacement from the pool581

of available experimental data, Y (see, e.g. Efron and Hastie (2016)). The parameter of interest582

(say, ton(x)) is then calculated for each replicate and the mean of these estimates is taken as the583

bootstrap estimate of the parameter value, ̂ton(x), while the standard deviation across the pool of584

bootstrap parameter estimates is used to approximate the standard error in our estimate of ton(x).585

In our case, simply performing this procedure across the available pool of nuclei failed to account586

for biological variability that exists from embryo to embryo. To account for this, we introduced587

a hierarchical bootstrapping procedure. The first step in this procedure was to draw bootstrap588
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samples from across the 11 embryos used in this study. Because these samples were taken with589

replacement, most bootstrap samples excluded some embryos out of the original set of 11 and590

included duplicates (or triplicates, etc.) of others. Each embryo-level bootstrap defined a subset of591

nuclei. The final set of nuclei used for parameter estimation was generated by performing another592

round of bootstrap sampling on this pool. Bootstrap averages and standard errors were then593

calculated as described above. This two-step procedure thus accounts for both embryo-to-embryo594

and nucleus-to-nucleus variability.595

We note that the limited number of data points available for many spatiotemporal regions pre-596

vented us from performing this two-tiered bootstrap procedure in the case of our time-dependent597

mHMM inference (Figure 6D-F and Appendix 6–Figure 3D-E). In these cases, we used all available598

sets (essentially skipping the first bootstrap resampling step) and took bootstrap samples from599

amongst available nuclei as in step two of the procedure described above.600

Absolute calibration of MS2 signal601

In order to frame our results with respect to units with a clear physical interpretation, we calibrated602

our fluorescence measurements in terms of absolute numbers of mRNA molecules. This calibration603

was also used to inform our Poisson loading sensitivities (Appendix 3). To calculate this calibration604

for our eve stripe 2 data, we relied on measurements reported by a previous study that utilized MS2605

in conjunction with single molecule FISH to establish a calibration factor, �, between the integrated606

MS2 signal, FMS2, and the number of mRNA molecules produced at a single transcriptional locus,607

NFISH, (Garcia et al., 2013) given by608

� =
NFISH

FMS2
. (5)

This calibration factor can be used to estimate the average contribution of a single mRNA molecule609

to the observed (instantaneous) fluorescent signal. While the values for the parameters in Equa-610

tion 5 reported here pertain to the transcriptional output driven by the Bicoid activated P2 enhancer611

and promoter during nuclear cycle 13, the calibration should generalize to all measurements taken612

using the same microscope.613

First, consider the total integrated fluorescence emitted by a single nascent mRNA while it is on614

the reporter gene,615

F1 = fmax

1
2
LI + LII
velong

, (6)

where fmax denotes the instantaneous fluorescence emitted by a nascent mRNA that has transcribed616

the full complement of MS2 loops, LI indicates the length of the MS2 loops, LII indicates the617

distance between the end of the MS2 loop cassette and the 3’ end of the gene, and velong indicates618

the elongation rate of RNA polymerase molecules along the gene. We can solve for fmax using �,619

namely,620

F1 =
1
�
= fmax

1
2
LI + LII
velong

, (7)

such that621

fmax =
velong
�

1
1
2
LI + LII

. (8)

Here, we recognize that the cumulative fluorescence per RNA polymerase molecule is simply the

inverse of the number of molecules per unit fluorescence (�). Now we have the pieces necessary to
derive an expression for the instantaneous fluorescence of a single RNA polymerase molecule, that
is,

FRNAP =
1

�elong
fmax

1
2
LI + LII
velong

=
velong

(LI + LII )
fmax

1
2
LI + LII
velong
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= fmax

1
2
LI + LII
(LI + LII )

=
velong
�

1
(LI + LII )

, (9)

resulting in622

FRNAP =
velongFMS2
NFISH

1
(LI + LII )

. (10)

Measurements performed in Garcia et al. (2013) give NFISH to be 220 (± 30) mRNA per nucleus
and velong to be 1.5 (± 0.14) kb/min. Experimental measurements on the P2 enhancer (courtesy of
Elizabeth Eck, Maryam Kazemzadeh-Atoufi and Jonathan Liu) indicate that the total fluorescence per

nucleus, FMS2, is 9,600 (±320) AU minutes. For the reporter gene used to take these measurements,
LI and LII are 1.275 kb and 4.021 kb, respectively. Thus, we obtain

FRNAP =
1.5 × 9610

220
1

(1.275 + 4.021)

= 13 ± 1.7 AU∕RNAP. (11)

Though the error in our calibration is significant (>13%), the conversion from arbitrary units to num-623

bers of nascent mRNA nonetheless provides useful intuition for the implications of our inference624

results, and none of our core results depend upon having access to a precise calibration of the625

observed signal in terms of absolute numbers of RNA polymerase molecules.626

Videos627

Video 1. Transcriptional activity of eve stripe 2 reported by MS2. Raw MS2 signal where fluo-628

rescent puncta report on the number of actively transcribing RNA polymerase molecules.629

Video 2. Mean rate of transcription of eve stripe 2 reported by MS2. Nuclei false colored by630

their mean transcriptional activity averaged over a 4 min time window as a function of time.631

Video 3. Transcriptional time window. Nuclei along the stripe false colored after the duration of632

their transcriptional time window.633

Video 4. Fraction of active nuclei. Nuclei along the stripe false colored according to whether they634

engaged in transcription at any time point during the nuclear cycle.635

Video 5. Fluorescent puncta contain sister chromatids. Fluorescent puncta transiently separate636

to reveal the presence of sister chromatids as shown by the white circles throughout the movie.637

Video 6. Real-time inferred promoter states. Real-time inference of effective promoter ON638

(green) and OFF (red) state in individual nuclei.639

Video 7. Average embryo containing all inputs and the output. Average concentrations of640

Bicoid (blue), Hunchback (red), Kr̈uppel (green) and Giant (yellow) combined with the average641

transcriptional activity of the eve reporter (purple). (Hunchback, Kr̈uppel and Giant data obtained642

from Dubuis et al. (2013)).643
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Appendix 1886

Theoretical model to predict cytoplasmic mRNA levels given from in
vivomeasurements of transcriptional activity

887

888

Derivation details889

Here we provide a more detailed treatment of the mathematical framework for connecting

transcriptional activity in individual nuclei to levels of accumulated cytoplasmic mRNA. We

begin with general expressions for the rate of mRNA production during the transcription-

ally active and quiescent periods that dictate the transcriptional time window. When the

promoter is actively transcribing (ton ≤ t ≤ toff ), the net rate of mRNA production is

dmRNA
dt

(x, t) = R(x, t)
⏟⏟⏟

transcription rate

− 
mRNA(x, t)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

degradation rate

, (12)

where 
 is the mRNA degradation rate constant. For a promoter that has entered a transcrip-
tionally quiescent state (t > toff ), we have

dmRNA
dt

(x, t) = −
mRNA(x, t), (13)

such that degradation is now the only contribution to the change of mRNA concentration in

time. Note that, in these two equations, we have ignored the contribution of mRNA diffusion.

Previous measurements have estimated a diffusion coefficient of mRNA of 0.09 �m2∕s
(Halstead et al., 2015) and a typical mRNA degradation rate of 0.14 min−1 (Edgar et al.,
1987). Given these numbers, we expect an eve mRNA molecule to diffuse approximately
6 �m, which corresponds to one nuclear diameter or 1% of the embryo length, before being
degraded. Thus, given the overall width of the stripe mRNA profile of about 8% of the embryo

length (Figure 3G), we expect diffusion to play a minimal role in stripe formation. Finally,
note that we are also ignoring the delay between transcriptional initiation and the delivery

of an mRNA molecule to the cytoplasm as a result of nuclear export. This delay would affect

the timing of pattern formation, but would leave our conclusions about the relative role
of transcriptional bursting and the regulation of the duration of the transcriptional time

window unaffected.

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905
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907

908

909

910

911

912

913

914

915

To make progress, as in the main text, we make the simplifying assumption that the

instantaneous rate of transcription can be well approximated by the time average at each

position given by

R(x) ≈ ⟨R(x, t)⟩t. (14)

We now consider the role of ton(x) in dictating pattern formation by envisioning a scenario
where transcription begins at time ton(x), but does not cease. In this scenario, the accumu-
lated mRNA is given by

mRNAactive(x, t) = R(x)
⏟⏟⏟

transcription rate

× 1


(

1 − e−
(t−ton(x))
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
time window

. (15)

Note that if the system evolves for a long amount of time, the second term in the parentheti-

cal in Equation 15 becomes vanishingly small (
(t− ton(x))≫ 1) such that all time dependence
drops out of the expression and we recover the familiar expression for mRNA levels in steady

state

mRNAactive(x, t) =
R(x)



, (16)
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where mRNA production and degradation are balanced.

916

917

918

919

920
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923
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925

926

927

928

929

930

931

932

933

934

935

Next, consider the impact of regulating the timing with which nuclei cease transcriptional

activity and become quiescent, toff . Here, when t > toff (x), the amount of mRNA produced
during the period of activity is subsumed within a decaying exponential envelope such that

mRNAquiescent(x, t) = e−
(t−toff (x))
⏟⏞⏞⏞⏟⏞⏞⏞⏟

quiescent decay

[

R(x)
⏟⏟⏟

transcription rate

× 1


(

1 − e−
(toff (x)−ton(x))
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
time window

]

. (17)

936
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938

939

940

941

Equation 17 represents a scenario in which the accumulation of cytoplasmic mRNA
results from the interplay between two distinct regulatory strategies: the modulation of

when the transcription starts and stops (binary control of the transcription time window)

and the average rate with which transcription occurs within this time window (analog control

of transcriptional bursting). We refactor Equation 17 to reflect this distinction and consider
the case when t > ton, giving

mRNAfull(x, t) =
R(x)



⏟⏟⏟
analog control

× e−
(t−min(toff (x),t))
(

1 − e−
(min(toff (x),t)−ton(x))
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
binary control

, (18)

which can be simplified slightly to yield

mRNA(x, t) =
R(x)



⏟⏟⏟
analog control

×
(

e−
(t−min(toff (x),t)) − e−
(t−ton(x))
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
binary control

. (19)

Finally, we account for the fact that only some pactive(x) fraction of nuclei within each region
ever engage in transcription leading to

mRNA(x, t) = pactive(x) ×
R(x)



⏟⏟⏟
analog control

×
(

e−
(t−min(toff (x),t)) − e−
(t−ton(x))
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
binary control

. (20)

This equation constitutes the basis of our theoretical dissection of pattern formation by

transcriptional bursting and the control of the transcriptional time window.
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961

Accounting for multiple transcriptional states962

In themain text, Equation 3 expresses themean rate of mRNA production, R(x), as a function
of the bursting parameters kon, koff , and r. We can combine this equation with Equation 20
to obtain an expression for the predicted amount of cytoplasmic mRNA that includes the

burst parameters inferred by our mHMM

mRNA(x, t) = pactive(x) ×
r(x)



kon(x)
kon(x) + koff (x)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
analog control

×
(

e−
(t−min(toff (x),t)) − e−
(t−ton(x))
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
binary control

. (21)

While we present our results in terms of an effective two-state model in the main text, the

presence of two transcriptional loci within each observed fluorescent spot suggests that the

system is more naturally described using a three-state kinetic model. Here, we extend the

framework presented in Equation 21 to a scenario in which there are three distinct system
states: 0 promoters on (0), 1 promoter on (1), and both promoters on (2) (see Figure 4). We
begin with a general expression for this scenario that takes the contribution from the analog
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control term shown in Equation 20 to be a sum over the output of each of the 3 activity
states, namely,

mRNA(x, t) = pactive(x) ×
1



(

2
∑

i=0
ri(x)�i(x)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
analog control

×
(

e−
(t−min(toff (x),t)) − e−
(t−ton(x))
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
binary control

, (22)

where ri(x) is the rate of RNA polymerase loading for state i, and �i(x) indicates the fraction
of time spent in state i. Note that the independent effect of the duration of the transcription
time window and of mRNA decay on cytoplasmic mRNA levels remain unchanged in the

multi-state case.
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The fractional occupancies of the activity states (�i(x) terms in Equation 22) are a function
of the rates with which the promoter switches between activity states. In general, the

fractional occupancy of each activity state, �i, may vary as a function of time; however we
focus on their steady state values here, such that:

0 = R(x)�(x), (23)

where R(x) is the transition rate matrix. Consistent with our inference results, we assume
that no transitions are permitted between the high and low states (0 & 2). Thus, the transition

rate matrix takes the following form:

R(x) =
⎡

⎢

⎢

⎢

⎣

−k01(x) k10(x) 0
k01(x) −k10(x) − k12(x) k21(x)
0 k12(x) −k21(x)

⎤

⎥

⎥

⎥

⎦

. (24)

Together, Equation 23 and Equation 24 allow us to solve for the fractional occupancy of each
activity state as a function of the transition rates that describe the system.

985
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999

For the remainder of this derivation, we will drop the explicit x and t dependencies
for ease of notation. Intuitively, the steady state (or stationary) distribution represents a

limiting behavior of the system such that, upon reaching �, no further shifts occur in the
mean fraction of time spent in each activity state. Equation 23 leads to a system of three
equations:

0 = −�0k01 + �1k10 (25)

0 = �0k01 − �1
(

k10 + k12
)

+ �2k21 (26)

0 = �1k12 − �2k21 (27)

Before proceeding, we note that, since � is a probability distribution, we can eliminate one
of our unknowns by enforcing normalization, that is,

1 = �0 + �1 + �2. (28)

With this in mind, we can solve Equation 25 for �1 to find
�1k10 = �0k01 (29)

�1 = �0
k01
k10

. (30)

Next, we use the normalization condition to eliminate �2 from Equation 27:
�1k12 = �2k21

= (1 − �0 − �1)k21. (31)
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By combining this result with Equation 30, we obtain

�0
k01
k10

k12 = (1 − �0 − �0
k01
k10

)k21 (32)

�0
k01k12
k10k21

= 1 − �0
k10 + k01
k10

(33)

�0 =
k10k21

k10k21 + k01k21 + k01k12
. (34)

With Equation 34 in hand, it is then straightforward to solve for the remaining �i terms. First
we obtain �1 by substituting Equation 34 into Equation 30:

�1 = �0
k01
k10

=
k01k21

k10k21 + k01k21 + k01k12
. (35)

And finally �2:

�2 = 1 − �0 − �1

=
k01k12

k10k21 + k01k21 + k01k12
. (36)

Thus, we arrived at the full expression for cytoplasmic mRNA levels in the 3-state case:

mRNA(x, t) = pactive(x)
1



(

r1(x)
k01(x)k21(x)

�(x)
+ r2(x)

k01(x)k12(x)
�(x)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
analog control

×
(

e−
(t−min(toff (x),t)) − e−
(t−ton(x))
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
binary control

,

(37)

where, consistent with the 2-state case, we have taken r0(x) to be equal to zero and where
�(x) denotes the denominator in Equation 34, Equation 35 and Equation 36, namely,

� = k10k21 + k01k21 + k01k12. (38)

Thus, from Equation 37 we see that, while there are more terms comprising the analog
control expression, the expression nonetheless takes on the same essential form as in

Equation 20.
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Mapping the three-state model into an effective two-state model1046

Here we provide expressions relating the effective two-state parameters presented in the

main text to parameters from the full three-state model. As we have done throughout this

work, we take the transition rates between states (0) and (2) of the 3-state model to be

negligible (consistent with inference results, see Appendix 6). First, the on rate, keffon is directly
equivalent to the transition rate between states (0) and (1), that is,

keffon = k01. (39)

Similarly, since we do not observe from state (2) to state (0), keffoff is equal to the transition
rate from (1) to (0), weighted by the relative fraction of time the system spends in state (1)

when it is in the effective ON state (1 or 2). Thus, we have:

keffoff =
�1k10
�1 + �2

(40)

=
k01k21k10

k01k21 + k01k12
(41)
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=
k21k10
k21 + k12

. (42)

Finally, reff is the occupancy-weighted average of the initiation rates for states (1) and (2)

reff =
�1r1 + �2r2
�1 + �2

(43)

=
r1k01k21 + r2k01k12
k01k21 + k01k12

(44)

=
r1k21 + r2k12
k21 + k12

. (45)
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Appendix 21065

Measuring the amount of produced mRNA1066

Here, we outline the approach that was used to estimate the total amount of mRNA produced

by eve stripe 2 nuclei from MS2 traces. This approach, which is independent of the bursting
parameter estimates returned by mHMM, was used to calculate the total cytoplasmic mRNA

levels per nucleus shown in Figure 3G (red), as well as the “binary control” of the duration of
the transcriptional time window contribution Figure 3G (blue).

1067

1068

1069

1070

1071

Calculating full mRNA profiles1072

The observed fluorescent signal at transcriptional loci as a function of time, F (t), is linearly
related to the number of actively transcribing RNA polymerase molecules. Thus, after a

period equal to the amount of time needed for an RNA polymerase molecule to transcribe

the gene, �elong, the number of new mRNAs added to the cytoplasm will be proportional to
F (t) (Bothma et al., 2014), that is,

F (t) ∝M(t + �elong) −M(t), (46)

whereM(t) indicates the total number of mRNA molecules that have been produced up to
time t. We relate this fluorescence signal to absolute numbers of RNA polymerase molecules
using the calibration procedure described in the Materials and Methods. However, only

the relative amounts of mRNA present across the eve stripe 2 pattern are needed in order
to calculate the relative contributions from the different regulatory strategies identified in

Equation 2. Thus, we capture the calibration factor, along with all other proportionality con-
stants, with a generic term �, with the expectation that � will drop out from all consequential
stripe contribution calculations. Drawing from the derivation provided in the SI Methods

of Bothma et al. (2014), we take the rate of mRNA production at time t to be approximately
equal to the observed fluorescence at time t − �elong

2

F
(

t −
�elong
2

)

≈ �
dM(t)
dt

. (47)

Here, the
�elong
2
term accounts for the time lag between the number of transcribing nascent

mRNA and the rate of mRNA release into the cytoplasm. For ease of notation, we will ignore

this offset factor for the remainder of this section. We will also treat the relationship in

Equation 47 as one of equality. For Figure 3G, the metric of interest is the amount of mRNA
produced per nucleus. Thus for a given region along the axis of the embryo, the average
observed fluorescence across all N nuclei (active, quiescent, and those that never engaged
in transcription) within the region of interest was used as a proxy for the instantaneous rate

of mRNA production per nucleus, given by

dM(x, t)
dt

=
�
N

N
∑

i=1
Fi(x, t)

= �⟨F (t)⟩x. (48)

Here, Fi(x, t) is the fluorescence of nucleus i at time t. The x subscript in Equation 48
indicates that the average is taken over all nuclei falling within the same anterior-posterior

region within the eve stripe 2 pattern. Having obtained an expression for the rate of mRNA
production as a function of space and time, we next sought to account for the degradation of

mRNA over time. As indicated in the main text, we assumed a constant rate of mRNA decay,


 , over space and time. The next section in this appendix provides evidence for the validity of
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this assumption. For a constant mRNA decay rate, calculating the average concentration of

mRNA amounts to taking a weighted sum over all preceding production rates for a position

of interest, where the weight terms account for the effects of mRNA decay and are of the

form e(−
t). Thus, we summed over all time points for each region of interest to estimate
the total amount of cytoplasmic mRNA present on average, yielding the quantity on the

left-hand side of Equation 2, namely,

mRNA(x, t) = �
T
∑

n=1
e−
(t−nΔ�)

⟨

F (t − nΔ�)
⟩

. (49)

Here Δ� is the experimental time resolution, and T = t
Δ�
denotes the number of measure-

ments taken through time t. The exponential term within the summand on the right-hand
side captures the effects of mRNA decay (see Appendix 1). Finally, to calculate the normalized
mRNA profile shown in Figure 3G (red), the estimates for the total accumulated mRNA per
nucleus found using Equation 49 must be divided by the sum across all spatial regions
considered

mRNAnorm(xj , t) =

∑T
n=1 e

−
(t−nΔ�)
⟨

F (t − nΔ�)
⟩

xj
∑

i∈X
∑T

n=1 e−
(t−nΔ�)
⟨

F (t − nΔ�)
⟩

xi

, (50)

where the subscripts i and j outside the angled brackets denote the spatial region over which
the sum is taken. Note that the proportionality constant � cancels in the final expression
for mRNAnorm. As a final step, we subtract the minimum across the AP region considered to

remove any basal offset such that

mRNAfull(xj , t) =mRNAnorm(xi, t) − minx

(

mRNAnorm(xj , t)
)

. (51)
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1132

1133

1134

1135

Calculating mRNA profiles due to the binary control of the transcriptional
time window

1136

1137

The predicted profile due to binary control of the transcriptional time window alone (Fig-
ure 3G, blue) was calculated following the same procedure as for the full mRNA profile
described above, save for the fact that, in this case, instantaneous fluorescent values for

individual nuclei were converted to binary indicator variables (fi(t)) that were set equal to
1 if t < tioff and 0 otherwise. Additionally, only nuclei that were active at some point during
nuclear cycle 14 were included, to distinguish the effects of the transcriptional time window

(Figure 1C) from the control of the fraction of active nuclei (Figure 1D). Thus, in this scenario,
the “average rate” of mRNA production is equivalent to the fraction of nuclei engaged in

transcriptional activity at a given point in time such that the rate of mRNA production is

given by

dMbinary(x, t)
dt

= 1
N(x)

N
∑

i=1
(x, t)fi(t)

= ⟨f (x, t)⟩

=
Nc(x, t)
N(x)

, (52)

where Nc(t) indicates the number of transcriptionally competent nuclei at time t. The binary
equivalent to Equation 49 takes the form of a time-weighted sum of the fraction of active
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nuclei within a region

mRNAbinary(x, t) =
T
∑

n=1
e−
(t−nΔt)

Nc(x, nΔt)
N(x)

. (53)

The steps for calculating the the normalized binary mRNA levels comprising the blue profile

in Figure 3G from Equation 53 are identical to those shown for the full mRNA profile in
Equation 50 and Equation 51 and are therefore not repeated here.

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

Comparison between predicted and measured cytoplasmic mRNA profiles1160

As a check for the validity of our approach to predicting levels of cytoplasmic mRNA from live

imaging data (Equation 50 and Equation 51), we sought to compare our model’s predictions
to existing mRNA FISH data for the endogenous eve stripe 2 (Fowlkes et al., 2008). For this
comparison, we elected to use live imaging data for eve stripe 2 activity that was driven by
a BAC containing the full eve locus (see Berrocal et al. (2018) for details). This was done to
minimize potential differences with the activity of the endogenous gene. Most notably, the

reporter construct used for the majority of this work does not contain an enhancer sequence

that is responsible for driving eve expression late in nuclear cycle 14 (Jiang et al., 1991).

1161

1162

1163

1164

1165

1166

1167

1168

Appendix 2 Figure 1 summarizes the results of this comparison. To account for uncer-
tainty regarding the precise dorsal-ventral (DV) orientation of embryos within our live-imaging

set, we compared our model’s predictions to mRNA measurements for a range of DV po-

sitions, encompassed by the green-shaded profile. We found a high degree of agreement

between model predictions and reported levels of cytoplasmic mRNA. This conclusion is

relatively insensitive to our assumptions regarding the average lifetime of eve mRNA as
shown by the lines in the figure. While substantial uncertainties regarding the precise timing

of the mRNA measurements prevented us from leveraging this comparison to, for instance,

infer the rate of evemRNA decay, we nonetheless concluded that it is sufficient to establish
our modelling assumptions. In particular, the relative insensitivity of the distribution of

cytoplasmic mRNA to the decay rate suggests that, while it is possible that the precise rate

of mRNA decay is regulated across space or time, such phenomena—if they exist—would

not impact the core conclusions presented in this work. Moreover, as discussed below, this

paper’s findings are also relatively insensitive to our choice of decay rate 
 , with the basic
dynamics of stripe formation remaining consistent even in the limits near instantaneous

and infinitely slow mRNA decay (Figure 2).

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

As alluded to above, several variables limited our ability to carry out a precise compar-

ison between our model predictions and empirical measurements. The most significant

of these was the lack of sufficiently precise temporal information for the empirical mRNA

measurements. The authors used the percent invagination of cellular membranes through

cellularization as a means to break individual embryos into rough temporal cohorts (Lu-
engo Hendriks et al., 2006). We cross-referenced the invagination ranges for each temporal
group with data provided by Dubuis et al. (2013) to obtain estimates for the range of times
encapsulated by each of these cohorts. This calibration revealed that most time-averaged

cohorts spanned too broad a range of times to allow for reasonable comparison. We elected

to use the cohort comprised of embryos with ages ranging between 38 to 48 minutes into

nuclear cycle 14 both because this range was much narrower than that spanned by the

preceding cohort and because we had established that the stripe appeared to be relatively

stable during this time period. An additional complication with establishing the precise tim-

ing of each cohort was the fact that the authors of Luengo Hendriks et al. (2006) measured
invagination on the ventral surface of the embryo, while the authors in Dubuis et al. (2013)
used the dorsal surface. However, while invagination is known to proceed more rapidly on
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the ventral side of the embryo,the authors in Luengo Hendriks et al. (2006) reported that
this discrepancy is minimal up to the point where cell membrane extension has progressed

to approximately 40% of its eventual full extent. The lower and upper bounds on the percent

membrane invagination for the chosen cohort are 26% and 50% respectively. Thus, we

expect the time estimate derived for the beginning of the period to be reasonably accurate,

since Dorsal and Ventral membrane progression was reported to be comparable during

this period. On the other hand, to the degree that Ventral invagination outpaces Dorsal

invagination at the end of our period of interest, this would result in an over-estimation

of ending time. Thus, it is possible that the true temporal window encompassed by the

selected cohort is actually tighter than 10 minutes, since the ending time might in fact be

earlier than 48 minutes into nuclear cycle 14. Given the relative stability of the stripe profile

during this period of development, we do not expect this potential discrepancy to have a

material impact on our conclusions.
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1214 Appendix 2 Figure 1. Comparison of predicted cytoplasmic mRNA by live-imagingmeasurements to direct measurements by FISH. In an effort to check the validity of our modelling
assumptions, we compared the predictions of our mRNA model stemming from live-imaging

measurements of stripe 2 of an eve reporter from a BAC containing the full eve locus to direct
measurements of eve cytoplasmic mRNA levels using FISH (Luengo Hendriks et al., 2006). Here, the
blue lines indicate our model’s predictions under two different assumptions for the rate of mRNA

degradation, and the shaded green profile indicates the range of directly measured mRNA levels.

Comparisons indicate a high degree of agreement between prediction and measurement, indicating

that our modelling assumptions are justified.
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1217

1218

1219

1220
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1222

12231224

Sensitivity of results to mRNA lifetime assumption1225

In the main text we assume a degradation rate for eve of 0.14 min−1 (corresponding to a
lifetime of roughly � = 7 min). Since, to our knowledge, the decay rate of eve mRNA has
not been measured directly, we follow Bothma et al. (2014) and base this estimate off of
measurements for another of the pair rule genes, fushi tazu (ftz, Edgar et al. (1987)). In this
section, we examine the degree to which the apparent contributions of each regulatory

strategy (Figure 1) change under different assumptions for evemRNA lifetime. Rather than
conducting an exhaustive survey, we instead focus primarily on two limiting cases: rapid

mRNA decay (� = 1min) and nomRNA decay (� = ∞).

1226

1227

1228

1229

1230

1231

1232

1233

Appendix 2-Figure 2 summarizes the results of our analysis. We find that, regardless of
the assumed mRNA lifetime, our model predicts that eve stripe 2 is formed almost entirely
via the interplay between the binary control of the transcriptional time window and the

analog modulation of the mean rate of transcription (compare brown and red profiles in

Appendix 2-Figure 2). However, we find that the relative importance of each factor depends,
somewhat, on the assumed decay rate. In the case of rapid mRNA decay, as well as for the
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decay rate assumed in the main text, the time window (blue profile) is clearly the dominant

factor in driving pattern formation (Appendix 2-Figure 2A and B). If we assume the true
mRNA lifetime is 15 minutes, slightly more than double our best guess of 7 minutes, we find

that the time window is still predicted to contribute slightly more to stripe formation, but

that the two contributions are now of order with one another (Appendix 2-Figure 2C). Finally,
in the limit where there is effectively no mRNA decay, the effects of the mean rate and time

window are roughly equivalent (Appendix 2-Figure 2D). This result can be explained by the
fact that the mean rate strategy is insensitive to the decay rate, whereas the effect of the

time window is enhanced by the action of mRNA decay.

1234

1235
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1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

Thus, overall, we found that our model’s prediction that the control of the transcriptional

time window plays a primary role in stripe formation holds for mRNA lifetimes less than

or equal to 15 minutes, which is more than double the measured life time of ftz mRNA
(Edgar et al., 1987). Perhaps more importantly, both factors are found to play a significant
role, irrespective of mRNA decay rate, indicating that our central finding is robust to our
assumption regarding mRNA decay dynamics.

1249

1250

1251

1252

1253

1254

1255 Appendix 2 Figure 2. Sensitivity of regulatory strategy contribution to assumed mRNA lifetime.
The average lifetime of evemRNA is a significant assumed parameter in our model. This figure
compares the predicted contributions of each regulatory strategy for the mRNA lifetime assumed in the

main text (� = 7min) to limiting cases in which mRNA is assumed to decay almost instantaneously
(� = 1min) on the one hand, and infinitely slowly on the other (� = ∞). Even at these extremes, the
central conclusion that the stripe is formed via the join action of mean rate modulation (green profile)

and the time window (blue profile) remains intact. As expected, the relative contribution of the time

window is sensitive to the assumed �, yet even in the limit of no significant mRNA decay, its impact is
still of order with the effect of mean rate modulation.
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12641265

Control strategy contributions for eve BAC1266

A key question regarding the results in the main text is whether and to what degree the

relative contributions of the regulatory control strategies we identified in Figure 1 and
Figure 3 for the reporter containing only the eve stripe 2 enhancer hold true for the formation
of the stripe in the endogenous context. While we cannot directly query activity at the

endogenous eve locus, we were able to examine the dynamics of stripe formation for an eve
BAC used in the companion paper to this manuscript (Berrocal et al., 2018). Since this BAC
contains the full eve regulatory locus, it likely provides a better proxy for stripe formation in
the endogenous context than the isolated eve 2 reporter. Appendix 2—Figure 3 shows the
results of this analysis. As with the reporter construct used in the main text, we find that

the stripe is formed primarily through the interplay between two regulatory strategies: the

modulation of the average rate of production (green) and of the duration of transcriptional

activity (blue). As with the reporter, the binary control of the transcriptional time window

is the dominant driver of stripe formation (compare with Figure 1G). Interestingly, unlike
the reporter construct, the full predicted profile (red profile) that accounts for the interplay

between mRNA decay temporal fluctuations in the mean rate of mRNA production differs
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substantially from the simpler model (brown profile) that approximates mRNA production

as constant over time. We speculate that this difference is attributable to the influence of

the “late enhancer”—which is present in the eve BAC but not in the reporter—that takes
over control of eve activity late in nc14. Further work will be necessary to fully elucidate the
regulatory impact of this late element on the formation of the mature eve stripe pattern.
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1287 Appendix 2 Figure 3. Regulatory strategy contributions to eve stripe 2 formation in endogenouscontext. As with the reporter construct, the formation of eve stripe 2 in the context of the full eve
regulatory locus is dominated by the interplay between mean rate modulation (green) and control of

the time window of transcriptional activity (blue).
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Appendix 31293

The memory-adjusted hidden Markov model1294

Model introduction1295

To model the dynamics of an observed fluorescence series, y = {y1, y2, ..., yT }, where T is the
number of data points in a trace, we assume that, at each time step, the sister promoters

can be in one of K effective states. In the analysis of eve stripe 2 data, we use a simple model
with the number of effective states equal to three (K = 3). The method, however, allows
for more complex transcription architectures with higher numbers of states. Transitions

between the effective promoter states are assumed to be Markovian, meaning that the

hidden promoter state zt at time step t is conditionally dependent only on the state in the
previous time step. This dependency is modeled through aK×K transition probability matrix
A = p(zt|zt−1), where Akl is the probability of transitioning from the lth state into the kth state
in the time interval Δ�, where Δ� is the data sampling resolution. We assign a characteristic
RNA polymerase initiation rate, r(k), with units of RNA polymerase per minute, to each
effective promoter state, z(k), 1 ≤ k ≤ K . Thus, the number of polymerases initiated between
time steps t − 1 and t will be r(zt)Δ�. Because the fluorescence intensity contributed by each
polymerase depends on the number of transcribed MS2 stem loops, the contribution will

vary with the position of the polymerase on the gene. In our transcription model we assume

that polymerase elongation takes place at a constant rate. Therefore, if �MS2 is the time it
takes to transcribe the MS2 loops, the fluorescence contribution of an RNA polymerase

molecule will initially grow linearly (� ≤ �MS2) and will then stay constant for the remainder
of transcription (�MS2 ≤ � ≤ �elong). Given this time dependence, we define a maximum
fluorescence emission per time step for each state as v(k) = FRNAPr(k)Δ�, 1 ≤ k ≤ K , where
FRNAP is the fluorescence calibration factor determined using smFISH experiments (see
Materials and Methods).
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1312

1313

1314

1315

1316

1317

1318 Appendix 3 Figure 1. Schematic overview of the mHMM architecture. The sister promoters are
modeled as undergoing a series of Markovian transitions between effective transcriptional states (zt).
Each promoter state uniquely determines the number of polymerases initiated in a single time step

(r(zt)Δ�). Fluorescence emissions from polymerases initiated in the most recent w steps combine to
produce the observed fluorescence intensity (yt). The color bar indicates the mean fraction of MS2
loops that have been transcribed and contribute fluorescence at the moment of observation. The color

corresponding to the more recently initiated polymerases is therefore lighter (fewer loops transcribed)

than that corresponding to polymerases initiated at earlier times (more loops transcribed).
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The instantaneous fluorescence intensity is the cumulative contribution from polymerases

initiated in the previous w time steps, where w = �elong∕Δ� is the system-dependent integer
memory. Here Δ� indicates the observational time resolution, a quantity set by experimental
conditions. The time required for an RNA polymerase molecule to transcribe our reporter

gene (�elong) is a priori unknown. We developed an autocorrelation-based method to estimate
�elong directly from our experimental data (see Appendix 9 and Coulon and Larson (2016)).
The observation yt at time step t conditionally depends not only on the hidden promoter state
zt, but also on the hidden states in the previous w time steps, {zt, zt−1, ..., zt−w+1}. To be able to
describe the observed system dynamics through a hidden Markov model, the observation at

time step t needs to be conditionally independent from the states at earlier time steps. We
therefore introduce the concept of a compound state, st = {zt, zt−1, ..., zt−w+1}, which, together
with the set of model parameters, �, is sufficient to define the probability distribution of the
observation yt, thereby satisfying the Markov condition. Since zt ∈ {1, ..., K}, each compound
state can take one of Kw different values, st ∈ {1, ..., Kw}. While the number of possible
compound states is Kw, only K different transitions are allowed between them, since the
most recent w− 1 promoter states are deterministically passed from one compound state to
the next, i.e. the last w − 1 elements in st+1 = {zt+1, zt, ..., zt−w+2} are present in st as well. The
schematic overview of the mHMM architecture is shown in Appendix 3–Figure 1.
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We model the fluorescence emission probabilities corresponding to each hidden com-

pound state as Gaussian distributions with a standard deviation �, which we learn during
inference. The joint probability distribution p(y, s|�) of the series of hidden compound states,
s = {s1, s2, ..., sT }, and fluorescence values, y = {y1, y2, ..., yT }, is given by

p(y, s|�) = p(s1|�)
T
∏

t=1
p(yt|st, v, �)

T
∏

t=2
p(st|st−1,A). (54)

Here � is a K-element vector, with �k being the probability that the trace starts at the kth

effective promoter state, and v is a K-element vector of fluorescence emission values per
time step.

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

Our goal is to find an estimate of the model parameters, �̂ = {�̂, v̂, Â, �̂}, which maximizes
the likelihood p(y|�) of observing the fluorescence data, namely,

�̂ = argmax
�

p(y|�). (55)

1356

1357

1358

1359

1360

The likelihood can be obtained by marginalizing the joint probability distribution, p(y, s|�),
over the hidden compound states, that is,

p(y|�) =
∑

s={s1 ,s2 ,...,sT }
p(y, s|�). (56)

Note that the summation is performed over all possible choices of s— a vector of T elements,
each of which can take Kw possible values. The total number of terms in the sum is thus

equal to KwT , which grows exponentially with the number of time points. To make the

estimation of the model parameters tractable, we use an approximate inference method,

the expectation-maximization (EM) algorithm.

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

We note that the notion of a compound state was also introduced in an earlier work

(Corrigan et al., 2016) to account for the memory effect in hidden Markov modeling of actin
transcription and then an EM methodology was applied to learn the kinetic parameters from

MS2-based transcription data. Unlike their approach, however, we do not explicitly model

the recruitment of individual RNA polymerase molecules, but instead, assign a continuous

RNA polymerase initiation rate to each promoter state. Additionally, our model estimates the

magnitude of the background noise present in the experimentally measured fluorescence
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signal, whereas the model presented in (Corrigan et al., 2016) takes this quantity as an
input, requiring that it be estimated separately. We believe that these differences serve to

make our model more flexible. Moreover, by eliminating the need for absolute calibration

and noise estimation, we hoped to facilitate the use of our model in a wide variety of

experimental contexts, for which one or the other quantity may not be readily obtainable. In

the "Continuous vs. Poisson promoter loading" section of Appendix 4 we demonstrate that
relaxing the continuous RNA polymerase loading assumption when generating synthetic

data does not significantly affect the accuracy of the mHMM inference.
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1383

1384

1385

Expectation-maximization (EM) algorithm1386

Consistent with standard EM approaches (Bishop (2006), Chapter 13), at each iteration we
maximize the lower bound of the logarithm of the likelihood using the current estimate of

the model parameters, namely,

�̂k+1 = argmax
�

(� |y, �̂k), (57)

(� |y, �̂k) =
∑

s={s1 ,s2 ,...,sT }
p(s|y, �̂k) log p(y, s|�) ≤ log p(y|�). (58)

Here (� |y, �̂k) is the objective function, �̂k is the estimate of the model parameters in the kth

expectation step of the EM algorithm. Since we model the transitions between the effective

sister promoter states as a Markov process, the logarithm of the joint probability distribution,

log p(y, s|�), can be written as

log p(y, s|�) = log p(s1|�) +
T
∑

t=1
log p(yt|st, v, �) +

T
∑

t=2
log p(st|st−1,A). (59)
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1394

1395
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1397

1398

1399

Now, we introduce several notations: sit ∶= 1 if and only if st = i; Δ(st, d) ∶= the d
th digit

of the promoter state sequence st = {zt, zt−1, ..., zt−(w−1)}, starting from the left end; Czs = 1
if and only if Δ(s, 1) = z; Bs′ ,s = 1 if and only if the transition s → s′ between the compound
states s and s′ is allowed, which happens when the latest (w − 1) promoter states in the
compound state smatch the earliest (w − 1) promoter states of the compound state s′. With
these notations in hand, the terms in Equation 59 can be rewritten as

log p(s1|�) =
Kw
∑

i=1

K
∑

k=1
si1Cki log�k, (60)

log p(yt|st, v, �) =
1
2

Kw
∑

i=1
sit
(

log � − log(2�) − �(yt − Vi(v))2
)

, (61)

log p(st|st−1,A) =
Kw
∑

i,j=1

K
∑

k,l=1
Bijs

i
ts
j
t−1CkiClj logAkl. (62)

Here � = 1∕�2 is the Gaussian precision parameter, and Vi(v) is the aggregate fluorescence
produced in the w consecutive promoter states of the ith compound state.
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1404

1405

1406

1407

1408

1409

1410

Because of the finite time �MS2 it takes a single polymerase to transcribe the MS2 se-
quence, the fluorescence contribution of polymerases is weighted at different positions in

the window of w time steps. If we define nMS2 = �MS2∕Δ� as the number of time steps (not
necessarily an integer) necessary for transcribing the MS2 sequence, the mean fraction of

the full MS2 sequence transcribed by a polymerase at the d th time step of the elongation
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window will be given by

�(d) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if ⌈nMS2⌉ < d ≤ w

d − nMS2 +
n2MS2−(d−1)

2

2nMS2
, if ⌊nMS2⌋ < d ≤ ⌈nMS2⌉

d−1∕2
nMS2

, if 1 ≤ d ≤ ⌊nMS2⌋

where ⌈nMS2⌉ and ⌊nMS2⌋ are the ceiling and the floor of nMS2, respectively. The dependence of
the weighting function �(d) on the position for a specific choice of parameters is illustrated
in Appendix 3–Figure 2.

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

MS2 sequence

1 2 3 4 5

1

0

3’5’

d

κ(d)

1423 Appendix 3 Figure 2. The weighting function �(d) evaluated at different positions along the genome.
The dashed line represents the fraction of the MS2 loops transcribed at a given position. Parameters

used for plotting: �elong = 100 sec, �MS2 = 50 sec, Δ� = 20 sec, w = �elong∕Δ� = 5, nMS2 = �MS2∕Δ� = 2.5.

1424

1425

14261427

Accounting for the weighted fluorescence contribution of polymerases, the aggregate

fluorescence Vi(v) becomes

Vi(v) = Fi,∶v, (63)

where the ith row of the Kw × K matrix F is the number of times each promoter state is
present in the ith compound state, weighted by the position-dependent function �(d). For
example, if we consider a promoter with K = 3 states and memory w = 5, then the row of F
corresponding to the compound state s = {1, 1, 3, 2, 3} will be [�(1) + �(2), �(4), �(3) + �(5)].

1428

1429

1430

1431

1432

1433

1434

1435

1436

Having all the pieces of the logarithm of the joint probability distribution, log p(y, s|�), we
obtain a final expression for the objective function, namely,

(� |y, �̂k) =
Kw
∑

i=1

K
∑

k=1
⟨si1⟩Cki log�k

+ 1
2

T
∑

t=1

Kw
∑

i=1
⟨sit⟩

(

log � − log(2�) − �(yt − Fi,∶v)2
)

+
T
∑

t=1

Kw
∑

i,j=1

K
∑

k,l=1
Bij⟨s

i
ts
j
t−1⟩CkiClj logAkl. (64)

Here ⟨sit⟩ and ⟨sits
j
t−1⟩ are the expectation coefficients at the k

th step of the EM algorithm

defined as

⟨sit⟩ =
∑

s={s1 ,s2 ,...,sT }
sit p(s|y, �̂k), (65)

⟨sits
j
t−1⟩ =

∑

s={s1 ,s2 ,...,sT }
sits

j
t−1 p(s|y, �̂k). (66)

Using the current estimate of the model parameters, �̂k, the expectation coefficients ⟨sit⟩
and ⟨sits

j
t−1⟩ are calculated using the forward-backward algorithm. From the definitions in
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Equation 65 and Equation 66, we obtain
⟨sit⟩ =

∑

s1 ,s2 ,...,sT

sit p(s1, s2, ..., sT |y, �̂k) =
∑

st

sit p(st|y, �̂k), (67)

⟨sits
j
t−1⟩ =

∑

s1 ,s2 ,...,sT

sits
j
t−1 p(s1, s2, ..., sT |y, �̂k) =

∑

st ,st−1

sits
j
t−1 p(st, st−1|y, �̂k). (68)

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

Following the conventional implementation of the forward-backward algorithm (cf.

Bishop (2006), Chapter 13), we use the Markov property of the promoter state dynamics,
together with the sum and products rules of probability, to write

p(st|y, �̂k) =
�t(st)�t(st)

p(y| �̂k)
, (69)

p(st−1, st|y, �̂k) =
�t−1(st−1) p(yt|st, �̂k) p(st|st−1, �̂k)�t(st)

p(y| �̂k)
, (70)

�t(i) = p(y1, ..., yt, st = i| �̂k), (71)

�t(i) = p(yt+1, ..., yT |st = i, �̂k). (72)

Here �t(i) is the joint probability of observing the fluorescence emission values in the first t
steps and being at the ith compound state at step t; while �t(i) is the conditional probability
of observing fluorescence values from the time point (t + 1) till the end of the series, given
that the compound state at time t is i. Note that � and � can be treated as Kw × T matrices,
where each column is a vector of length Kw, accounting for the Kw possible values of i in
Equation 71 and Equation 72. We evaluate the elements of � and � matrices recursively as

�t(i) = p(yt|st = i, �̂k)
Kw
∑

j=1
�t−1(j) p(st = i|st−1 = j, �̂k), (73)

�t(i) =
Kw
∑

j=1
�t+1(j) p(yt+1|st+1 = j, �̂k) p(st+1 = j|st = i, �̂k). (74)

The boundary values for �1(i) and �T (i) at the first and last columns of � and � matrices,
respectively, are given by

�1(i) = p(y1|s1 = i, �̂k) p(s1 = i| �̂k), (75)

�T (i) = 1, (76)

where the first follows from the definition of �t(i), and the second is obtained from Equa-
tion 69 by setting t = T . Having evaluated the � and � matrices, the likelihood p(y| �̂k) that
appears in the denominator of Equation 69 and Equation 70 can be found by setting t = T
in Equation 69 and summing over sT , namely,

(

Kw
∑

sT =1
p(sT |y, �̂k)

)

p(y| �̂k) ≡ p(y| �̂k) =
Kw
∑

sT =1
�T (sT ). (77)
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1478

1479

With the probabilities p(st|y, �̂k) and p(st−1, st|y, �̂k) known, the expectation coefficients
follow directly from Equation 67 and Equation 68.

1480

1481

The optimal model parameters in the (k + 1)th step of the EM algorithm are obtained
by maximizing the objective function (� |y, �̂k) in Equation 64 with respect to {�, v, �,A},
subject to the probability constraints

∑K
k=1 �k = 1 and

∑K
k=1 Akl = 1, 1 ≤ l ≤ K. The update

equations for the model parameters are found as

initial state probabilities: �̂m =
∑Kw

i=1⟨s
i
1⟩Cmi

∑K
k=1

∑Kw
i=1⟨s

i
1⟩Cki

, (78)
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fluorescence emission rates: v̂ =M−1b, where (79)

Mmn =
T
∑

t=1

Kw
∑

i=1
⟨sit⟩FinFim, (80)

bm =
T
∑

t=1

Kw
∑

i=1
⟨sit⟩ytFim, (81)

noise:
1
�̂
= �̂2 =

∑T
t=1

∑Kw

i=1⟨s
i
t⟩(yt − Fi,∶v̂)

2

∑T
t=1

∑Kw
i=1⟨s

i
t⟩

, (82)

transition probabilities: Âmn =

∑T
t=1

∑Kw

i,j=1 Bij⟨s
i
ts
j
t−1⟩CmiCnj

∑K
k=1

∑T
t=1

∑Kw
i,j=1 Bij⟨s

i
ts
j
t−1⟩CkiCnj

. (83)

1482

1483

1484

1485

1486

1487

1488

Pooled inference on multiple traces1489

Since the information available in a single MS2 fluorescence trace is not sufficient for the

accurate inference of underlying model parameters, we perform a pooled EM inference

assuming that the traces are statistically independent and governed by the same parameters.

If y1∶N are N different fluorescence traces with corresponding trace lengths T1∶N , and s1∶N
are the hidden compound state sequences corresponding to each trace, we obtain

p(y1∶N , s1∶N |�) =
N
∏

n=1
p(yn, sn|�), (84)

p(sn|y1∶N , �̂k) = p(sn|yn, �̂k), 1 ≤ n ≤ N. (85)

1490

1491

1492

1493

1494

1495

1496

1497

Therefore, the objective function (� |y1∶N , �̂k)maximized at each EM iterations takes the
form

(� |y1∶N , �̂k) =
∑

s1 ,s2 ,...,sN

p(s1∶N |y1∶N , �̂k) log p(y1∶N , s1∶N |�)

=
N
∑

n=1

∑

sn

p(sn|y1∶N , �̂k) log p(yn, sn|�)

=
N
∑

n=1

∑

sn

p(sn|yn, �̂k) log p(yn, sn|�)

=
N
∑

n=1
n(� |yn, �̂k). (86)

1498

1499

1500

1501

1502

From the above equation, we recognize that the objective function for the pooled infer-

ence is the sum of objective functions written for each individual trace. Using the expression

for the single-trace objective function obtained earlier (Equation 64), we find

(� |y1∶N , �̂k) =
N
∑

n=1

Kw
∑

i=1

K
∑

k=1
⟨si1(n)⟩Cki log�k

+ 1
2

N
∑

n=1

Tn
∑

t=1

Kw
∑

i=1
⟨sit(n)⟩

(

log � − log(2�) − �(yt(n) − Fi,∶v)2
)

+
N
∑

n=1

Tn
∑

t=1

Kw
∑

i,j=1

K
∑

k,l=1
Bij⟨s

i
t(n)s

j
t−1(n)⟩CkiClj logAkl, (87)

where ⟨sit(n)⟩ and ⟨sit(n)s
j
t−1(n)⟩ are now the expectation coefficients obtained for the n

th

fluorescence trace via the forward-backward algorithm, and yt(n) is the fluorescence at time
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step t in the nth trace. The update equations are then derived analogous to the single-trace
case, with an additional summation performed over all traces, namely,

initial state probabilities: �̂m =
∑N

ℎ=1
∑Kw

i=1⟨s
i
1(ℎ)⟩Cmi

∑K
k=1

∑N
ℎ=1

∑Kw
i=1⟨s

i
1(ℎ)⟩Cki

, (88)

fluorescence emission rates: v̂ =M−1b, where (89)

Mmn =
N
∑

ℎ=1

Tℎ
∑

t=1

Kw
∑

i=1
⟨sit(ℎ)⟩FinFim, (90)

bm =
N
∑

ℎ=1

Tℎ
∑

t=1

Kw
∑

i=1
⟨sit(ℎ)⟩yt(ℎ)Fim, (91)

noise:
1
�̂
= �̂2 =

∑N
ℎ=1

∑Tℎ
t=1

∑Kw

i=1⟨s
i
t(ℎ)⟩(yt(ℎ) − Fi,∶v̂)

2

∑N
ℎ=1

∑Tℎ
t=1

∑Kw
i=1⟨s

i
t(ℎ)⟩

, (92)

transition probabilities: Âmn =

∑N
ℎ=1

∑Tℎ
t=1

∑Kw

i,j=1 Bij⟨s
i
t(ℎ)s

j
t−1(ℎ)⟩CmiCnj

∑K
k=1

∑N
ℎ=1

∑Tℎ
t=1

∑Kw
i,j=1 Bij⟨s

i
t(ℎ)s

j
t−1(ℎ)⟩CkiCnj

. (93)
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Execution of the mHMMmethod1516

Execution of the mHMM method starts by initializing the model parameters. � and each
column of A, both of which are vectors of size K , are initialized by randomly sampling from
a Dirichlet distribution given by

f (x) ∼
Γ
(

∑K
k=1 uk

)

∏K
k=1 Γ(uk)

K
∏

k=1
xuk−1k . (94)

The Dirichlet distribution parameters uk are all set equal to one, which makes each initial
promoter state equally likely to be occupied, and equally likely to be transitioned into.

1517

1518

1519

1520

1521

1522

1523

1524

To initialize the fluorescence emission rates, r, and the Gaussian precision parameter,
� = 1∕�2, we first treat the fluorescence data y1∶N as identical and independently distributed
(i.i.d.) and use a simplified time-independent EM algorithm to find their optimal values (cf.

Bishop (2006), Chapter 13). We initialize the highest emission rate by randomly choosing a
value between 70% and 130% of the highest emission rate inferred by the i.i.d. approach.

The lowest emission rate is initialized to 0 because of the apparent silent periods in the
activity traces. The remaining (K − 2) emission rates are initialized by choosing random
values between 0 and the highest emission rate. Finally, we initialize the Gaussian noise

� by randomly choosing a value between 50% and 200% of the noise inferred by the i.i.d.
approach.
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1526

1527

1528

1529

1530

1531

1532

1533

1534

After initializing the model parameters, we iterate between the expectation and max-

imization steps of the EM algorithm until the relative changes in the Euclidean norms of

the model parameters after consecutive iterations become smaller than " = 10−4 or the
number of iterations exceeds 500. Because EM approaches typically infer locally optimal

parameter values, the algorithm is run on the same dataset using multiple randomly chosen

initial parameters (10-20 in our implementations), and the globally optimal set of values is

chosen in the end. In the Matlab implementation of the EM algorithm, the variables are

all stored in logarithmic forms to avoid overflow and underflow issues, which could occur

when recursively evaluating the elements of the � and � matrices. Also, special care is taken
when accounting for time points less than the elongation time, i.e. t < w, in which case the
compound state is a collection of not w, but t promoter states, i.e. st = {zt, zt−1, ..., z1}.

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545
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Because of the exponential scaling of the model complexity with the integer memory

window (w = 7 for the eve construct with Δ� = 20 sec data sampling resolution), significant
computational resources were used when conducting inference on simulated and experi-

mental data. It took approximately 2 hours to conduct 25 mHMM inferences with different

initialization conditions on a machine with 24 CPU cores. Users of the mHMMmethod are

advised to have this metric as a reference when estimating the computational cost of their

inference.

1546

1547

1548

1549

1550

1551

1552

Windowed mHMM1553

To investigate temporal trends in bursting parameters, we extended the mHMMmethod to

allow for a sliding window inference approach. From a technical perspective, this required a

revision of the inference formalism to be compatible with fragments of fluorescent traces in

which the beginning of the trace (initial rise in yt from t = 1) was not included.

1554

1555

1556

1557

To that end, we modified the first term in Equation 59 to allow for all possible promoter
state sequences that could lead to the observation of the first fluorescence measurement in

the chosen time window ([T1, T2]), namely,

log p(yT1∶T2 , sT1∶T2 |�) = log p(sT1 |�
(T1−w+1),A) +

T2
∑

t=T1

log p(yt|st, r, �) +
T2
∑

t=T1

log p(st|st−1,A), (95)

log p(sT1 |�
(T1−w+1),A) = log

(

p(zT1−w+1|�
(T1−w+1))

T1
∏

t=T1−w+2
p(zt|zt−1,A)

)

=
Kw
∑

i=1

K
∑

n=1
siT1D

w
ni log�

(T1−w+1)
n +

Kw
∑

i=1

w
∑

d=2

K
∑

k,l=1
siT1D

d−1
ki D

d
li logAkl. (96)

Here �(T1−w+1) is the probability distribution of the earliest promoter state that still has an
impact on the observation of the first measurement in the sliding window, and Dd

ni is an

indicator variable which takes the value 1 only if the promoter state in the d th position of the
ith compound state is n.
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1559
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1562

1563

1564

1565

1566

1567

The modified expression for the joint probability distribution does not change the func-

tional form of the equations used for calculating the expectation coefficients. Maximization

equations for the emission rates and the noise also remain intact. Only the maximization

equation for the transition probabilities is revised from Equation 83 into

Âmn =

∑T2
t=T1

∑Kw

i,j=1 Bij⟨s
i
ts
j
t−1⟩CmiCnj +

∑Kw

i=1
∑w

d=2⟨s
i
T1
⟩Dd−1

mi D
d
ni logAmn

∑K
k=1

∑T2
t=T1

∑Kw
i,j=1 Bij⟨s

i
ts
j
t−1⟩CkiCnj +

∑K
k=1

∑Kw
i=1

∑w
d=2⟨s

i
T1
⟩Dd−1

ki D
d
ni logAkn

. (97)

We make a steady-state assumption within the sliding window and choose �(T1−w+1) to be the
stationary distribution of the current transition probability matrix, i.e. A�(T1−w+1) = �(T1−w+1).
We therefore use the current estimate of A to evaluate �(T1−w+1) at each EM iteration, instead
of performing a maximization step.
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Appendix 41579

Statistical validation of mHMM1580

We validated mHMM for the three-state (K = 3) architecture schematically illustrated in
Appendix 4–Figure 1A by generating synthetic trajectories of effective promoter states using
the Gillespie algorithm (Gillespie, 1976) and adding Gaussian noise to the resulting activity
traces. Parameters in Appendix 4–Table 1 were used for data generation. Pooled infer-
ences were conducted on 20 independent datasets, each containing 9,000 data points,

representative of the number of experimental data points in a central stripe region. The

top panel of Appendix 4–Figure 1B shows the kinetic architecture used to simulate the
promoter trajectory in Appendix 4–Figure 1C (yellow) as it switches through the multiple
possible states. This promoter trajectory leads to the simulated trace of the number of RNA

polymerase molecules actively transcribing the gene in Appendix 4–Figure 1D (red). Using
mHMM, we found the best fitted path for our observable (Appendix 4–Figure 1D, black) and
the corresponding most likely promoter state trajectory (Appendix 4–Figure 1C, blue).

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593 Appendix 4 Figure 1. Statistical validation of mHMM. (A) Three-state mHMM architecture where
ON and OFF promoter states on each sister chromatid result in an effective three-state model. The

trajectory of effective promoter states over the memory time window given by the elongation time

dictates the number of RNA polymerase molecules loaded onto the gene. (B) Flow diagrams of
promoter states and transition rates for the true parameters used to simulate trajectories (top) and

corresponding average inference results obtained from 20 independent datasets (bottom). The area of

each state circle is proportional to the relative state occupancy, and the thickness of the arrows is

proportional to the transition rates. Dashed lines correspond to inferred transitions with very slow rates

that were absent in the simulation. Rates are in min−1 and dwell times are in min. Error bars for the

mean inferred parameters are shown in Appendix 4–Figure 2. (C) Sample simulated promoter activity
trace (yellow) generated using the parameters in (B), overlaid with the best fitted trace (blue) obtained

using the Viterbi algorithm (Viterbi, 1967). (D) Simulated and best fitted observable number of RNA
polymerase molecules corresponding to the promoter trajectory shown in (C).
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1602

1603

1604

1605

16061607

Appendix 4 Table 1. Parameter values used for generating synthetic datasets in the statistical
validation of the model. In order to perform this validation, we chose parameters that approximated

those obtained through the mHMM inference on experimental data shown in Figure 5.
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Parameter Value
Promoter switching rates (k01, k10, k12, k21) (1.2, 1.26, 0.72, 4.2) min−1

RNAP initiation rates (r0, r1, r2) (0, 18.5, 46) RNAP/min

Measurement noise (�) 4.5 RNAP

RNAP elongation time (�elong) 140 sec

Data sampling resolution (Δ�) 20 sec

Memory window (w = �elong∕Δ�) 7

MS2 loop transcription time (�MS2) 30 sec

Duration of each trace 30 min

Number of time points per dataset 9,000

Number of traces per dataset 100

Number of independent datasets 20

1612

As shown in Appendix 4–Figure 1B and Appendix 4–Figure 2, comparison of the simu-
lated and inferred parameters indicates that we reliably recovered the parameters used to

generate our simulated data with high precision. We accurately inferred transition rates,

dwell times, fraction of time spent in each state, and the rates of RNA polymerase loading

over 20 independent datasets of simulated traces.
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1618 Appendix 4 Figure 2. Inference statistics for the mHMM validation. The true and inferred values
of (A) transition rates, (B) dwell times in states, (C) state occupancies, and (D) RNA polymerase loading
rates are compared. Statistics on the inferred values are obtained from 20 independently generated

datasets. (Error bars indicate one standard deviation calculated across these 20 independent

replicates).

1619

1620

1621

1622

16231624

Validation details1625

We used the relation between the transition rate matrix, R, and the inferred transition
probability matrix, A, defined in Appendix 3 to obtain estimates of the transition rates,
namely,

A = eRΔ� , (98)

Rij =
( 1
Δ�

logA
)

ij
. (99)

Here, the exponential and logarithm operations act on matrices RΔ� and A, respectively.
Occasionally, taking the matrix logarithm of the transition probability matrix A yielded small
negative values for transition rates between states (0) and (2), which were originally zero

during data generation. In those cases, we assigned them a 0 value to keep them physically

admissible.
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Continuous vs. Poisson promoter loading1637

To demonstrate the validity of our choice to use continuous RNA polymerase initiation

rates in the transcription model (Appendix 3), we repurposed our simulation to, instead
of considering a constant rate of RNA polymerase loading, explicitly account for individual

RNA polymerase loading events when generating the traces. We assumed that individual

polymerase molecules traverse at a constant elongation rate (velong = 46 bp/sec, Appendix 9)
and that their arrival to the promoter region has a Poisson waiting time distribution, provided

that the promoter is cleared from the previous polymerase molecule which has a finite

footprint size of lRNAP = 50 bp (Rice et al., 1993). This led to a two-step model for the process
of RNA polymerase initiation, with Poisson-distributed wait times for the recruitment of RNA

polymerase to the promoter followed by a finite wait period as the RNA polymerase cleared

the promoter—a process taken to be approximately deterministic. With this information in

hand, we expressed the mean loading time of RNA polymerase at a single promoter (r−11 ) as
the sum of the mean time of polymerase arrival at an empty promoter, ⟨�arrival⟩, and the time
required to clear it after arrival,

lRNAP
velong

, that is,

1
r1
= ⟨�arrival⟩ +

lRNAP
velong

. (100)

Having the values of r1, lRNAP, and velong, we found ⟨�arrival⟩ and used it in simulating the arrival
events of individual polymerases.
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1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

We performed inference on these simulated traces using mHMM with the objective of

determining whether a Poisson loading rate had an effect on the obtained parameters. As

shown in Appendix 4–Figure 3, when the data is generated using Poisson RNA polymerase
loading, mHMM slightly overestimates the high transition rate, but otherwise manages to

accurately recover the model parameters. This therefore justifies our modeling approach

of assigning continuous RNA polymerase initiation rates to each promoter state, instead of

explicitly modeling the recruitment of individual polymerases.

1657

1658

1659

1660

1661

1662

1663

1664 Appendix 4 Figure 3. Validation of mHMM on Poisson RNA polymerase loading data. (A)
Transition rates, (B) state occupancies and (C) RNA polymerase loading rates inferred from 15
independently generated datasets assuming Poisson loading of RNA polymerase. (Error bars represent

one standard deviation calculated across these 15 independent replicates.)

1665

1666

1667

16681669

Sensitivity of mHMM to data sampling resolution1670

In our mHMM framework, we modeled the stochastic transitions between effective promoter

states using a discrete time Markov chain model which assumes that the state of the

promoter remains constant during the experimental time step (Δ�), and that transitions
to the next promoter state can occur only at the end of each step. This means that, if

the fastest promoter switching rate is greater than the data sampling rate (1∕Δ�), our
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model might be unable to capture all those transitions. To study this possible limitation of

mHMM, we conducted inference on synthetic activity traces generated with varying sampling

rates. Since the system memory (w = �elong∕Δ�) needs to be an integer, we varied w in the
[3, 7] range, correspondingly changing the sampling resolution from low (�elong∕3 ≈ 46s) to
high (�elong∕7 = 20s). We used the values in Appendix 4–Table 1 for the remaining model
parameters.

1671
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1676

1677

1678

1679

1680

1681

Appendix 4–Figure 4 summarizes the findings of this study. As expected, the accuracy of
inference improves with increasing data sampling rate, and inference results get very close

to the ground truth values when the highest sampling rate (1/20 sec = 0.05s−1) becomes

comparable to the fastest transition rate (0.07s−1). Except for the fastest transition rate,

all other rates are inferred accurately for the whole spectrum of sampling resolutions

(Appendix 4–Figure 4A). The accuracy of inferred state occupancies is also remarkably high,
making it robust to variations in the data sampling rate (Appendix 4–Figure 4B). The high
RNA polymerase loading rate tends to be underestimated for slower sampling resolutions,

which is reasonable since the chances of promoter leaving state (2) during a single time

step become greater, effectively reducing the net rate of loaded RNAP molecules per time

step (Appendix 4–Figure 4C). Generally, we find the inference of model parameters to be
reasonably accurate for the entire spectrum of experimentally realizable data sampling

rates, and highly accurate when the timescale of the fastest transition and data sampling

are comparable.
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1696 Appendix 4 Figure 4. Sensitivity of mHMM to data sampling resolution. (A) Transition rates, (B)
state occupancies and (C) RNA polymerase loading rates inferred from datasets generated with varying
time resolutions. Transparent circles represent averages over 20 independently generated samples.

The increasing size of the blue circles corresponds to higher data sampling resolutions (largest: 20s,

smallest: 46s).
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1699

1700

17011702

Performance of mHMM in different kinetic regimes1703

Thus far, the validation of mHMM was performed on datasets that were generated using

parameters similar to those inferred for the eve promoter. These parameters have charac-
teristic low ON rates (k01, k12) and a high OFF rate (k21), where “low" and “high” are relative
to the data sampling frequency, which for our experimental setup is 3∕min. To assess the
utility of our inference method for a generic choice of model parameters, we performed

additional inference studies in three different parameter regimes: low ON rates and low OFF

rates (Appendix 4–Figure 5A-C), high ON rates and low OFF rates (Appendix 4–Figure 5D-F),
and high ON rates and high OFF rates (Appendix 4–Figure 5G-I).

1704

1705

1706

1707

1708

1709

1710

1711

As expected, the inference is the most accurate when the data sampling frequency is

greater than the transition rates (Appendix 4–Figure 5A-C), in which case multiple transitions
within a single time frame occur only rarely, making our discrete Markovian representation

of the state dynamics a valid approximation. The largest deviations of the inferred model
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parameters from their ground truth values occur when the ON rates are high and the OFF

rates are low (Appendix 4–Figure 5D-F). Since the promoter rarely remains in the lower
initiation states (0 or 1) for the entire duration of a frame and tends to rapidly transfer into a

higher initiation state (1 or 2, respectively), the rates of RNA polymerase loading for states

0 and 1 are significantly overestimated (Appendix 4–Figure 5F). Despite the inaccuracies
in estimating the RNA polymerase loading rates, all transition rates, with the exception of

k10, are inferred with a high accuracy (Appendix 4–Figure 5D). Remarkably, the deviations
caused by the high ON rates get substantially suppressed when the OFF rates are also made

comparably high (Appendix 3–Figure 5G-I). This can be thought of as a consequence of an
effective counterbalancing between unwanted ON and OFF transitions within a single time

frame.
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1715
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1717
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1723
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1725

1726

Overall, these additional studies, together with the statistical validation studies discussed

earlier (Appendix 4–Figure 2), elucidate the domain of applicability of mHMM: the method
performs accurate inference when the ON/OFF transition rates are respectively slow/slow,

slow/high, or high/high; and is not successful in accurately inferring some of the model

parameters when the ON rates are high, but the OFF rates are low. We hope that these

characteristics of the method will be useful in informing the design of promoter architectures

and new experiments.
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1734 Appendix 4 Figure 5. Study of mHMM performance for different choices of the ON/OFFtransition rates Comparison of inference performance for different ON/OFF rates using a data
sampling frequency of 3∕min. (A-C) low/low, (D-F) high/low, (G-I) high/high. The statistics of inferred
model parameter values is obtained from 20 independent datasets. (Error bars indicate one standard

deviation calculated across these 20 independent replicates.)
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17391740

Windowed mHMM1741

To check that our windowed mHMM was capable of fitting time-varying data, we conducted

statistical validation using simulated traces exhibiting various time-dependent trends in the

bursting parameters. We studied three scenarios that mimicked ways in which bursting

parameters could, in principle, be modulated to drive the onset of transcriptional quiescence:

a decrease in kon over time, an increase in koff and a decrease in r. We also studied the case
of increasing kon, as this was the strongest temporal trend observed in our experimental
data. Appendix 4–Figure 6 summarizes the results for these validation tests.

1742

1743

1744

1745

1746

1747

1748

For each test, 100 simulated traces, 40 minutes in length, were generated (Δ� =20 s) that
exhibited the desired parameter trends. Consistent with our approach to the experimental
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data, a sliding window of 15 minutes was used for inference, meaning that for each inference

time, �inf , all data points within 7.5 minutes of �inf were included in the inference. This led to
inference groups consisting of 4500 data points, with the exception of the first and last time

points, each of which had 3700 data points (first and last w + 1 points were excluded from
inference). Transition and initiation rates shown in Appendix 4–Figure 6 are associated with
state (1) of the three-state model (kon = k01∕2, koff = k10 and r = r1 in Appendix 5–Figure 2A),
as these were found to provide the most faithful indication of underlying system trends.

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758 Appendix 4 Figure 6. Validation of windowed mHMM inference. The method’s accuracy was tested
for four distinct sets of parameter time trends. Results for each scenario are organized by column. In

each plot, the black dashed line indicates the true parameter value as a function of time. Connected

points (outlined in black) indicate the median inferred parameter value at each time point across 10

distinct replicates. Translucent points indicate inference values from individual replicates. Thus, the

dispersion of these replicates at a given time point indicates the precision of the inference.
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1762
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17641765

For each scenario, we assessed whether and to what degree the windowed mHMM

method could accurately recover the temporal profiles. In general, the method was found to

perform quite well within the parameter regimes that were tested. For both the increasing

and decreasing kon scenarios (Appendix 4–Figure 6A-C,D-E), windowed mHMM inference
accurately captured the modulation in kon with no significant variation evident in the r and
koff trends. In the case of increasing koff (Appendix 4–Figure 6G-I), we observed deviations
in kon and r from their true values at the inflection point of the koff curve (around 30 min).
However, the deviation in r is relatively mild and the “blip” in kon, while of larger magnitude,
is comprised of only two time points and so would likely not be mistaken for a legitimate

indication of underlying system behavior. In the case of a decrease in the initiation rate

(Appendix 4–Figure 6J-L) we observe a ∼ 5min delay in the model response. We attribute
this delay to the finite dwell time of RNA polymerase molecules on the gene (in this case

�elong =140 sec, although further studies will be needed to determine why the observed lag
appears larger than the elongation time). In addition, we note a degradation in the precision

of the inference of kon and koff at low r (RHS of Appendix 4–Figure 6J, K).
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Overall, we conclude that the windowedmHMMmethod is capable of accurately inferring

time-resolved parameter values. An important caveat to these results is that the size of

the sliding window (15 min in this case) places an inherent limit on the time scales of the
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parameter trends the model is capable of inferring. Changes that occur on shorter time

scales will be registered, but the temporal averaging introduced by the sliding window will

lead to underestimates of the rate of the parameter changes in the underlying system.
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Appendix 51787

Sister chromatids1788

Detection of sister chromatid appearance1789

1790 Appendix 5 Figure 1. Live imaging dataindicate timing of sister chromatidappearance. (A) Distribution of observation
times for frames in which chromatids were

resolveable (red) and diffraction-limited (blue).

Bars indicate emprical probability distribution

function. Lines indicate cumulative density

function. Data indicate the presence of

chromatids by no later than 7-8 minutes into

nuclear cycle 14. (B) Fraction of frames
featuring resolved chromatids as a function of

time. Trend suggests replication of relevant

portion of genome across all observed nuclei is

completed by approximately 10 minutes into

nuclear cycle 14. Inititial lag is likely

attributable—at least in part—to stochastic

turn-on times between sister eve loci and lower
fluorescence levels early on in the nuclear cycle.
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Previous studies have indicated that the D.
melanogaster genome is quickly replicated at
the beginning of each nuclear cycle in early

development (Rabinowitz, 1941; Shermoen
et al., 2010) , suggesting that each diffraction-
limited spot in our imaging data likely con-

tains two distinct eve loci. We sought use our
live imaging data to verify whether genome

replication occurred early enough in the nu-

clear cycle such that the presence of the repli-

cated promoters would have to be taken into

account. While the two eve loci are located
within a diffraction-limited spot for the ma-

jority of frames in our data, there are a sub-

set of frames in which two distinct puncta

can be clearly observed due to fluctuations in

the separation between chromatids (see Fig-
ure 4D). We reasoned that, by tracking the fre-
quency of frames with resolved puncta over

time, we could ascertain how the timing of

genome replication compares to the onset

of transcription. If replication precedes the

onset of transcription, then the fraction of

resolved frames should be relatively stable

over for the duration of eve expression in nu-
clear cycle 14. If, on the other hand, replica-

tion happens after the onset of transcription,

we should see a significant increase in the

frequency of resolved sister chromatids over

time as development progresses.
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To pursue this question, we randomly se-

lected snapshots of transcriptional loci in 100

different nuclei for each of the 11 embryos

used in this study. We then determined the

fraction of these sampled snapshots in which

two distinct puncta were clearly visible by

eye and observed how these instances of re-

solved chromatids were distributed in time.

As indicated in Appendix 5–Figure 1A, we see
evidence for resolved puncta by around 7 minutes into nuclear cycle 14. This is well within

the average range for turn-on times observed throughout the stripe (see Figure 3–Figure
Supplement 2B). Our results indicate that, at the very least, the genomic region containing
our eve stripe 2 reporter is replicated within some nuclei by 6-8 minutes into nuclear cycle 14.
Appendix 5–Figure 1B tracks the share of total observations for which we detected resolved
puncta as a function of time. A systematic delay in DNA replication would be expected
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to result in a progressive increase in this metric over time. However, such a trend is not

evident. While we see no resolved sister loci between 4 and 8 minutes (first point in the
plot in Appendix 5–Figure 1B), this absence could be attributed to other factors at play early
on in nuclear cycle 14. For example, part of this apparent lag could be attributable to the

fact that loci are, on average, dimmer early on in the nuclear cycle, which could mask the

presence of two eve loci by reducing the probability of both producing observable amounts
of fluorescence at the same time. It is also possible that the precise timing of locus turn-on

varies for each sister locus, as it does for loci in different nuclei. Regardless, even if the initial

rise between 6 and 10 minutes in Appendix 5–Figure 1B is reflective of the replication of
the locus during this period of time, the relative stability of the frequency of resolved loci

from 10 minutes onward indicates that this process is restricted to the first few minutes of

transcription. Additional experiments are needed to further elucidate the interplay between

DNA replication and the onset of transcription. Regardless, the examination of our live

imaging data supports the conclusion that the majority of our data consist of diffraction

limited spots containing two distinct eve loci.
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Probing for interactions between sister chromatids1871

1872 Appendix 5 Figure 2. Probing combinedtranscription of sister chromatids. (A)
Revised three-state model of promoter

switching within a fluorescent punctum that

accounts for the combined action of both sister

chromatids. (B) Summary of bursting
parameter ratios. All three bursting parameter

ratios deviate from their expected values under

the independence assumption given by the

horizontal dashed line. (Error bars indicate

magnitude of difference between first and third

quartiles of mHMM inference results for

bootstrap samples of experimental data over

multiple embryos. See Materials and Methods

for details )
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If each fluorescent punctum contains two pro-

moters (Figure 4D), then it is necessary to
revisit the widely used two-state model of

transcriptional bursting. In this revised sce-

nario, each promoter on one of the sister

chromatids undergoes fast ON/OFF switch-

ing. Therefore, each spot (encompassing two

identical loci) can be in one of three states:

(0) both promoters OFF, (1) one promoter

ON and the other OFF, and (2) both promot-

ers ON (Appendix 5–Figure 2B). States (1) and
(2) are expected to exhibit different rates of

RNA polymerase loading, r1 and r2, respec-
tively. See Appendix 1 and Appendix 3 and
for details regarding the implementation of

this three-state model.

1890
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1894

1895
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1900

1901

1902

1903

1904

1905

The presence of two transcriptional loci

within each fluorescent punctum suggests

three constraints on the relationship between

bursting parameters in the model shown in

Appendix 5–Figure 2A. First, if these two pro-
moters transcribe independently, then state

(2) will have double the loading rate of state

(1) such that r2 = 2r1. Second, the probabil-
ity of both promoters transitioning simulta-

neously should be negligible; we expect no

transitions between states (0) and (2) such

that k02 = k20 = 0. Finally, if the promoters
switch between their states in an indepen-

dent manner, then there will be an extra con-

straint on their transitions rates. For example,

there are two paths to transition from (0) to

(1) as either promoter can turn on in this case.
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However, there is only one possible trajectory

from (1) to (2) because only one promoter has

to turn on. This condition sets the constraint

k01 = 2k12. Similarly, k10 = k21∕2.
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While the independence of sister chro-

matids is supported by recent single-molecule FISH experiments (Little et al., 2011; Zoller
et al., 2018), classic electron microscopy work suggests a scenario in which sister chromatids
are tightly correlated in their transcriptional activity (McKnight and Miller, 1977, 1979). Given
this uncertainty regarding chromatid independence, we elected to employ a general three-

state model that makes no assumptions about the nature and strength of sister chromatid

interactions. In addition to permitting greater flexibility, this agnostic approach also meant

that the structure of the kinetic model returned by mHMM inference provided clues re-

garding the nature of the coupling between sister loci. Specifically, we examined the ratios

between the high and low on rates (k01 and k12), off rates (k21 and k10), and initiation rates (r2
and r1). A deviation from these expectations would indicate either that the two sister loci do
not initiate RNA polymerase independently (first constraint), or that they do not transition

between activity states independently (second and third constraint).

1927
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1931

1932

1933

1934

1935

1936

1937

1938

1939

Overall, our results suggest that the two loci are coupled to a nontrivial degree. We

observe that the rate of initiation for the high state, r2(x), (corresponding to two active
promoters) is consistently greater than twice the middle state, r1(x) (Appendix 5–Figure 2B,
bliue). This trend suggests some sort of synergy in the RNA polymerase initiation dynamics

of the sister promoters. Even more strikingly, we observe that the rate of switching from

(2) to (1), k21, is much higher than twice the rate of switching from (1) to (0), k10, (Appendix 5–
Figure 2C, red). This indicates that each promoter is more likely to switch off when its
sister locus is also active. This anti-correlation is consistent with some form of competition

between the loci, a scenario that could arise, for instance, if local concentrations of activating

TFs are limiting. In addition, we observe substantial variation in the relationship between

the high and low on rates (k01 and k12, respectively), ranging from one of near equality in the
anterior flank to nearly the 2-to-1 ratio that would be expected of independent loci in the

stripe center and posterior (Appendix 5–Figure 2C, green). Finally, as shown in Appendix 6–
Figure 1, we observe no transitions between the (0) and (2) states, lending support to the
hypothesis that, despite their correlation, our spots do contain two promoters.
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Further experiments in which the sister chromatids are labeled in an orthogonal manner

are needed to confirm and elaborate upon these results. One important consideration to

address is the fact that the spatial proximity of the two loci appears to fluctuate significantly

over time. Thus, if (as seems plausible) the strength of the coupling between loci depends in

some way upon the radial separation of the loci, then the results reported here are effectively

an average of time-varying system behavior. Valuable information may be obscured as a

result of this averaging.
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Appendix 61962

mHMM inference sensitivities1963

Full three-state inference results1964

For the sake of simplicity, we presented our inference results in the main text using an

effective two-state model in which two distinct active transcriptional states were combined

into a single effective ON state (see Figure 4E and F). Here, for completeness, we include
time-averaged and time-resolved inference results for the full three-state model where, as

shown in Appendix 5–Figure 2, (0) corresponds to the state where both promoters are in the
OFF state, (1) indicates the state where either promoter is in the ON state, and (2) represents

the states where both promoters are in the ON state.

1965
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1970

1971

As indicated in the main text, the full three-state results (Appendix 6–Figure 1) exhibited
the same trends as were evident in the effective two-state plots (Figure 5). In agreement
with the effective two-state model, the rate of transcript initiation is not modulated to a

significant degree across the stripe (Appendix 6–Figure 1D). Moreover, we once again see
that activation rates, and specifically the rate of switching from OFF to the middle ON rate

(states 0 and 1 in Appendix 6–Figure 1E) are strongly elevated in the stripe center.
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1977
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Appendix 6 Figure 1. Full three-state results for time-averaged mHMM inference. (A)
Representative experimental trace along with its best fit and (B) its most likely corresponding promoter
state trajectory. (C) Instantaneous visualization of promoter state in individual cells throughout
development through the false coloring of nuclei by promoter state (colors as in B). (D) The rate of
initiation for each transcriptional state is not significantly modulated along the embryo. (E) Our mHMM
revealed that the transition rate between the OFF (0) and middle ON state (1) is up-regulated in the

stripe center. In contrast, the rates of switching out of the middle and high ON states show little to no

significant AP-dependent modulation. (F) The modulation of the rate of switching from 0 to 1 acts to
increase the fraction of time the promoter spends in the active states in the stripe center. (A, error bars

obtained from estimation of background fluorescent fluctuations, as described in Materials and

Methods and Garcia et al. (2013); D, E, and F, error bars indicate the magnitude of the difference
between the first and third quartiles of mHMM inference results for bootstrap samples of experimental

data taken across 11 embryos. See Materials and Methods for details.)
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1984

1985

1986

1987

1988

1989

1990

19911992

Like the time-averaged results, time-resolved inference trends for the full three-state

model agree closely with effective two-state results shown inmain text (compare Appendix 6–
Figure 2 to Figure 6D-F). Due to a lack of statistics for state (2), we show only transition rates
into and out of the first active state (middle state in Figure 4E).

1993

1994

1995

1996

1997 Appendix 6 Figure 2. Full three-state results for time-dependent mHMM inference. (A) Transition
rate from transcriptionally inactive state (0) to the first active state (1). Same trends evident as for

effective 2 state model. (B) Transition rate from first on state (1) to OFF state (0). (C) Rate of transcript
initiation in first on state (1) as a function of time. (Error bars indicate the magnitude of the difference

between the first and third quartiles of mHMM inference results for bootstrap samples of experimental

data taken across 11 embryos. See Materials and Methods for details.)

1998
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2000

2001

2002

20032004

Two-state inference results2005

Although the presence of sister chromatids indicated that the three-state model was most

appropriate for the eve stripe 2 system, we wanted to check that our conclusions were
robust to this assumption. To do this, we conducted time-averaged and windowed inference

assuming a simpler, two-state model (see, e.g. Figure 4B). Note that this approach is distinct
from the effective two-state results presented in themain text. There, as outlined in Figure 4D-
F, a three-state model was specified for inference and the results for the two active (ON)

states were aggregated after the fact to simplify the presentation of the results. Conversely,

here, we explicitly conducted inference using a two-state model.

2006

2007

2008

2009

2010

2011

2012

2013

Most of our findings remained unchanged in the context of the two-state model. Consis-

tent with the three-state case, the two-state time-averaged mHMM inference indicated that

the fraction of time spent in an active state, rather than the rate of RNA polymerase initiation,

drives the difference in mRNA production rates across the stripe (Appendix 6–Figure 3A-C).
Moreover, as with the three-state case, two-state results indicated that the bulk of this

variation stem from modulation in kon (Appendix 6–Figure 3C, green). Interestingly, whereas
we did see a degree of spatial dependence in koff for 3-states, we observed no such trend
for 2-states (Appendix 6–Figure 3C, red). In general, this is not surprising, as our use of a
simpler model likely means that multiple switching rates are being projected onto the koff
parameter. Specifically, if the eve stripe 2 system is indeed a true three-state system, then
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we would expect the two-state koff estimate to reflect the joint action of the k10, k21, and k12
rates from the three-state model. As a result, the spatial dependence of each one of these

rates would get averaged out when combined onto koff .
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2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027 Appendix 6 Figure 3. Two-state mHMM inference. (A-C) Time-averaged 2-state inference results. (A)
Consistent with three-state inference results, we observed no significant modulation in the rate of

initiation along the axis of the embryo. Moreover, we found that kon (green plot in (B)) was modulated
along the anterior-posterior axis to vary the amount of time the promoter spent in the ON state (green

curve (C)). In a departure from the three-state case, we observed no significant spatial trend in koff ,
though we noted a spike in koff at 3% of the stripe center. (D-F) Time-resolved (windowed) two-state
mHMM results. (D) Consistent with the 3-state inference, we saw little to no modulation in the rate of

RNA polymerase loading r over time, although we noted a mild downward trend across all AP bins that
was most pronounced in the posterior flank (red curve). (E) Two-state inference indicated no significant

temporal trends in koff . (F) kon time trends largely agreed with the three-state case, although we noted
that the decrease in kon in the posterior flank that was apparent in the three-state results was not
observable in this two-state context (Figure 6E, red). (Error bars indicate the magnitude of the
difference between the first and third quartiles of mHMM inference results for bootstrapped samples of

experimental data. See Materials and Methods for details.)
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20412042

As with the time-averaged case, we found that results for two-state windowed mHMM

were generally consistent with three-state trends. A notable exception to this rule was the

absence of any significant decrease in kon in the posterior stripe flank (Appendix 6 Figure 3F,
red). This is not entirely surprising, as the trend returned by the three-state inference was

relatively mild (Figure 6E, red), encompassing only the final two time points for which there
was sufficient data to conduct inference. It is possible that the added complexity of the three-

state model allowed it to register a subtle shift in the activation rate that was convolved with

countervailing features in the two-state case. Future work will seek to elucidate the source of

this discrepancy and further test the validity of the trend uncovered in the three-state case.
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Comparing true and effective two-state inference results2052

Here, for completeness, we provide direct comparisons between the time-averaged inference

for the effective two-state results presented in the main text and the true two-state results

presented in the previous section.
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2056 Appendix 6 Figure 4. Comparing two- and three-state mHMM inference results. Three-state inference
results can be presented in terms of a two-state model in which states (1) and (2) are aggregated into a

single ON state (see Figure 4E and F). Here, color schemes are consistent with those employed in
Appendix 6–Figure 3A-C. Squares indicate true two-state results (presented in the previous section) and
circles indicate effective two-state trends derived from the three-state results presented in Figure 5. (A)
Anterior-posterior-dependent trends in the rate of RNA polymerase initiation are nearly identical

between the true and effective initiation rates, however the initiation rate returned by two-state mHMM

inference (green squares) is roughly twice as large as that implied by the three state results (green

circles). (B) As with the initiation rates, we observe similar trends between the true and effective cases,
but substantial differences in magnitude. The effective two-state model recovers an ON state

occupancy that is roughly double that returned by two state mHMM inference. (C)While the ON rate
trends and magnitudes are nearly identical, the OFF rate returned by two-state mHMM inference is

roughly triple that implied by three-state inference. Thus it is clear that this difference in OFF rate

underlies the observed departures in both state occupancies (B) and state initiation rates (A). (Error

bars indicate magnitude of the difference between the first and third quartiles of mHMM inference

results for bootstrap samples of experimental data. See Materials and Methods for details.)
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As Appendix 6–Figure 4 makes clear, while anterior-posterior-dependent parameter
trends are by and large consistent between the true and effective two state models, we

do observe substantial differences in the absolute magnitudes of parameter values. These

differences originate (directly or indirectly) from the three-fold difference in the value of

koff between the true and effective models (Appendix 6–Figure 4C, red squares and circles,
respectively). The koff value for the effective two-state model is defined as

koff =
k10k21
k21 + k12

. (101)

See Appendix 1 for expressions for all three effective two-state bursting parameters (kon, koff ,
and r) in terms of these three-state transition rates. This value represents the inverse of the
mean amount of time the system, upon switching out of state (0), spends in one of the active

states before returning to (0), and we can see that it is necessarily less than or equal to k10.
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Thus, the two- and three-state results imply that the systems switch out of the active

state(s) on substantially different timescales. On the other hand, the ON rates are strikingly

similar across the two models. As a result, the effective two-state model implies that the

system is in one of the active states for between 40 and 70% of time, whereas two-state

mHMM inference implies significantly lower shares falling between 20 to and 40%. Since

both models must reproduce the same mean production rate—this is an inherent feature of

the experimental traces—we see that the two-state mHMM inference returns an estimated

initiation rate that is consistently twice as large as the initiation rate implied by the effective

two-state model.
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Thus, while most of the conclusions featured in this paper are robust to our choice of

model architecture, this decision does, nonetheless hold important implications for how

we understand the underlying system. Further work is needed elucidate the root cause of

this discrepancy and move towards a more concrete understanding of the correspondence

between the structure of the model and that of the physical system.
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Appendix 72101

Inherent limits of bursting parameter inference2102

By definition, the onset of transcriptional quiescence coincides with the cessation of observ-

able bursting activity. In the main text, we argue that this cessation appears to be driven

by processes that are mechanistically distinct from those driving transcriptional bursting.

It remains possible, however, that quiescence is instead driven by changes in the bursting

machinery itself as illustrated in scenario (ii) in Figure 6A. If this is the case, it is important
to note that fundamental limits exist to the time-scale of shifts in the bursting parameters

that could be detected in any sort of time-dependent burst parameter inference (see, e.g.,
Figure 6): changes of order-with or faster-than the time scale on which transcriptional bursts
occur (1-3 min for eve stripe 2) cannot be detected. Notably, this is not a limit of the mHMM
method, but rather reflects an inherent limitation set by system itself—in order to infer

bursting parameters, we must observe bursts and, in order to infer a change in parameters,

we must have access to bursting activity that reflects this change. Thus, the characteristic

frequency of bursts sets a resolution limit for any kind of bursting parameter inference.
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2111

2112
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To illustrate this limitation, we simulated three scenarios for a two-state transcriptional

system in which kon decreases to 0 s−1 over periods 15, 5, and 1min in length. We then sought
to recover the trend in kon. To emphasize that the limitations are not specific to mHMM, we
used the true promoter trajectories generated by our simulation algorithm to estimate kon.
These estimates thus represent the absolute best-case scenario for parameter inference, in

which we recover the underlying behavior of the system exactly. The results indicate that, as

expected, a transition in kon that happens in the span of 1 minute is not detectable from a
burst inference perspective (Appendix 7–Figure 1A-C). This indicates that, at this timescale,
a shift in burst parameters (scenario ii in Figure 6A) would be indistinguishable from an
abrupt, change in which the promoter entered a silent state outside of those considered

by the bursting model (scenario (i) in Figure 6A). Interestingly, results for 5 and 15 minute
kon transitions (Appendix 7–Figure 1D-I) also indicate that even transitions that occur over
longer periods of time cannot be fully recovered due to the fact that bursting behavior is

observed over a limited window of time ( 40 minutes in our case). Thus, once the burst

frequency decreases to a sufficiently low level, there simply are not enough bursts observed

within the window of observation to estimate the burst frequency from the data.
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2132 Appendix 7 Figure 1. Inherent limits of bursting parameter inference. (A-C) Simulating a 1 min
transition in kon. (A) Black curve indicates true kon value as a function of time and blue curve indicates
inferred value. Because the change unfolds on a time scale that is much faster than the bursting

timescale, it is not possible to accurately recover the underlying kon trend from the fluorescent traces.(B) The temporal trend in the average fluorescence across simulated traces (blue curve) reflects this fast
decrease in kon. Note that variation in simulated traces (gray) unfolds on a significantly faster timescale
than the change in the mean. (C) Visualization of promoter switching showing how the kon transition
occurs on the timescale of a single burst. Light blue indicates ON periods and dark blue indicates OFF

periods. Since there are almost no active traces after the transition of kon to perform an inference. it
would be impossible to determine if a modulation in the bursting parameters—as opposed to a

transition into some alternative, silent state—drives the onset of quiescence. (D-F) Simulation of a
5 min transition in kon. (D)We are able to recover first half of kon trend, but due to the speed of
transition, insufficient active traces remain to permit the accurate recovery of the full profile. (E,F)
Because the transition happens slower than in the 1 min case shown in (A-C), there are some bursts

that unfold during the transition and, hence, we have some reference points with which to infer the

underlying trend. (G-I) Simulating a 15 min transition in kon. (G) The mHMM can reliably infer the
temporal variation in kon. (H,I) The observation that bursts of activity are interspersed throughout the
kon transition makes it possible to recover the temporal trend. (A,D,G, error bars indicate 95%
confidence interval of exponential fits used to estimate kon).
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Appendix 82153

Input-Output analysis details2154

In this appendix, we provide additional information about data sources, inference method-

ology, and inference sensitivies related to the input-output analysis presented in the main

text.

2155

2156

2157

Input transcription factor data2158

Data sources2159

The input-output analysis presented in the main text made use of previously published data

sets for the spatiotemporal concentration profiles of the gap genes Hunchback, Krüppel,

and Giant (Appendix 8–Figure 1A, C and D). These data derive from elegant experiments in
which individual embryos were co-immunostained for transcription factors of interest and

precisely staged by measuring progressive cellularization over the course of nuclear cycle 14

to generate a time series of protein concentration profiles spanning the course of this period

of development (Dubuis et al., 2013). The Bicoid concentration data used for this analysis
derives from live imaging experiments using a Bicoid-GFP fusion established by Gregor et al.
(2007). These data come courtesy of Jonathan Liu and Elizabeth Eck (Appendix 8–Figure 1B).

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169 Appendix 8 Figure 1. Spatiotemporal transcription factor concentration maps. Heatmaps
indicate normalized concentration profiles for the eve stripe 2 regulators (A) Hunchback, (B) Bicoid, (C)
Giant, and (D) Krüppel as a function of space and time. In each case, levels were normalized relative to
the maximum concentration observed within the spatiotemporal window of interest.

2170

2171

2172

21732174

Data processing2175

To prepare the Krüppel, Giant, and Hunchback profiles for use in our logistic regression

analysis, we adopted an approach similar to that described in Dubuis et al. (2013). Dorso-
ventral orientation of embryos was found to have negligible effect on calculated intensity

profiles and was ignored (i.e. all embryos were included, regardless of orientation). For

each time point in nuclear cycle 14, a weighted temporal average was calculated using a

sliding Gaussian kernel with �t = 5min. For each time point, the minimum observed value
across all anterior-posterior positions was then calculated and subtracted in order to remove

background fluorescence. Normalized profiles were then calculated using the formula

I
norm

=
I
raw

max(I
raw
) − min(I

raw)
(102)

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

An identical procedure was followed for processing the Bicoid-GFP data, with the addition

of a spatial averaging step using a sliding Gaussian window of �
AP
= .5 % embryo length.

This step was necessitated by the fact that, because individual embryos were imaged for

the duration of nuclear cycle 14, multiple experiments contributed concentration data along

the anterior-posterior axis for each time point. Thus averages in both space and time were

needed in order to effectively aggregate these data into a single average spatiotemporal

profile.

2187

2188

2189

2190

2191

2192

2193
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Finally, we discovered that the anterior-posterior axes in our live imaging data (both for

eve stripe 2 and Bicoid-GFP) were inconsistent with the axes employed by the fixed data
reported by the authors in Dubuis et al. (2013). We addressed this issue by using eve stripe
2 as a fiduciary mark to register the positions of the fixed and live data sets. Specifically, we

aligned the mRNA peak predicted by our model at 40 minutes into nuclear cycle 14 with the

peak in second stripe of the eve protein profile at 40 minutes, as reported in Petkova et al.
(2019).

2194

2195

2196

2197

2198

2199

2200

Logistic regression framework2201

The binomial logistic regression is a widely used statistical method for assessing the rela-

tionship between a set of predictor variables and a response variable of interest that is

constrained to take on one of only two possible outcomes. In the context of our analysis, the

predictor variables were the normalized transcription factor concentration profiles and the

response variables were (i) the overall transcriptional state given by the transcriptional time

window (active or silent?) and (ii) the bursting state amongst trancriptionally active loci (ON

or OFF?). Inference was conducted at the level of individual gene loci. fmincon, a standard

matlab function for constrained optimization, was used to fit all models discussed both in

the main text and in this appendix.

2202

2203

2204

2205

2206

2207

2208

2209

2210

To prevent overfitting at the stripe centers, the selection of data sets for input-output

inference were weighted to ensure equal representation of data points from across all

regions of space and time included in the analysis. The data were divided into cells of size

1% of the embryo length in width and 1 minute in duration for the purpose of calculating

and assigning these weights. The number of data points in adjacent regions were factored

into each region’s weight score using a 2D Gaussian averaging kernel. Regions with fewer

than 25 total data points were not included in the inference.

2211

2212

2213

2214

2215

2216

2217

Inference details: transcriptional time window2218

For the time window input-output analysis, we considered only loci that were transcriptionally

active for one or more time steps in nuclear cycle 14. Loci were classified as transcriptionally

active for all time points between the first and last time points for which they exhibited

detectable levels of transcriptional activity and silent for all time points following their final

shut-off for which their nuclei were still present in the experimental field of view. Time points

preceding the onset of activity were discarded. Appendix 8–Figure 2A illustrates how this
quantity varies over space and time in our experimental data. We considered a class of

logistic regression models in which each transcription factor was permitted to appear at

most once, thus requiring that each factor act on eve2 in a uniform manner through space
and time; i.e., the same protein could not activate expression on one stripe flank and repress

on the other.

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

Inference details: transcriptional bursting2230

The bursting input-output analysis focused exclusively on transcriptionally engaged loci. The

Viterbi algorithm was used to infer the instantaneous activity state (ON vs. OFF) for all loci.

This activity state was taken as the response variable in our regression analysis. In all other

respects, the inference procedure was identical to that conducted for the time window.

2231

2232

2233

2234

Results of unconstrained inference2235

For the input-output inference results presented in the main text (Figure 7), we used prior
knowledge about the regulatory function of each input transcription factor to constrain its

range of permissible values in our inference. Specifically, we constrained the activators

Bicoid and Hunchback to play activating roles in our model and, likewise, required that the
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repressors Krüppel and Giant played repressing roles. In several cases, this constrained

inference led to models in which one or more transcription factors played no significant

regulatory role (Bicoid and Hunchback for the time window and Bicoid for transcriptional

bursting). In this section, we tested the sensitivity of the conclusions presented in the main

text to our use of functional constraints by conducting unconstrained input-output inference

runs.

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

Transcriptional time window2246

The results of our unconstrained input-output inference for the transcriptional time window

are identical to those presented in the main text. Despite the fact that no limitations were

imposed on the regulatory function of each factor, we nonetheless recovered a model in

which the two repressors, Giant and Krüppel, are necessary and sufficient to explain the

onset of transcriptional quiescence in the stripe flanks. In agreement with the constrained

case, we found that the addition of Hunchback and Bicoid to this two-repressor model had

no qualitative effect on the output profile predicted by the model (Appendix 8–Figure 2B). A
quantitative comparison of model fit scores confirmed that the addition of Hunchback and

Bicoid did nothing to improve model fit (Appendix 8–Figure 2C). Thus, we conclude that our
finding that the transcriptional time window can be explained entirely by the joint repressive

action of Krüppel and Giant is insensitive to our choice to impose functional constraints.

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258 Appendix 8 Figure 2. Unconstrained inference results for the transcriptional time window. (A)
Observed fraction of quiescent nuclei as a function of space and time. Identical data to that presented

in Figure 7A. (B) Relaxing constraints on the functional nature of each transcription factor had no
appreciable effect on the inference results. Profiles shown here are indistinguishable from those shown

in Figure 7D. Once again, we find that the joint action of the repressors Giant and Krüppel is sufficient
to explain the progressive onset of transcriptional quiescence in the stripe flanks. (C) A quantitative
comparison of model fits reinforces the qualitative conclusions drawn from (B). Models including 3 and

4 transcription factors cannot improve on the fit achieved by the simpler double repressor model. Here

blue dots indicate models for which only Giant and Krüppel make significant contributions to the model

fit. This indicates that, while the 3 and 4 transcription factor models include additional parameters,

these do not contribute appreciably to overall model fit, emphasizing the fact that these models behave,

effectively, as double repressor models.

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

22702271

Transcriptional bursting2272

In the context of the transcriptional bursting input-output analysis, the removal of functional

constraints led to a significantly more complex landscape of inferred regulatory models.

While the functional roles of Krüppel, Giant, and Hunchback were consistent with the

constrained case (repressing, repressing, and activating, respectively), Bicoid was consistently

inferred to play a repressing role. Despite this complication, the three-factor Krüppel-Giant-

Hunchbackmodel favored by the constrained inference remained the best-fitting three-factor

model (Appendix 8–Figure 3C, red circle). While the addition of Bicoid as a repressor to create
a model dependent on all four input transcription factors led to a small improvement in

model fit (Appendix 8–Figure 3C), comparison of this four-factor model’s predicted activity
profile with that of the Krüppel-Giant-Hunchback model revealed no material improvement
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in the model’s agreement with the experimental data (Appendix 8–Figure 3B, bottom left vs.
bottom right). Moreover, there is (to our knowledge) no experimental evidence for Bicoid

playing a repressive role in the regulation of eve stripe 2. Indeed, there is strong evidence
that Bicoid is necessary for eve stripe 2 activity (Small et al., 1992). We thus conclude the
Krüppel-Giant-Hunchback model remains the most plausible option in the unconstrained

case.

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289 Appendix 8 Figure 3. Unconstrained inference results for transcriptional bursting. (A) Observed
fraction of transcriptionally active nuclei in the ON (bursting) state. Identical data to that presented in

Figure 7B. (B) As with time window, relaxing the constraints on the functional nature of each
transcription factor did little to alter the inference results presented in the main text (compare to

Figure 7E). As with the constrained results, the joint action of Giant, Krüppel, and Hunchback appears
sufficient to explain the spatiotemporal activity pattern revealed by mHMM inference. (C) A quantitative
comparison of model fits.

2290

2291

2292

2293

2294

2295

22962297
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Appendix 92298

Determining the RNA polymerase dwell time using autocorrelation2299

In order to conduct mHMM inference, it is necessary to specify the number of time steps w
required for an RNA polymerase molecule to traverse the reporter gene,

w =
�elong
Δ�

, (103)

where Δ� is set by the temporal resolution of our data acquisition and �elong is the elongation
time which is unknown a priori. Past studies have estimated elongation rates for other
systems involved in early patterning in the Drosophila embryo, but there is substantial
disparity between the reported values. A live imaging study of transcriptional activity driven

by the hunchback P2 enhancer reported an elongation rate of 1.4 − 1.7 kbmin−1 (Garcia et al.,
2013). However, a recent study of the same regulatory element reported elongation rates
of 2.4 − 3.0 kbmin−1—nearly twice as fast (Fukaya et al., 2017). These results suggested that
RNA polymerase elongation rates measured for other systems might not apply to our eve
stripe 2 reporter. Thus, in order to ensure the validity of our inference, we developed an

approach that uses the mean autocorrelation function of experimental fluorescence traces

to estimate the elongation time directly from our data.

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

The autocorrelation function RF (�) quantifies the degree to which a signal, F (t), is corre-
lated with a lagged version of itself, F (t − �), and is given as a function of the time delay, �,
between the two signal copies being compared such that

RF (�) =
E[(F (t) − �

f
)(F (t − �) − �

f
)]

�2
f

, (104)

where �
f
is the average observed fluorescence, �

f
is the standard deviation of the fluores-

cence and E denotes the expectation value operator. As illustrated in Appendix 9–Figure 1A,
the fact that it takes RNA polymerase molecules some finite amount of time to traverse

the gene implies that the observed fluorescence at a transcriptional locus at some time

t, F (t), will be correlated with preceding fluorescence values F (t − �) so long as � < �elong
because the two time points will share a subset of the same elongating RNA polymerase

molecules. As � increases, the correlation between F (t) and F (t− �) due to these shared RNA
polymerase molecules will decay in a linear fashion (since the average number of shared

RNA polymerase molecules decreases linearly with �) until it reaches zero when � = �elong
(Appendix 9–Figure 1B, blue curve).

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330
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2332 Appendix 9 Figure 1. Using the autocorrelation of the fluorescence signal to estimate RNApolymerase dwell time. (A) It takes a finite amount of time for RNA polymerase molecules to
transcribe the full length of the reporter gene. As a result, successive fluorescence measurements will

contain some of the same GFP-tagged RNA polymerase molecules. Dark blue-shaded regions indicate

the subset of RNA polymerase molecules that are present on the gene for successive measurements.(B) This overlap causes successive measurements to be correlated, and the degree of correlation due to
the overlap decays linearly, reaching zero when the separation between measurements is equal to the

elongation time, �elong (blue curve). However, the trace autocorrelation function contains other
signatures that can obscure the inflection induced by RNA polymerase elongation dynamics. For

instance, successive time points also exhibit correlation due to the promoter switching dynamics (red

curve). (C) Theoretical analysis of the autocorrelation function and (D) stochastic simulations indicate
that the second derivative of the mean autocorrelation function (dark blue curves) can be used to find

the structural break in the function (black curves) that corresponds to �elong. Here, a peak at 6 time steps
of delay indicates an elongation time of 7 times steps (140 s). (E) Simulated traces with elongation time
of 7 time steps (green curve) exhibit a peak in the second derivative that coincides with the maximum of

the experimental curve. Inset plots show corresponding mean autocorrelation curves for experimental

data and simulations. (F) Stochastic simulations in which we allow for variation in elongation times
distributed around a mean of 7 time steps qualitatively recapitulates the observed curve. (C-F, second

derivative profiles depicted here are normalized relative to their maximum value for ease of depiction.)

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

23512352

The dramatic change in the slope of the autocorrelation function that occurs at � = �elong
can be used to estimate the elongation time of the system; however, it is not the only

feature present in Equation 104. Because the time series of promoter states constitutes a
Markov chain, the instantaneous promoter state and, therefore, the instantaneous rate of

RNA polymerase loading, exhibits a nontrivial, positive autocorrelation due to the promoter

switching dynamics of the system. For instance, if it takes the promoter an average of 1

minute to switch states, then it is clear that promoter activity for � < 1min will be strongly
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correlated with itself. Thus, we see that the rates of promoter switching dictate the speed

with which this “dynamic” autocorrelation decreases with increasing �. More precisely, the
dynamics autocorrelation will take the form of a decaying exponential in �, with the time
scale set, approximately, by the second largest eigenvalue of the Markov chain’s transition

rate matrix (Appendix 9–Figure 1B, red curve)
RP (�) ∼ e−�2� . (105)

Where �2 denotes the second larrgest eigenvalue of the transtion rate matrix. Thus, the
observed autocorrelation function contains, at a minimum, signatures of both the finite RNA

polymerase dwell time (�elong) and of promoter switching dynamics. As a result, inferring
elongation times from the change in slope in the mean autocorrelation is often relatively

subtle in practice.

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

A theoretical analysis of RF (�) indicated that the second derivative of the mean auto-
correlation function reliably exhibits a peak that can be use to read out the value of �elong
(Medin et al., 2019). Appendix 9–Figure 1C shows the analytic prediction for the autocorrela-
tion and second derivative when �elong is equal to 7 time steps (w = 7). We confirmed that
the same second derivative approach works in the context of stochastic simulations using

realistic parameters for the eve stripe 2 system (Appendix 9–Figure 1D). These simulated
traces included the expected contributions from both the Markov dynamics (red profile in

Appendix 9–Figure 1B) and the finite RNA polymerase dwell time (blue profile in Appendix 9–
Figure 1C). Having confirmed the efficacy of the autocorrelation method for simulated data,
we next applied the same technique to uncover �elong for our experimental traces.

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

The black profile in Appendix 9–Figure 1E indicates the form of the autocorrelation
second derivative for the set of traces used for mHMM inference. We observed that, while

there is a definite inflection point, the peak for the experimental data is much broader than

for simulated traces. The most likely cause of this feature is the existence of variability

in �elong (see below). From comparisons of the position of the second derivative peak for
experimental traces with simulated profiles, we concluded that an elongation time of w = 7
(�elong = 140 s) best characterized our data (Appendix 9–Figure 1E, green curve). This implies
that

velong =
6444 bp
140 s

= 46 bp s−1

= 2.8 kbmin−1, (106)

where the length used represents the distance from the start of the MS2 step loop sequence

to the end of the 3’ end of the construct. Interestingly, this elongation rate falls within the

2.4 − 3.0 kbmin−1 range reported in Fukaya et al. (2017).
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2394
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2396

Appendix 9–Figure 1F shows how a simple adjustment to our simulation approach,
wherein the elongation time steps w for individual RNA polymerase molecules were drawn
from a Gaussian distribution with mean �w = 7 and standard deviation �w = 2.5 time steps
can qualitatively reproduce the wider profile observed in experimental data, indicating that

our observations are indeed consistent with the presence of variability in RNA polymerase

elongation times. Additional experimental and theoretical work will be necessary to uncover

the biological source of this variability.

2397

2398

2399

2400

2401

2402

2403

In light of the ambiguity introduced by the broad second derivative peak exhibited by

our experimental data, we also verified that our inference was robust to the choice of �elong,
testing cases where �elong = 120 s and �elong = 160 s (see below).

2404

2405

2406
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mHMM inference is insensitive to small changes in RNA polymerase
dwell time

2407

2408

Due to the uncertainty in our estimate of �elong, we conducted sensitivity studies to ensure that
our inference results were robust to our input assumption for w. As shown in Appendix 9–
Figure 2, we conducted time-averaged mHMM inference on our experimental data assuming
different values ofw. Based upon our autocorrelation analysis,w values of 6, 7 and 8 seemed
the most plausible candidates for the average system elongation time (see Appendix 9–
Figure 1E). While small quantitative difference are apparent across these three cases, the
results for different values of w generally showed a constant offset throughout the embryo ,
such that qualitative trends were largely robust to the assumed w value.
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2417 Appendix 9 Figure 2. Elongation time sensitivities. Square, circle, and diamond symbols denote
inference results for memory time window values w of 6, 7, and 8 (�elong of 120s, 140s, and 160s),
respectively. Parameter plots for w = 7 case are bolded. Bootstrap errors are shown for w = 7 case
(error magnitudes are comparable across conditions). (A) Although the absolute magnitude of the
inferred effective initiation rate varies by approximately 10 to 25% across the three conditions, we

found that the AP trends (or lack thereof) are robust to our choice of memory. (B) Transition rates also
exhibit a high degree of robustness to the w used for inference. While we observed moderate variation
in the inferred magnitude of kon (green markers), AP trends are insenstive to w assumed for inference
within the range tested. Very little variation was observed in koff (red markers) across conditions. (Error
bars indicate magnitude of difference between first and third quartiles of mHMM inference results for

bootstrap samples of experimental data. See Materials and Methods for details.)
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Figure 2–Figure supplement 1. Aligning stripes from multiple embryos. In order to minimize
alignment errors when combining data from across multiple Drosophila embryos, an automated
routine was employed to define a new experimental axis for each data set based upon the spatial

distribution of transcriptional activity in the mature eve stripe 2 pattern. (A) Example of the spa-
tiotemporal distribution of observed fluorescence for an individual embryo. Each circle corresponds

to the fluorescence from a single locus at a single point in time. Only observations after 30 min into

nuclear cycle 14 were used. Circle size indicates fluorescence intensity. Color indicates temporal

ordering: 30 min (blue) to 47 min (red). (B) A Gaussian filter was convolved with the raw data points
in (A). This filtering ameliorated stripe fitting artifacts that arose due to the relative sparsity of the

raw data. The fitting procedure considered both a range of possible stripe orientations (�
stripe

) and,

within each orientation, a range of possible positions of the stripe along the anterior-posterior axis

(x
stripe

) that, together constituted a set of possibilities for the new stripe center position and orien-

tation. Here, the shaded red region indicates the range of values for �
stripe

that were considered.

The red line indicates the best stripe axis inferred by the algorithm and the green line indicates the

corresponding optimal stripe center. No constraints were placed on x
stripe
, save for the limits of

the experimental field of view. (C) For each proposed stripe orientation (�stripe), a projected stripe
profile was generated by taking the average pixel intensity for each position, xi, along the proposed
stripe axis. To determine the optimal center location for each orientation, a sliding window with

a width equal to 4% of the embryo length was used to determine the fraction of the total profile

fluorescence that fell within 2% embryo length of the stripe center. For example, the gray shaded

region in (B) illustrates what this range would be for the green stripe center line (B). This fraction

of the total profile was used as a baseline for the comparison of potential stripe center positions.

The �stripe and xstripe that maximized this metric (green profile in (C)) were taken to define a new,
empirically determined stripe center. (D) This inferred stripe position defined an experimental
axis for each embryo that was used to aggregate observations from across embryos. Gray circles

indicate experimental observations (size corresponds to intensity as in (A)) and shading indicates

distance from inferred stripe center.
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Figure 2–Figure supplement 2. Integrating MS2 Spots. (A) Fluorescence of a site of nascent
transcript formation is measured by integrating raw pixel intensities in a circular region around the

fluroescent MS2 spot of a predefined area (indicated by the red circle) and then subtracting off the

background intensity obtained as outlined in (B). (B) X-Z projection of 2D Gaussian function fitted to
MS2 spot shown in (A). Background intensity is estimated using the offset value fo this Gaussian fit.

The per-pixel offset is then multiplied by the area of the integration region. This background value

is then subtracted from the fluorescence integrated across the area shown in (A). (C) The radius
was chosen to be large enough to integrate the intensities from both sister chromatids, even when

they are spatially separated and distinguishable .
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Figure 3–Figure supplement 1. Mean transcriptional activity. Mean transcriptional activity as
a function of time for different positions along the stripe. (Average over 11 embryos, error bars

indicate bootstrap estimate of the standard error of the mean. See Materials and Methods).
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Figure 3–Figure supplement 2. Regulation of the transcriptional time window. (A) Single-
nucleus measurements reveal that the duration of transcription is modulated along the stripe

and that nuclei transcribe in a burst-like fashion. (B) Time for nuclei to activate transcription after
mitosis, ton, as a function of position along the stripe. (C) Time for nuclei to enter the quiescent
transcriptional state, toff . (B,C, average over 11 embryos, error bars indicate bootstrap estimate of
the standard error of the mean. See Materials and Methods).
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Figure 3–Figure supplement 3. Definition of stripe amplitude. (A) The normalizedmRNA profile
for the stripe can be separated into an offset and an amplitude. (B) Normalized mRNA profiles and
(C) stripe amplitude for the cytoplasmic pattern of mRNA as well as for the contributions from the
various regulatory strategies.
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Figure 3–Figure supplement 4. Joint effect of mean rate, binary control, and fraction of
active nuclei. Including of the predicted effect of anterior-posterior-dependent modulation of
the fraction of active nuclei has little effect on the predicted cytoplasmic mRNA profile (compare

brown profile in Figure 1G, gray profile above). The remaining difference between the full profile
(red) and the gray profile can be attributed the effects of temporal variations in the mean rate of

transcription.
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Figure 5–Figure supplement 1. Fraction of time spent in each transcriptional state. Fraction
of time spent in the ON and OFF states as a function of the position along the stripe. (Error bars

indicate the magnitude of the difference between the first and third quartiles of mHMM inference

results for bootstrap samples of experimental data. See Materials and Methods for details.)
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