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Affine representability results in Al-homotopy theory
III: Finite fields and complements

Aravind Asok, Marc Hoyois and Matthias Wendt

ABSTRACT

We give a streamlined proof of Al-representability for G-torsors under “isotropic” re-
ductive groups, extending previous results in this sequence of papers to finite fields.
We then analyze a collection of group homomorphisms that yield fiber sequences in
A'-homotopy theory, and identify the final examples of motivic spheres that arise as
homogeneous spaces for reductive groups.

1. Introduction and statement of results

Suppose that k is a field. We study torsors under algebraic groups considered in the following
definition.

DEeFINITION 1.1. If G is a reductive algebraic k-group scheme, we will say that G is “isotropic” if
each of the almost k-simple components of the derived group of G contains a k-subgroup scheme
isomorphic to G,,,.

Remark 1.2. In the above definition, the word “isotropic” is in quotes to distinguish the notion
defined above from the standard definition of isotropic for reductive groups, which simply requires
the existence of a k-subgroup scheme isomorphic to G,,,; see [Gil10, Définition 9.1.1]. Let us spell
out what term “isotropic” as defined above means. The derived group of GI* .= [G,G] is a
semi-simple k-subgroup scheme. As such it has a simply connected covering group G*¢, which is
itself a product of almost k-simple factors. The condition above implies that each such factor is
isotropic in the standard sense.

Write 7 (k) for the (unstable) Morel-Voevodsky Al-homotopy category [MV99]. Write B G
for the usual bar construction of G (which can be thought of as a simplicial presheaf on the
category of smooth k-schemes). If X is a smooth k-scheme, then write [X, B Gl for the set
Hom 1) (X, BG). The main goal of this paper is to establish the following representability
result about Nisnevich-locally trivial G-torsors.

THEOREM 1.3. Suppose that k is a field and G is an “isotropic” reductive k-group. For every
smooth affine k-scheme X, there is a bijection

Hll\IiS(X7 G) = [Xa B G]Al

that is functorial in X.
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In [AHW18, Theorem 4.1.3], Theorem 1.3 was proved under the more restrictive assumption
that k is infinite. By [AHW18, Theorem 2.3.5], in order to establish Theorem 1.3, it suffices
to prove that the functor X +— Hi (X, G) is Al-invariant on smooth affine schemes; that is,
for every smooth affine k-scheme X, the pullback along the projection X x Al — X induces a
bijection Hy;(X, G) = Hy;, (X x AL G).

Using a recent refinement of the Gabber presentation lemma over finite fields first stated by
F. Morel [Mor12, Lemma 1.15] (where it is attributed to O. Gabber) and proven by A. Hogadi
and G. Kulkarni [HK20], we establish affine homotopy invariance over finite fields in Theorem 2.4.

Remark 1.4. Over a finite field, one knows that all reductive k-group schemes are quasi-split by
a result of S. Lang; cf. [Lan56]. In particular, semi-simple group schemes will automatically be
“isotropic” in this case.

As immediate consequences, we may remove the assumption that k is infinite in many of the
results stated in [AHW18]. In particular, we establish the following result.

THEOREM 1.5. Assume that k is a field. If H — G is a closed immersion of “isotropic” reductive
k-group schemes and the H-torsor G — G /H is Nisnevich-locally split, then for any smooth
affine k-scheme X, there is a bijection

7o (Sing®' G /H)(X) = [X,C /H] .

Theorem 2.7 contains a similar result for certain generalized flag varieties under “isotropic”
reductive k-group schemes, and the remainder of the main results (for example, Theorem 2.15)
contain some useful explicit examples.

Notation and conventions
Throughout the paper, k will be a field. Following [AHW17, AHW18], we use the following
terminology:

e Smy is the category of smooth k-schemes.

e sPre(Smy) is the category of simplicial presheaves on Smy; objects of this category will
typically be denoted by script letters 2, %, etc.

e If t is a topology on Smy, we write R; for the fibrant replacement functor for the injective
t-local model structure on sPre(Smy); see [AHW17, Section 3.1].

° SimgAl is the singular construction; see [AHW17, Section 4.1].
e (k) is the Morel-Voevodsky unstable A'-homotopy category; see [AHW17, Section 5].
o If 2 and % are simplicial presheaves on Smy, we write [2", #]41 := Hom 1) (2, % ).

Throughout the text, we will speak of reductive group schemes; following SGA3 [DG70], by
convention such group schemes have geometrically connected fibers.

2. Proofs

2.1 Homotopy invariance revisited

In [AHW18, Proposition 3.3.4], we developed a formalism for establishing the affine homotopy
invariance of certain functors; this method was basically an extension of a formalism developed
by J.-L. Colliot-Thélene and M. Ojanguren [CO92, Théoreme 1.1] and relied on a refined Noether
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normalization result (a “presentation lemma”) that held over infinite fields [CO92, Lemma 1.2].
In Theorem 2.1, we recall a version of a stronger “presentation lemma” due initially to Gabber.
Then, in Proposition 2.2, we simplify and generalize [AHW18, Proposition 3.3.4].

Gabber’s lemma

The following result was initially stated in [Morl2, Lemma 1.15], where it was attributed to
private communication with Gabber. In the case that k is infinite, a detailed proof of a more
general result is given in [CHK97, Theorem 3.1.1], while when £ is finite, the result was established
recently by Hogadi and Kulkarni [HK20, Theorem 1.1]. In fact, in what follows, we will not need
the full strength of this result.

THEOREM 2.1. Suppose that F' is a field, and suppose that X is a smooth affine F-variety of
dimension d > 1. Let Z C X be a principal divisor defined by an element f € Ox(X), and let
p € Z be a closed point. There exist (1) a Zariski-open neighborhood U of the image of p in X,
(ii) a morphism ®: U — A%, and (iii) an open neighborhood V C A%_l of the composite

s

U U -2 Al T A%
(where 7 is the projection onto the first d — 1 coordinates) such that
1. the morphism ® is étale;
2. setting Zy := Z N W1V, the morphism VU|z,: Zy — V is finite;
3. the morphism ®|z, : Zy — Al, = n7Y(V) is a closed immersion;
4. there is an equality Zy = ®~1®(Zy).

In particular, the morphisms ® and j: A%, \ Zy — A%, yield a Nisnevich-distinguished square of
the form

U\ Zy U

o

AL\ ®(Zy) —= A} .

A formalism for homotopy invariance

The following result simplifies and generalizes [AHW18, Proposition 3.3.4]. By an essentially
smooth k-scheme, we will mean a k-scheme that may be written as a filtered colimit of smooth
schemes with affine étale transition morphisms.

PROPOSITION 2.2. Suppose that k is a field. Let F be a presheaf of pointed sets on the category C
of essentially smooth affine k-schemes with the following properties:

1. If SpecA € C and S C A is a multiplicative subset, the canonical map colimscg F(Ay) —
F(S’lA) has trivial kernel.

2. For every finitely generated separable field extension L/k and every integer n > 0, the
restriction map

F(L[t,...,tn]) — F(L(t1,...,t,))

has trivial kernel.
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3. For every Nisnevich square
We——sV

L

U—— X

in C, where W C V is the complement of a principal divisor, the map
ker(F(X) — F(U)) — ker(F(V) — F(W))
is surjective.
If Spec B € C is local, then for any integer n > 0, the restriction map
F(Blt1,...,tn]) — F(Frac(B)(t1,...,tn))

has trivial kernel.

Proof. We proceed by induction on the dimension d of B. The case d = 0 is immedi-
ate from property 2. Assume that we know the result in dimension at most d — 1. Sup-
pose £ € ker(F(B[t1,...,t,]) — F(Frac(B)(t1,...,tn))). By property 2, the image of { in
F(Frac(B)[t1,...,t,]) is trivial. By property 1, we conclude that there is an element g € B\ 0
such that & restricts to the trivial element in F(Bg[t1,...,t,]).

By Theorem 2.1 applied to X = Spec B, the principal divisor Z defined by g, and the closed
point p in Spec B, we may find a Nisnevich square

Spec By~ Spec B

| |

U Spec A[z]

with A an essentially smooth local ring of dimension d — 1. It follows immediately from the
diagram above that the base change of U — Spec Alz]| along Spec B — Spec A[z] is affine.
Likewise, since U — Spec A[z] is an open immersion, its base change along U — Spec A[z] is an
isomorphism and therefore also affine. As a consequence, the base change of U C Spec A[z] along
the surjective étale morphism U II Spec B — Spec A[x] is affine; hence, the original morphism
must be affine as well.

Now, by property 3, since £ lies in the kernel of F(Blt1,...,t,]) = F(By[t1,...,ty]), we may
find a

¢ € ker(F(A[z][t1,... . tn]) = F(U[t1,...,tn]))

lifting &. In particular, the image of the class ¢ in F(Frac(A)(z,t1,...,t,)) must also be trivial.
However, A[x][t1,...,t,] = Alz,t1,...,t,] and since A has dimension d — 1, we conclude that &’
is trivial, which means that £ must also be trivial, and we are done. O

Remark 2.3. The proof of Proposition 2.2 uses only assertions 1, 3, and 4 of Theorem 2.1, and
it may be possible to give a shorter and more self-contained proof of these assertions.

Homotopy invariance for G-torsors over arbitrary fields

We now apply Proposition 2.2 in the case of the functor “isomorphism classes of Nisnevich-locally
trivial G-torsors” under an “isotropic” reductive k-group G (see Definition 1.1).
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THEOREM 2.4. If k is a field and G is an “isotropic” reductive k-group scheme, then for any
smooth k-algebra A and any integer n > 0, the map

Hll\ﬁs(Spec A G) — Hll\Hs(Spec Alty, ..., tn], G)

is a pointed bijection.

Proof. Repeat the proof of [AHW18, Theorem 3.3.7], replacing appeals to [AHW18, Proposi-
tion 3.3.4] with a reference to Proposition 2.2. As the formulation of Proposition 2.2 differs
slightly from that of [AHW18, Proposition 3.3.4], we include the argument here.

We want to show that every Nisnevich-locally trivial G-torsor & over the ring Alty, ..., t,] is
extended from A. After [AHW18, Corollary 3.2.6], which is a local-to-global principle for torsors
under a reductive group scheme, it suffices to show that for every maximal ideal m of A, the
G-torsor Py, over Anlti,...,t,] is extended from Ay. In fact, we will show that 2, is a trivial
torsor.

We claim that the functor from k-algebras to pointed sets given by A ~ H; (Spec 4, G)
satisfies the axioms of Proposition 2.2. The first point is an immediate consequence of the fact that
G has finite presentation by [AHW18, Lemma 2.3.3]. Recall from [AHW18, Definition 2.3.1] that
we write BTorsyis(G) for the simplicial presheaf whose value on a smooth scheme U is the nerve
of the groupoid of G-torsors over U. The third point is then a formal consequence of the fact that
the functor Hi; (—, G) can be identified with the set of connected components mo(BTorsis(G))
since BTorsyis(G) satisfies Nisnevich excision essentially by definition (see [AHW18, §2.3] for
more details). Finally, the second point follows by appealing to results of M.S. Raghunathan
[Rag78, Rag89], which are conveniently summarized in [CO92, Proposition 2.4 and Théoreme 2.5];
this is where the assumption that G is “isotropic” is used.

The hypotheses of Proposition 2.2 having been satisfied, to conclude that &2, is trivial,

it suffices to show that it becomes trivial over the field Frac(Aw)(t1,...,t,), but this follows
immediately from the fact that a field has no non-trivial Nisnevich covering sieves. O

Representability results

Granted Theorem 2.4, we can immediately generalize a number of results from [AHW18]. For
ease of reference, we restate the relevant results here. We begin by establishing Theorem 1.3 from
the introduction.

If .Z is a simplicial presheaf on Smy and . is a Nisnevich-local and Al-invariant fibrant
replacement of %, then there is a canonical map SingAlgZ — % that is well defined up to
simplicial homotopy. Recall from [AHW18, Definition 2.1.1] that a simplicial presheaf .# on
Smy, is called Al-naive if for every affine X € Smy, the map SingAlﬁ(X) — Z(X) is a weak
equivalence of simplicial sets. As observed in [AHW18, Remark 2.1.2], if .# is Al-naive, then for
every affine X € Smy, the map

7o ( Sing® 7 (X)) — [X, Fan
is a bijection.
By [AHW18, Proposition 2.1.3], the simplicial presheaf .# is Al-naive if and only if SingAl

satisfies affine Nisnevich excision in the sense of [AHW17, Section 2.1]. In that case, Rza; Sing®'
is Nisnevich-local and Al-invariant.

F
F
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THEOREM 2.5. If G is an “isotropic” reductive k-group scheme, then Byjs G is Al-naive. In
particular, the canonical map

Hll\Iis(Xa G) — [Xa B G]Al

is a bijection for every affine X € Smy,.
Proof. Combine [AHW18, Theorem 2.3.5] with Theorem 2.4. O

Suppose that H — G is a closed immersion of “isotropic” reductive k-group schemes. By
[Ana73, Théoreme 4.C], the quotient G /H exists as a k-scheme. Since the map G — G/H
is an H-torsor, it follows that the quotient is smooth since G has the same property. That the
quotient is affine follows from the fact that H is reductive and may be realized as Spec I'(G, Og)!
(see [Alpl4, Theorems 9.1.4 and 9.7.6]; for later use, observe that these statements hold over
an arbitrary base). Since G and H are reductive, they are connected by assumption, and the
connectness statement for the quotient follows. Granted these fact, we establish Theorem 1.5.

THEOREM 2.6. If H — G is a closed immersion of “isotropic” reductive k-group schemes, and if
the H-torsor G — G / H is Nisnevich-locally split, then G /H is Al-naive.

Proof. Combine [AHW18, Theorem 2.4.2] with Theorem 2.4. O
The following result generalizes [AHW 18, Theorem 4].

THEOREM 2.7. Assume that G is an “isotropic” reductive k-group scheme and P C G is a
parabolic k-subgroup possessing an isotropic Levi factor (for example, if G is split); then G / P
is Al-naive.

Proof. Let L be a Levi factor for P. The quotients G /L and G /P exist; see, for example,
[AHW18, Lemma 3.1.5]. Moreover, the map G /L — G /P induced by the inclusion is a com-
position of torsors under vector bundles. Under the assumption that L is “isotropic,” G /L is
Alnaive by Theorem 2.6. The fact that G /P is Al-naive then follows from [AHW18, Lem-
ma 4.2.4] using the fact that G /L — G /P is a composition of torsors under vector bundles. [J

2.2 Local triviality of homogeneous spaces

In order to apply Theorem 1.5, we need a criterion to establish that if H C G is a group
homomorphism, the quotient map G — G /H is Nisnevich-locally trivial. In this section, we
develop some criteria to guarantee that this condition holds.

Criteria for Nisnevich-local triviality
LEMMA 2.8. Assume that R is a commutative unital ring of finite Krull dimension, and suppose
that H C G is an inclusion of split reductive R-group schemes.
1. The quotient G / H exists as a (connected) smooth affine scheme.
2. TheH-torsor G — G / H is Nisnevich-locally trivial if for any field K, the map Hflppf(K, H) —
H%ppf(K, G) has trivial kernel.

If R is a field, the same results hold without the splitness assumptions.

Proof. We first treat the case with the splitness assumptions in place. In that case, split reduc-
tive group schemes are pulled back from Z-group schemes. For both claims, it suffices to prove
the result with R = Z: the formation of quotients commutes with base change; affineness and
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Nisnevich-local triviality will be preserved by base change as well. For R = Z, the existence of
the quotient and the relevant properties are established before the statement of Theorem 2.6.

Now, we establish the second statement. To show that the relevant torsor is Nisnevich-locally
trivial, it suffices, by [Bia70, Proposition 2|, to show that the H-torsor in question is rationally
trivial, that is, trivial over the generic point of G /H (which is an integral affine Z-scheme).
To that end, note that the generic point is the spectrum of the fraction field K of the ring
['(G /H,Oq u) and that it suffices to show that the restriction of G — G /H admits a section
upon restriction to K. However, the pullback of G — G /H along the map Spec K — G/H
is an H-torsor on Spec K whose associated G-torsor is trivial. The condition that the map
Hflppf(K JH) — H%ppf(K , G) has trivial kernel precisely guarantees that this H-torsor over Spec K
is trivial, that is, admits a section.

When R is a field, one proceeds in an analogous fashion: the existence and properties of the
quotient follow exactly as above. To establish Nisnevich-local triviality, one replaces the reference
to [Bia70, Proposition 2] above with a reference to [Nis84, Theorem 4.5] (note that Nisnevich’s
result is stated for semi-simple groups, but the argument works for reductive group schemes; this
is mentioned, for example, in [FP15, Section 1.1]). O

The Rost invariant and Nisnevich-local triviality
Assume that G is a simple simply connected algebraic group over a field F'. The Rost invariant
of G is a natural transformation of functors on the category of field extensions of F"

Hét(_v G) = Hgt(_’@/Z@)) )

see [GMS03, Appendix A] for more details regarding the group on the right (it will not be im-
portant here). What is important is that the Rost invariant is functorial for homomorphisms of
simply connected groups [GMS03, Proposition 9.4]. In other words, if ¢: G; — Gy is a homo-
morphism of simply connected reductive algebraic groups, then there is a commutative diagram
of the form

H(F, G1) — H3(F, Q/Z(2))

| B o

HY(F, Go) - B2 (F, Q/Z(2)).

where n,, is an integer called the Dynkin index or the Rost multiplier of the homomorphism ¢.
If G is semi-simple and simply connected, then an n-dimensional k-rational representation p
of G yields an embedding p: G — SL,; we refer to the Dynkin index of this homomorphism as
the Dynkin index of the representation. The Dynkin index then has the following properties:
1. It is a non-negative integer that is 0 if and only if the homomorphism is trivial.

2. The Rost multiplier of a composite is the product of the Rost multipliers [GMS03, Propo-
sition 7.9)].

3. If p1 and py are two representations of G, then n, @p, = np, + np,.

4. The Dynkin index of the adjoint representation is the dual Coxeter number.

One then deduces the following criterion for detecting Nisnevich-local triviality.

LEMMA 2.9. Assume that ¢: H C G is a closed immersion group homomorphism of simply
connected semi-simple k-group schemes. If (i) the Dynkin index for ¢ is 1 and (ii) for every
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extension K /k, the kernel of the Rost invariant for Hy is trivial, then the torsor G — G /H is
Nisnevich-locally trivial.

Proof. By Lemma 2.8, it suffices to prove that for every extension K/k, if for an H-torsor P
over Spec K, the associated G-torsor P’ over Spec K (obtained by extending the structure group
via () is trivial, then P is already trivial.

Assume that the kernel of the Rost invariant for H is trivial for every extension K /k. Suppose
that P is an Hg-torsor over Spec K and that the associated G g-torsor P’ over Spec K is trivial.
Since the Rost invariant of P’ is necessarily trivial, the assumption that ¢ has Rost multiplier 1
implies that P has trivial Rost invariant. However, since the Rost invariant for Hx was assumed
to be injective, we conclude that P is trivial, which is precisely what we wanted to show. ]

For quasi-split groups of low rank, the Rost invariant is frequently injective [GarO1b]. Indeed,
R.S. Garibaldi shows [Gar0lb, Theorems 0.1 and 0.5] that the Rost invariant is trivial in the
following cases:

1. quasi-split groups of absolute rank < 5
2. quasi-split groups of type Bg, Dg, or Eg
3. quasi-split groups of type Er7 or split groups of type Dr.

Thus we obtain a number of Nisnevich-local triviality results by the computation of Dynkin
indices.

Example 2.10. The Rost multiplier of the inclusion of split groups Sping < F4 is 1, so Lemma 2.9
combined with [GarOlb, Theorems 0.1 and 0.5] imply that the Sping-torsor F4 — F4 /Sping is
Nisnevich-locally trivial. Similar results hold for F4y C Eg and Eg C E7 (see [Gar0O1b] for more
details). Thus, in each of these cases, Theorem 2.6 applies and guarantees that the relevant
homogeneous space is Al-naive.

Remark 2.11. Following [AHW19], one can use the Al-fiber sequences associated with inclusions
appearing in Example 2.10 to deduce results about the reduction of the corresponding structure
groups for (Nisnevich-locally trivial) torsors over smooth affine schemes. Moreover, torsors under
the various group schemes above are related to classical algebraic invariants (for example, Fy-
torsors correspond to Albert algebras, Eg- and Er-torsors correspond to certain structurable
algebras [GarOlal). In light of these applications, we pose the following question, which would
be especially interesting to analyze in the cases mentioned in Example 2.10.

Question 2.12. Suppose that H — G is a closed immersion of “isotropic” reductive k-group
schemes such that G — G / H is Nisnevich-locally trivial.

e What is the Al-connectivity of G /H?

e What is the structure of the first non-vanishing A'-homotopy sheaf of G /H?

Motivic spheres as homogeneous spaces

In [Bor50], Borel completed the classification of homogeneous spaces that are spheres. We now
establish a similar result for motivic spheres. To this end, we write Q,,_; for the split smooth
affine quadric defined by the equation Y ; z;y; = 1, and Qy,, for the split smooth affine quadric
defined by the equation Y " | z;y; = z(1 — z). In [ADF17, Theorem 2], we showed that Q,, is
Al-weakly equivalent to S"AG,,,", and it is well known that Q,,_; is Al-weakly equivalent to
Sn—l /\Gm/\n'
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THEOREM 2.13. Suppose that R is a commutative base ring. The following homogeneous spaces
are isomorphic to odd-dimensional motivic spheres:

1. The quotients SL,, / SLy_1, SO2y, / SO2n—1, and Spy,, / SPay,_o (With n = 2m) are isomor-
phic to Qop_1.
2. The quotient Spin, / Gy is isomorphic to Q.
3. The quotient Sping / Spin; is isomorphic to Q5.
Furthermore, for each pair (G, H) as above, the torsor G — G / H is Zariski-locally trivial.

Proof. All of these results are presumably well known. The first three appear in [AHW18, §4.2],
while the last one appears in [AHW19, Theorem 2.3.5]. It remains to identify Sping / Spin; = Q;5;
this is essentially classical, so we provide an outline.

We use the notation of [AHW19, § 2]. Let O be the split octonion algebra over Z, and consider
the closed subscheme in the scheme O x O defined by No(z) —No(y) = 1 (see [AHW19, Definition
2.1.9] for an explicit formula for the norm); this scheme is isomorphic to Q5 by definition. The
space O x O carries the split quadratic form of rank 16. However, there is an induced action of
Sping on Q5 coming from the spinor representation.

We now repeat the arguments at the beginning of the proof of [AHW19, Theorem 2.3.5]. We
may first assume without loss of generality that R = Z, and the result in general follows by base
change. In that case, the relevant quotient exists by [Ana73, Théoréme 4.C|.

The action of Sping on Q;5 described above gives a morphism Sping — Q5 by the choice of
a point. It remains to show that this map induces an isomorphism of quotients. As in the proof
of [AHW19, Theorem 2.3.5], we may reduce to the case of geometric points. Having reduced to
geometric points, transitivity may be established and the stabilizer identified by a straightforward
(and classical) computation using Clifford algebras (see [Conl4, §C.4] for a discussion of the
relevant groups).

For Zariski-local triviality, it suffices to show that if given a local ring R and a Spin,-torsor
& over R, triviality of the associated Sping-torsor implies the triviality of 2. Equivalently, if the
quadratic space associated with the Sping-torsor is split, then the initial quadratic space must
also be split; this follows from Witt’s cancellation theorem [EKMO8, Theorem 8.4]. O

Remark 2.14. Following [Bor50, Théoreme 3|, it seems reasonable to expect that the list above
should be a complete list of homogeneous spaces that are isomorphic to odd-dimensional motivic
spheres, at least over an algebraically closed field.

THEOREM 2.15. If k is a field having characteristic unequal to 2, then Q,,, is Al-naive.

Proof. By [AHW18, Lemma 3.1.7], we know that under the hypotheses, Q,,, = SO2,+1/SO2y,
and the torsor SOg;,4+1 — SOagy41 /SOqy, is Zariski-locally trivial. Since SO,, is split, the result
follows by Theorem 2.6. O
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