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Affine representability results in A1-homotopy theory

III: Finite fields and complements

Aravind Asok, Marc Hoyois and Matthias Wendt

Abstract

We give a streamlined proof of A1-representability for G-torsors under “isotropic” re-
ductive groups, extending previous results in this sequence of papers to finite fields.
We then analyze a collection of group homomorphisms that yield fiber sequences in
A1-homotopy theory, and identify the final examples of motivic spheres that arise as
homogeneous spaces for reductive groups.

1. Introduction and statement of results

Suppose that k is a field. We study torsors under algebraic groups considered in the following
definition.

Definition 1.1. If G is a reductive algebraic k-group scheme, we will say that G is “isotropic” if
each of the almost k-simple components of the derived group of G contains a k-subgroup scheme
isomorphic to Gm.

Remark 1.2. In the above definition, the word “isotropic” is in quotes to distinguish the notion
defined above from the standard definition of isotropic for reductive groups, which simply requires
the existence of a k-subgroup scheme isomorphic to Gm; see [Gil10, Définition 9.1.1]. Let us spell
out what term “isotropic” as defined above means. The derived group of Gder := [G,G] is a
semi-simple k-subgroup scheme. As such it has a simply connected covering group Gsc, which is
itself a product of almost k-simple factors. The condition above implies that each such factor is
isotropic in the standard sense.

Write H (k) for the (unstable) Morel–Voevodsky A1-homotopy category [MV99]. Write BG
for the usual bar construction of G (which can be thought of as a simplicial presheaf on the
category of smooth k-schemes). If X is a smooth k-scheme, then write [X,BG]A1 for the set
HomH (k)(X,BG). The main goal of this paper is to establish the following representability
result about Nisnevich-locally trivial G-torsors.

Theorem 1.3. Suppose that k is a field and G is an “isotropic” reductive k-group. For every
smooth affine k-scheme X, there is a bijection

H1
Nis(X,G) ∼= [X,BG]A1

that is functorial in X.
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In [AHW18, Theorem 4.1.3], Theorem 1.3 was proved under the more restrictive assumption
that k is infinite. By [AHW18, Theorem 2.3.5], in order to establish Theorem 1.3, it suffices
to prove that the functor X 7→ H1

Nis(X,G) is A1-invariant on smooth affine schemes; that is,
for every smooth affine k-scheme X, the pullback along the projection X × A1 → X induces a
bijection H1

Nis(X,G)
∼→ H1

Nis

(
X × A1,G

)
.

Using a recent refinement of the Gabber presentation lemma over finite fields first stated by
F. Morel [Mor12, Lemma 1.15] (where it is attributed to O. Gabber) and proven by A. Hogadi
and G. Kulkarni [HK20], we establish affine homotopy invariance over finite fields in Theorem 2.4.

Remark 1.4. Over a finite field, one knows that all reductive k-group schemes are quasi-split by
a result of S. Lang; cf. [Lan56]. In particular, semi-simple group schemes will automatically be
“isotropic” in this case.

As immediate consequences, we may remove the assumption that k is infinite in many of the
results stated in [AHW18]. In particular, we establish the following result.

Theorem 1.5. Assume that k is a field. If H→ G is a closed immersion of “isotropic” reductive
k-group schemes and the H-torsor G → G /H is Nisnevich-locally split, then for any smooth
affine k-scheme X, there is a bijection

π0

(
SingA

1
G /H

)
(X) ∼= [X,G /H]A1 .

Theorem 2.7 contains a similar result for certain generalized flag varieties under “isotropic”
reductive k-group schemes, and the remainder of the main results (for example, Theorem 2.15)
contain some useful explicit examples.

Notation and conventions

Throughout the paper, k will be a field. Following [AHW17, AHW18], we use the following
terminology:

• Smk is the category of smooth k-schemes.

• sPre(Smk) is the category of simplicial presheaves on Smk; objects of this category will
typically be denoted by script letters X , Y , etc.

• If t is a topology on Smk, we write Rt for the fibrant replacement functor for the injective
t-local model structure on sPre(Smk); see [AHW17, Section 3.1].

• SingA
1

is the singular construction; see [AHW17, Section 4.1].

• H (k) is the Morel–Voevodsky unstable A1-homotopy category; see [AHW17, Section 5].

• If X and Y are simplicial presheaves on Smk, we write [X ,Y ]A1 := HomH (k)(X ,Y ).

Throughout the text, we will speak of reductive group schemes; following SGA3 [DG70], by
convention such group schemes have geometrically connected fibers.

2. Proofs

2.1 Homotopy invariance revisited

In [AHW18, Proposition 3.3.4], we developed a formalism for establishing the affine homotopy
invariance of certain functors; this method was basically an extension of a formalism developed
by J.-L. Colliot-Thélène and M. Ojanguren [CO92, Théorème 1.1] and relied on a refined Noether
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normalization result (a “presentation lemma”) that held over infinite fields [CO92, Lemma 1.2].
In Theorem 2.1, we recall a version of a stronger “presentation lemma” due initially to Gabber.
Then, in Proposition 2.2, we simplify and generalize [AHW18, Proposition 3.3.4].

Gabber’s lemma

The following result was initially stated in [Mor12, Lemma 1.15], where it was attributed to
private communication with Gabber. In the case that k is infinite, a detailed proof of a more
general result is given in [CHK97, Theorem 3.1.1], while when k is finite, the result was established
recently by Hogadi and Kulkarni [HK20, Theorem 1.1]. In fact, in what follows, we will not need
the full strength of this result.

Theorem 2.1. Suppose that F is a field, and suppose that X is a smooth affine F -variety of
dimension d > 1. Let Z ⊂ X be a principal divisor defined by an element f ∈ OX(X), and let
p ∈ Z be a closed point. There exist (i) a Zariski-open neighborhood U of the image of p in X,
(ii) a morphism Φ: U → AdF , and (iii) an open neighborhood V ⊂ Ad−1

F of the composite

Ψ: U
Φ−→ AdF

π−→ Ad−1
F

(where π is the projection onto the first d− 1 coordinates) such that

1. the morphism Φ is étale;

2. setting ZV := Z ∩Ψ−1V , the morphism Ψ|ZV
: ZV → V is finite;

3. the morphism Φ|ZV
: ZV → A1

V = π−1(V ) is a closed immersion;

4. there is an equality ZV = Φ−1Φ(ZV ).

In particular, the morphisms Φ and j : A1
V \ ZV → A1

V yield a Nisnevich-distinguished square of
the form

U \ ZV //

��

U

��
A1
V \ Φ(ZV ) // A1

V .

A formalism for homotopy invariance

The following result simplifies and generalizes [AHW18, Proposition 3.3.4]. By an essentially
smooth k-scheme, we will mean a k-scheme that may be written as a filtered colimit of smooth
schemes with affine étale transition morphisms.

Proposition 2.2. Suppose that k is a field. Let F be a presheaf of pointed sets on the category C
of essentially smooth affine k-schemes with the following properties:

1. If SpecA ∈ C and S ⊂ A is a multiplicative subset, the canonical map colimf∈S F(Af ) →
F
(
S−1A

)
has trivial kernel.

2. For every finitely generated separable field extension L/k and every integer n > 0, the
restriction map

F(L[t1, . . . , tn]) −→ F(L(t1, . . . , tn))

has trivial kernel.
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3. For every Nisnevich square

W �
� //

��

V

��
U �
� // X

in C, where W ⊂ V is the complement of a principal divisor, the map

ker(F(X)→ F(U)) −→ ker(F(V )→ F(W ))

is surjective.

If SpecB ∈ C is local, then for any integer n > 0, the restriction map

F(B[t1, . . . , tn]) −→ F(Frac(B)(t1, . . . , tn))

has trivial kernel.

Proof. We proceed by induction on the dimension d of B. The case d = 0 is immedi-
ate from property 2. Assume that we know the result in dimension at most d − 1. Sup-
pose ξ ∈ ker(F(B[t1, . . . , tn]) → F(Frac(B)(t1, . . . , tn))). By property 2, the image of ξ in
F(Frac(B)[t1, . . . , tn]) is trivial. By property 1, we conclude that there is an element g ∈ B \ 0
such that ξ restricts to the trivial element in F(Bg[t1, . . . , tn]).

By Theorem 2.1 applied to X = SpecB, the principal divisor Z defined by g, and the closed
point p in SpecB, we may find a Nisnevich square

SpecBg
� � //

��

SpecB

��
U �
� // SpecA[x]

with A an essentially smooth local ring of dimension d − 1. It follows immediately from the
diagram above that the base change of U → SpecA[x] along SpecB → SpecA[x] is affine.
Likewise, since U → SpecA[x] is an open immersion, its base change along U → SpecA[x] is an
isomorphism and therefore also affine. As a consequence, the base change of U ⊂ SpecA[x] along
the surjective étale morphism U q SpecB → SpecA[x] is affine; hence, the original morphism
must be affine as well.

Now, by property 3, since ξ lies in the kernel of F(B[t1, . . . , tn])→ F(Bg[t1, . . . , tn]), we may
find a

ξ′ ∈ ker(F(A[x][t1, . . . , tn])→ F(U [t1, . . . , tn]))

lifting ξ. In particular, the image of the class ξ′ in F(Frac(A)(x, t1, . . . , tn)) must also be trivial.
However, A[x][t1, . . . , tn] = A[x, t1, . . . , tn] and since A has dimension d− 1, we conclude that ξ′

is trivial, which means that ξ must also be trivial, and we are done.

Remark 2.3. The proof of Proposition 2.2 uses only assertions 1, 3, and 4 of Theorem 2.1, and
it may be possible to give a shorter and more self-contained proof of these assertions.

Homotopy invariance for G-torsors over arbitrary fields

We now apply Proposition 2.2 in the case of the functor “isomorphism classes of Nisnevich-locally
trivial G-torsors” under an “isotropic” reductive k-group G (see Definition 1.1).
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Theorem 2.4. If k is a field and G is an “isotropic” reductive k-group scheme, then for any
smooth k-algebra A and any integer n > 0, the map

H1
Nis(SpecA,G) −→ H1

Nis(SpecA[t1, . . . , tn],G)

is a pointed bijection.

Proof. Repeat the proof of [AHW18, Theorem 3.3.7], replacing appeals to [AHW18, Proposi-
tion 3.3.4] with a reference to Proposition 2.2. As the formulation of Proposition 2.2 differs
slightly from that of [AHW18, Proposition 3.3.4], we include the argument here.

We want to show that every Nisnevich-locally trivial G-torsor P over the ring A[t1, . . . , tn] is
extended from A. After [AHW18, Corollary 3.2.6], which is a local-to-global principle for torsors
under a reductive group scheme, it suffices to show that for every maximal ideal m of A, the
G-torsor Pm over Am[t1, . . . , tn] is extended from Am. In fact, we will show that Pm is a trivial
torsor.

We claim that the functor from k-algebras to pointed sets given by A 7→ H1
Nis(SpecA,G)

satisfies the axioms of Proposition 2.2. The first point is an immediate consequence of the fact that
G has finite presentation by [AHW18, Lemma 2.3.3]. Recall from [AHW18, Definition 2.3.1] that
we write BTorsNis(G) for the simplicial presheaf whose value on a smooth scheme U is the nerve
of the groupoid of G-torsors over U . The third point is then a formal consequence of the fact that
the functor H1

Nis(−,G) can be identified with the set of connected components π0(BTorsNis(G))
since BTorsNis(G) satisfies Nisnevich excision essentially by definition (see [AHW18, § 2.3] for
more details). Finally, the second point follows by appealing to results of M. S. Raghunathan
[Rag78, Rag89], which are conveniently summarized in [CO92, Proposition 2.4 and Théorème 2.5];
this is where the assumption that G is “isotropic” is used.

The hypotheses of Proposition 2.2 having been satisfied, to conclude that Pm is trivial,
it suffices to show that it becomes trivial over the field Frac(Am)(t1, . . . , tn), but this follows
immediately from the fact that a field has no non-trivial Nisnevich covering sieves.

Representability results

Granted Theorem 2.4, we can immediately generalize a number of results from [AHW18]. For
ease of reference, we restate the relevant results here. We begin by establishing Theorem 1.3 from
the introduction.

If F is a simplicial presheaf on Smk and F̃ is a Nisnevich-local and A1-invariant fibrant
replacement of F , then there is a canonical map SingA

1
F → F̃ that is well defined up to

simplicial homotopy. Recall from [AHW18, Definition 2.1.1] that a simplicial presheaf F on

Smk is called A1-naive if for every affine X ∈ Smk, the map SingA
1
F (X) → F̃ (X) is a weak

equivalence of simplicial sets. As observed in [AHW18, Remark 2.1.2], if F is A1-naive, then for
every affine X ∈ Smk, the map

π0

(
SingA

1
F (X)

)
−→ [X,F ]A1

is a bijection.

By [AHW18, Proposition 2.1.3], the simplicial presheaf F is A1-naive if and only if SingA
1
F

satisfies affine Nisnevich excision in the sense of [AHW17, Section 2.1]. In that case, RZar SingA
1
F

is Nisnevich-local and A1-invariant.
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Theorem 2.5. If G is an “isotropic” reductive k-group scheme, then BNis G is A1-naive. In
particular, the canonical map

H1
Nis(X,G) −→ [X,BG]A1

is a bijection for every affine X ∈ Smk.

Proof. Combine [AHW18, Theorem 2.3.5] with Theorem 2.4.

Suppose that H → G is a closed immersion of “isotropic” reductive k-group schemes. By
[Ana73, Théorème 4.C], the quotient G /H exists as a k-scheme. Since the map G → G /H
is an H-torsor, it follows that the quotient is smooth since G has the same property. That the
quotient is affine follows from the fact that H is reductive and may be realized as Spec Γ(G,OG)H

(see [Alp14, Theorems 9.1.4 and 9.7.6]; for later use, observe that these statements hold over
an arbitrary base). Since G and H are reductive, they are connected by assumption, and the
connectness statement for the quotient follows. Granted these fact, we establish Theorem 1.5.

Theorem 2.6. If H→ G is a closed immersion of “isotropic” reductive k-group schemes, and if
the H-torsor G→ G /H is Nisnevich-locally split, then G /H is A1-naive.

Proof. Combine [AHW18, Theorem 2.4.2] with Theorem 2.4.

The following result generalizes [AHW18, Theorem 4].

Theorem 2.7. Assume that G is an “isotropic” reductive k-group scheme and P ⊂ G is a
parabolic k-subgroup possessing an isotropic Levi factor (for example, if G is split); then G /P
is A1-naive.

Proof. Let L be a Levi factor for P. The quotients G /L and G /P exist; see, for example,
[AHW18, Lemma 3.1.5]. Moreover, the map G /L → G /P induced by the inclusion is a com-
position of torsors under vector bundles. Under the assumption that L is “isotropic,” G /L is
A1-naive by Theorem 2.6. The fact that G /P is A1-naive then follows from [AHW18, Lem-
ma 4.2.4] using the fact that G /L→ G /P is a composition of torsors under vector bundles.

2.2 Local triviality of homogeneous spaces

In order to apply Theorem 1.5, we need a criterion to establish that if H ⊂ G is a group
homomorphism, the quotient map G → G /H is Nisnevich-locally trivial. In this section, we
develop some criteria to guarantee that this condition holds.

Criteria for Nisnevich-local triviality

Lemma 2.8. Assume that R is a commutative unital ring of finite Krull dimension, and suppose
that H ⊂ G is an inclusion of split reductive R-group schemes.

1. The quotient G /H exists as a (connected) smooth affine scheme.

2. The H-torsor G→ G /H is Nisnevich-locally trivial if for any fieldK, the map H1
fppf(K,H)→

H1
fppf(K,G) has trivial kernel.

If R is a field, the same results hold without the splitness assumptions.

Proof. We first treat the case with the splitness assumptions in place. In that case, split reduc-
tive group schemes are pulled back from Z-group schemes. For both claims, it suffices to prove
the result with R = Z: the formation of quotients commutes with base change; affineness and
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Nisnevich-local triviality will be preserved by base change as well. For R = Z, the existence of
the quotient and the relevant properties are established before the statement of Theorem 2.6.

Now, we establish the second statement. To show that the relevant torsor is Nisnevich-locally
trivial, it suffices, by [Bia70, Proposition 2], to show that the H-torsor in question is rationally
trivial, that is, trivial over the generic point of G /H (which is an integral affine Z-scheme).
To that end, note that the generic point is the spectrum of the fraction field K of the ring
Γ(G /H,OG /H) and that it suffices to show that the restriction of G → G /H admits a section
upon restriction to K. However, the pullback of G → G /H along the map SpecK → G /H
is an H-torsor on SpecK whose associated G-torsor is trivial. The condition that the map
H1

fppf(K,H)→ H1
fppf(K,G) has trivial kernel precisely guarantees that this H-torsor over SpecK

is trivial, that is, admits a section.

When R is a field, one proceeds in an analogous fashion: the existence and properties of the
quotient follow exactly as above. To establish Nisnevich-local triviality, one replaces the reference
to [Bia70, Proposition 2] above with a reference to [Nis84, Theorem 4.5] (note that Nisnevich’s
result is stated for semi-simple groups, but the argument works for reductive group schemes; this
is mentioned, for example, in [FP15, Section 1.1]).

The Rost invariant and Nisnevich-local triviality

Assume that G is a simple simply connected algebraic group over a field F . The Rost invariant
of G is a natural transformation of functors on the category of field extensions of F :

H1
ét(−,G)

rG−→ H3
ét(−,Q/Z(2)) ;

see [GMS03, Appendix A] for more details regarding the group on the right (it will not be im-
portant here). What is important is that the Rost invariant is functorial for homomorphisms of
simply connected groups [GMS03, Proposition 9.4]. In other words, if ϕ : G1 → G2 is a homo-
morphism of simply connected reductive algebraic groups, then there is a commutative diagram
of the form

H1(F,G1)
rG1 //

��

H3(F,Q/Z(2))

nϕ

��
H1(F,G2) rG2

// H3(F,Q/Z(2)) ,

(2.1)

where nϕ is an integer called the Dynkin index or the Rost multiplier of the homomorphism ϕ.

If G is semi-simple and simply connected, then an n-dimensional k-rational representation ρ
of G yields an embedding ρ : G→ SLn; we refer to the Dynkin index of this homomorphism as
the Dynkin index of the representation. The Dynkin index then has the following properties:

1. It is a non-negative integer that is 0 if and only if the homomorphism is trivial.

2. The Rost multiplier of a composite is the product of the Rost multipliers [GMS03, Propo-
sition 7.9].

3. If ρ1 and ρ2 are two representations of G, then nρ1⊕ρ2 = nρ1 + nρ2 .

4. The Dynkin index of the adjoint representation is the dual Coxeter number.

One then deduces the following criterion for detecting Nisnevich-local triviality.

Lemma 2.9. Assume that ϕ : H ⊂ G is a closed immersion group homomorphism of simply
connected semi-simple k-group schemes. If (i) the Dynkin index for ϕ is 1 and (ii) for every
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extension K/k, the kernel of the Rost invariant for HK is trivial, then the torsor G → G /H is
Nisnevich-locally trivial.

Proof. By Lemma 2.8, it suffices to prove that for every extension K/k, if for an H-torsor P
over SpecK, the associated G-torsor P ′ over SpecK (obtained by extending the structure group
via ϕ) is trivial, then P is already trivial.

Assume that the kernel of the Rost invariant for H is trivial for every extension K/k. Suppose
that P is an HK-torsor over SpecK and that the associated GK-torsor P ′ over SpecK is trivial.
Since the Rost invariant of P ′ is necessarily trivial, the assumption that ϕ has Rost multiplier 1
implies that P has trivial Rost invariant. However, since the Rost invariant for HK was assumed
to be injective, we conclude that P is trivial, which is precisely what we wanted to show.

For quasi-split groups of low rank, the Rost invariant is frequently injective [Gar01b]. Indeed,
R. S. Garibaldi shows [Gar01b, Theorems 0.1 and 0.5] that the Rost invariant is trivial in the
following cases:

1. quasi-split groups of absolute rank 6 5

2. quasi-split groups of type B6, D6, or E6

3. quasi-split groups of type E7 or split groups of type D7.

Thus we obtain a number of Nisnevich-local triviality results by the computation of Dynkin
indices.

Example 2.10. The Rost multiplier of the inclusion of split groups Spin9 ↪→ F4 is 1, so Lemma 2.9
combined with [Gar01b, Theorems 0.1 and 0.5] imply that the Spin9-torsor F4 → F4 / Spin9 is
Nisnevich-locally trivial. Similar results hold for F4 ⊂ E6 and E6 ⊂ E7 (see [Gar01b] for more
details). Thus, in each of these cases, Theorem 2.6 applies and guarantees that the relevant
homogeneous space is A1-naive.

Remark 2.11. Following [AHW19], one can use the A1-fiber sequences associated with inclusions
appearing in Example 2.10 to deduce results about the reduction of the corresponding structure
groups for (Nisnevich-locally trivial) torsors over smooth affine schemes. Moreover, torsors under
the various group schemes above are related to classical algebraic invariants (for example, F4-
torsors correspond to Albert algebras, E6- and E7-torsors correspond to certain structurable
algebras [Gar01a]). In light of these applications, we pose the following question, which would
be especially interesting to analyze in the cases mentioned in Example 2.10.

Question 2.12. Suppose that H → G is a closed immersion of “isotropic” reductive k-group
schemes such that G→ G /H is Nisnevich-locally trivial.

• What is the A1-connectivity of G /H?

• What is the structure of the first non-vanishing A1-homotopy sheaf of G /H?

Motivic spheres as homogeneous spaces

In [Bor50], Borel completed the classification of homogeneous spaces that are spheres. We now
establish a similar result for motivic spheres. To this end, we write Q2n−1 for the split smooth
affine quadric defined by the equation

∑n
i=1 xiyi = 1, and Q2n for the split smooth affine quadric

defined by the equation
∑n

i=1 xiyi = z(1 − z). In [ADF17, Theorem 2], we showed that Q2n is
A1-weakly equivalent to Sn∧Gm

∧n, and it is well known that Q2n−1 is A1-weakly equivalent to
Sn−1∧Gm

∧n.
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Theorem 2.13. Suppose that R is a commutative base ring. The following homogeneous spaces
are isomorphic to odd-dimensional motivic spheres:

1. The quotients SLn / SLn−1, SO2n / SO2n−1, and Sp2m / Sp2m−2 (with n = 2m) are isomor-
phic to Q2n−1.

2. The quotient Spin7 /G2 is isomorphic to Q7.

3. The quotient Spin9 /Spin7 is isomorphic to Q15.

Furthermore, for each pair (G,H) as above, the torsor G→ G /H is Zariski-locally trivial.

Proof. All of these results are presumably well known. The first three appear in [AHW18, § 4.2],
while the last one appears in [AHW19, Theorem 2.3.5]. It remains to identify Spin9 / Spin7

∼= Q15;
this is essentially classical, so we provide an outline.

We use the notation of [AHW19, § 2]. Let O be the split octonion algebra over Z, and consider
the closed subscheme in the scheme O×O defined by NO(x)−NO(y) = 1 (see [AHW19, Definition
2.1.9] for an explicit formula for the norm); this scheme is isomorphic to Q15 by definition. The
space O × O carries the split quadratic form of rank 16. However, there is an induced action of
Spin9 on Q15 coming from the spinor representation.

We now repeat the arguments at the beginning of the proof of [AHW19, Theorem 2.3.5]. We
may first assume without loss of generality that R = Z, and the result in general follows by base
change. In that case, the relevant quotient exists by [Ana73, Théorème 4.C].

The action of Spin9 on Q15 described above gives a morphism Spin9 → Q15 by the choice of
a point. It remains to show that this map induces an isomorphism of quotients. As in the proof
of [AHW19, Theorem 2.3.5], we may reduce to the case of geometric points. Having reduced to
geometric points, transitivity may be established and the stabilizer identified by a straightforward
(and classical) computation using Clifford algebras (see [Con14, § C.4] for a discussion of the
relevant groups).

For Zariski-local triviality, it suffices to show that if given a local ring R and a Spin7-torsor
P over R, triviality of the associated Spin9-torsor implies the triviality of P. Equivalently, if the
quadratic space associated with the Spin9-torsor is split, then the initial quadratic space must
also be split; this follows from Witt’s cancellation theorem [EKM08, Theorem 8.4].

Remark 2.14. Following [Bor50, Théorème 3], it seems reasonable to expect that the list above
should be a complete list of homogeneous spaces that are isomorphic to odd-dimensional motivic
spheres, at least over an algebraically closed field.

Theorem 2.15. If k is a field having characteristic unequal to 2, then Q2n is A1-naive.

Proof. By [AHW18, Lemma 3.1.7], we know that under the hypotheses, Q2n
∼= SO2n+1 / SO2n

and the torsor SO2n+1 → SO2n+1 / SO2n is Zariski-locally trivial. Since SOm is split, the result
follows by Theorem 2.6.
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réductifs, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3), vol. 153
(Springer-Verlag, Berlin – New York, 1970); doi:10.1007/BFb0059027.

EKM08 R. Elman, N. Karpenko, and A. Merkurjev, The algebraic and geometric theory of quadratic
forms, Amer. Math. Soc. Colloq. Publ., vol. 56 (Amer. Math. Soc., Providence, RI, 2008);
doi:10.1090/coll/056.

FP15 R. Fedorov and I. Panin, A proof of the Grothendieck–Serre conjecture on principal bundles
over regular local rings containing infinite fields, Publ. Math. Inst. Hautes Études Sci. 122
(2015), no. 1, 169–193; doi:10.1007/s10240-015-0075-z.

Gar01a R. S. Garibaldi, Structurable algebras and groups of type E6 and E7, J. Algebra 236 (2001),
no. 2, 651–691; doi:10.1006/jabr.2000.8514.

Gar01b , The Rost invariant has trivial kernel for quasi-split groups of low rank, Comment.
Math. Helv. 76 (2001), no. 4, 684–711; doi:10.1007/s00014-001-8325-8.

Gil10 P. Gille, The Borel–de Siebenthal theorem, 2010, available at http://math.univ-lyon1.fr/
homes-www/gille/prenotes/bds.pdf.

GMS03 S. Garibaldi, A. Merkurjev, and J.-P. Serre, Cohomological invariants in Galois cohomology,
University Lecture Series, vol. 28, Amer. Math. Soc., Providence, RI, 2003; doi:10.1090/

ulect/028.

HK20 A. Hogadi and G. Kulkarni, Gabber’s presentation lemma for finite fields, J. reine angew. Math.
2020 (2020), no. 759, 265–289; doi:10.1515/crelle-2017-0049.

Lan56 S. Lang, Algebraic groups over finite fields, Amer. J. Math. 78 (1956), no. 3, 555–563; doi:
10.2307/2372673.

Mor12 F. Morel, A1-algebraic topology over a field, Lecture Notes in Math., vol. 2052 (Springer, Hei-
delberg, 2012); doi:10.1007/978-3-642-29514-0.

MV99 F. Morel and V. Voevodsky, A1-homotopy theory of schemes, Publ. Math. Inst. Hautes Études
Sci. 90 (1999), 45–143; doi:10.1007/BF02698831.
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