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Abstract Predicting developmental outcomes from regulatory DNA sequence and transcription
factor patterns remains an open challenge in physical biology. Using stripe 2 of the even-skipped
gene in Drosophila embryos as a case study, we dissect the regulatory forces underpinning a key
step along the developmental decision-making cascade: the generation of cytoplasmic mRNA
patterns via the control of transcription in individual cells. Using live imaging and computational
approaches, we found that the transcriptional burst frequency is modulated across the stripe to
control the mRNA production rate. However, we discovered that bursting alone cannot
quantitatively recapitulate the formation of the stripe, and that control of the window of time over
which each nucleus transcribes even-skipped plays a critical role in stripe formation. Theoretical
modeling revealed that these regulatory strategies—bursting and the time window—obey different
kinds of regulatory logic, suggesting that the stripe is shaped by the interplay of two distinct
underlying molecular processes.

Introduction
During embryonic development, tightly choreographed patterns of gene expression—shallow
gradients, sharp steps, narrow stripes—specify cell fates (Gilbert, 2010). The correct positioning,
sharpness, and amplitude of these patterns of cytoplasmic mRNA and protein ensure the reliable
determination of animal body plans (Peter and Davidson, 2015). Yet, despite decades of work
mapping the gene regulatory networks that drive development and extensive efforts to dissect
the regulatory logic of the enhancer elements that dictate the behavior of these networks, the
precise prediction of how gene expression patterns and developmental outcomes are driven by
transcription factor concentrations remains a central challenge in the field (Vincent et al., 2016).
Predicting developmental outcomes demands a quantitative understanding of the flow of
information along the central dogma: how input transcription factors dictate the output rate of
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MRNA production, how this rate of mMRNA production dictates cytoplasmic patterns of mRNA,
and how these mRNA patterns lead to protein patterns that feed back into the gene regulatory
network. While the connection between transcription factor concentration and output mRNA
production rate has been the subject of active research over the last three decades (Lawrence
et al., 1987; Driever and Nusslein-Volhard, 1988; Small et al., 1991; Struhl et al., 1992; Jiang and
Levine, 1993; Gray et al., 1994; Jaeger et al., 2004; Segal et al., 2008; Levine et al., 2014; Garcia
et al., 2016; Vincent et al., 2016; Sayal et al., 2016), the connection between this output rate and
the resulting cytoplasmic patterns of mRNA has remained largely unexplored. For example, a stripe
of cytoplasmic mRNA within an embryo could arise as a result of radically different transcriptional
dynamics at the single-nucleus level (Figure 1A). Specifically, if individual nuclei along this stripe
modulate their average RNA polymerase loading rate, then graded control of the mean rate of
transcription results: nuclei in the middle of the stripe transcribe at a higher average rate than nuclei
on the stripe boundaries (Figure 1B). We identify this graded transcriptional control strategy with the
analog control of gene expression. Alternatively, transcription factors could exert control over the
length of time a nucleus is transcriptionally active (Figure 1C). In this binary control scheme—akin to
an on/off switch that dictates whether a nucleus is transcriptionally active or quiescent—individual
nuclei transcribe at the same average rate regardless of their position along the stripe, but for
different lengths of time. Finally, some nuclei might not engage in transcription at all during the
formation of the pattern (Figure 1D). Here, a larger fraction of nuclei engage in mRNA production in
the stripe center than in the boundaries. Any of these scenarios, or some combination thereof, can
explain the formation of a cytoplasmic mRNA pattern.
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Figure 1. Models of pattern formation by single-cell transcriptional activity. (A) Cytoplasmic mMRNA
patterns could arise from transcription factors exerting control over (B) the mean transcription rate, (C) the
transcriptional time window dictating when a nucleus is transcriptionally active or quiescent, (D) the fraction of
active nuclei, or some combination thereof.

In order to uncover the quantitative contribution of these three regulatory strategies to pattern
formation, and to determine whether other regulatory strategies are at play, it is necessary to
measure the rate of RNA polymerase loading in individual nuclei, in real time, in a living embryo.
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However, to date, most studies have relied on fixed-tissue techniques such as mRNA FISH and
immunofluorescence in order to obtain snapshots of the cytoplasmic distributions of mRNA and
protein as development progresses (Jaeger et al., 2004; Fakhouri et al., 2010; Parker et al., 2011;
Estrada et al., 2016; Crocker et al., 2016; Verd et al., 2017; Park et al., 2018). Such techniques
are virtually silent regarding the regulation of single-cell gene expression over time, and are thus
ill-suited to the study of how spatiotemporal variations in transcriptional dynamics give rise to
patterns of cytoplasmic mRNA.

In this work, we investigated how single-cell transcriptional activity leads to the formation of
stripe 2 of the widely studied even-skipped (eve) gene in the developing fruit fly embryo (Small
et al., 1992; Arnosti et al., 1996). We combined single-cell live imaging with theoretical modeling
in order to study transcriptional activity at the single-cell level in real time, seeking a quantitative
connection between the spatiotemporal regulation of transcription and the formation of cytoplasmic
patterns of mRNA. Consistent with previous studies, we found that the rate of mRNA production
is elevated in the center of the stripe (Bothma et al., 2074). Strikingly, however, we discovered
that this analog control is alone insufficient to quantitatively recapitulate the formation of the
stripe; binary control of the transcriptional time window (Figure 1C) is also necessary. Furthermore,
we developed novel computational approaches to uncover the molecular underpinning of each
regulatory strategy. We employed a memory-adjusted hidden Markov model (mHMM) to uncover
variations in transcriptional dynamics in individual nuclei across space and time (Suter et al.,
2011; Molina et al., 2013; Corrigan et al., 2016). We showed that, consistent with previous results,
transcription factors control the rate of transcription by altering the frequency of transcriptional
bursts (Fukaya et al., 2016; Zoller et al., 2018). Finally, we utilized logistic regressions to correlate
eve stripe 2 transcriptional dynamics with changes in input transcription factor concentrations. This
analysis revealed that the transcriptional time window adheres to different regulatory logic than
transcriptional bursting: while repressor levels alone were sufficient to explain the early silencing of
nucei in the anterior and posterior stripe flanks, the control of bursting among transcriptionally
engaged nuclei depends upon the input concentrations of both activators and repressors. Thus,
our findings point to the presence of two distinct regulatory mechanisms that control transcription
and gene expression patterns in early development, showcasing the potential for theoretical
modelling and biological numeracy to yield novel biological insights when coupled with precise and
quantitative experimental observation.

Results

Predicting cytoplasmic mRNA distributions from transcriptional activity

To predict how the transcriptional activity of individual nuclei dictates the formation of cytoplasmic
patterns of mRNA, we began with a simple model that considers the balance between the rate of
MRNA synthesis and degradation

dmRNA

(X, 1) = Puctive(X) R(x,1) —y mMRNA(x, 1), (1)
dr — —_——  ——
fraction of synthesis degradation
active nuclei

where mRNA(x, ¢) indicates the mRNA concentration at position x along the embryo at time ¢, R(x, t)
corresponds to the mRNA synthesis rate averaged over multiple nuclei within the same position x,
Paive(X) 1S the fraction of active nuclei (corresponding to the regulatory strategy shown in Figure 1D)
and y is the degradation rate (see Appendix 1 for details of this derivation).

In order to examine the quantitative consequences of the three potential regulatory strategies
(Figure 1B-D), we adopted widespread assumptions in the modeling of transcriptional regulation
(Phillips et al., 2013). First, we assumed that the degradation rate y is a constant and not under any
kind of spatiotemporal control. Comparisons between model predictions and empirically measured
levels of cytoplasmic mRNA suggest that this assumption is reasonable (see Appendix 2). Second,
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we posited that at each position throughout the embryo the synthesis rate R(x, ) does not vary
significantly in time such that it can be approximated by its time average R(x) = (R(x,1)). This
assumption will be revised later in the text in order to account for the time-dependent regulation of
the mean rate of transcription. Finally, we assumed that nuclei along the axis of the embryo start
transcribing at time 7, (x), and stop transcribing and enter a state of transcriptional quiescence at
time t4(x). Under these assumptions, Equation 1 can be solved analytically, resulting in

R .
MRNA(x, 1) = % X (e*}'(tfmm(torr(x),t}) _ e*r(tft‘m(x))) % Doctive (%) . ()
—— h - S g .
binary control of control of the fraction
analog control of transcriptional time window of active nuclei

mean transcription rate

This equation makes precise predictions about how each regulatory strategy contributes to the
formation of the cytoplasmic mRNA pattern. Thus, measuring how each quantity is regulated across
the stripe allows us to predict their relative contributions to pattern formation.

Binary control of the transcriptional time window is the primary driver of stripe
formation

In order to test the simple model of pattern formation put forward in Equation 2, we quantified
transcription of stripe 2 of eve in the fruit fly. We imaged the transcription of an eve stripe 2 reporter
using the MS2 system (Garcia et al., 2013; Lucas et al., 2013; Bothma et al., 2014). Transcripts of a
reporter gene driven by the eve stripe 2 enhancer and the eve promoter contain repeats of a DNA
sequence that, when transcribed, form stem loops (Bertrand et al., 1998). These stem loops are
recognized by maternally provided MS2 coat protein fused to GFP (Figure 2A). As a result, sites of
nascent transcript formation appear as fluorescent puncta within individual nuclei (Figure 2B and
Video 1). This fluorescence can be calibrated using single-molecule FISH in order to estimate the
number of RNA polymerase molecules actively transcribing the gene (see Materials and Methods
and Garcia et al. (2013)). By aligning multiple embryos (Figure 2-Figure Supplement 1), we obtained
the average number of actively transcribing RNA polymerase molecules as a function of time and
position throughout the embryo (Figure 2C).

Using the MS2 system, we quantified each potential regulatory strategy and determined its
predicted contribution to pattern formation according to our model in Equation 2. We first used
our data to estimate the time-averaged rate of RNA polymerase loading, R(x) (see Appendix 2 for
details). We found that this rate is modulated along the axis of the embryo (Figure 3A and B; see
also Video 2, Figure 3-Figure Supplement 1 and Materials and Methods): whereas in the center of
the stripe RNA polymerase molecules are loaded at a rate of approximately 16 molecules/min, this
loading rate decreases to about 8 molecules/min at the boundaries.

Our data also revealed that the transcriptional time window is modulated along the stripe (Fig-
ure 3-Figure Supplement 2A). Whereas the time at which each nucleus becomes transcriptionally
active, 7, (x), was constant across the stripe, with all nuclei becoming active 9 + 4 min after the
previous anaphase (Figure 3-Figure Supplement 2B), the time at which nuclei stop transcribing and
become quiescent, 7.(x), showed a strong modulation along the embryo's axis (Figure 3-Figure
Supplement 2C). As a result, the time window over which each punctum is engaged in transcription,
At =t —t,,, IS sharply modulated along the stripe (Figure 3C and D and Video 3), with nuclei
in the stripe center transcribing for >30 min and nuclei on the boundaries only transcribing for
approximately 10 min.

Finally, our analysis also revealed the magnitude of the modulation of the fraction of active nuclei
along the stripe. Most nuclei along the stripe were engaged in transcription. In the stripe center,
around 90% of nuclei transcribed at some point during the nuclei cycle. This number reduced to
about 70% at the boundaries (Figure 3E and F and Video 4).

The analysis in Figure 3A-F reveals that each of the three regulatory strategies identified in
Figure 1 is at play in the embryo, and that they all have the potential to contribute to pattern
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Figure 2. Measuring transcriptional dynamics of eve stripe 2 formation using the MS2 system. (A) MS2
stem loops introduced in an eve stripe 2 reporter gene are bound by MS2 coat protein fused to GFP. (B) Sites of
nascent transcript formation appear as green fluorescent puncta whose intensity reports on the number of
actively transcribing RNA polymerase molecules. Nuclei are visualized through a fusion of RFP to Histone. (C)
Mean number of RNA polymerase molecules actively transcribing the gene as a function of space and time. (C,
data averaged over 11 embryos).

Figure 2-Figure supplement 1. Aligning stripes from multiple embryos.
Figure 2-Figure supplement 2. Integrating MS2 Spots.

formation. However, these measurements alone cannot inform us on how much each of these
strategies contributes to the cytoplasmic mRNA pattern. To quantify the degree to which each
regulatory strategy contributes to the formation of eve stripe 2, we employed the model described
in Equation 2.

Figure 3G indicates the quantitative contribution of each regulatory strategy (each term on the
right-hand side of Equation 2) to the formation of this cytoplasmic pattern. The cytoplasmic pattern
of mMRNA, corresponding to left-hand side of Equation 2, was obtained from our live-imaging data
(see Appendix 2 for details). Regulation of the fraction of active nuclei along the embryo (Figure 3G,
yellow) contributes negligibly to this mMRNA pattern. In contrast, both the analog regulation of the
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Figure 3. Regulatory strategies for pattern formation in eve stripe 2. (A,B) Time-averaged rate of mRNA
production, (C,D) transcriptional time window, and (E,F) fraction of active nuclei as a function of position along
the embryo. (G) Amplitude of the cytoplasmic mRNA distribution compared to the contributions to stripe
formation of the analog control of the mean transcription rate, the binary control of the transcriptional time
window, and the control of the fraction of active nuclei. The combined contribution from the analog and binary
strategies is also shown. See Figure 3-Figure Supplement 3 for details of how depicted profiles were derived
from raw data. (A,C,E, representative snapshots of an individual embryo 40 min into nuclear cycle 14; B,D,F,
average over 11 embryos, error bars indicate bootstrap estimate of the standard error of the mean).

Figure 3-Figure supplement 1. Mean transcriptional activity over time.
Figure 3-Figure supplement 2. Regulation of the transcriptional time window.
Figure 3-Figure supplement 3. Definition of stripe amplitude.
Figure 3-Figure supplement 4. Joint effect of mean rate, binary control, and fraction of active nuclei.

mean rate (Figure 3G, green) and the binary control of the transcriptional time window (Figure 3G,
blue) make significant contributions to the overall pattern, with binary control playing the dominant
role. We thus concluded that the joint effect of these two strategies (Figure 3G, brown) is sufficient
to quantitatively recapitulate the stripe of cytoplasmic mRNA from single-cell transcriptional activity.

Mean transcription rate is dictated by bursting through modulation of the rate of
promoter turn on

Are the binary and analog control strategies driven by distinct molecular mechanisms, or are they
different manifestations of the same underlying process? To uncover the molecular mechanism
behind the analog control of the mean rate of transcription, we analyzed the transcriptional
activity of individual nuclei. Previous work demonstrated that the rate of gene expression at
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individual loci within the eve stripe 2 pattern is highly stochastic (Bothma et al., 2014). Indeed, as
shown in Figure 4A, our data revealed punctuated peaks and troughs in the number of active RNA
polymerase molecules. These features have been related to the rate of RNA polymerase loading
at the eve promoter by assuming that promoter loading is “burst-like”, with the promoter loading
RNA polymerase molecules onto the gene at a constant rate over discrete periods of time (Bothma
et al., 2014). This and other evidence from live imaging (Bothma et al., 2014; Fukaya et al., 2016;
Desponds et al., 2016), as well as data from fixed-tissue approaches (Pare et al., 2009; Little et al.,
2013; Xu et al., 2015; Zoller et al., 2018), support a minimal two-state model of promoter switching
(Figure 4B): promoters switch stochastically between ON and OFF states with rates k_, and k. In
this model, promoters in the ON state engage in mRNA production at rate r.
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Figure 4. Transcriptional bursting in eve stripe 2. (A) Single-nucleus measurements reveal that nuclei
transcribe in bursts. (B) Two-state model of bursting of a single promoter. (C) The same hidden rate of RNA
polymerase loading (bottom) can correspond to different observable numbers of RNA polymerase molecules
on the gene (top), such that standard Hidden Markov model approaches cannot be used to infer the hidden
promoter state. (D) Fluorescent puncta are composed of two distinct transcriptional loci within a
diffraction-limited spot, each corresponding to a sister chromatid. (E) Three-state model of promoter switching
within a fluorescent punctum that accounts for the combined action of both sister chromatids. (F) Effective
two-state model of transcriptional bursting. (A, error bars obtained from estimation background fluorescent
fluctuations; Materials and Methods and Garcia et al. (2013).)
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In the bursting model, the mean rate of transcription is given by the product of the fraction
of time spent in the ON state with the transcription rate in this active state (Peccoud and Ycart,
1995; Kepler and Elston, 2001; Sasai and Wolynes, 2003; Sanchez and Kondev, 2008; Sanchez et al.,
2011; Xu et al., 2016)

k
R(x) = r(x) X ¢ ) (3)
—— —— kon(x) + kg ()
mean RNAP loading —
transcription rate rate fraction of time
in ON state

where all parameters are allowed to vary as a function of position along the embryo, x (see
Appendix 1 for details of this derivation). Thus, within this framework, the observed modulation
of the mean rate of transcription across the stripe (Figure 3G, green) implies that one or more of
these bursting parameters is subject to spatially controlled regulation. However, the mean rate
trend alone is not sufficient to identify which of the three bursting parameters (k.,, k., and r) is
being regulated by the input transcription factors in order to control the average transcription rate.

Typically, the in vivo molecular mechanism of transcription factor action is inferred from mea-
surements of transcriptional noise obtained through snapshots of dead and fixed embryos or
cells using theoretical models (Zenklusen et al., 2008; So et al., 2011; Little et al., 2013; Jones et al.,
2014; Senecal et al., 2014; Xu et al., 2015; Padovan-Merhar et al., 2015; Skinner et al., 2016; Bart-
man et al., 2016; Zoller et al., 2018; Hendy et al., 2017). In contrast, MS2-based live imaging can
directly inform on the dynamics of transcriptional bursting in real time. The MS2 approach, however,
reports on the total number of actively transcribing RNA polymerase molecules and not on the
instantaneous rate of RNA polymerase loading at the promoter, which is the relevant quantity for
estimating k., k., and r. To date, approaches for extracting bursting parameters from such data in
multicellular organisms have mainly relied on the manual analysis of single-nucleus transcriptional
dynamics (Bothma et al., 2014; Fukaya et al., 2016) or autocorrelation-based methods that infer
mean bursting parameters across ensembles of traces (Larson et al., 2011; Coulon et al., 2014;
Desponds et al., 2016). A computational method for inferring the rates of RNA polymerase loading
(Figure 4C, bottom) from the total number of actively transcribing RNA polymerase molecules in
single cells (Figure 4C, top) is thus needed to obtain the bursting parameters.

Hidden Markov models (HMMs) are widely used to uncover the dynamics of a system as it
transitions through states that are not directly accessible to the observer (Bronson et al., 2009).
However, our observable (the MS2 signal) does not correspond to the hidden variable of interest
(the promoter state) in a one-to-one fashion (compare Figure 4C top and bottom). Instead, the
observable MS2 signal reflects the net effect of promoter switching over a period equal to the
time that an RNA polymerase molecule takes to transcribe the whole gene. Thus, instantaneous
fluorescence does not just depend on the current promoter state; it exhibits a dependence on
how active the promoter has been over a preceding window of time, which effectively constitutes
a memory for recent promoter states (Choubey et al., 2015; Xu et al., 2016; Corrigan et al., 2016;
Choubey, 2018; Choubey et al., 2018). Classic HMM approaches cannot account for this kind of
system memory.

In order to model the process of transcription and extract the kinetic parameters of promoter
switching, we augmented classic HMMs to account for memory (details about implementation
of the method are given in Appendix 3). Similar approaches were recently introduced to study
transcriptional dynamics in cell culture and tissue samples (Suter et al., 2011; Molina et al., 2013;
Zechner et al., 2014; Zoller et al., 2015; Hey et al., 2015; Bronstein et al., 2015; Corrigan et al.,
2016; Featherstone et al., 2016). We used simulated data to establish that mHMM reliably extracts
the kinetic parameters of transcriptional bursting from live-imaging data (Appendix 4), providing an
ideal tool for dissecting the contributions from individual bursting parameters to observed patterns
of transcriptional activity across space and time.

Before applying our model to real-time transcriptional data, we had to account for the rapid
replication of the D. melanogaster genome at the beginning of each nuclear cycle (Rabinowitz, 1941;
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Shermoen et al., 2010), which leads to the presence of two distinct eve loci within each fluorescent
spot (Figure 4D and Video 5). The first evidence of resolved chromatids appears as early as 8
minutes into nuclear cycle 14 (Appendix 5-Figure 1)—coincident with the average onset time of
transcription (Figure 3-Figure Supplement 2B). Moreover, our analysis indicates that replication
of the relevant portion of the genome likely occurs in all eve-expressing nuclei by no later than
10 minutes following mitosis (Appendix 5-Figure 2). Thus, we conclude that the vast majority of
our data feature two distinct eve loci within each diffraction-limited transcription spot. Moreover,
while the distance between sister loci varies over time (see, e.g. Figure 4D), they nonetheless stay in
relatively close proximity to ensure their proper segregation from each other at the next mitosis
(Senaratne et al., 2016) such that the fluorescent intensity signals extracted from our data reflect
the integral over both loci (Figure 2-Figure Supplement 2). As a result, if we assume that each
locus can be well-represented by a two-state model of transcriptional bursting, then an effective
three-state model is needed to capture eve dynamics (Figure 4E). For ease of exposition, we present
our main results in the context of an effective two-state model, in which, as detailed in Appendix 1,
the system is considered to be in the ON state so long as either chromatid is bursting (Figure 4F).
Note that none of our conclusions below are affected by this choice of an effective model as shown
in Appendix 6 where we present full results for the three-state model.

A typical experimental trace for a nucleus in the core of the stripe is shown in Figure 5A, along
with its best fit, which corresponds to the mHMM-inferred promoter trajectory in Figure 5B. Our
ability to infer the instantaneous promoter state in individual nuclei throughout development is
further illustrated in Figure 5C and Video 6. These data revealed that, as development progresses
and the stripe sharpens, the eve promoter continuously fluctuates between the ON and OFF states
on a time scale of approximately 1-2 minutes.

In order to infer time-averaged bursting parameter values, we grouped traces by position along
the anterior-posterior axis. The rate of RNA polymerase loading, r, remained constant throughout
the stripe (Figure 5D), suggesting that none of the transcription factors regulating eve stripe 2
act on this kinetic parameter. Similarly, we noted no significant spatial modulation of the rate of
switching out of the ON state, k; (Figure 5E). In contrast, the rate of switching into the ON state
(also known as burst frequency), k,,, was strongly up-regulated in the stripe center (Figure 5E).
These observations suggested that, in order to enact analog control of the mean transcription rate,
transcription factors act primarily on the rate of promoter turning on, consistent with previous
results both in embryos (Xu et al., 2015; Desponds et al., 2016; Fukaya et al., 2016) and in single
cells (So et al., 2011; Senecal et al., 2014; Padovan-Merhar et al., 2015; Bartman et al., 2016). This
regulatory modality increases the fraction of time that loci near the stripe center spend in the ON
state (Figure 5-Figure Supplement 1 and Zoller et al. (2018)).

Binary control of the transcriptional time window is independent of transcriptional
bursting

Having determined that analog control of the mean transcriptional rate is realized by the modulation
of the burst frequency, k,,, we next sought to uncover the molecular mechanism by which the
binary regulation of the transcriptional time window is implemented. In one possible scenario,
the onset of transcriptional quiescence at the end of the transcriptional time window would
reflect a fundamental change to the molecular character of the transcriptional locus such that the
bursting framework no longer applies. For instance, repressing transcription factors could induce
an irreversible change in the local chromatin landscape that precludes further activator-mediated
bursting, effectively silencing transcription (Figure 6A, top; Allis et al. (2015)). Alternatively, if the
rates of promoter switching vary in time, then the time window could be explained without invoking
an extra silenced state that is mechanistically distinct from the processes driving transcriptional
bursting. In this scenario, one or multiple promoter-switching rates would change over time in
order to progressively reduce the frequency, intensity, and/or duration of transcriptional bursts,
abolishing all activity at the locus and leading to the observed quiescence. Such modulation could
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Figure 5. Inferring bursting dynamics using a memory-adjusted Hidden Markov model. (A)
Representative experimental trace along with its best fit and (B) its most likely corresponding promoter state
trajectory. (C) Instantaneous visualization of promoter state in individual cells throughout development through
the false coloring of nuclei by promoter state (colors as in B). (D) The rate of initiation for each transcriptional
state is not significantly modulated along the embryo. (E) Our mHMM reveals that the transition rate between
the OFF and ON state (equivalent to the burst frequency) is up-regulated in the stripe center. (A, error bars
obtained from estimation of background fluorescent fluctuations, as described in Materials and Methods and
Garcia et al. (2013); D,E, error bars indicate the magnitude of the difference between the first and third
quartiles of mMHMM inference results for bootstrap samples of experimental data taken across 11 embryos. See
Materials and Methods for details.)

Figure 5-Figure supplement 1. Fraction of time spent in each transcriptional state.

be achieved by downregulating k,,, downregulating r, and/or upregulating k. (Figure 6A, bottom).

In order to discriminate between these two possible scenarios, we split the stripe into the
five regions shown in Figure 6B. For each region, we sought to determine whether the bursting
dynamics varied over time in a manner that could explain the dynamics of entry into quiescence
of individual nuclei (Figure 6C). To probe for this time-dependence in transcriptional bursting, we
extended our mHMM method to obtain promoter-bursting parameters over discrete periods of
time by performing inference on our live-imaging data using a sliding window (see Appendix 3
for details). Our inference revealed that the rate of promoter turn on, k,, varied significantly in
time (Figure 6D). Specifically, k,, decreased in both the anterior and posterior stripe boundaries
(black and red curves) as development progressed and the fraction of active nuclei decreased (grey
shaded region), while loci in the stripe center (green and yellow curves) exhibited a significant
increase in k. Further, while relatively constant at most positions along the stripe, both the rate of
RNA polymerase loading when in the ON state, r, and the rate of promoter turn off, k., decreased
slightly in (Figure 6E and F).

These findings confirmed our time-averaged inference results (Figure 5D and E) indicating that
k,, was the primary kinetic pathway through which transcription factors influence eve stripe 2
transcription dynamics. Moreover, the coincidence of the decrease in k,, in flank nuclei with the
onset of transcriptional quiescence (grey shaded region in Figure 6D) seemed to suggest that, at
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299 least in part, quiescence in the stripe flanks could be driven by the temporal modulation of bursting
30 parameters (Figure 6A, bottom). However, other trends in our data results were not consistent with
301 the view that a decrease in k,, drives transcriptional quiescence. Although 70% and 50% of nuclei
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32 in the regions directly anterior and posterior of the stripe center were quiescent by 40 min into
33 the nuclear cycle (blue and yellow curves in Figure 6C), we detected no corresponding decrease
304 ink,,. Infact, k,, actually increased in some inner regions of the stripe (Figure 6D) —a trend that
305 would increase overall transcriptional activity and would therefore go against the establishment of
306 transcriptional quiescence.

307 The divergent outcomes observed in the central stripe regions, with the rate of transcriptional
38 bursting remaining constant or increasing at eve loci within the engaged population of nuclei even
309 as loci in neighboring nuclei turn off for good, runs counter to the hypothesis that quiescence
30 is driven by the temporal modulation of the promoter switching parameters. It is conceivable
31 that temporal changes in bursting parameters associated with the onset of quiescence occur too
sz rapidly to be captured by our model. However, as discussed in Appendix 7, these changes would
313 need to occur on the same time scale as bursting itself (1 to 3 min). Given that both the other
314 temporal trends detected by our inference (Figure 6) and the shifts in the input transcription factors
315 themselves (Appendix 8) unfold on significantly slower timescales (5-15 min), we concluded that
316 While possible, a scenario were bursting dynamics are changing too quickly to detect is unlikely.
317 The contradictory trends observed in the stripe center suggested that entry into transcriptional
318 quiescence might be akin to an irreversible transition into a silent state (Figure 6A, top), thus suggest-
319 ing that binary control of the transcriptional time window and the transcriptional bursting driving
30 the analog control of the mean transcription rate may arise from distinct molecular processes.

21 Input-output analysis reveals distinct regulatory logic for bursting and the tran-
322 scriptional time window

323 eve stripe 2 is mainly established by the combined action of two activators, Bicoid and Hunchback,
324 and two repressors, Giant and Krtippel (Frasch and Levine, 1987; Small et al., 1992; Arnosti et al.,
s 1996). If transcriptional bursting and the transcriptional time window are controlled by distinct
326 molecular mechanisms, then distinct forms of regulatory logic may be at play. For example, the
327 Bicoid and Hunchback activators could control transcriptional bursting, while the Giant and Kruppel
328 repressors could dictate the entry into the quiescent state. In order to reveal the molecular logic
320 controlling each regulatory strategy, we sought to correlate the fraction of nuclei that have entered
30 the quiescent state (Figure 7A) and the fraction of nuclei in the bursting ON state (Figure 7B) with
331 the corresponding spatiotemporal patterns in the input concentrations of these four transcription
a2 factors.

333 We measured Bicoid concentration profiles using a a well-established Bicoid-GFP fusion (Gregor
34 et al., 2007) and obtained spatiotemporal concentration profiles for Krippel, Giant, and Hunchback
335 from published immunofluorescence data (Dubuis et al., 2013). We combined these data with our
336 live-imaging data of eve stripe 2 transcriptional activity to generate an “average embryo” in which
37 the concentration of all relevant inputs and the output transcriptional activity at each point in time
33 and space were known (Figure 7C and Video 7). Building upon previous work (//sley et al., 2013),
339 we utilized logistic regressions to probe the regulatory role played by each of these four factors in
340 the spatiotemporal control of transcriptional bursting and the transcriptional time window. Logistic
sa regression is a widely used method of inferring predictive models in processes with binary outcomes.
322 For example, in order to query the regulatory logic behind the control of the transcriptional time
33 window, the model probes the impact of each transcription factor on the relative likelihood of a
344 locus entering the quiescent state versus the likelihood of remaining transcriptionally engaged such
s that

likelihood (transcriptionally quiescent) o ) }
— — = py+p, [Bicoid|+p, [Hunchback|+, [Giant]|+p, [Krippel] ,
likelihood (transcriptionally engaged) ’

(4)
s Where the coefficients g, indicate the magnitude and nature (activating or repressing) of the
37 transcription factor's regulatory function. In estimating these coefficients, we used prior knowledge
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about the function of each transcription factor, requiring Bicoid and Hunchback to play activating
roles, and Kruppel and Giant to play repressing roles (Small et al., 1991, 1992). We used an
analogous model to investigate the regulatory logic controlling transcriptional bursting by inferring
the factors that determine the relative likelihood that nuclei are in the bursting ON versus the OFF
state, likelihood (ON state)/likelihood (OFF state).

Our analysis of the fraction of nuclei in the quiescent state revealed that no single transcription
factor can explain quiescence dynamics (Figure 7D and E). However, a simple model in which
increasing levels of the repressors Giant and Kruppel drive the onset of transcriptional quiescence
in the anterior and posterior stripe flanks, respectively, recapitulated experimentally observed
trends. The further addition of Hunchback and/or Bicoid had no impact on the model's predictive
power, suggesting that activator concentrations have no influence over the molecular processes
responsible for silencing. Relaxing constraints on the functional role of each transcription factor-for
instance, allowing the presumed activators to function as repressors-also provided no significant
improvement over models presented here as shown in Appendix 8.

We next turned our attention to the relationship between transcription factor levels and the
fraction of nuclei in the ON state (Figure 7B). Unlike the transcriptional time window, repressor levels
alone could not recapitulate the observed bursting profile; Hunchback levels were also necessary
in order to fully capture the spatiotemporal bursting dynamics (Figure 7E and G). Specifically, we
linked a rise in Hunchback concentration to an observed rise in the fraction of nuclei in the ON
state in the stripe center between 30 and 35 min into the nuclear cycle (Figure 7B and F).

Our input-output analysis thus revealed that bursting and the transcriptional time window
exhibit significantly different forms of regulator logic: whereas repressor levels alone are sufficient
to explain the transcriptional time window, the joint action of activators and repressors appears
necessary to explain the observed patterns of transcriptional bursting. These results are consistent
with the hypothesis that regulation of bursting and of the transcriptional time window occur via
distinct molecular processes, therefore supporting a model in which the long-lived trancriptionally
silent state observed in flank nuclei constitutes a distinct molecular state outside of the bursting
model.

Discussion

In Drosophila development, information encoded in a handful of maternally deposited protein
gradients propagates through increasingly complex layers of interacting genes, culminating in the
specification of the adult body plan. The prediction of this cascade of developmental outcomes
requires a quantitative understanding of the mechanisms that facilitate the flow of information
along the central dogma. Here, we utilized live imaging in conjunction with theoretical modelling
to shed light on a critical link in this cascade: how the regulation of transcriptional activity at the
single-nucleus level gives rise to a spatiotemporal pattern of cytoplasmic mRNA.

A priori, there are several distinct regulatory strategies at the single-cell level capable of generat-
ing spatially differentiated patterns of cytoplasmic mRNA (Figure 1), each with distinct implications
for the nature of the underlying molecular processes at play. Several recent studies have re-
vealed that the average rate of transcription is mainly modulated across the embryo by tuning
the frequency of transcriptional bursting (Lionnet et al., 2011; Bothma et al., 2014; Xu et al., 2015;
Desponds et al., 2016; Fukaya et al., 2016; Zoller et al., 2018). Yet it has remained unclear whether
this modulation of the rate of transcription (and thereby mRNA production) is the dominant modal-
ity by which input concentrations of transcription factors drive the formation of patterns of gene
expression, or if, instead, it is simply the most readily apparent mechanism among multiple distinct
control strategies.

In this work, we derived a simple theoretical model that predicts how the interplay between
regulatory strategies at the single-cell level dictates the accumulation of cytoplasmic mRNA and
the subsequent formation of a gene expression pattern (Equation 2), and tested its predictions
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experimentally by performing single-cell live-imaging measurements in developing embryos using
the MS2 system. Our results revealed that the modulation of the mean rate of transcription
alone is insufficient to recapitulate the formation of a sharp gene expression stripe (Figure 3F,
green). We discovered that the window of time over which promoters engage in transcription is
sharply controlled along the axis of the embryo (Figure 3C and D) and that the joint action of the
analog control of the rate of transcription and the binary control of the duration of transcription is
necessary and sufficient to quantitatively recapitulate most of the the full stripe profile (Figure 3F,
brown).

Here, we used biological numeracy as a driver for biological discovery: our discovery of the
key role of the binary control of the transcriptional time window in pattern formation was only
made possible by going beyond the qualitative description of pattern formation and demanding a
quantitative agreement between our theoretical predictions and the experimental data (Phillips,
2015). Further, our work emphasizes how the regulation of gene expression timing in development
is as important as the regulation of the spatial extent of these patterns along the embryo. Thus,
in order to make progress toward a quantitative and predictive picture of pattern formation in
development, it is necessary to go beyond the widespread steady-state, static picture of pattern
formation in development put forward by previous single-cell transcriptional activity studies that
focused on the study of snapshots of fixed embryos (Pare et al., 2009; Little et al., 2013; Xu et al.,
2015; Zoller et al., 2018) and embrace a dynamical description that acknowledges that development
is a process that occurs outside of steady state (Berrocal et al., 2018).

To determine whether the same molecular mechanisms dictate the analog control of the mean
transcription rate and the binary control of the transcriptional time window, we utilized a variety
of theoretical and computational tools in conjunction with our live-imaging data. Specifically, to
uncover how the mean rate of transcription is regulated across the stripe, we developed a mHMM
that is capable of inferring the instantaneous activity state of individual gene loci from MS2 traces.
We used this mHMM to infer average promoter-switching parameters across the stripe (Figure 5).
In agreement with previous measurements of various gene expression patterns (Xu et al., 2015;
Desponds et al., 2016; Fukaya et al., 2016; Zoller et al., 2018), our results revealed that the the
burst frequency (k,,) is the main bursting parameter regulated by the input transcription factors
across eve stripe 2. This increase in k, in the stripe center increases the fraction of time that nuclei
spend in the active transcriptional state.

Importantly, our mMHMM algorithm is not limited to the eve stripe 2 system and should prove
useful to infer the underlying regulatory kinetics of any gene that is tagged using approaches such
as the MS2 or PP7 systems in any organism (Larson et al., 2011; Hocine et al., 2012; Fukaya et al.,
2016). Further, the method could be used to infer the state of the ribosome as mRNA is being
translated into protein in novel single-molecule in vivo translation assays (Morisaki et al., 2016;
Wang et al., 2016; Yan et al., 2016; Wu et al., 2016). Thus, we envision that our method will be
useful for the broader biophysical analysis of in vivo cellular processes at the single-molecule level.

Having identified k,, as the primary kinetic mode by which transcription factors modulate the
mean rate of expression across eve stripe 2, we next sought to probe the relationship between
bursting and the transcriptional time window (Figure 6A). We adapted our mHMM to go beyond
time-independent models of promoter switching to infer the regulation of these rates across both
space and time. We observed striking temporal trends indicating that the burst frequency responds
dynamically to time-varying transcription factor inputs. However, we noted a significant disconnect
between temporal trends in the burst frequency and the onset of transcriptional quiescence. In
particular, k, either increased or remained constant near the stripe center even as a significant
fraction of eve nuclei transitioned into quiescence (Figure 6C and D). We reasoned that the onset
of transcriptional quiescence is likely not the result of a progressive reduction in burst frequency,
amplitude, or duration, and that quiescence is instead driven by molecular processes that are
distinct from those that regulate transcriptional bursting such as transcriptional silencing.

To test this hypothesis, we utilized a logistic regression framework and time-resolved data for
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the primary regulators of eve stripe 2 to query the regulatory logic exhibited by the time window
and bursting, respectively (Appendix 8). Consistent with our time-resolved mHMM results, the two
regulatory strategies responded to transcription factor concentrations in different ways. On the one
hand, increasing levels of Giant and Kriippel were sufficient to explain the onset of transcriptional
quiescence in the stripe flanks (Figure 7A and D). This observation points to a model in which
repressor levels act unilaterally—without respect to coincident levels of activator proteins—to
shut off transcription at loci in an (at least effectively) irreversible fashion. Conversely, the joint
action of Giant, Krippel, and Hunchback was necessary to recapitulate the observed pattern of
transcriptional bursting (Figure 7B and F).

This difference in the regulatory logic observed for the two strategies dissected in this work
suggests that control of the transcriptional time window and the modulation of the average tran-
scription rate arise from two distinct, orthogonal molecular mechanisms. Further, the striking
absence of a direct functional role for Bicoid in the regulation of either phenomenon suggests that,
while Bicoid is almost certainly necessary for the expression of eve stripe 2 (Small et al., 1992), it
does not play a direct role in dictating the magnitude or duration of eve stripe 2 transcription. In
this interpretation, Bicoid functions like a general transcription factor, facilitating the transcription
of eve 2 without directly conferring spatiotemporal information.

While the results of our input-output analysis provide valuable insights into the mechanisms
driving the regulation of transcription of the eve stripe 2 enhancer, key questions remain about the
molecular character of the underlying processes. For instance, while loci engaged in transcriptional
bursting appear to continuously sense changes in transcription factor concentrations, it remains
an open question whether loci continue to actively read out transcription factor concentrations
following the onset of transcriptional quiescence. While the transition appears irreversible in our
data, it is possible that quiescence is, in fact, reversible in principle, but simply not observed in
practice because repressor levels increase over time in our region of interest. In such a scenario,
the direct action of relatively short-lived repressor binding could function to silence the locus, and a
reduction in repressor concentration would lead to a rapid reactivation of transcription. Alterna-
tively, if repressor levels function more akin to a trigger to, say, induce a change in the chromatin
state at the eve locus, this would imply that loci, once quiescent, cease to sense transcription
factor concentrations and would fail to reactivate even if repressor levels decreased. Of course,
intermediate cases could also be imagined.

In order to further test these and other molecular hypotheses , it will be critical to move beyond
spatiotemporal averages for transcription factor inputs (Figure 7C) and, instead, use live single-
nucleus measurements to directly correlate input transcription factor concentration dynamics
with the corresponding transcriptional activity at the single-cell level (Holloway and Spirov, 2017).
Experimentally, we recently demonstrated the simultaneous measurement of inputs and outputs
in single nuclei of a living fly embryo using novel genetically encoded LlamaTags (Bothma et al.,
2018). We believe that utilizing this novel technique, in conjunction with the theoretical methods
presented here, to query the effects of targeted disruptions to transcription factor binding domains
on regulatory enhancers will constitute a powerful assay for querying transcription factor function
at the molecular level. Thus, there are clear experimental and theoretical paths to uncovering
the detailed quantitative mechanisms behind the molecular control of transcriptional bursting
and quiescence in development. Such a quantitative description is a necessary step toward a
predictive understanding of developmental decision-making that makes it possible to calculate
developmental outcomes from knowledge of the nature of the transcription factor interactions
within gene regulatory networks.
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Materials and methods

Cloning and transgenesis

This work employed the same eve stripe 2 reporter construct developed by Bothma et al. (2014).
This construct contains the even-skipped (eve) stripe 2 enhancer and promoter region (spanning
-1.7 kbp to +50 bp) upstream of the yellow reporter gene. 24 repeats of the MS2 stem loop sequence
were incorporated into the 5’ end of the reporter gene.

Sample preparation and data collection

Sample preparation followed procedures described in Bothma et al. (2014) and Garcia and Gregor
(2018). In short, female virgins of yw;His-RFP;MCP-GFP (MCP, MS2 coat protein) were crossed to
males bearing the reporter gene. Embryos were collected and mounted in halocarbon oil 27
between a semipermeable membrane (Lumox film, Starstedt) and a coverslip. Data collection
was performed using a Leica SP8 Laser Scanning Confocal Microscope. Average laser power
on the specimen (measured at the output of a 10x objective) was 35 yW. Image resolution was
256 x 512 pixels, with a pixel size of 212 nm and a pixel dwell time of 1.2 us. The signal from each
frame was accumulated over three repetitions. At each time point, a stack of 21 images separated
by 500 nm were collected. Image stacks were collected at a time resolution of 21 seconds. The
MCP-GFP and Histone-RFP were excited with a laser wavelength of 488 and 556 nm using a White
Light Laser, respectively. Fluorescence was detected with two separate Hybrid Detectors (HyD)
using the 498-546 nm and 566-669 nm spectral windows. Specimens were imaged for a minimum
of 40 minutes into nuclear cleavage cycle 14.

Image analysis

Image analysis of live embryo movies was performed based on the protocol found in Garcia et al.
(2013) with modifications to the identification of transcriptional spots, which were segmented
using the Trainable Weka Segmentation plugin for FIJI using the FastRandomForest algorithm
(Schindelin et al., 2012; Schneider et al., 2012; Arganda-Carreras et al., 2017; Witten et al., 2016).
In comparison with a previous algorithm based on Difference of Gaussians (Little et al., 2013;
Garcia et al., 2013; Bothma et al., 2014, 2015), this alternative spot segmentation approach was
found to be superior for the detection of dim transcription spots—a feature critical to establishing
the precise timing of the cessation of activity at transcriptional loci.

Data processing

Processed live-imaging movies were compiled from across 11 experiments (embryos) to form one
master analysis set. While the position of eve stripe 2 along the anterior-posterior axis of the
embryo was found to be consistent to within 1-2% of egg length, we sought to further reduce this
embryo-to-embryo variation by defining new, “registered” AP axes for each experiment using the
observed position and orientation of the mature stripe. To this end, an automated routine was
developed to consistently establish the position and orientation of the eve stripe 2 center for each
data set.

This routine, described graphically in Figure 2-Figure Supplement 1, used observed spatial
patterns of fluorescence measured from 30 minutes into nuclear cycle 14—the approximate time at
which the mature stripe is first established (Bothma et al., 2014)— to the time of last observation
(>40 min) to find the natural position and orientation of the mature stripe. Generally, the eve stripes
run roughly perpendicular to the anterior-posterior (AP) axis of the embryo; however, the approach
allowed for the possibility that the true orientation of the eve 2 stripe deviated from the orientation
implied by manual estimates of the anterior posterior axis. Thus, a variety of orientations for the
natural stripe axis were considered, ranging between + 15 degrees from the line perpendicular to
the stripe with the manually specified anterior posterior axis. For each orientation, a sliding window
of 4% embryo length in width was used to find the position along the proposed orientation that
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captured the largest fraction of the total fluorescence emitted by the mature stripe. The orientation
and position that maximized the amount of fluorescence captured within this window defined a
line through the field of view that was taken as the stripe center. All anterior-posterior positions
used for subsequent analyses were defined relative to this center line.

Once the stripe centers for each set were established, fluorescence traces were interpolated
to 20s resolution, with all times shifted to lie upon a common reference time grid. Traces near
the edge of the field of view or that exhibited uncharacteristically large changes in fluorescence
over a time step were flagged through a variety of automated and manual filtering steps. When
necessary, these traces were removed from subsequent analyses to guard against the influence of
non-biological artifacts.

mHMM inference

To account for finite RNA polymerase elongation times, a compound state Markov formalism
was developed in which the underlying tw-promoter system—assumed to have three states (see
Figure 4E,F}—was transformed into a system with 3* compound gene states, where w indicates
the number of time steps needed for an RNA polymerase molecule to traverse the full transcript
(see Appendix 9). These compound gene states played the role of the “hidden” states within
the traditional HMM formalism. See Appendix 3 for details regarding the model's architecture.
Following this transformation from promoter states to compound gene states, it was possible to
employ a standard version of the expectation-maximization (EM) algorithm, implemented using
custom-written scripts in Matlab, to estimate bursting parameters from subsets of experimental
traces (Appendix 3). The scripts are available at the GarciaLab/mHMM GitHub repository. Bootstrap
sampling was used to estimate the standard error in our parameter estimates. Subsets of 8,000
data points were used to generate time-averaged parameter estimates. In order to accurately
capture the time-averaged dynamics across the entirety of nuclear cycle 14, the full length of each
experimental trace was used for time averaged inference. Sample sizes for windowed inference
varied due to data set limitations. When possible, samples of 4,000 points were used. Only data
points falling within a 15 minute window centered about the time point of interest were included in
windowed inference runs. Inference was not conducted for spatiotemporal regions for which fewer
than 1,250 time points were available. A minimum of 10 bootstrap samples were used to estimate
each parameter value reported in this work. Reported values represent the median taken across
bootstrap samples.

Input-output logistic regressions

The input-output analysis presented in Figure 7 utilized input transcription factor data from im-
munostaining experiments presented in Dubuis et al. (2013), as well as live measurements of a
Bicoid-GFP fusion courtesy of Jonathan Liu and Elizabeth Eck. Logistic regression parameters were
estimated in Matlab using the fmincon function. See Appendix 8 for further details.

Bootstrap error calculation

Bootstrap resampling was used frequently throughout this work to estimate the standard error
in a variety of reported quantities, from trends estimated directly from raw experimental data
in Figure 1 to mHMM inference results presented in Figure 5 and Figure 6. In this procedure,
multiple bootstrap replicates, y, —are generated by sampling with replacement from the pool
of available experimental data, Y (see, e.g. Efron and Hastie (2016)). The parameter of interest
(say, 7,,(x)) is then calculated for each replicate and the mean of these estimates is taken as the
bootstrap estimate of the parameter value, 7,,(x), while the standard deviation across the pool of
bootstrap parameter estimates is used to approximate the standard error in our estimate of 7, (x).
In our case, simply performing this procedure across the available pool of nuclei failed to account
for biological variability that exists from embryo to embryo. To account for this, we introduced
a hierarchical bootstrapping procedure. The first step in this procedure was to draw bootstrap
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samples from across the 11 embryos used in this study. Because these samples were taken with
replacement, most bootstrap samples excluded some embryos out of the original set of 11 and
included duplicates (or triplicates, etc.) of others. Each embryo-level bootstrap defined a subset of
nuclei. The final set of nuclei used for parameter estimation was generated by performing another
round of bootstrap sampling on this pool. Bootstrap averages and standard errors were then
calculated as described above. This two-step procedure thus accounts for both embryo-to-embryo
and nucleus-to-nucleus variability.

We note that the limited number of data points available for many spatiotemporal regions pre-
vented us from performing this two-tiered bootstrap procedure in the case of our time-dependent
mHMM inference (Figure 6D-F and Appendix 6-Figure 3D-E). In these cases, we used all available
sets (essentially skipping the first bootstrap resampling step) and took bootstrap samples from
amongst available nuclei as in step two of the procedure described above.

Absolute calibration of MS2 signal
In order to frame our results with respect to units with a clear physical interpretation, we calibrated
our fluorescence measurements in terms of absolute numbers of mMRNA molecules. This calibration
was also used to inform our Poisson loading sensitivities (Appendix 3). To calculate this calibration
for our eve stripe 2 data, we relied on measurements reported by a previous study that utilized MS2
in conjunction with single molecule FISH to establish a calibration factor, a, between the integrated
MS2 signal, Fys,, and the number of mRNA molecules produced at a single transcriptional locus,
Ny, (Garcia et al., 2013) given by
o = Nesit (5)
FMSZ

This calibration factor can be used to estimate the average contribution of a single mMRNA molecule
to the observed (instantaneous) fluorescent signal. While the values for the parameters in Equa-
tion 5 reported here pertain to the transcriptional output driven by the Bicoid activated P2 enhancer
and promoter during nuclear cycle 13, the calibration should generalize to all measurements taken
using the same microscope.

First, consider the total integrated fluorescence emitted by a single nascent mRNA while it is on

the reporter gene,
1
L, + L,
Fl = fmax2—’ (6)

elong
where f, .. denotes the instantaneous fluorescence emitted by a nascent mRNA that has transcribed
the full complement of MS2 loops, L, indicates the length of the MS2 loops, L,, indicates the
distance between the end of the MS2 loop cassette and the 3" end of the gene, and v, indicates
the elongation rate of RNA polymerase molecules along the gene. We can solve for f,,, using a,
namely,

1
-L,+L
1 I 7
Fi= = = fr—— )
a Ue]ong
such that v
elon; 1
Fus =~ . ®)
EL’ +L,,

Here, we recognize that the cumulative fluorescence per RNA polymerase molecule is simply the
inverse of the number of molecules per unit fluorescence («). Now we have the pieces necessary to
derive an expression for the instantaneous fluorescence of a single RNA polymerase molecule, that
is,
1
| S+ Ly

F RNAP = f max
clong

Uclong

1
_ elong ELI +L11
(L, +L,)"™ v

v

elong

19 of 69


https://doi.org/10.1101/335919
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi. org/10 1101/335919 thls version posted June 20, 2019. The copyrlght holder for this preprlnt (which was not
ell

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

Manuscrlpt submitted to b|0RX|v

1
sLi+Ly
max (LI + LII)
_ Uclong 1 (9)
a (L;+ L,,)’
resulting in
Uetong Fumis2 1
Fanap = —— . (10)

NFISH (LI +LII)

Measurements performed in Garcia et al. (2013) give Ny, to be 220 (+ 30) mRNA per nucleus
and vy, to be 1.5 (+ 0.14) kb/min. Experimental measurements on the P2 enhancer (courtesy of
Elizabeth Eck, Maryam Kazemzadeh-Atoufi and Jonathan Liu) indicate that the total fluorescence per
nucleus, Fys,, is 9,600 (£320) AU minutes. For the reporter gene used to take these measurements,
L, and L,, are 1.275 kb and 4.021 kb, respectively. Thus, we obtain

£ - L5x9610 1
RNAP ™ 9220 (1.275 +4.021)

=13 + 1.7 AU/RNAP. (1)

Though the error in our calibration is significant (>13%), the conversion from arbitrary units to num-
bers of nascent mMRNA nonetheless provides useful intuition for the implications of our inference
results, and none of our core results depend upon having access to a precise calibration of the
observed signal in terms of absolute numbers of RNA polymerase molecules.

Videos
Video 1. Transcriptional activity of eve stripe 2 reported by MS2. Raw MS2 signal where fluo-
rescent puncta report on the number of actively transcribing RNA polymerase molecules.

Video 2. Mean rate of transcription of eve stripe 2 reported by MS2. Nuclei false colored by
their mean transcriptional activity averaged over a 4 min time window as a function of time.

Video 3. Transcriptional time window. Nuclei along the stripe false colored after the duration of
their transcriptional time window.

Video 4. Fraction of active nuclei. Nuclei along the stripe false colored according to whether they
engaged in transcription at any time point during the nuclear cycle.

Video 5. Fluorescent puncta contain sister chromatids. Fluorescent puncta transiently separate
to reveal the presence of sister chromatids as shown by the white circles throughout the movie.

Video 6. Real-time inferred promoter states. Real-time inference of effective promoter ON
(green) and OFF (red) state in individual nuclei.

Video 7. Average embryo containing all inputs and the output. Average concentrations of
Bicoid (blue), Hunchback (red), Kifuppel (green) and Giant (yellow) combined with the average
transcriptional activity of the eve reporter (purple). (Hunchback, Kfuppel and Giant data obtained
from Dubuis et al. (2013)).
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s Appendix 1

887 Theoretical model to predict cytoplasmic mRNA levels given from in
858 vivo measurements of transcriptional activity
889 Derivation details
890 Here we provide a more detailed treatment of the mathematical framework for connecting
891 transcriptional activity in individual nuclei to levels of accumulated cytoplasmic mRNA. We
892 begin with general expressions for the rate of mMRNA production during the transcription-
893 ally active and quiescent periods that dictate the transcriptional time window. When the
894 promoter is actively transcribing (z,, < ¢ < t.4), the net rate of mRNA production is
895

AR xn= R - ymRNARLD (12)
896 dr —— [ ——
897 transcription rate degradation rate

898
where y is the mRNA degradation rate constant. For a promoter that has entered a transcrip-

tionally quiescent state (r > 7 ), we have

899

900

901 dmRNA

(x,1) = —y MRNA(x, 1), (13)
902
903 such that degradation is now the only contribution to the change of mRNA concentration in
904 time. Note that, in these two equations, we have ignored the contribution of mRNA diffusion.
905 Previous measurements have estimated a diffusion coefficient of mRNA of 0.09 yum?/s
906 (Halstead et al., 2015) and a typical mRNA degradation rate of 0.14 min™' (Edgar et al.,
907 1987). Given these numbers, we expect an eve mRNA molecule to diffuse approximately
908 6 um, which corresponds to one nuclear diameter or 1% of the embryo length, before being
909 degraded. Thus, given the overall width of the stripe mRNA profile of about 8% of the embryo
910 length (Figure 3G), we expect diffusion to play a minimal role in stripe formation. Finally,
911 note that we are also ignoring the delay between transcriptional initiation and the delivery
912 of an mMRNA molecule to the cytoplasm as a result of nuclear export. This delay would affect
913 the timing of pattern formation, but would leave our conclusions about the relative role
914 of transcriptional bursting and the regulation of the duration of the transcriptional time
915 window unaffected.

To make progress, as in the main text, we make the simplifying assumption that the
instantaneous rate of transcription can be well approximated by the time average at each
position given by

R(x) = (R(x,1)),. (14)

We now consider the role of 7, (x) in dictating pattern formation by envisioning a scenario
where transcription begins at time 7., (x), but does not cease. In this scenario, the accumu-
lated mRNA is given by

MRNA_;..(x, 1) = R(x) X = (1 =77t onl) (15)
——

transcriptionrate  —_.___ v~
time window

R | =

Note that if the system evolves for a long amount of time, the second term in the parentheti-
cal in Equation 15 becomes vanishingly small (y( —7,,(x)) > 1) such that all time dependence
drops out of the expression and we recover the familiar expression for mRNA levels in steady
state

MRNA, . (x, 1) = 2 (16)
Y
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934
9 where mRNA production and degradation are balanced.

Next, consider the impact of regulating the timing with which nuclei cease transcriptional
activity and become quiescent, 7. Here, when 7 > ¢ ;(x), the amount of mRNA produced
during the period of activity is subsumed within a decaying exponential envelope such that

937
938
939
940 mRNAquiescenl(x’ = o1 t=oif (X)) [ R(x) X l (1 _ e—y(toff(x)—ron(x))) ] (17)
e —— 14

quiescent decay transcription rate

941
)

time window

Equation 17 represents a scenario in which the accumulation of cytoplasmic mRNA
results from the interplay between two distinct regulatory strategies: the modulation of
when the transcription starts and stops (binary control of the transcription time window)
and the average rate with which transcription occurs within this time window (analog control
of transcriptional bursting). We refactor Equation 17 to reflect this distinction and consider
the case whent > ¢, giving

942

943

944

945 mRNAfu"(x, 1) = @ @7 (t=min(iofp(x).0) (1 _ e_,(min(,()”(x),t)_t(m(X))), (18)
946 \y/_/ 5 )
v analog control binary control

948

which can be simplified slightly to yield

949

950 MRNA(x, 1) = R X (@77 0=mintor(0) _ gr—ton)) (19)
951 14 N Y]
——

-~
952 binary control

analog control
953

954 Finally, we account for the fact that only some p,.;..(x) fraction of nuclei within each region

oss ever engage in transcription leading to

956 R(x) —y(t—min(rog (x —/(i=lon(x

o MRNA(x, 1) = Dactive (X) X 7 X (e (t (toff (X):1)) _ =¥ (t=on( ))) . (20)
y . -7

958 ~—

analog control binary control
959

960 This equation constitutes the basis of our theoretical dissection of pattern formation by
961 transcriptional bursting and the control of the transcriptional time window.
962 Accounting for multiple transcriptional states

In the main text, Equation 3 expresses the mean rate of mRNA production, R(x), as a function
of the bursting parameters k_,, k.;;, and r. We can combine this equation with Equation 20
to obtain an expression for the predicted amount of cytoplasmic mRNA that includes the
burst parameters inferred by our mHMM

(0 X r(x) kg () 5 (@7 =minGoe(1.0) _ e—y(x—xm(x))) ' 2n
}’ kon(x) + ko[[(x) o _

binary control

MRNA(x, 1) =

pacuve

analog control

While we present our results in terms of an effective two-state model in the main text, the
presence of two transcriptional loci within each observed fluorescent spot suggests that the
system is more naturally described using a three-state kinetic model. Here, we extend the
framework presented in Equation 21 to a scenario in which there are three distinct system
states: 0 promoters on (0), 1 promoter on (1), and both promoters on (2) (see Figure 4). We
begin with a general expression for this scenario that takes the contribution from the analog
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973

o7 control term shown in Equation 20 to be a sum over the output of each of the 3 activity

7 states, namely,

976

2)

77 MRNAGX, 1) = pyepe(X) X l( Y f,-(x)ﬂ,-(X)> X (€710 _ g rtan(), (22)
978 YN N — _
979 — binary control

analog control
980
981 where r,(x) is the rate of RNA polymerase loading for state i, and z,(x) indicates the fraction
982 of time spent in state i. Note that the independent effect of the duration of the transcription
983 time window and of mRNA decay on cytoplasmic mRNA levels remain unchanged in the
984 multi-state case.

The fractional occupancies of the activity states (z,(x) terms in Equation 22) are a function
of the rates with which the promoter switches between activity states. In general, the
fractional occupancy of each activity state, z,, may vary as a function of time; however we
focus on their steady state values here, such that:

%85
986
987
988
989 0 = R(x)x(x), (23)

990
where R(x) is the transition rate matrix. Consistent with our inference results, we assume

that no transitions are permitted between the high and low states (0 & 2). Thus, the transition
rate matrix takes the following form:

991

992

993

994

—koy (x) kio(x) 0
9% R =| kyy(x)  —kjo(x) —kp(x)  ky(x) |- (24)
e 0 k() )
997
998 Together, Equation 23 and Equation 24 allow us to solve for the fractional occupancy of each
999 activity state as a function of the transition rates that describe the system.

For the remainder of this derivation, we will drop the explicit x and ¢ dependencies
for ease of notation. Intuitively, the steady state (or stationary) distribution represents a
limiting behavior of the system such that, upon reaching z, no further shifts occur in the
mean fraction of time spent in each activity state. Equation 23 leads to a system of three

equations:
0= —myko + 7 kyg (25)
0 = moky, — 7y (klo + k12) + mpky (26)
0=mkyy — mky (27)

Before proceeding, we note that, since x is a probability distribution, we can eliminate one
of our unknowns by enforcing normalization, that is,

1 =my+ 7 +7,. (28)

With this in mind, we can solve Equation 25 for z, to find

7k = 7wk, (29)
k

= . (30)
10

Next, we use the normalization condition to eliminate =, from Equation 27:

7k, = moky,

= (1 =7y = 7k (31)
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1012

1013 By combining this result with Equation 30, we obtain
1014
k k
1015 ”oﬂklz =(1—ﬂ0—ﬂ0ﬂ)k21 (32)
1016 klO klO
ko k kio+k
1017 7, kmklz =1- ”o% (33)
1018 10™21 L 10k
1019 i) = 1021 . (34)
o2 kygkay + koykay + kork s
1021 With Equation 34 in hand, it is then straightforward to solve for the remaining z, terms. First
1022 we obtain =, by substituting Equation 34 into Equation 30:
1023 kOl
1024 = ”ok_m
1025 ko k
_ 01721 ) (35)
1026 kiokyy + koykyy + ko ki
o And finally r,:
1028
1029 m=1-n—-m
1030 _ k01k12 . (36)
1031 kyokay + korkyy + koikyy
o Thus, we arrived at the full expression for cytoplasmic mRNA levels in the 3-state case:
1033
1034 1 kg, (x)ky; (x) Koy (X)k 5 (x) e (=
MRNA(x, 1) = p,.iv.(X) —(r X)————+r (x)—) x (e77¢minlort G0) _ p=v(i=lon(x))
1035 active ¥ 1 K'(x) 2 K'(x) S . l
1036 analogvcontrol binary control
1037 (37)
1038
1039 where, consistent with the 2-state case, we have taken r,(x) to be equal to zero and where
1040 k(x) denotes the denominator in Equation 34, Equation 35 and Equation 36, namely,
1041
K = kyoky + koikay + Koykys. (38)
1042
1043 Thus, from Equation 37 we see that, while there are more terms comprising the analog
1044 control expression, the expression nonetheless takes on the same essential form as in
1045 Equation 20.
1046 Mapping the three-state model into an effective two-state model

Here we provide expressions relating the effective two-state parameters presented in the
main text to parameters from the full three-state model. As we have done throughout this
work, we take the transition rates between states (0) and (2) of the 3-state model to be
negligible (consistent with inference results, see Appendix 6). First, the on rate, k!t is directly
equivalent to the transition rate between states (0) and (1), that is,

KT = k. (39)

Similarly, since we do not observe from state (2) to state (0), keff is equal to the transition
rate from (1) to (0), weighted by the relative fraction of time the system spends in state (1)
when it is in the effective ON state (1 or 2). Thus, we have:

m k
et = Sk (“0)
T, + 7,
_ ko ko kyg 41)
koikay + ko ki
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1054

1055

k21k10

1056 - m (42)
1057

1058 Finally, T is the occupancy-weighted average of the initiation rates for states (1) and (2)
1059 Joff _ T ry + 7ory (43)
1060 Tt

1061 _ rikg ky + kg ki (44)
1062 koykay + ko kin

1063 _ riky, +r2k12' (45)
1064 kay + ki,
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1065 Appendix 2

1066 Measuring the amount of produced mRNA

1067 Here, we outline the approach that was used to estimate the total amount of mRNA produced
1068 by eve stripe 2 nuclei from MS2 traces. This approach, which is independent of the bursting
1069 parameter estimates returned by mHMM, was used to calculate the total cytoplasmic mRNA
1070 levels per nucleus shown in Figure 3G (red), as well as the “binary control” of the duration of
1071 the transcriptional time window contribution Figure 3G (blue).

1072 Calculating full mRNA profiles

The observed fluorescent signal at transcriptional loci as a function of time, F(¢), is linearly
related to the number of actively transcribing RNA polymerase molecules. Thus, after a
period equal to the amount of time needed for an RNA polymerase molecule to transcribe
the gene, 7 the number of new mRNAs added to the cytoplasm will be proportional to

elong’

F(t) (Bothma et al., 2014), that is,

F() & M(1 + Tyon,)

- M@, (46)

where M (¢) indicates the total number of mMRNA molecules that have been produced up to
time 7. We relate this fluorescence signal to absolute numbers of RNA polymerase molecules
using the calibration procedure described in the Materials and Methods. However, only
the relative amounts of mMRNA present across the eve stripe 2 pattern are needed in order
to calculate the relative contributions from the different regulatory strategies identified in
Equation 2. Thus, we capture the calibration factor, along with all other proportionality con-
stants, with a generic term g, with the expectation that g will drop out from all consequential
stripe contribution calculations. Drawing from the derivation provided in the SI Methods
of Bothma et al. (2014), we take the rate of mRNA production at time 7 to be approximately
equal to the observed fluorescence at time 7 — r‘2—g

Telong - dM (1)
= T2) 200

Here, the 1.2 term accounts for the time lag between the number of transcribing nascent
mRNA and the rate of mRNA release into the cytoplasm. For ease of notation, we will ignore
this offset factor for the remainder of this section. We will also treat the relationship in
Equation 47 as one of equality. For Figure 3G, the metric of interest is the amount of mMRNA
produced per nucleus. Thus for a given region along the axis of the embryo, the average
observed fluorescence across all N nuclei (active, quiescent, and those that never engaged
in transcription) within the region of interest was used as a proxy for the instantaneous rate
of MRNA production per nucleus, given by

AM@.) _ f <
dr ‘NZ 1)

= p(F @), (48)

Here, F/(x,1) is the fluorescence of nucleus i at time ¢. The x subscript in Equation 48
indicates that the average is taken over all nuclei falling within the same anterior-posterior
region within the eve stripe 2 pattern. Having obtained an expression for the rate of mRNA
production as a function of space and time, we next sought to account for the degradation of
MRNA over time. As indicated in the main text, we assumed a constant rate of mRNA decay,
y, over space and time. The next section in this appendix provides evidence for the validity of
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1110

i this assumption. For a constant mRNA decay rate, calculating the average concentration of

112 mRNA amounts to taking a weighted sum over all preceding production rates for a position
3 of interest, where the weight terms account for the effects of mMRNA decay and are of the
4 form ¢=7. Thus, we summed over all time points for each region of interest to estimate
s the total amount of cytoplasmic mRNA present on average, yielding the quantity on the
1116 left-hand side of Equation 2, namely,

1117 -

e MRNA(x, 1) = f ) 7" F(t — nA7)). (49)
1119 n=1

10 Here Az is the experimental time resolution, and T = = denotes the number of measure-
T

ments taken through time ¢. The exponential term within the summand on the right-hand
side captures the effects of mMRNA decay (see Appendix 1). Finally, to calculate the normalized
mMRNA profile shown in Figure 3G (red), the estimates for the total accumulated mRNA per
nucleus found using Equation 49 must be divided by the sum across all spatial regions
considered

121
1122
1123
1124
1125

1126
1127 ZnT=1 e_y(t_nm)(F(t - nA‘r))X

MRNA, 1 (X 1) = - —, (50)
1128 Z’_Ex Zn:l e—y(r—nAr)<F(t _ nAT)>x-

1129

where the subscripts i and j outside the angled brackets denote the spatial region over which
the sum is taken. Note that the proportionality constant g cancels in the final expression
for mRNA As a final step, we subtract the minimum across the AP region considered to

1132 norm*

remove any basal offset such that

1130

1131

1133
1 MRNA, (x;,1) = MRNA,, (x;, 1) — min (mRNAnOTm(xj,t)). (51)

1135

1136 Calculating mRNA profiles due to the binary control of the transcriptional
1137 time window
The predicted profile due to binary control of the transcriptional time window alone (Fig-
ure 3G, blue) was calculated following the same procedure as for the full mRNA profile
described above, save for the fact that, in this case, instantaneous fluorescent values for
individual nuclei were converted to binary indicator variables (f;(#)) that were set equal to
1ifr <+ and 0 otherwise. Additionally, only nuclei that were active at some point during
nuclear cycle 14 were included, to distinguish the effects of the transcriptional time window
(Figure 1C) from the control of the fraction of active nuclei (Figure 1D). Thus, in this scenario,
the “average rate” of mRNA production is equivalent to the fraction of nuclei engaged in
transcriptional activity at a given point in time such that the rate of mRNA production is

given by
deinary(x’ t)
i N( 2 Z(x D)
=(f(x,1)
_ N,(x.0)
T Nk (2)

where N, () indicates the number of transcriptionally competent nuclei at time ¢. The binary
equivalent to Equation 49 takes the form of a time-weighted sum of the fraction of active
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1151

1152

1153 nuclei within a region

1154 T

- MRNA (3, 1) = Z{ e—ﬂf—"m)%. (53)
1156

1157 The steps for calculating the the normalized binary mRNA levels comprising the blue profile
1158 in Figure 3G from Equation 53 are identical to those shown for the full mMRNA profile in
1159 Equation 50 and Equation 51 and are therefore not repeated here.

1160 Comparison between predicted and measured cytoplasmic mRNA profiles
1161 As a check for the validity of our approach to predicting levels of cytoplasmic mMRNA from live
1162 imaging data (Equation 50 and Equation 57), we sought to compare our model’s predictions
1163 to existing mRNA FISH data for the endogenous eve stripe 2 (Fowlkes et al., 2008). For this
1164 comparison, we elected to use live imaging data for eve stripe 2 activity that was driven by
1165 a BAC containing the full eve locus (see Berrocal et al. (2018) for details). This was done to
1166 minimize potential differences with the activity of the endogenous gene. Most notably, the
1167 reporter construct used for the majority of this work does not contain an enhancer sequence
1168 that is responsible for driving eve expression late in nuclear cycle 14 (Jiang et al., 1991).

1169 Appendix 2 Figure 1 summarizes the results of this comparison. To account for uncer-
1170 tainty regarding the precise dorsal-ventral (DV) orientation of embryos within our live-imaging
171 set, we compared our model’s predictions to mMRNA measurements for a range of DV po-
172 sitions, encompassed by the green-shaded profile. We found a high degree of agreement
1173 between model predictions and reported levels of cytoplasmic mRNA. This conclusion is
174 relatively insensitive to our assumptions regarding the average lifetime of eve mRNA as
175 shown by the lines in the figure. While substantial uncertainties regarding the precise timing
1176 of the mRNA measurements prevented us from leveraging this comparison to, for instance,
177 infer the rate of eve MRNA decay, we nonetheless concluded that it is sufficient to establish
178 our modelling assumptions. In particular, the relative insensitivity of the distribution of
1179 cytoplasmic mRNA to the decay rate suggests that, while it is possible that the precise rate
1180 of mMRNA decay is regulated across space or time, such phenomena—if they exist—would
1181 not impact the core conclusions presented in this work. Moreover, as discussed below, this
1182 paper’s findings are also relatively insensitive to our choice of decay rate y, with the basic
1183 dynamics of stripe formation remaining consistent even in the limits near instantaneous
1184 and infinitely slow mRNA decay (Figure 2).

As alluded to above, several variables limited our ability to carry out a precise compar-
ison between our model predictions and empirical measurements. The most significant
of these was the lack of sufficiently precise temporal information for the empirical mRNA
measurements. The authors used the percent invagination of cellular membranes through
cellularization as a means to break individual embryos into rough temporal cohorts (Lu-
engo Hendriks et al., 2006). We cross-referenced the invagination ranges for each temporal
group with data provided by Dubuis et al. (2013) to obtain estimates for the range of times
encapsulated by each of these cohorts. This calibration revealed that most time-averaged
cohorts spanned too broad a range of times to allow for reasonable comparison. We elected
to use the cohort comprised of embryos with ages ranging between 38 to 48 minutes into
nuclear cycle 14 both because this range was much narrower than that spanned by the
preceding cohort and because we had established that the stripe appeared to be relatively
stable during this time period. An additional complication with establishing the precise tim-
ing of each cohort was the fact that the authors of Luengo Hendriks et al. (2006) measured
invagination on the ventral surface of the embryo, while the authors in Dubuis et al. (2013)
used the dorsal surface. However, while invagination is known to proceed more rapidly on
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1199

1200

1201 the ventral side of the embryo,the authors in Luengo Hendriks et al. (2006) reported that
1202 this discrepancy is minimal up to the point where cell membrane extension has progressed
1203 to approximately 40% of its eventual full extent. The lower and upper bounds on the percent
1204 membrane invagination for the chosen cohort are 26% and 50% respectively. Thus, we
1205 expect the time estimate derived for the beginning of the period to be reasonably accurate,
1206 since Dorsal and Ventral membrane progression was reported to be comparable during
1207 this period. On the other hand, to the degree that Ventral invagination outpaces Dorsal
1208 invagination at the end of our period of interest, this would result in an over-estimation
1209 of ending time. Thus, it is possible that the true temporal window encompassed by the
1210 selected cohort is actually tighter than 10 minutes, since the ending time might in fact be
1211 earlier than 48 minutes into nuclear cycle 14. Given the relative stability of the stripe profile
1212 during this period of development, we do not expect this potential discrepancy to have a
1213 material impact on our conclusions.

S 006}

]

<

%

€ 0.04

e

(0]

N

g 0.02

o

(=

0

5 0 5
distance from stripe center (% embryo length)
—ImRNA FISH measurement

live imaging measurement

—— 1/y=t =7 min

— 1/y=t =15 min
1214
1215 Appendix 2 Figure 1. Comparison of predicted cytoplasmic mRNA by live-imaging
1216 measurements to direct measurements by FISH. In an effort to check the validity of our modelling
1217 assumptions, we compared the predictions of our mMRNA model stemming from live-imaging
1218 measurements of stripe 2 of an eve reporter from a BAC containing the full eve locus to direct
1219 measurements of eve cytoplasmic mRNA levels using FISH (Luengo Hendriks et al., 2006). Here, the
1220 blue lines indicate our model's predictions under two different assumptions for the rate of mRNA
1221 degradation, and the shaded green profile indicates the range of directly measured mRNA levels.
1222 Comparisons indicate a high degree of agreement between prediction and measurement, indicating
1223 that our modelling assumptions are justified.
1225 Sensitivity of results to mRNA lifetime assumption
1226 In the main text we assume a degradation rate for eve of 0.14 min~' (corresponding to a
1227 lifetime of roughly = = 7 min). Since, to our knowledge, the decay rate of eve mMRNA has
1228 not been measured directly, we follow Bothma et al. (2014) and base this estimate off of
1229 measurements for another of the pair rule genes, fushi tazu (ftz, Edgar et al. (1987)). In this
1230 section, we examine the degree to which the apparent contributions of each regulatory
1231 strategy (Figure 1) change under different assumptions for eve mRNA lifetime. Rather than
1232 conducting an exhaustive survey, we instead focus primarily on two limiting cases: rapid
1233 MRNA decay (z = 1 min) and no mRNA decay (z = o).

Appendix 2-Figure 2 summarizes the results of our analysis. We find that, regardless of
the assumed mRNA lifetime, our model predicts that eve stripe 2 is formed almost entirely
via the interplay between the binary control of the transcriptional time window and the
analog modulation of the mean rate of transcription (compare brown and red profiles in
Appendix 2-Figure 2). However, we find that the relative importance of each factor depends,
somewhat, on the assumed decay rate. In the case of rapid mRNA decay, as well as for the
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1238

1239

1240 decay rate assumed in the main text, the time window (blue profile) is clearly the dominant
1241 factor in driving pattern formation (Appendix 2-Figure 2A and B). If we assume the true
1242 MRNA lifetime is 15 minutes, slightly more than double our best guess of 7 minutes, we find
1243 that the time window is still predicted to contribute slightly more to stripe formation, but
1244 that the two contributions are now of order with one another (Appendix 2-Figure 2C). Finally,
1245 in the limit where there is effectively no mRNA decay, the effects of the mean rate and time
1246 window are roughly equivalent (Appendix 2-Figure 2D). This result can be explained by the
1247 fact that the mean rate strategy is insensitive to the decay rate, whereas the effect of the
1248 time window is enhanced by the action of mRNA decay.

1249 Thus, overall, we found that our model's prediction that the control of the transcriptional
1250 time window plays a primary role in stripe formation holds for mRNA lifetimes less than
1251 or equal to 15 minutes, which is more than double the measured life time of ftz mRNA
1252 (Edgar et al., 1987). Perhaps more importantly, both factors are found to play a significant
1253 role, irrespective of mRNA decay rate, indicating that our central finding is robust to our
1254 assumption regarding mRNA decay dynamics.

A B C D
0.1 =1 min T=7 min =15 min =

stripe amplitude
o
o
a

4 2 0 2 4 4 2 0 2 44 2 0 2 4 4 2 0 2 4

distance from stripe center distance from stripe center distance from stripe center distance from stripe center
(% embryo length) (% embryo length) (% embryo length) (% embryo length)

it U GRS TAT | wem

1256 Appendix 2 Figure 2. Sensitivity of regulatory strategy contribution to assumed mRNA lifetime.

1257 The average lifetime of eve MRNA is a significant assumed parameter in our model. This figure

1258 compares the predicted contributions of each regulatory strategy for the mRNA lifetime assumed in the

1259 main text (z = 7 min) to limiting cases in which mRNA is assumed to decay almost instantaneously

1260 (z = 1 min) on the one hand, and infinitely slowly on the other (z = ). Even at these extremes, the

1261 central conclusion that the stripe is formed via the join action of mean rate modulation (green profile)

1262 and the time window (blue profile) remains intact. As expected, the relative contribution of the time

1263 window is sensitive to the assumed z, yet even in the limit of no significant mRNA decay, its impact is

1268 still of order with the effect of mean rate modulation.

1266 Control strategy contributions for eve BAC

A key question regarding the results in the main text is whether and to what degree the
relative contributions of the regulatory control strategies we identified in Figure 1 and
Figure 3 for the reporter containing only the eve stripe 2 enhancer hold true for the formation
of the stripe in the endogenous context. While we cannot directly query activity at the
endogenous eve locus, we were able to examine the dynamics of stripe formation for an eve
BAC used in the companion paper to this manuscript (Berrocal et al., 2018). Since this BAC
contains the full eve regulatory locus, it likely provides a better proxy for stripe formation in
the endogenous context than the isolated eve 2 reporter. Appendix 2—Figure 3 shows the
results of this analysis. As with the reporter construct used in the main text, we find that
the stripe is formed primarily through the interplay between two regulatory strategies: the
modulation of the average rate of production (green) and of the duration of transcriptional
activity (blue). As with the reporter, the binary control of the transcriptional time window
is the dominant driver of stripe formation (compare with Figure 1G). Interestingly, unlike
the reporter construct, the full predicted profile (red profile) that accounts for the interplay
between mRNA decay temporal fluctuations in the mean rate of mRNA production differs
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1281

1282 substantially from the simpler model (brown profile) that approximates mRNA production
1283 as constant over time. We speculate that this difference is attributable to the influence of
1284 the “late enhancer”"—which is present in the eve BAC but not in the reporter—that takes
1285 over control of eve activity late in nc14. Further work will be necessary to fully elucidate the
1286 regulatory impact of this late element on the formation of the mature eve stripe pattern.
actual distribution of
cytoplasmic mRNA
analog control
0.1 of mean transcription
® rate
=
2 binary control of
g transcriptional
2 time window
Lg- 0.05 control of the
fraction of
active nuclei
analog + binary
control
0
-4 2 0 2 4
1287 relative AP position (%)
1288 Appendix 2 Figure 3. Regulatory strategy contributions to eve stripe 2 formation in endogenous
1289 context. As with the reporter construct, the formation of eve stripe 2 in the context of the full eve
1290 regulatory locus is dominated by the interplay between mean rate modulation (green) and control of
1292 the time window of transcriptional activity (blue).
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1293 Appendix 3

1294 The memory-adjusted hidden Markov model
1295 Model introduction
1296 To model the dynamics of an observed fluorescence series, y = {y,, y,. ..., yp}, Wwhere T is the
1297 number of data points in a trace, we assume that, at each time step, the sister promoters
1298 can be in one of K effective states. In the analysis of eve stripe 2 data, we use a simple model
1299 with the number of effective states equal to three (K = 3). The method, however, allows
1300 for more complex transcription architectures with higher numbers of states. Transitions
1301 between the effective promoter states are assumed to be Markovian, meaning that the
1302 hidden promoter state z, at time step ¢ is conditionally dependent only on the state in the
1303 previous time step. This dependency is modeled through a K xK transition probability matrix
1304 A = p(z,]z,_,), Where A, is the probability of transitioning from the /" state into the k' state
1305 in the time interval Az, where Az is the data sampling resolution. We assign a characteristic
1306 RNA polymerase initiation rate, r(k), with units of RNA polymerase per minute, to each
1307 effective promoter state, z(k), 1 < k < K. Thus, the number of polymerases initiated between
1308 time steps ¢ — 1 and ¢ will be r(z,)Az. Because the fluorescence intensity contributed by each
1309 polymerase depends on the number of transcribed MS2 stem loops, the contribution will
1310 vary with the position of the polymerase on the gene. In our transcription model we assume
1311 that polymerase elongation takes place at a constant rate. Therefore, if 7, is the time it
1312 takes to transcribe the MS2 loops, the fluorescence contribution of an RNA polymerase
1313 molecule will initially grow linearly (z < 7s,) and will then stay constant for the remainder
1314 of transcription (zys, < 7 < 7,,,). Given this time dependence, we define a maximum
1315 fluorescence emission per time step for each state as v(k) = Fyyapr(k)Az, 1 < k < K, where
1316 Fynap is the fluorescence calibration factor determined using smFISH experiments (see
1317 Materials and Methods).
1
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1318 Telong = W X AT
1319 Appendix 3 Figure 1. Schematic overview of the mHMM architecture. The sister promoters are
1320 modeled as undergoing a series of Markovian transitions between effective transcriptional states (z,).
1321 Each promoter state uniquely determines the number of polymerases initiated in a single time step
1322 (r(z,)At). Fluorescence emissions from polymerases initiated in the most recent w steps combine to
1323 produce the observed fluorescence intensity (y,). The color bar indicates the mean fraction of MS2
1324 loops that have been transcribed and contribute fluorescence at the moment of observation. The color
1325 corresponding to the more recently initiated polymerases is therefore lighter (fewer loops transcribed)
1328 than that corresponding to polymerases initiated at earlier times (more loops transcribed).
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1328 The instantaneous fluorescence intensity is the cumulative contribution from polymerases
1329 initiated in the previous w time steps, where w = z,,,,./Az is the system-dependent integer
1330 memory. Here Az indicates the observational time resolution, a quantity set by experimental
1331 conditions. The time required for an RNA polymerase molecule to transcribe our reporter
1332 gene (z,,,,) i @ priori unknown. We developed an autocorrelation-based method to estimate
1333 Telong directly from our experimental data (see Appendix 9 and Coulon and Larson (2016)).
1334 The observation y, at time step ¢ conditionally depends not only on the hidden promoter state
1335 z,, but also on the hidden states in the previous w time steps, {z,, z,_;, ... Z,_,.,1 }. To be able to
1336 describe the observed system dynamics through a hidden Markov model, the observation at
1337 time step ¢ needs to be conditionally independent from the states at earlier time steps. We
1338 therefore introduce the concept of a compound state, s, = {z,, z,_;, ... Z,_,..1 }» Which, together
1339 with the set of model parameters, 0, is sufficient to define the probability distribution of the
1340 observation y,, thereby satisfying the Markov condition. Since z, € {1, ..., K}, each compound
1341 state can take one of Kv different values, s, € {1,..,K*}. While the number of possible
1342 compound states is K%, only K different transitions are allowed between them, since the
1343 most recent w — 1 promoter states are deterministically passed from one compound state to
1344 the next, i.e. the last w — 1 elementsin s,,; = {z,,1. 2, .-, Z,_u4o } Are presentin s, as well. The
1345 schematic overview of the mHMM architecture is shown in Appendix 3-Figure 1.
1346 We model the fluorescence emission probabilities corresponding to each hidden com-
1347 pound state as Gaussian distributions with a standard deviation ¢, which we learn during
1348 inference. The joint probability distribution p(y, s|0) of the series of hidden compound states,
1349 s = {s,,5,, ... 57}, and fluorescence values, y = {y,, y,, ... y }, is given by
1350 T T
p(y.510) = p(s\|m) [ [ pilsi v 0) [ ] o515 A). (54)
=1 =2
1352
1353 Here z is a K-element vector, with z, being the probability that the trace starts at the k't
1354 effective promoter state, and v is a K-element vector of fluorescence emission values per
1388 time step.

Our goal is to find an estimate of the model parameters, 0= {7, D, 3,&}, which maximizes
the likelihood p(y|6) of observing the fluorescence data, namely,

1357

1358

139 6 = argmax p(y|0). (55)
1360 0

1361 The likelihood can be obtained by marginalizing the joint probability distribution, p(y, s|6),
1362 over the hidden compound states, that is,

1363

pylO)= Y p(y.sl6). (56)
1365 s={51,52,0057 }

1366 Note that the summation is performed over all possible choices of s — a vector of T elements,
1367 each of which can take K* possible values. The total number of terms in the sum is thus
1368 equal to KT, which grows exponentially with the number of time points. To make the
1369 estimation of the model parameters tractable, we use an approximate inference method,
1370 the expectation-maximization (EM) algorithm.

We note that the notion of a compound state was also introduced in an earlier work
(Corrigan et al., 2016) to account for the memory effect in hidden Markov modeling of actin
transcription and then an EM methodology was applied to learn the kinetic parameters from
MS2-based transcription data. Unlike their approach, however, we do not explicitly model
the recruitment of individual RNA polymerase molecules, but instead, assign a continuous
RNA polymerase initiation rate to each promoter state. Additionally, our model estimates the
magnitude of the background noise present in the experimentally measured fluorescence
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1376

1377

1378 signal, whereas the model presented in (Corrigan et al., 2016) takes this quantity as an
1379 input, requiring that it be estimated separately. We believe that these differences serve to
1380 make our model more flexible. Moreover, by eliminating the need for absolute calibration
1381 and noise estimation, we hoped to facilitate the use of our model in a wide variety of
1382 experimental contexts, for which one or the other quantity may not be readily obtainable. In
1383 the "Continuous vs. Poisson promoter loading" section of Appendix 4 we demonstrate that
1384 relaxing the continuous RNA polymerase loading assumption when generating synthetic
1385 data does not significantly affect the accuracy of the mHMM inference.

1386 Expectation-maximization (EM) algorithm

Consistent with standard EM approaches (Bishop (2006), Chapter 13), at each iteration we
maximize the lower bound of the logarithm of the likelihood using the current estimate of
the model parameters, namely,

1387

1388

1389

0., = argmax (01y,6,), (57)
1390 0
£©ly.60= Y, pisly.6) logp(y,sl6) <log p(y|6). (58)
1392 s={s1,52,057}

1393 Here £(6 |y, 6,) is the objective function, 6, is the estimate of the model parameters in the k™"

expectation step of the EM algorithm. Since we model the transitions between the effective
sister promoter states as a Markov process, the logarithm of the joint probability distribution,
log p(y, s|0), can be written as

1394

1395

1396

1397
T T

1% log p(y, 516) = log p(s|x) + Y log p(y |5, v,0) + D log p(s|s,_, A). (59)
1399 =1 t=2

Now, we introduce several notations: s' := 1 if and only if s, = i; A(s,,d) := the d'" digit

of the promoter state sequence s, = {z,,z, |, ... Z,_,_y}, Starting from the left end; C_ = 1

if and only if A(s, 1) = z; B, = 1 if and only if the transition s — s’ between the compound
states s and s’ is allowed, which happens when the latest (w — 1) promoter states in the
compound state s match the earliest (w — 1) promoter states of the compound state s’. With

1400 these notations in hand, the terms in Equation 59 can be rewritten as
1401 K® K
1402 log p(s,|m) = Z Z s\ Cy; log 7, (60)
1403 =l =

KW
:Z: log p(y,ls,,v,0) = % ; s; (log A—log2m) — Ay, — V,-(v))z) , 61)
1406
1407 log p(s;|s;_;, A) = Z 2 B,, S 1Ck,C11 log Ay, (62)
1408 i,j=1k,l=1
1409 Here 4 = 1/02 is the Gaussian precision parameter, and V,(v) is the aggregate fluorescence
1410 produced in the w consecutive promoter states of the i'" compound state.

Because of the finite time 7, it takes a single polymerase to transcribe the MS2 se-
quence, the fluorescence contribution of polymerases is weighted at different positions in
the window of w time steps. If we define ny, = 7,5,/A7 as the number of time steps (not
necessarily an integer) necessary for transcribing the MS2 sequence, the mean fraction of
the full MS2 sequence transcribed by a polymerase at the d'" time step of the elongation
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window will be given by

1, if [nys,] <d <w

—(d-1)% .
k(d) =4d — nyg + MS;,,—SZs if (s, ] < d < [nys; |
d-1/2

) if1<d < |nys]
nms2

where [nys,] and |ny, | are the ceiling and the floor of ny,q,, respectively. The dependence of
the weighting function x(d) on the position for a specific choice of parameters is illustrated
in Appendix 3-Figure 2.

K(d) &
1

oL

1 d
e T D
5) 3

Appendix 3 Figure 2. The weighting function x(d) evaluated at different positions along the genome.
The dashed line represents the fraction of the MS2 loops transcribed at a given position. Parameters

used for plotting: z.,,, = 100 S€C, 75, = 50 SEC, A7 = 20 SEC, W = Teion, /AT = 5, nyisy = Tysa /AT = 2.5.

Accounting for the weighted fluorescence contribution of polymerases, the aggregate
fluorescence V,(v) becomes

V@)= F.v, (63)

where the it" row of the K% x K matrix F is the number of times each promoter state is
present in the i compound state, weighted by the position-dependent function «(d). For
example, if we consider a promoter with K = 3 states and memory w = 5, then the row of F
corresponding to the compound state s = {1, 1, 3,2, 3} will be [x(1) + x(2), k(4), «(3) + k(5)].

Having all the pieces of the logarithm of the joint probability distribution, log p(y, s|0), we
obtain a final expression for the objective function, namely,

K" K
LO1y.0,) = Z Z(Si])Cki log 7,
i=1 k=1
T Kll7

+= 22@) log 4 — log(2x) — Ay, — F,,v)?)

t=1 i=1

K% K
Z Y By(sis]_)CuCy;log Ay (64)
i,j=1 k,il=1

||M~]

Here (s!) and (sis/_ 1) are the expectation coefficients at the k" step of the EM algorithm
defined as

i p(s1y, 6, (65)

=Y

$={51,50,...57 }

<ttl>_ Z

§={51,50,...,57}

s's’_ p(s|y. 6,). (66)

Using the current estimate of the model parameters, ,, the expectation coefficients (s
and (sjsf_l) are calculated using the forward-backward algorithm. From the definitions in

40 of 69


https://doi.org/10.1101/335919
http://creativecommons.org/licenses/by/4.0/

1aas

bioRxiv preprint doi: https: //d0| org/10 1101/335919 thls version posted June 20, 2019. The copyrlght holder for this preprlnt (which was not
eIl

Manuscrlpt submltted to bIORXIV

1448 Equation 65 and Equation 66, we obtain

1449 . : A : A

()=, Sp(s1s 857100 = Y s plsiy. 6)), (67)
51550000, ST 5

4 i iJ A i A

141 (s;s] ) = z 887 (81 83,500 571y, 6p) = Z sis! p(s;, 8,41y, 6,). (68)

1452 515505008 84,841

Following the conventional implementation of the forward-backward algorithm (cf.
Bishop (2006), Chapter 13), we use the Markov property of the promoter state dynamics,
together with the sum and products rules of probability, to write

a,(s)B,(s,)

p(s, |y, ék) ==~ (69)
p(y16,)
(5,105, 1y,00) = 5= 1520 Py, 15, 0,) pCs, 15,1, 0, )ﬁ,(S,) (70)
Py 6)
1453 (D) = p(Yys e Vo 5, = 1] 6,), (71)
BiD) = pGye1s - Vrls, = 1,0, (72)
1456 Here «,(i) is the joint probability of observing the fluorescence emission values in the firstz
1457 steps and being at the i'" compound state at step 7; while g,(i) is the conditional probability
1458 of observing fluorescence values from the time point (¢ + 1) till the end of the series, given
1459 that the compound state at time ¢ is i. Note that « and g can be treated as K% x T matrices,
1460 where each column is a vector of length K*, accounting for the K* possible values of i in
1461 Equation 71 and Equation 72. We evaluate the elements of « and § matrices recursively as
1462 KW
&) = pls, =1.60) X a1 () pCs, = ils,y = 1.6, (73)
1464 j=1
1465 K . .
B =D B (D PGt I8,1 = 7200 p(s,y = jls, =i, 0)). (74)
j=1

1467
The boundary values for a,(i) and g,(i) at the first and last columns of « and g matrices,

respectively, are given by

1468

1469

(i) = pyIs, = .6 p(s; = il 6), (75)
1471

1 Br(@) =1, (76)
1473 where the first follows from the definition of «,(i), and the second is obtained from Equa-
1474 tion 69 by setting r = T. Having evaluated the a« and g matrices, the likelihood p(y| ék) that
1475 appears in the denominator of Equation 69 and Equation 70 can be found by settingr =T
1476 in Equation 69 and summing over s;, namely,

1477 @ e

< > plsrly, 9,)) P10 = p16) = Y ar(sy). (77)
1479 sp=1 sp=1

1480 With the probabilities p(s,|y, 6,) and p(s, ;. s,|y.6,) known, the expectation coefficients
1481 follow directly from Equation 67 and Equation 68.

The optimal model parameters in the (k + 1) step of the EM algorithm are obtained
by maximizing the objective function £(@y.8,) in Equation 64 with respect to {x,v, A, A},
subject to the probability constraints Zle 7, = 1 and Zle A, =1,1<1<K. The update
equations for the model parameters are found as

Kw .
o (8 )C s
initial state probabilities: #, = L= (51)

[ Ry oo —— (78)
ZkK=1 Z,Iil <sl1 )Cki
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fluorescence emission rates: & = M~'b, where (79)

T K%

DI N - (80)

t=1 i=1

R
= DUy Fim (81)

t=1 i=1

T 15 g A
. o 2y (S, = F .0
noise: 1 =62 = Lo Z”T1< ’>K,,,' e (82)
'l :E:t 1 :E:, 1 < l)
21 |sz ]B,J(si - 1> i Cnj
Zk 1Zx 121, 1 Bijsis,_ 1>th nj

transition probabilities: 4, = (83)

Pooled inference on multiple traces

Since the information available in a single MS2 fluorescence trace is not sufficient for the
accurate inference of underlying model parameters, we perform a pooled EM inference
assuming that the traces are statistically independent and governed by the same parameters.
If y,.» are N different fluorescence traces with corresponding trace lengths T;., and s,.
are the hidden compound state sequences corresponding to each trace, we obtain

N

P31 51810 = [ 29,0 5,10), (84)

n=1

P8, 1Y1:n000) = p(5,1¥,,0,), 1<n<N. (85)

Therefore, the objective function £(6 |y,. .6,) maximized at each EM iterations takes the
form

LOly;.n.00) = Z P(s1 1Y 1:n- 0010 Py, 1:v16)

S1.85S N

N
= . . p(s,lyiin 00 log p(y,..5,10)

n=1 s,

N
= 2 D ps,ly, 0 10g p(y,. 5,10)

n=1 s,

L,61y,,86)). (86)

]
M-

From the above equation, we recognize that the objective function for the pooled infer-
ence is the sum of objective functions written for each individual trace. Using the expression
for the single-trace objective function obtained earlier (Equation 64), we find

w

=

K
LO|y;.n-0 Z(Si (n)Cy, log

=il
N T, K%
XD Y (sim) (log 4 - log(2x) — Ay, (m) = F,.v)?)
n=1 t=1 i=1

. g

Y N ¢
> Y By(sims]_ (m)C,Cylog Ay, (87)

k=1

Mz

1 i=1

3
I

de
0| =

+

M=

1

n

=1 i,j=

where (si(n)) and (s;’(n)sj_l(n)) are now the expectation coefficients obtained for the n™
fluorescence trace via the forward-backward algorithm, and y,(n) is the fluorescence at time

42 of 69


https://doi.org/10.1101/335919
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi. org/10 1101/335919 thls version posted June 20, 2019. The copyrlght holder for this preprlnt (which was not
ell

Manuscrlpt submltted to b|0RX|v

step ¢ in the n™ trace. The update equations are then derived analogous to the single-trace
case, with an additional summation performed over all traces, namely,

S IK (s (h)C,,

1503 initi ilitiac: #
- initial state probabilities: 7, ZkK:, 2,1:1:1 2,.’:'<s1(h)>ck,.’ (88)
1505 fluorescence emission rates: # = M~'b, where (89)
1506 N T, K©
1507 Z z Z(S (W) Fry Fips (90)
1508 h=1 =1 i=1
N T, K%

. =;§m@mmmm, (91
1o Zn T T (i) (h) = F, 0P
1512 noise: 1 =6 = ZN ZT" ZKW( ) (92)
1513 i ol 1
o transition probabilities: A, = KZHNZ 1 Zim By WICuCy . (93)
1515 Zk:l zh:l Z Z,, 1 Bij<s,(h)s,_1(h)>cki nj
1516 Execution of the mHMM method

Execution of the mHMM method starts by initializing the model parameters. = and each
s column of A, both of which are vectors of size K, are initialized by randomly sampling from
e a Dirichlet distribution given by
1519
1520 ( u ) K
o oy 15 (94)
1522 Hk lr(uk) L
1523 The Dirichlet distribution parameters u, are all set equal to one, which makes each initial
1524 promoter state equally likely to be occupied, and equally likely to be transitioned into.
1525 To initialize the fluorescence emission rates, r, and the Gaussian precision parameter,
1526 A = 1/02, we first treat the fluorescence data y,., as identical and independently distributed
1527 (i.i.d.) and use a simplified time-independent EM algorithm to find their optimal values (cf.
1528 Bishop (2006), Chapter 13). We initialize the highest emission rate by randomly choosing a
1529 value between 70% and 130% of the highest emission rate inferred by the i.i.d. approach.
1530 The lowest emission rate is initialized to 0 because of the apparent silent periods in the
1531 activity traces. The remaining (K — 2) emission rates are initialized by choosing random
1532 values between 0 and the highest emission rate. Finally, we initialize the Gaussian noise
1533 o by randomly choosing a value between 50% and 200% of the noise inferred by the i.i.d.
1534 approach.
1535 After initializing the model parameters, we iterate between the expectation and max-
1536 imization steps of the EM algorithm until the relative changes in the Euclidean norms of
1537 the model parameters after consecutive iterations become smaller than e = 10~* or the
1538 number of iterations exceeds 500. Because EM approaches typically infer locally optimal
1539 parameter values, the algorithm is run on the same dataset using multiple randomly chosen
1540 initial parameters (10-20 in our implementations), and the globally optimal set of values is
1541 chosen in the end. In the Matlab implementation of the EM algorithm, the variables are
1542 all stored in logarithmic forms to avoid overflow and underflow issues, which could occur
1543 when recursively evaluating the elements of the « and g matrices. Also, special care is taken
1544 when accounting for time points less than the elongation time, i.e. ¢ < w, in which case the
1545 compound state is a collection of not w, but r promoter states, i.e. s, = {z,,z,_{, ... 2, }.
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1546 Because of the exponential scaling of the model complexity with the integer memory
1547 window (w = 7 for the eve construct with Az = 20 sec data sampling resolution), significant
1548 computational resources were used when conducting inference on simulated and experi-
1549 mental data. It took approximately 2 hours to conduct 25 mHMM inferences with different
1550 initialization conditions on a machine with 24 CPU cores. Users of the mHMM method are
1551 advised to have this metric as a reference when estimating the computational cost of their
1552 inference.

1553 Windowed mHMM

1554 To investigate temporal trends in bursting parameters, we extended the mHMM method to
1555 allow for a sliding window inference approach. From a technical perspective, this required a
1556 revision of the inference formalism to be compatible with fragments of fluorescent traces in
1557 which the beginning of the trace (initial rise in y, from ¢ = 1) was not included.

To that end, we modified the first term in Equation 59 to allow for all possible promoter
state sequences that could lead to the observation of the first fluorescence measurement in
the chosen time window ([T}, T,]), namely,

T, T,
108 P(Y7, .7,» S7,:7,10) = log p(sy, |21 =+D, A) + 3 log p(y,Is,. 7, 0) + Y logp(s,s,;, A),  (95)

1558 = =
T
log p(sy, |wT1=*D, A) =log  p(zy, |2 ™) [] pzlz . A)
1560 =T —w+2
1561 K% K K%Y w
1562 = Z Z s"Tl DY log zT1=+ 4 Z Z Z sTlD "D log Ay, (96)
i=1 n=1 i=1 d=2 k,I=1
1563
1564 Here z"i-w+D is the probability distribution of the earliest promoter state that still has an
1565 impact on the observation of the first measurement in the sliding window, and D¢, is an
1566 indicator variable which takes the value 1 only if the promoter state in the d'" position of the

1567 i" compound state is n.

The modified expression for the joint probability distribution does not change the func-
tional form of the equations used for calculating the expectation coefficients. Maximization
equations for the emission rates and the noise also remain intact. Only the maximization
equation for the transition probabilities is revised from Equation 83 into

1568

1569

1570

1571

1572 R Zt 2 2” 1Bu(s C,iCy; + Zl ; Zd 2(ST1 )Dd._lDdl. log A,,, ©7)
1573 mn Kw Kw B 0

Zk lzt =T Zu 1 Biysis, 1>Ckrcru +Zk 1 Zimt Dm z<s YD; Dy log Ay,
1574
1575 We make a steady-state assumption within the sliding window and choose z7i=#*+D to be the
1576 stationary distribution of the current transition probability matrix, i.e. A z@i-w+D = g@i-w+h),
1577 We therefore use the current estimate of A to evaluate zTi-#*D at each EM iteration, instead
1578 of performing a maximization step.
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Appendix 4

Statistical validation of mMHMM

We validated mHMM for the three-state (K = 3) architecture schematically illustrated in
Appendix 4-Figure 1A by generating synthetic trajectories of effective promoter states using
the Gillespie algorithm (Gillespie, 1976) and adding Gaussian noise to the resulting activity
traces. Parameters in Appendix 4-Table 1 were used for data generation. Pooled infer-
ences were conducted on 20 independent datasets, each containing 9,000 data points,
representative of the number of experimental data points in a central stripe region. The
top panel of Appendix 4-Figure 1B shows the kinetic architecture used to simulate the
promoter trajectory in Appendix 4-Figure 1C (yellow) as it switches through the multiple
possible states. This promoter trajectory leads to the simulated trace of the number of RNA
polymerase molecules actively transcribing the gene in Appendix 4-Figure 1D (red). Using
mHMM, we found the best fitted path for our observable (Appendix 4-Figure 1D, black) and
the corresponding most likely promoter state trajectory (Appendix 4-Figure 1C, blue).

A memory window (W = Tgjong / At)

=& & xr x| o= o= =
promoter
= | e @ @ @ | ol 2xE
0 1 2 1 1 0

RNAP W SNC N SN SN
loaded
number |
of RNAP [
molecules 1
time step
B ground truth cC g
1.2 0.72 :Zj ‘f
0o~ . g8’
L 42 1,=023 °§
=0.83 4= 0.50 50"
. o
- inference . D < 60f S ——
I /ON ¥ o 40: — inference
0 Y—_— 1 Ve 2 ?5 8 r
N 726 39 1,=025 83 20|
=082 =052 EE 1
0.01 2 Ok : ' l _
2 5 5 10 15 20 22 0
55 time (min)

Appendix 4 Figure 1. Statistical validation of mMHMM. (A) Three-state mHMM architecture where
ON and OFF promoter states on each sister chromatid result in an effective three-state model. The
trajectory of effective promoter states over the memory time window given by the elongation time
dictates the number of RNA polymerase molecules loaded onto the gene. (B) Flow diagrams of
promoter states and transition rates for the true parameters used to simulate trajectories (top) and
corresponding average inference results obtained from 20 independent datasets (bottom). The area of
each state circle is proportional to the relative state occupancy, and the thickness of the arrows is
proportional to the transition rates. Dashed lines correspond to inferred transitions with very slow rates
that were absent in the simulation. Rates are in min~! and dwell times are in min. Error bars for the
mean inferred parameters are shown in Appendix 4-Figure 2. (C) Sample simulated promoter activity
trace (yellow) generated using the parameters in (B), overlaid with the best fitted trace (blue) obtained
using the Viterbi algorithm (Viterbi, 1967). (D) Simulated and best fitted observable number of RNA
polymerase molecules corresponding to the promoter trajectory shown in (C).

Appendix 4 Table 1. Parameter values used for generating synthetic datasets in the statistical
validation of the model. In order to perform this validation, we chose parameters that approximated
those obtained through the mHMM inference on experimental data shown in Figure 5.
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1612

1613

1614

1615

1616

1617

1618
1619
1620
1621
1622
1623

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

Parameter ‘ Value

Promoter switching rates (ky;, ko, k12, koy) | (1.2, 1.26, 0.72, 4.2) min~!
RNAP initiation rates (r,, r;, r,) (0, 18.5, 46) RNAP/min
Measurement noise (o) 4.5 RNAP

RNAP elongation time (z,;,,) 140 sec

Data sampling resolution (A7) 20 sec

Memory Window (w = 7., /A7) 7

MS2 loop transcription time (zy,) 30 sec

Duration of each trace 30 min

Number of time points per dataset 9,000

Number of traces per dataset 100

Number of independent datasets 20

As shown in Appendix 4-Figure 1B and Appendix 4-Figure 2, comparison of the simu-

lated and inferred parameters indicates that we reliably recovered the parameters used to
generate our simulated data with high precision. We accurately inferred transition rates,
dwell times, fraction of time spent in each state, and the rates of RNA polymerase loading
over 20 independent datasets of simulated traces.

A B c D
5FT ¥ T T T — 1 T 05 ~ BOfT
O simulation - <
4| m inference 1 I IS £ 40l
£ E ~038 ] @ 04 = 40
= E £ 2
o3 1 So6f 2 0.3} £ 307
c £ . = 2
§2f =04} 502 g 20)
= [ c o
2410 a 2 2 a
g Q 02 801 <
L - (2
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D @ 1 1 © @ 0o 1 0
oy or v vy
100 0 O

Appendix 4 Figure 2. Inference statistics for the mHMM validation. The true and inferred values
of (A) transition rates, (B) dwell times in states, (C) state occupancies, and (D) RNA polymerase loading
rates are compared. Statistics on the inferred values are obtained from 20 independently generated
datasets. (Error bars indicate one standard deviation calculated across these 20 independent
replicates).

Validation details

We used the relation between the transition rate matrix, R, and the inferred transition
probability matrix, A, defined in Appendix 3 to obtain estimates of the transition rates,
namely,

— _RA7T
A =e77,

1
R, = (E logA)ij .

(98)
(99)

Here, the exponential and logarithm operations act on matrices RAz and A, respectively.
Occasionally, taking the matrix logarithm of the transition probability matrix A yielded small
negative values for transition rates between states (0) and (2), which were originally zero
during data generation. In those cases, we assigned them a 0 value to keep them physically
admissible.
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1637 Continuous vs. Poisson promoter loading
1638 To demonstrate the validity of our choice to use continuous RNA polymerase initiation
1639 rates in the transcription model (Appendix 3), we repurposed our simulation to, instead
1640 of considering a constant rate of RNA polymerase loading, explicitly account for individual
1641 RNA polymerase loading events when generating the traces. We assumed that individual
1642 polymerase molecules traverse at a constant elongation rate (v,,,, = 46 bp/sec, Appendix 9)
1643 and that their arrival to the promoter region has a Poisson waiting time distribution, provided
1644 that the promoter is cleared from the previous polymerase molecule which has a finite
1645 footprint size of Iyyap = 50 bp (Rice et al., 1993). This led to a two-step model for the process
1646 of RNA polymerase initiation, with Poisson-distributed wait times for the recruitment of RNA
1647 polymerase to the promoter followed by a finite wait period as the RNA polymerase cleared
1648 the promoter—a process taken to be approximately deterministic. With this information in
1640 hand, we expressed the mean loading time of RNA polymerase at a single promoter (r;') as
1650 the sum of the mean time of polymerase arrival at an empty promoter, (z, ..., and the time
1651 required to clear it after arrival, l‘“lﬂ that is,
1652 o
L o i) + 02 (100)
1664 4 clong
1655 Having the values of r|, Igyap, @Nd v, We found (7., ) @and used it in simulating the arrival
1656 events of individual polymerases.
1657 We performed inference on these simulated traces using mHMM with the objective of
1658 determining whether a Poisson loading rate had an effect on the obtained parameters. As
1659 shown in Appendix 4-Figure 3, when the data is generated using Poisson RNA polymerase
1660 loading, mHMM slightly overestimates the high transition rate, but otherwise manages to
1661 accurately recover the model parameters. This therefore justifies our modeling approach
1662 of assigning continuous RNA polymerase initiation rates to each promoter state, instead of
1663 explicitly modeling the recruitment of individual polymerases.
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1665 Appendix 4 Figure 3. Validation of mMHMM on Poisson RNA polymerase loading data. (A)
1666 Transition rates, (B) state occupancies and (C) RNA polymerase loading rates inferred from 15
1667 independently generated datasets assuming Poisson loading of RNA polymerase. (Error bars represent
1668 one standard deviation calculated across these 15 independent replicates.)
1670 Sensitivity of mHMM to data sampling resolution

In our mHMM framework, we modeled the stochastic transitions between effective promoter
states using a discrete time Markov chain model which assumes that the state of the
promoter remains constant during the experimental time step (Az), and that transitions
to the next promoter state can occur only at the end of each step. This means that, if
the fastest promoter switching rate is greater than the data sampling rate (1/Az), our
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1674

1675

1676 model might be unable to capture all those transitions. To study this possible limitation of
1677 mHMM, we conducted inference on synthetic activity traces generated with varying sampling
1678 rates. Since the system memory (w = 7,,,/A7) needs to be an integer, we varied w in the
1679 [3,7] range, correspondingly changing the sampling resolution from low (z,y,,, /3 ~ 46s) to
1680 high (z,,,,/7 = 20s). We used the values in Appendix 4-Table 1 for the remaining model
1681 parameters.
1682 Appendix 4-Figure 4 summarizes the findings of this study. As expected, the accuracy of
1683 inference improves with increasing data sampling rate, and inference results get very close
1684 to the ground truth values when the highest sampling rate (1/20 sec = 0.05s7!) becomes
1685 comparable to the fastest transition rate (0.07s~!). Except for the fastest transition rate,
1686 all other rates are inferred accurately for the whole spectrum of sampling resolutions
1687 (Appendix 4-Figure 4A). The accuracy of inferred state occupancies is also remarkably high,
1688 making it robust to variations in the data sampling rate (Appendix 4-Figure 4B). The high
1689 RNA polymerase loading rate tends to be underestimated for slower sampling resolutions,
1690 which is reasonable since the chances of promoter leaving state (2) during a single time
1691 step become greater, effectively reducing the net rate of loaded RNAP molecules per time
1692 step (Appendix 4-Figure 4C). Generally, we find the inference of model parameters to be
1693 reasonably accurate for the entire spectrum of experimentally realizable data sampling
1694 rates, and highly accurate when the timescale of the fastest transition and data sampling
1695 are comparable.
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1697 Appendix 4 Figure 4. Sensitivity of mHMM to data sampling resolution. (A) Transition rates, (B)
1698 state occupancies and (C) RNA polymerase loading rates inferred from datasets generated with varying
1699 time resolutions. Transparent circles represent averages over 20 independently generated samples.
1700 The increasing size of the blue circles corresponds to higher data sampling resolutions (largest: 20s,
1702 smallest: 46s).
1703 Performance of mHMM in different kinetic regimes
1704 Thus far, the validation of mMHMM was performed on datasets that were generated using
1705 parameters similar to those inferred for the eve promoter. These parameters have charac-
1706 teristic low ON rates (ko,, k;,) and a high OFF rate (k,,), where “low" and “high” are relative
1707 to the data sampling frequency, which for our experimental setup is 3/min. To assess the
1708 utility of our inference method for a generic choice of model parameters, we performed
1709 additional inference studies in three different parameter regimes: low ON rates and low OFF
1710 rates (Appendix 4-Figure 5A-C), high ON rates and low OFF rates (Appendix 4-Figure 5D-F),
1711 and high ON rates and high OFF rates (Appendix 4-Figure 5G-I).

As expected, the inference is the most accurate when the data sampling frequency is
greater than the transition rates (Appendix 4-Figure 5A-C), in which case multiple transitions
within a single time frame occur only rarely, making our discrete Markovian representation
of the state dynamics a valid approximation. The largest deviations of the inferred model
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1714

1715

1716 parameters from their ground truth values occur when the ON rates are high and the OFF
1717 rates are low (Appendix 4-Figure 5D-F). Since the promoter rarely remains in the lower
1718 initiation states (0 or 1) for the entire duration of a frame and tends to rapidly transfer into a
1719 higher initiation state (1 or 2, respectively), the rates of RNA polymerase loading for states
1720 0 and 1 are significantly overestimated (Appendix 4-Figure 5F). Despite the inaccuracies
1721 in estimating the RNA polymerase loading rates, all transition rates, with the exception of
1722 ko, are inferred with a high accuracy (Appendix 4-Figure 5D). Remarkably, the deviations
1723 caused by the high ON rates get substantially suppressed when the OFF rates are also made
1724 comparably high (Appendix 3-Figure 5G-1). This can be thought of as a consequence of an
1725 effective counterbalancing between unwanted ON and OFF transitions within a single time
1726 frame.

1727 Overall, these additional studies, together with the statistical validation studies discussed
1728 earlier (Appendix 4-Figure 2), elucidate the domain of applicability of mMHMM: the method
1729 performs accurate inference when the ON/OFF transition rates are respectively slow/slow,
1730 slow/high, or high/high; and is not successful in accurately inferring some of the model
1731 parameters when the ON rates are high, but the OFF rates are low. We hope that these
1732 characteristics of the method will be useful in informing the design of promoter architectures
1733 and new experiments.
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1735 Appendix 4 Figure 5. Study of mHMM performance for different choices of the ON/OFF
1736 transition rates Comparison of inference performance for different ON/OFF rates using a data
1737 sampling frequency of 3/min. (A-C) low/low, (D-F) high/low, (G-1) high/high. The statistics of inferred
1738 model parameter values is obtained from 20 independent datasets. (Error bars indicate one standard
1730 deviation calculated across these 20 independent replicates.)
1741 Windowed mHMM
1742 To check that our windowed mHMM was capable of fitting time-varying data, we conducted
1743 statistical validation using simulated traces exhibiting various time-dependent trends in the
1744 bursting parameters. We studied three scenarios that mimicked ways in which bursting
1745 parameters could, in principle, be modulated to drive the onset of transcriptional quiescence:
1746 a decrease in k,, over time, an increase in k., and a decrease in r. We also studied the case
1747 of increasing k,,, as this was the strongest temporal trend observed in our experimental
1748 data. Appendix 4-Figure 6 summarizes the results for these validation tests.

For each test, 100 simulated traces, 40 minutes in length, were generated (Az =20 s) that
exhibited the desired parameter trends. Consistent with our approach to the experimental
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1751 data, a sliding window of 15 minutes was used for inference, meaning that for each inference
1752 time, 7., all data points within 7.5 minutes of z,; were included in the inference. This led to
1753 inference groups consisting of 4500 data points, with the exception of the first and last time
1754 points, each of which had 3700 data points (first and last w + 1 points were excluded from
1755 inference). Transition and initiation rates shown in Appendix 4-Figure 6 are associated with
1756 state (1) of the three-state model (k,, = ko, /2, kosy = ko and r = r, in Appendix 5-Figure 2A),
1757 as these were found to provide the most faithful indication of underlying system trends.
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1759 Appendix 4 Figure 6. Validation of windowed mHMM inference. The method's accuracy was tested
1760 for four distinct sets of parameter time trends. Results for each scenario are organized by column. In
1761 each plot, the black dashed line indicates the true parameter value as a function of time. Connected
1762 points (outlined in black) indicate the median inferred parameter value at each time point across 10
1763 distinct replicates. Translucent points indicate inference values from individual replicates. Thus, the
1768 dispersion of these replicates at a given time point indicates the precision of the inference.
1766 For each scenario, we assessed whether and to what degree the windowed mHMM
1767 method could accurately recover the temporal profiles. In general, the method was found to
1768 perform quite well within the parameter regimes that were tested. For both the increasing
1769 and decreasing k,, scenarios (Appendix 4-Figure 6A-C,D-E), windowed mHMM inference
1770 accurately captured the modulation in k_, with no significant variation evident in the r and
1771 ko trends. In the case of increasing ks (Appendix 4-Figure 6G-), we observed deviations
1772 in k,, and r from their true values at the inflection point of the k. curve (around 30 min).
1773 However, the deviation in r is relatively mild and the “blip” in k,, while of larger magnitude,
1774 is comprised of only two time points and so would likely not be mistaken for a legitimate
1775 indication of underlying system behavior. In the case of a decrease in the initiation rate
1776 (Appendix 4-Figure 6J-L) we observe a ~ 5 min delay in the model response. We attribute
1777 this delay to the finite dwell time of RNA polymerase molecules on the gene (in this case
1778 Taong =140 sec, although further studies will be needed to determine why the observed lag
1779 appears larger than the elongation time). In addition, we note a degradation in the precision
1780 of the inference of k,, and k., at low r (RHS of Appendix 4-Figure 6, K).

Overall, we conclude that the windowed mHMM method is capable of accurately inferring
time-resolved parameter values. An important caveat to these results is that the size of
the sliding window (15 min in this case) places an inherent limit on the time scales of the
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1784 parameter trends the model is capable of inferring. Changes that occur on shorter time
1785 scales will be registered, but the temporal averaging introduced by the sliding window will
1786 lead to underestimates of the rate of the parameter changes in the underlying system.
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1787 Appendix 5

1788 Sister chromatids
1789 Detection of sister chromatid appearance
1811 Previous studies have indicated that the D.
1812 A 0.25 melanogaster genome is quickly replicated at
1813 © | [ unresolved 1 the beginning of each nuclear cycle in early
1814 0.2 | Mresolved 0,88 development (Rabinowitz, 1941; Shermoen
-~ ©
1815 015 5 et al., 2010) , suggesting that each diffraction-
1816 g 062 limited spot in our imaging data likely con-
=4 -
1817 ® 041 042 tains two distinct eve loci. We sought use our
1818 0.05 3 live imaging data to verify whether genome
1819 ' 02 replication occurred early enough in the nu-
1820 0 0 clear cycle such that the presence of the repli-
5 15 25 35 45 :
1821 minutes cated promoters would have to be taken into
1822 account. While the two eve loci are located
1823 B within a diffraction-limited spot for the ma-
1824 015 jority of frames in our data, there are a sub-
1825 ] ' set of frames in which two distinct puncta
1826 § o1 can be clearly observed due to fluctuations in
1827 2 i the separation between chromatids (see Fig-
o
1828 B 0.05 ure 4D). We reasoned that, by tracking the fre-
1829 = quency of frames with resolved puncta over
1830 o time, we could ascertain how the timing of
1831 5 15 25 35 45 genome replication compares to the onset
inut o o
1838 . . m'_nu e_s . of transcription. If replication precedes the
1791 Appendix 5 Figure 1. Live imaging data t of t ioti then the fracti f
153 indicate timing of sister chromatid OESS E1 Wi, LE) SIS LieEael) ©
1534 appearance. (A) Distribution of observation resolved frames should be relatively stable
1298 times for frames in which chromatids were over for the duration of eve expression in nu-
139 resolveable (red) and diffraction-limited (blue). clear cycle 14. If, on the other hand, replica-
1637 2EI5 EHEE oz [Piei2E i1 Gl e tion happens after the onset of transcription,
1797 function. Lines indicate cumulative density o ) .
1538 function. Data indicate the presence of we should see a significant increase in the
1938 chromatids by no later than 7-8 minutes into frequency of resolved sister chromatids over
1800 nuclear cycle 14. (B) Fraction of frames time as development progresses.
1801 featuring resolved chromatids as a function of To pursue this question, we randomly se-
1802 time. Trend suggests replication of relevant o .
: . lected snapshots of transcriptional loci in 100
1803 portion of genome across all observed nuclei is i ;
1804 completed by approximately 10 minutes into different nuclei for each of the 11 embryos
1805 nuclear cycle 14. Inititial lag is likely used in this study. We then determined the
1806 attributable—at least in part—to stochastic fraction of these sampled snapshots in which
1807 turn-on times between S|stgr eve loci and lower two distinct puncta were clearly visible by
1808 fluorescence levels early on in the nuclear cycle.

eye and observed how these instances of re-
1810 solved chromatids were distributed in time.
As indicated in Appendix 5-Figure 1A, we see

evidence for resolved puncta by around 7 minutes into nuclear cycle 14. This is well within

the average range for turn-on times observed throughout the stripe (see Figure 3-Figure
Supplement 2B). Our results indicate that, at the very least, the genomic region containing

our eve stripe 2 reporter is replicated within some nuclei by 6-8 minutes into nuclear cycle 14.
Appendix 5-Figure 1B tracks the share of total observations for which we detected resolved

puncta as a function of time. A systematic delay in DNA replication would be expected
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1854

1855

1856 to result in a progressive increase in this metric over time. However, such a trend is not
1857 evident. While we see no resolved sister loci between 4 and 8 minutes (first point in the
1858 plot in Appendix 5-Figure 1B), this absence could be attributed to other factors at play early
1859 on in nuclear cycle 14. For example, part of this apparent lag could be attributable to the
1860 fact that loci are, on average, dimmer early on in the nuclear cycle, which could mask the
1861 presence of two eve loci by reducing the probability of both producing observable amounts
1862 of fluorescence at the same time. It is also possible that the precise timing of locus turn-on
1863 varies for each sister locus, as it does for loci in different nuclei. Regardless, even if the initial
1864 rise between 6 and 10 minutes in Appendix 5-Figure 1B is reflective of the replication of
1865 the locus during this period of time, the relative stability of the frequency of resolved loci
1866 from 10 minutes onward indicates that this process is restricted to the first few minutes of
1867 transcription. Additional experiments are needed to further elucidate the interplay between
1868 DNA replication and the onset of transcription. Regardless, the examination of our live
1869 imaging data supports the conclusion that the majority of our data consist of diffraction
1870 limited spots containing two distinct eve loci.

1871 Probing for interactions between sister chromatids

1890 If each fluorescent punctum contains two pro-

1891 100s moters (Figure 4D), then it is necessary to
1892 ..l'. revisit the widely used two-state model of

1893 transcriptional bursting. In this revised sce-

1894 nario, each promoter on one of the sister
1895 ?hsrt:rrnatlds chromatids undergoes fast ON/OFF switch-
1896 8 nu";?:,;ﬂi;iﬁve transcriptional state e — ing. Therefore, each spot (encompassing two
1897 identical loci) can be in one of three states:
1898 . %é’} (0) both promoters OFF, (1) one promoter
1899 <& ﬁ) ON and the other OFF, and (2) both promot-
1900 1 - ers ON (Appendix 5-Figure 2B). States (1) and
1901 (ﬁ %9 (2) are expected to exhibit different rates of
1902 - % ﬁ RNA polymerase Io'adlng, r, and rz,. respec-
1903 tively. See Appendix 1 and Appendix 3 and
1904 c for details regarding the implementation of
1905 e Oksx,  thisthree-state model.

° Ok, /k, The presence of two transcriptional loci

! O, within each fluorescent punctum suggests

three constraints on the relationship between
bursting parameters in the model shown in
Appendix 5-Figure 2A. First, if these two pro-

parameter ratio
w

e e o . 2 e moters transcribe independently, then state
1872 g % e’“b“::”g‘“) bined (2) will have double the loading rate of state
1873 Appendix 5 Figure 2. Probing combine _ ;
1874 transcription of sister chromatids. (A) F” such that r, = 2r,. Secor?c.l, the er)babll-
s Revised three-state model of promoter ity of both promoters transitioning simulta-
1876 switching within a fluorescent punctum that neously should be negligible; we expect no
1877 accounts for the combined action of both sister transitions between states (0) and (2) such
1878 chromatids. (B) Summary of bursting that k,, = k,, = 0. Finally, if the promoters
1879 parameter ratios. All three bursting parameter switch between their states in an indepen-
1880 ratios deviate from their expected values under .
. the independence assumption given by the dent manner, then there will be an extra con-
1882 horizontal dashed line. (Error bars indicate straint on their transitions rates. For example,
1883 magnitude of difference between first and third there are two paths to transition from (0) to
1884 quartiles of MHMM inference results for (1) as either promoter can turn on in this case.
1885 bootstrap samples of experimental data over
1886 multiple embryos. See Materials and Methods
1888 for details )
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1921

1922

1923 However, there is only one possible trajectory
1924 from (1) to (2) because only one promoter has
1925 to turn on. This condition sets the constraint
1926 ko, = 2k,,. Similarly, k,, = k,, /2.

1927 While the independence of sister chro-
1928 matids is supported by recent single-molecule FISH experiments (Little et al., 2011; Zoller
1929 et al., 2018), classic electron microscopy work suggests a scenario in which sister chromatids
1930 are tightly correlated in their transcriptional activity (McKnight and Miller, 1977, 1979). Given
1931 this uncertainty regarding chromatid independence, we elected to employ a general three-
1932 state model that makes no assumptions about the nature and strength of sister chromatid
1933 interactions. In addition to permitting greater flexibility, this agnostic approach also meant
1934 that the structure of the kinetic model returned by mHMM inference provided clues re-
1935 garding the nature of the coupling between sister loci. Specifically, we examined the ratios
1936 between the high and low on rates (k,, and k,,), off rates (k,, and k,,), and initiation rates (r,
1937 and r,). A deviation from these expectations would indicate either that the two sister loci do
1938 not initiate RNA polymerase independently (first constraint), or that they do not transition
1939 between activity states independently (second and third constraint).

1940 Overall, our results suggest that the two loci are coupled to a nontrivial degree. We
1041 observe that the rate of initiation for the high state, r,(x), (corresponding to two active
1942 promoters) is consistently greater than twice the middle state, r,(x) (Appendix 5-Figure 2B,
1943 bliue). This trend suggests some sort of synergy in the RNA polymerase initiation dynamics
1944 of the sister promoters. Even more strikingly, we observe that the rate of switching from
1945 (2) to (1), k,y, is much higher than twice the rate of switching from (1) to (0), k,,, (Appendix 5-
1946 Figure 2C, red). This indicates that each promoter is more likely to switch off when its
1947 sister locus is also active. This anti-correlation is consistent with some form of competition
1948 between the loci, a scenario that could arise, for instance, if local concentrations of activating
1949 TFs are limiting. In addition, we observe substantial variation in the relationship between
1950 the high and low on rates (k,, and k,,, respectively), ranging from one of near equality in the
1951 anterior flank to nearly the 2-to-1 ratio that would be expected of independent loci in the
1952 stripe center and posterior (Appendix 5-Figure 2C, green). Finally, as shown in Appendix 6-
1953 Figure 1, we observe no transitions between the (0) and (2) states, lending support to the
1954 hypothesis that, despite their correlation, our spots do contain two promoters.

1055 Further experiments in which the sister chromatids are labeled in an orthogonal manner
1956 are needed to confirm and elaborate upon these results. One important consideration to
1957 address is the fact that the spatial proximity of the two loci appears to fluctuate significantly
1958 over time. Thus, if (as seems plausible) the strength of the coupling between loci depends in
1959 some way upon the radial separation of the loci, then the results reported here are effectively
1960 an average of time-varying system behavior. Valuable information may be obscured as a
1961 result of this averaging.
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1962 Appendix 6

1963 mHMM inference sensitivities
1964 Full three-state inference results
1965 For the sake of simplicity, we presented our inference results in the main text using an
1966 effective two-state model in which two distinct active transcriptional states were combined
1967 into a single effective ON state (see Figure 4E and F). Here, for completeness, we include
1968 time-averaged and time-resolved inference results for the full three-state model where, as
1969 shown in Appendix 5-Figure 2, (0) corresponds to the state where both promoters are in the
1970 OFF state, (1) indicates the state where either promoter is in the ON state, and (2) represents
1971 the states where both promoters are in the ON state.
1972 As indicated in the main text, the full three-state results (Appendix 6-Figure 1) exhibited
1973 the same trends as were evident in the effective two-state plots (Figure 5). In agreement
1974 with the effective two-state model, the rate of transcript initiation is not modulated to a
1975 significant degree across the stripe (Appendix 6-Figure 1D). Moreover, we once again see
1976 that activation rates, and specifically the rate of switching from OFF to the middle ON rate
1977 (states 0 and 1 in Appendix 6-Figure 1E) are strongly elevated in the stripe center.
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1979 Appendix 6 Figure 1. Full three-state results for time-averaged mHMM inference. (A)
1980 Representative experimental trace along with its best fit and (B) its most likely corresponding promoter
1981 state trajectory. (C) Instantaneous visualization of promoter state in individual cells throughout
1982 development through the false coloring of nuclei by promoter state (colors as in B). (D) The rate of
1983 initiation for each transcriptional state is not significantly modulated along the embryo. (E) Our mHMM
1984 revealed that the transition rate between the OFF (0) and middle ON state (1) is up-regulated in the
1985 stripe center. In contrast, the rates of switching out of the middle and high ON states show little to no
1986 significant AP-dependent modulation. (F) The modulation of the rate of switching from 0 to 1 acts to
1987 increase the fraction of time the promoter spends in the active states in the stripe center. (A, error bars
1988 obtained from estimation of background fluorescent fluctuations, as described in Materials and
1989 Methods and Garcia et al. (2013); D, E, and F, error bars indicate the magnitude of the difference
1990 between the first and third quartiles of mMHMM inference results for bootstrap samples of experimental
1992 data taken across 11 embryos. See Materials and Methods for details.)
1993 Like the time-averaged results, time-resolved inference trends for the full three-state
1904 model agree closely with effective two-state results shown in main text (compare Appendix 6-
1995 Figure 2 to Figure 6D-F). Due to a lack of statistics for state (2), we show only transition rates
1996 into and out of the first active state (middle state in Figure 4E).
A B Cc
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04 i 5
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10 20 30 40 10 20 30 40 10 20 30 40
1997 time (min) time (min) time (min)
1998 Appendix 6 Figure 2. Full three-state results for time-dependent mHMM inference. (A) Transition
1999 rate from transcriptionally inactive state (0) to the first active state (1). Same trends evident as for
2000 effective 2 state model. (B) Transition rate from first on state (1) to OFF state (0). (C) Rate of transcript
2001 initiation in first on state (1) as a function of time. (Error bars indicate the magnitude of the difference
2002 between the first and third quartiles of mMHMM inference results for bootstrap samples of experimental
2003 data taken across 11 embryos. See Materials and Methods for details.)
2005 Two-state inference results
2006 Although the presence of sister chromatids indicated that the three-state model was most
2007 appropriate for the eve stripe 2 system, we wanted to check that our conclusions were
2008 robust to this assumption. To do this, we conducted time-averaged and windowed inference
2009 assuming a simpler, two-state model (see, e.g. Figure 4B). Note that this approach is distinct
2010 from the effective two-state results presented in the main text. There, as outlined in Figure 4D-
2011 F, a three-state model was specified for inference and the results for the two active (ON)
2012 states were aggregated after the fact to simplify the presentation of the results. Conversely,
2013 here, we explicitly conducted inference using a two-state model.

Most of our findings remained unchanged in the context of the two-state model. Consis-
tent with the three-state case, the two-state time-averaged mHMM inference indicated that
the fraction of time spent in an active state, rather than the rate of RNA polymerase initiation,
drives the difference in mRNA production rates across the stripe (Appendix 6-Figure 3A-C).
Moreover, as with the three-state case, two-state results indicated that the bulk of this
variation stem from modulation in &, (Appendix 6-Figure 3C, green). Interestingly, whereas
we did see a degree of spatial dependence in k for 3-states, we observed no such trend
for 2-states (Appendix 6-Figure 3C, red). In general, this is not surprising, as our use of a
simpler model likely means that multiple switching rates are being projected onto the k4
parameter. Specifically, if the eve stripe 2 system is indeed a true three-state system, then
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2022

2023

2024 we would expect the two-state k;; estimate to reflect the joint action of the k,, k,,, and k,,
2025 rates from the three-state model. As a result, the spatial dependence of each one of these
2026 rates would get averaged out when combined onto kg,
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2028 Appendix 6 Figure 3. Two-state mHMM inference. (A-C) Time-averaged 2-state inference results. (A)
2029 Consistent with three-state inference results, we observed no significant modulation in the rate of
2030 initiation along the axis of the embryo. Moreover, we found that &, (green plot in (B)) was modulated
2031 along the anterior-posterior axis to vary the amount of time the promoter spent in the ON state (green
2032 curve (Q)). In a departure from the three-state case, we observed no significant spatial trend in k¢,
2033 though we noted a spike in k. at 3% of the stripe center. (D-F) Time-resolved (windowed) two-state
2034 mHMM results. (D) Consistent with the 3-state inference, we saw little to no modulation in the rate of
2035 RNA polymerase loading r over time, although we noted a mild downward trend across all AP bins that
2036 was most pronounced in the posterior flank (red curve). (E) Two-state inference indicated no significant
2037 temporal trends in k. (F) k,, time trends largely agreed with the three-state case, although we noted
2038 that the decrease in &, in the posterior flank that was apparent in the three-state results was not
2039 observable in this two-state context (Figure 6E, red). (Error bars indicate the magnitude of the
2040 difference between the first and third quartiles of mMHMM inference results for bootstrapped samples of
2042 experimental data. See Materials and Methods for details.)
2043 As with the time-averaged case, we found that results for two-state windowed mHMM
2044 were generally consistent with three-state trends. A notable exception to this rule was the
2045 absence of any significant decrease in k,, in the posterior stripe flank (Appendix 6 Figure 3F,
2046 red). This is not entirely surprising, as the trend returned by the three-state inference was
2047 relatively mild (Figure 6E, red), encompassing only the final two time points for which there
2048 was sufficient data to conduct inference. It is possible that the added complexity of the three-
2049 state model allowed it to register a subtle shift in the activation rate that was convolved with
2050 countervailing features in the two-state case. Future work will seek to elucidate the source of
2051 this discrepancy and further test the validity of the trend uncovered in the three-state case.
2052 Comparing true and effective two-state inference results
2053 Here, for completeness, we provide direct comparisons between the time-averaged inference
2054 for the effective two-state results presented in the main text and the true two-state results
2055 presented in the previous section.
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2057 Appendix 6 Figure 4. Comparing two- and three-state mHMM inference results. Three-state inference
2058 results can be presented in terms of a two-state model in which states (1) and (2) are aggregated into a
2059 single ON state (see Figure 4E and F). Here, color schemes are consistent with those employed in
2060 Appendix 6-Figure 3A-C. Squares indicate true two-state results (presented in the previous section) and
2061 circles indicate effective two-state trends derived from the three-state results presented in Figure 5. (A)
2062 Anterior-posterior-dependent trends in the rate of RNA polymerase initiation are nearly identical
2063 between the true and effective initiation rates, however the initiation rate returned by two-state mHMM
2064 inference (green squares) is roughly twice as large as that implied by the three state results (green
2065 circles). (B) As with the initiation rates, we observe similar trends between the true and effective cases,
2066 but substantial differences in magnitude. The effective two-state model recovers an ON state
2067 occupancy that is roughly double that returned by two state mMHMM inference. (C) While the ON rate
2068 trends and magnitudes are nearly identical, the OFF rate returned by two-state mHMM inference is
2069 roughly triple that implied by three-state inference. Thus it is clear that this difference in OFF rate
2070 underlies the observed departures in both state occupancies (B) and state initiation rates (A). (Error
2071 bars indicate magnitude of the difference between the first and third quartiles of mMHMM inference
2073 results for bootstrap samples of experimental data. See Materials and Methods for details.)

2074 As Appendix 6-Figure 4 makes clear, while anterior-posterior-dependent parameter

trends are by and large consistent between the true and effective two state models, we
do observe substantial differences in the absolute magnitudes of parameter values. These
differences originate (directly or indirectly) from the three-fold difference in the value of
k.;; between the true and effective models (Appendix 6-Figure 4C, red squares and circles,
respectively). The k; value for the effective two-state model is defined as

2075

2076

2077

2078

2079

2080

2081 Ky = % (101)
2082 21 12

2083 See Appendix 1 for expressions for all three effective two-state bursting parameters (k,,, ko
2084 and r) in terms of these three-state transition rates. This value represents the inverse of the
2085 mean amount of time the system, upon switching out of state (0), spends in one of the active
2086 states before returning to (0), and we can see that it is necessarily less than or equal to k.
2087 Thus, the two- and three-state results imply that the systems switch out of the active
2088 state(s) on substantially different timescales. On the other hand, the ON rates are strikingly
2089 similar across the two models. As a result, the effective two-state model implies that the
2090 system is in one of the active states for between 40 and 70% of time, whereas two-state
2091 mHMM inference implies significantly lower shares falling between 20 to and 40%. Since
2092 both models must reproduce the same mean production rate—this is an inherent feature of
2093 the experimental traces—we see that the two-state mHMM inference returns an estimated
2094 initiation rate that is consistently twice as large as the initiation rate implied by the effective
2095 two-state model.

2096 Thus, while most of the conclusions featured in this paper are robust to our choice of
2097 model architecture, this decision does, nonetheless hold important implications for how
2098 we understand the underlying system. Further work is needed elucidate the root cause of
2099 this discrepancy and move towards a more concrete understanding of the correspondence
2100 between the structure of the model and that of the physical system.
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2101 Appendix 7

2102 Inherent limits of bursting parameter inference

2103 By definition, the onset of transcriptional quiescence coincides with the cessation of observ-
2104 able bursting activity. In the main text, we argue that this cessation appears to be driven
2105 by processes that are mechanistically distinct from those driving transcriptional bursting.
2106 It remains possible, however, that quiescence is instead driven by changes in the bursting
2107 machinery itself as illustrated in scenario (ii) in Figure 6A. If this is the case, it is important
2108 to note that fundamental limits exist to the time-scale of shifts in the bursting parameters
2109 that could be detected in any sort of time-dependent burst parameter inference (see, e.g.,
2110 Figure 6): changes of order-with or faster-than the time scale on which transcriptional bursts
2111 occur (1-3 min for eve stripe 2) cannot be detected. Notably, this is not a limit of the mHMM
2112 method, but rather reflects an inherent limitation set by system itself—in order to infer
2113 bursting parameters, we must observe bursts and, in order to infer a change in parameters,
2114 we must have access to bursting activity that reflects this change. Thus, the characteristic
2115 frequency of bursts sets a resolution limit for any kind of bursting parameter inference.

2116 To illustrate this limitation, we simulated three scenarios for a two-state transcriptional
2117 system in which k_, decreases to 0 s~! over periods 15, 5, and 1 min in length. We then sought
2118 to recover the trend in k,,. To emphasize that the limitations are not specific to mHMM, we
2119 used the true promoter trajectories generated by our simulation algorithm to estimate k..
2120 These estimates thus represent the absolute best-case scenario for parameter inference, in
2121 which we recover the underlying behavior of the system exactly. The results indicate that, as
2122 expected, a transition in k,, that happens in the span of 1 minute is not detectable from a
2123 burst inference perspective (Appendix 7-Figure 1A-C). This indicates that, at this timescale,
2124 a shift in burst parameters (scenario ii in Figure 6A) would be indistinguishable from an
2125 abrupt, change in which the promoter entered a silent state outside of those considered
2126 by the bursting model (scenario (i) in Figure 6A). Interestingly, results for 5 and 15 minute
2127 k., transitions (Appendix 7-Figure 1D-) also indicate that even transitions that occur over
2128 longer periods of time cannot be fully recovered due to the fact that bursting behavior is
2129 observed over a limited window of time ( 40 minutes in our case). Thus, once the burst
2130 frequency decreases to a sufficiently low level, there simply are not enough bursts observed
2131 within the window of observation to estimate the burst frequency from the data.
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Appendix 7 Figure 1. Inherent limits of bursting parameter inference. (A-C) Simulating a 1 min
transition in k,. (A) Black curve indicates true k, value as a function of time and blue curve indicates
inferred value. Because the change unfolds on a time scale that is much faster than the bursting
timescale, it is not possible to accurately recover the underlying k, trend from the fluorescent traces.
(B) The temporal trend in the average fluorescence across simulated traces (blue curve) reflects this fast
decrease in k,,. Note that variation in simulated traces (gray) unfolds on a significantly faster timescale
than the change in the mean. (C) Visualization of promoter switching showing how the k&, transition
occurs on the timescale of a single burst. Light blue indicates ON periods and dark blue indicates OFF
periods. Since there are almost no active traces after the transition of k., to perform an inference. it
would be impossible to determine if a modulation in the bursting parameters—as opposed to a
transition into some alternative, silent state—drives the onset of quiescence. (D-F) Simulation of a

5 min transition in k,,. (D) We are able to recover first half of k., trend, but due to the speed of
transition, insufficient active traces remain to permit the accurate recovery of the full profile. (E,F)
Because the transition happens slower than in the 1 min case shown in (A-C), there are some bursts
that unfold during the transition and, hence, we have some reference points with which to infer the
underlying trend. (G-I) Simulating a 15 min transition in k,. (G) The mHMM can reliably infer the
temporal variation in k. (H,l) The observation that bursts of activity are interspersed throughout the
k, transition makes it possible to recover the temporal trend. (A,D,G, error bars indicate 95%
confidence interval of exponential fits used to estimate k).
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2153 Appendix 8

2154 Input-Output analysis details
2155 In this appendix, we provide additional information about data sources, inference method-
2156 ology, and inference sensitivies related to the input-output analysis presented in the main
2157 text.
2158 Input transcription factor data
2159 Data sources
2160 The input-output analysis presented in the main text made use of previously published data
2161 sets for the spatiotemporal concentration profiles of the gap genes Hunchback, Krtppel,
2162 and Giant (Appendix 8-Figure 1A, C and D). These data derive from elegant experiments in
2163 which individual embryos were co-immunostained for transcription factors of interest and
2164 precisely staged by measuring progressive cellularization over the course of nuclear cycle 14
2165 to generate a time series of protein concentration profiles spanning the course of this period
2166 of development (Dubuis et al., 2013). The Bicoid concentration data used for this analysis
2167 derives from live imaging experiments using a Bicoid-GFP fusion established by Gregor et al.
2168 (2007). These data come courtesy of Jonathan Liu and Elizabeth Eck (Appendix 8-Figure 1B).
A B ® D =
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2170 Appendix 8 Figure 1. Spatiotemporal transcription factor concentration maps. Heatmaps
2171 indicate normalized concentration profiles for the eve stripe 2 regulators (A) Hunchback, (B) Bicoid, (C)
2172 Giant, and (D) Kruppel as a function of space and time. In each case, levels were normalized relative to
2173 the maximum concentration observed within the spatiotemporal window of interest.
2175 Data processing

2176
To prepare the Kruppel, Giant, and Hunchback profiles for use in our logistic regression

analysis, we adopted an approach similar to that described in Dubuis et al. (2013). Dorso-
ventral orientation of embryos was found to have negligible effect on calculated intensity
profiles and was ignored (i.e. all embryos were included, regardless of orientation). For
each time point in nuclear cycle 14, a weighted temporal average was calculated using a
sliding Gaussian kernel with ¢, = 5 min. For each time point, the minimum observed value
across all anterior-posterior positions was then calculated and subtracted in order to remove
background fluorescence. Normalized profiles were then calculated using the formula
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2187 An identical procedure was followed for processing the Bicoid-GFP data, with the addition
2188 of a spatial averaging step using a sliding Gaussian window of ¢,, = .5 % embryo length.
2189 This step was necessitated by the fact that, because individual embryos were imaged for
2190 the duration of nuclear cycle 14, multiple experiments contributed concentration data along
2191 the anterior-posterior axis for each time point. Thus averages in both space and time were
2192 needed in order to effectively aggregate these data into a single average spatiotemporal
2193 profile.
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2194 Finally, we discovered that the anterior-posterior axes in our live imaging data (both for
2195 eve stripe 2 and Bicoid-GFP) were inconsistent with the axes employed by the fixed data
2196 reported by the authors in Dubuis et al. (2013). We addressed this issue by using eve stripe
2197 2 as a fiduciary mark to register the positions of the fixed and live data sets. Specifically, we
2198 aligned the mRNA peak predicted by our model at 40 minutes into nuclear cycle 14 with the
2199 peak in second stripe of the eve protein profile at 40 minutes, as reported in Petkova et al.
2200 (2019).

2201 Logistic regression framework

2202 The binomial logistic regression is a widely used statistical method for assessing the rela-
2203 tionship between a set of predictor variables and a response variable of interest that is
2204 constrained to take on one of only two possible outcomes. In the context of our analysis, the
2205 predictor variables were the normalized transcription factor concentration profiles and the
2206 response variables were (i) the overall transcriptional state given by the transcriptional time
2207 window (active or silent?) and (ii) the bursting state amongst trancriptionally active loci (ON
2208 or OFF?). Inference was conducted at the level of individual gene loci. fmincon, a standard
2209 matlab function for constrained optimization, was used to fit all models discussed both in
2210 the main text and in this appendix.

2211 To prevent overfitting at the stripe centers, the selection of data sets for input-output
212 inference were weighted to ensure equal representation of data points from across all
213 regions of space and time included in the analysis. The data were divided into cells of size
214 1% of the embryo length in width and 1 minute in duration for the purpose of calculating
215 and assigning these weights. The number of data points in adjacent regions were factored
2216 into each region's weight score using a 2D Gaussian averaging kernel. Regions with fewer
217 than 25 total data points were not included in the inference.

218 Inference details: transcriptional time window

2219 For the time window input-output analysis, we considered only loci that were transcriptionally
2220 active for one or more time steps in nuclear cycle 14. Loci were classified as transcriptionally
2221 active for all time points between the first and last time points for which they exhibited
2222 detectable levels of transcriptional activity and silent for all time points following their final
2223 shut-off for which their nuclei were still present in the experimental field of view. Time points
2224 preceding the onset of activity were discarded. Appendix 8-Figure 2A illustrates how this
2225 quantity varies over space and time in our experimental data. We considered a class of
2226 logistic regression models in which each transcription factor was permitted to appear at
2227 most once, thus requiring that each factor act on eve2 in a uniform manner through space
2228 and time; i.e., the same protein could not activate expression on one stripe flank and repress
2229 on the other.

2230 Inference details: transcriptional bursting

2231 The bursting input-output analysis focused exclusively on transcriptionally engaged loci. The
232 Viterbi algorithm was used to infer the instantaneous activity state (ON vs. OFF) for all loci.
2233 This activity state was taken as the response variable in our regression analysis. In all other
2234 respects, the inference procedure was identical to that conducted for the time window.

2235 Results of unconstrained inference

For the input-output inference results presented in the main text (Figure 7), we used prior
knowledge about the regulatory function of each input transcription factor to constrain its
range of permissible values in our inference. Specifically, we constrained the activators
Bicoid and Hunchback to play activating roles in our model and, likewise, required that the
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2238

2239

2240 repressors Kruppel and Giant played repressing roles. In several cases, this constrained
2241 inference led to models in which one or more transcription factors played no significant
2242 regulatory role (Bicoid and Hunchback for the time window and Bicoid for transcriptional
2243 bursting). In this section, we tested the sensitivity of the conclusions presented in the main
2244 text to our use of functional constraints by conducting unconstrained input-output inference
2245 runs.
2246 Transcriptional time window
2247 The results of our unconstrained input-output inference for the transcriptional time window
2248 are identical to those presented in the main text. Despite the fact that no limitations were
2249 imposed on the regulatory function of each factor, we nonetheless recovered a model in
2250 which the two repressors, Giant and Kruppel, are necessary and sufficient to explain the
2251 onset of transcriptional quiescence in the stripe flanks. In agreement with the constrained
2252 case, we found that the addition of Hunchback and Bicoid to this two-repressor model had
2253 no qualitative effect on the output profile predicted by the model (Appendix 8-Figure 2B). A
2254 quantitative comparison of model fit scores confirmed that the addition of Hunchback and
2255 Bicoid did nothing to improve model fit (Appendix 8-Figure 2C). Thus, we conclude that our
2256 finding that the transcriptional time window can be explained entirely by the joint repressive
2257 action of Krippel and Giant is insensitive to our choice to impose functional constraints.
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2259 Appendix 8 Figure 2. Unconstrained inference results for the transcriptional time window. (A)
2260 Observed fraction of quiescent nuclei as a function of space and time. Identical data to that presented
2261 in Figure 7A. (B) Relaxing constraints on the functional nature of each transcription factor had no
2262 appreciable effect on the inference results. Profiles shown here are indistinguishable from those shown
2263 in Figure 7D. Once again, we find that the joint action of the repressors Giant and Kruppel is sufficient
2264 to explain the progressive onset of transcriptional quiescence in the stripe flanks. (C) A quantitative
2265 comparison of model fits reinforces the qualitative conclusions drawn from (B). Models including 3 and
2266 4 transcription factors cannot improve on the fit achieved by the simpler double repressor model. Here
2267 blue dots indicate models for which only Giant and Kriippel make significant contributions to the model
2268 fit. This indicates that, while the 3 and 4 transcription factor models include additional parameters,
2269 these do not contribute appreciably to overall model fit, emphasizing the fact that these models behave,
2270 effectively, as double repressor models.
2272 Transcriptional bursting

In the context of the transcriptional bursting input-output analysis, the removal of functional
constraints led to a significantly more complex landscape of inferred regulatory models.
While the functional roles of Kruppel, Giant, and Hunchback were consistent with the
constrained case (repressing, repressing, and activating, respectively), Bicoid was consistently
inferred to play a repressing role. Despite this complication, the three-factor Krippel-Giant-
Hunchback model favored by the constrained inference remained the best-fitting three-factor
model (Appendix 8-Figure 3C, red circle). While the addition of Bicoid as a repressor to create
a model dependent on all four input transcription factors led to a small improvement in
model fit (Appendix 8-Figure 3C), comparison of this four-factor model's predicted activity
profile with that of the Krtppel-Giant-Hunchback model revealed no material improvement
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2291
2292
2293
2294
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2298

in the model's agreement with the experimental data (Appendix 8-Figure 3B, bottom left vs.
bottom right). Moreover, there is (to our knowledge) no experimental evidence for Bicoid
playing a repressive role in the regulation of eve stripe 2. Indeed, there is strong evidence
that Bicoid is necessary for eve stripe 2 activity (Small et al., 1992). We thus conclude the
Krippel-Giant-Hunchback model remains the most plausible option in the unconstrained

case.
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Appendix 8 Figure 3. Unconstrained inference results for transcriptional bursting. (A) Observed

fraction of transcriptionally active nuclei in the ON (bursting) state. Identical data to that presented in
Figure 7B. (B) As with time window, relaxing the constraints on the functional nature of each

transcription factor did little to alter the inference results presented in the main text (compare to
Figure 7E). As with the constrained results, the joint action of Giant, Kriippel, and Hunchback appears
sufficient to explain the spatiotemporal activity pattern revealed by mHMM inference. (C) A quantitative

comparison of model fits.
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2298 Appendix 9

2299 Determining the RNA polymerase dwell time using autocorrelation
2300
In order to conduct mHMM inference, it is necessary to specify the number of time steps w

2301 .
required for an RNA polymerase molecule to traverse the reporter gene,

2302

2303 ) = Telong ) (103)
2304 Az

2305 where Az is set by the temporal resolution of our data acquisition and z,,,, is the elongation
2306 time which is unknown a priori. Past studies have estimated elongation rates for other
2307 systems involved in early patterning in the Drosophila embryo, but there is substantial
2308 disparity between the reported values. A live imaging study of transcriptional activity driven
2309 by the hunchback P2 enhancer reported an elongation rate of 1.4 — 1.7 kb min~' (Garcia et al.,
2310 2013). However, a recent study of the same regulatory element reported elongation rates
2311 of 2.4 — 3.0 kb min~"—nearly twice as fast (Fukaya et al., 2017). These results suggested that
2312 RNA polymerase elongation rates measured for other systems might not apply to our eve
2313 stripe 2 reporter. Thus, in order to ensure the validity of our inference, we developed an
2314 approach that uses the mean autocorrelation function of experimental fluorescence traces
2315 to estimate the elongation time directly from our data.

2316 The autocorrelation function R.(z) quantifies the degree to which a signal, F(z), is corre-
2317 lated with a lagged version of itself, F(r — z), and is given as a function of the time delay, z,
2318 between the two signal copies being compared such that

2319

o R(r) = E[(F(1) - ﬂf)(f (t-7)— Hf)]! (104)
2321 (Tf

2322 where y; is the average observed fluorescence, o is the standard deviation of the fluores-
2323 cence and E denotes the expectation value operator. As illustrated in Appendix 9-Figure 1A,
2324 the fact that it takes RNA polymerase molecules some finite amount of time to traverse
2325 the gene implies that the observed fluorescence at a transcriptional locus at some time
2326 t, F(t), will be correlated with preceding fluorescence values F(r — 7) so long as 7 < 7,
2327 because the two time points will share a subset of the same elongating RNA polymerase
2328 molecules. As 7 increases, the correlation between F(¢) and F(t — r) due to these shared RNA
2329 polymerase molecules will decay in a linear fashion (since the average number of shared
2330 RNA polymerase molecules decreases linearly with z) until it reaches zero when z = 7.,
2331 (Appendix 9-Figure 1B, blue curve).
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2333 Appendix 9 Figure 1. Using the autocorrelation of the fluorescence signal to estimate RNA
2334 polymerase dwell time. (A) It takes a finite amount of time for RNA polymerase molecules to
2335 transcribe the full length of the reporter gene. As a result, successive fluorescence measurements will
2336 contain some of the same GFP-tagged RNA polymerase molecules. Dark blue-shaded regions indicate
2337 the subset of RNA polymerase molecules that are present on the gene for successive measurements.
2338 (B) This overlap causes successive measurements to be correlated, and the degree of correlation due to
2339 the overlap decays linearly, reaching zero when the separation between measurements is equal to the
2340 elongation time, z,,, (blue curve). However, the trace autocorrelation function contains other
2341 signatures that can obscure the inflection induced by RNA polymerase elongation dynamics. For
2342 instance, successive time points also exhibit correlation due to the promoter switching dynamics (red
2343 curve). (C) Theoretical analysis of the autocorrelation function and (D) stochastic simulations indicate
2344 that the second derivative of the mean autocorrelation function (dark blue curves) can be used to find
2345 the structural break in the function (black curves) that corresponds to z,,,. Here, a peak at 6 time steps
2346 of delay indicates an elongation time of 7 times steps (140 s). (E) Simulated traces with elongation time
2347 of 7 time steps (green curve) exhibit a peak in the second derivative that coincides with the maximum of
2348 the experimental curve. Inset plots show corresponding mean autocorrelation curves for experimental
2349 data and simulations. (F) Stochastic simulations in which we allow for variation in elongation times
2350 distributed around a mean of 7 time steps qualitatively recapitulates the observed curve. (C-F, second
2352 derivative profiles depicted here are normalized relative to their maximum value for ease of depiction.)

The dramatic change in the slope of the autocorrelation function that occurs at = = z,,,,
can be used to estimate the elongation time of the system; however, it is not the only
feature present in Equation 104. Because the time series of promoter states constitutes a
Markov chain, the instantaneous promoter state and, therefore, the instantaneous rate of
RNA polymerase loading, exhibits a nontrivial, positive autocorrelation due to the promoter
switching dynamics of the system. For instance, if it takes the promoter an average of 1

minute to switch states, then it is clear that promoter activity for = < 1 min will be strongly
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correlated with itself. Thus, we see that the rates of promoter switching dictate the speed
with which this “dynamic” autocorrelation decreases with increasing z. More precisely, the
dynamics autocorrelation will take the form of a decaying exponential in z, with the time
scale set, approximately, by the second largest eigenvalue of the Markov chain's transition
rate matrix (Appendix 9-Figure 1B, red curve)

2361

2362

2363

2364

2365

2366 Rp(t) ~ 42", (105)
2367

2368 Where 4, denotes the second larrgest eigenvalue of the transtion rate matrix. Thus, the
2369 observed autocorrelation function contains, at a minimum, signatures of both the finite RNA
2370 polymerase dwell time (z,,,,) and of promoter switching dynamics. As a result, inferring
2371 elongation times from the change in slope in the mean autocorrelation is often relatively
2372 subtle in practice.

2373 A theoretical analysis of R.(z) indicated that the second derivative of the mean auto-
2374 correlation function reliably exhibits a peak that can be use to read out the value of 7,
2375 (Medin et al., 2019). Appendix 9-Figure 1C shows the analytic prediction for the autocorrela-
2376 tion and second derivative when z,,,,, is equal to 7 time steps (w = 7). We confirmed that
2377 the same second derivative approach works in the context of stochastic simulations using
2378 realistic parameters for the eve stripe 2 system (Appendix 9-Figure 1D). These simulated
2379 traces included the expected contributions from both the Markov dynamics (red profile in
2380 Appendix 9-Figure 1B) and the finite RNA polymerase dwell time (blue profile in Appendix 9-
2381 Figure 1C). Having confirmed the efficacy of the autocorrelation method for simulated data,
2382 we next applied the same technique to uncover z,,, for our experimental traces.

The black profile in Appendix 9-Figure 1E indicates the form of the autocorrelation
second derivative for the set of traces used for mHMM inference. We observed that, while

2383 there is a definite inflection point, the peak for the experimental data is much broader than
2384 for simulated traces. The most likely cause of this feature is the existence of variability
2385 iN 70 (S€€ below). From comparisons of the position of the second derivative peak for
2386 experimental traces with simulated profiles, we concluded that an elongation time of w =7
2387 (Teiong = 140's) best characterized our data (Appendix 9-Figure 1E, green curve). This implies
2388 that

2389 6444 bp

2390 Uelong = 205

2391 =46bps!

= =2.8kbmin~", (106)
2393

2394 where the length used represents the distance from the start of the MS2 step loop sequence
2395 to the end of the 3" end of the construct. Interestingly, this elongation rate falls within the
239 2.4 —3.0 kbmin~' range reported in Fukaya et al. (2017).

2397 Appendix 9-Figure 1F shows how a simple adjustment to our simulation approach,
2398 wherein the elongation time steps w for individual RNA polymerase molecules were drawn
2399 from a Gaussian distribution with mean y,, = 7 and standard deviation ¢, = 2.5 time steps
2400 can qualitatively reproduce the wider profile observed in experimental data, indicating that
2401 our observations are indeed consistent with the presence of variability in RNA polymerase
2402 elongation times. Additional experimental and theoretical work will be necessary to uncover
2403 the biological source of this variability.

2404 In light of the ambiguity introduced by the broad second derivative peak exhibited by
2405 our experimental data, we also verified that our inference was robust to the choice of z,,,,,
2406 testing cases where z,,, = 120s and z,,,, = 160s (see below).
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2407 mHMM inference is insensitive to small changes in RNA polymerase
2408 dwell time
2409 Due to the uncertainty in our estimate of z,,,,, we conducted sensitivity studies to ensure that
2410 our inference results were robust to our input assumption for w. As shown in Appendix 9-
2411 Figure 2, we conducted time-averaged mHMM inference on our experimental data assuming
2412 different values of w. Based upon our autocorrelation analysis, w values of 6, 7 and 8 seemed
2413 the most plausible candidates for the average system elongation time (see Appendix 9-
2414 Figure 1E). While small quantitative difference are apparent across these three cases, the
2415 results for different values of w generally showed a constant offset throughout the embryo,
2416 such that qualitative trends were largely robust to the assumed w value.
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2417
2418 Appendix 9 Figure 2. Elongation time sensitivities. Square, circle, and diamond symbols denote
2419 inference results for memory time window values w of 6, 7, and 8 (zejong Of 120s, 140s, and 160s),
2420 respectively. Parameter plots for w = 7 case are bolded. Bootstrap errors are shown for w = 7 case
2421 (error magnitudes are comparable across conditions). (A) Although the absolute magnitude of the
2422 inferred effective initiation rate varies by approximately 10 to 25% across the three conditions, we
2423 found that the AP trends (or lack thereof) are robust to our choice of memory. (B) Transition rates also
2424 exhibit a high degree of robustness to the w used for inference. While we observed moderate variation
2425 in the inferred magnitude of k,, (green markers), AP trends are insenstive to w assumed for inference
2426 within the range tested. Very little variation was observed in k. (red markers) across conditions. (Error
2427 bars indicate magnitude of difference between first and third quartiles of MHMM inference results for
2428 bootstrap samples of experimental data. See Materials and Methods for details.)
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Figure 2-Figure supplement 1. Aligning stripes from multiple embryos. In order to minimize
alignment errors when combining data from across multiple Drosophila embryos, an automated
routine was employed to define a new experimental axis for each data set based upon the spatial
distribution of transcriptional activity in the mature eve stripe 2 pattern. (A) Example of the spa-
tiotemporal distribution of observed fluorescence for an individual embryo. Each circle corresponds
to the fluorescence from a single locus at a single point in time. Only observations after 30 min into
nuclear cycle 14 were used. Circle size indicates fluorescence intensity. Color indicates temporal
ordering: 30 min (blue) to 47 min (red). (B) A Gaussian filter was convolved with the raw data points
n (A). This filtering ameliorated stripe fitting artifacts that arose due to the relative sparsity of the
raw data. The fitting procedure considered both a range of possible stripe orientations (fyyipe) and,
within each orientation, a range of possible positions of the stripe along the anterior-posterior axis
(xsiipe) that, together constituted a set of possibilities for the new stripe center position and orien-
tation. Here, the shaded red region indicates the range of values for 6, that were considered.
The red line indicates the best stripe axis inferred by the algorithm and the green line indicates the
corresponding optimal stripe center. No constraints were placed on xg,., save for the limits of
the experimental field of view. (C) For each proposed stripe orientation (6,,,,.), @ projected stripe
profile was generated by taking the average pixel intensity for each position, x;, along the proposed
stripe axis. To determine the optimal center location for each orientation, a sliding window with
a width equal to 4% of the embryo length was used to determine the fraction of the total profile
fluorescence that fell within 2% embryo length of the stripe center. For example, the gray shaded
region in (B) illustrates what this range would be for the green stripe center line (B). This fraction
of the total profile was used as a baseline for the comparison of potential stripe center positions.
The 0, and x,,, that maximized this metric (green profile in (C)) were taken to define a new,
empirically determined stripe center. (D) This inferred stripe position defined an experimental
axis for each embryo that was used to aggregate observations from across embryos. Gray circles
indicate experimental observations (size corresponds to intensity as in (A)) and shading indicates
distance from inferred stripe center.
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Figure 2-Figure supplement 2. Integrating MS2 Spots. (A) Fluorescence of a site of nascent
transcript formation is measured by integrating raw pixel intensities in a circular region around the
fluroescent MS2 spot of a predefined area (indicated by the red circle) and then subtracting off the
background intensity obtained as outlined in (B). (B) X-Z projection of 2D Gaussian function fitted to
MS2 spot shown in (A). Background intensity is estimated using the offset value fo this Gaussian fit.
The per-pixel offset is then multiplied by the area of the integration region. This background value
is then subtracted from the fluorescence integrated across the area shown in (A). (C) The radius
was chosen to be large enough to integrate the intensities from both sister chromatids, even when
they are spatially separated and distinguishable .

20
distance from stripe

] center (% embryo length)
315 |
S I||||||||||||||| il 3to-2 -1to1 2to3
[e] /- | l In | '_ “'_ + (| \
s 1o ] II‘I!H| | i I
% |||||||I| |
- NI N
g 5 ..l"""\||--l1||||"~ H#H
Q
€
2
016 26 36 40

time (min)
Figure 3-Figure supplement 1. Mean transcriptional activity. Mean transcriptional activity as
a function of time for different positions along the stripe. (Average over 11 embryos, error bars
indicate bootstrap estimate of the standard error of the mean. See Materials and Methods).
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Figure 3-Figure supplement 2. Regulation of the transcriptional time window. (A) Single-
nucleus measurements reveal that the duration of transcription is modulated along the stripe
and that nuclei transcribe in a burst-like fashion. (B) Time for nuclei to activate transcription after
mitosis, ¢.,, as a function of position along the stripe. (C) Time for nuclei to enter the quiescent
transcriptional state, ¢ . (B,C, average over 11 embryos, error bars indicate bootstrap estimate of
the standard error of the mean. See Materials and Methods).
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Figure 3-Figure supplement 3. Definition of stripe amplitude. (A) The normalized mRNA profile
for the stripe can be separated into an offset and an amplitude. (B) Normalized mRNA profiles and
(C) stripe amplitude for the cytoplasmic pattern of mRNA as well as for the contributions from the
various regulatory strategies.
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Figure 3-Figure supplement 4. Joint effect of mean rate, binary control, and fraction of
active nuclei. Including of the predicted effect of anterior-posterior-dependent modulation of
the fraction of active nuclei has little effect on the predicted cytoplasmic mRNA profile (compare
brown profile in Figure 1G, gray profile above). The remaining difference between the full profile
(red) and the gray profile can be attributed the effects of temporal variations in the mean rate of
transcription.
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Figure 5-Figure supplement 1. Fraction of time spent in each transcriptional state. Fraction
of time spent in the ON and OFF states as a function of the position along the stripe. (Error bars
indicate the magnitude of the difference between the first and third quartiles of mMHMM inference
results for bootstrap samples of experimental data. See Materials and Methods for details.)
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