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Abstract—We consider the problem of coded distributed
computing where a large linear computational job, such as a
matrix multiplication, is divided into k smaller tasks, encoded
using an (n, k) linear code, and performed over n distributed
nodes. The goal is to reduce the average execution time of
the computational job. We provide a connection between the
problem of characterizing the average execution time of a coded
distributed computing system and the problem of analyzing
the error probability of codes of length n used over erasure
channels. Accordingly, we present closed-form expressions for
the execution time using binary random linear codes and the best
execution time any linear-coded distributed computing system
can achieve. It is also shown that there exist good binary linear
codes that attain, asymptotically, the best performance any linear
code, not necessarily binary, can achieve. We also investigate
the performance of coded distributed computing systems using
polar and Reed-Muller (RM) codes that can benefit from low-
complexity decoding, and superior performance, respectively,
as well as explicit constructions. The proposed framework in
this paper can enable efficient designs of distributed computing
systems given the rich literature in the channel coding theory.

I. INTRODUCTION

There has been increasing interest in recent years toward
applying ideas from coding theory to improve the perfor-
mance of various computation, communication, and network-
ing applications. For example, ideas from repetition coding
has been applied to several setups in computer networks, e.g.,
by running a request over multiple servers and waiting for the
first completion of the request by discarding the rest of the
request duplicates [1]-[3]. Another direction is to investigate
the application of coding theory in cloud networks and
distributing computing systems [4]], [5]. A rule of thumb is
that when the computational job consists of linear operations,
coding techniques can be applied to improve the run-time
performance of the system under consideration.

Distributed computing refers to the problem of performing
a large computational job over many, say m, nodes with
limited processing capabilities. A coded computing scheme
aims to divide the job to & < n tasks and then to introduce
n—k redundant tasks using an (n, k) code, in order to alleviate
the effect of slower nodes, also referred to as stragglers. In
such a setup, it is assumed that each node is assigned one
task and hence, the total number of encoded tasks is n equal
to the number of nodes.

Recently, there has been extensive research activities to
leverage coding schemes in order to boost the performance of
distributed computing systems [2], [5]-[14]. For example, [5]]
has applied coding theory to combat the deteriorating effects
of stragglers in matrix multiplication and data shuffling. The
authors in [7] considered coded distributed computing in
heterogeneous clusters consisting of servers with different
computational capabilities.

Most of the work in the literature focus on the application
of maximum distance separable (MDS) codes. However,
encoding and decoding of MDS codes over real numbers,
especially when the number of servers is large, e.g., more
than 100, face several barriers, such as numerical stability, and
decoding complexity. In particular, decoding of MDS codes

This work was supported by the National Science Foundation under the
grant CCF-1763348.

is not robust against unavoidable rounding errors when used
over real numbers [15]. Employing large finite fields, e.g.,
coded matrix multiplication using polynomial codes in [16],
can be an alternative approach. However, applying large finite
fields imposes further numerical barriers due to quantization
when used over real-valued data.

As we will show in Section III, MDS codes are theoretically
optimal in terms of minimizing the average execution time of
any linear-coded distributed computing system. However, as
discussed above, their application comes with some practical
impediments, either when used over real-valued inputs or
large finite fields, in most of distributed computing appli-
cations comprised of large number of local nodes. A sub-
optimal yet practically interesting approach is to apply binary
linear codes, consisting of 0’s and 1’s, and then perform the
computation over real values. In this case, there is no need
for the quantization as a zero in the (4, j)-th element of the
generator matrix of the binary linear code means that the -
th task is not included in the j-th encoded task sent to the
j-th node while a one means it is included. To this end, in
this paper, we consider (n, k) binary linear codes where all
computations are performed over real-valued data inputs. A
related work to this model is the very recent work in [17]
where binary polar codes are applied for distributed matrix
multiplication. The authors in [[I7] justify the application of
binary codes over real-valued data and provide a decoding
algorithm using polar decoder.

In this work, we connect the problem of characterizing the
average execution time of any coded distributed computing
system to the error probability of the underlying coding
scheme over n uses of erasure channels (see Lemmal[I]). Using
this connection, we characterize the performance limits of
distributed computing systems such as the average execution
time that any linear code can achieve (see Theorem@, the
average job completion time using binary random linear codes
(see Corollary[)), and the best achievable average execution
time of any linear code (see Corollary[5) that can, provably,
be attained using MDS codes requiring operations over large
finite fields. Moreover, we study the gap between the average
execution time of binary random linear codes and the optimal
performance (see Theorem[7)) showing the normalized gap
approaches zero as n — oo (see Corollary[§). This implies
that there exist binary linear codes that attain, asymptotically,
the best performance any linear code, not necessarily binary,
can achieve. We further study the performance of coded
distributed computing systems using polar and Reed-Muller
(RM) codes that can benefit from low-complexity decoding
and superior performance, respectively.

II. SYSTEM MODEL

We consider a distributed computing system consisting of
n local nodes with the same computational capabilities. The
run time 7; of each local node ¢ is modeled using a shifted-
exponential random variable (RV), mainly adopted in the
literature [S]], [7]], [18]]. Then, when the computational job is
equally divided to k tasks, the camulative distribution function



(CDF) of T; is given by
Pr(T, <#) =1 —exp(—pu(kt —1)), Vi>1/k, ()

where p is the exponential rate of each local node, also called
the straggling parameter. Using one can observe that the
probability of the task assigned to the i-th server not being
completed (equivalent to erasure) until time ¢ > 1/k is

e(t) £ Pr(T; > t) = exp (—pu(kt — 1)), )

and is one for ¢t < 1/k. Therefore, given any time ¢, the
problem of computing & parts of the computational job over n
servers can be interpreted as the traditional problem of trans-
mitting k& symbols, using an (n, k) code, over n independent-
and-identically-distributed (i.i.d.) erasure channels. Note that
the form of the CDF in suggests that ¢y £ 1/k is the
(normalized) deterministic time required for each server to
process its assigned 1/k portion of the total job (all tasks are
erased before tp), while any time elapsed after ¢y refers to
the stochastic time as a result of servers’ statistical behavior
(tasks are not completed with probability €(t) for ¢ > to).

Given a certain code and a corresponding decoder over
erasure channels, a decodable set of tasks refers to a pattern
of unerased symbols resulting in a successful decoding with
probability 1. Then, P.(e,n) is defined as the probability
of decoding failure over an erasure channel with erasure
probability e. For instance, P.(e¢,1) = ¢ for a (1,1) code.
Note that the reason to keep n in the notation is to specify that
the number of servers, when the code is used in distributed
computation, is also n. Finally, the total job completion
time 7' is defined as the time at which a decodable set of
tasks/outputs is obtained from the servers.

III. FUNDAMENTAL LIMITS

The following Lemma connects the average execution time
of any linear-coded distributed computing system to the error
probability of the underlying coding scheme over n uses of
an erasure channel.

Lemma 1. The average execution time of a linear-coded
distributed computing system using a given (n,k) code can
be characterized as

Tave £ E[T] = /0 P.(e(1),n)dr 3)
1 1 ['P.(en)
E + ﬁ c d€, (4)

where €(7) is defined in (2).

Proof: Tt is well-known that the expected value of any RV
T is related to its CDF Fr(7) as E[T] = [°(1— Fr(7))dr.
Note that 1 — Fp(7) = Pr(T > T) is the probability of
the event that the job is not completed until some time 7.
Therefore, using the system model in Section II, we can
interpret Pr(7T" > 7) as the probability of decoding failure
P.(e(1),n) of the code when used over n i.i.d. erasure
channels with the erasure probability ¢(7). This completes
the proof of (3). Now given that for the shifted-exponential
distribution de(7)/dr = —pke(r), and that P.(e(7),n) = 1
for all 7 < 1/k, we have by the change of variables. W
Remark 1. Note that (3) holds given any model for the
distribution of the run time of the servers, while is obtained
under shifted-exponential distribution, with servers having a
same straggling parameter u, and can be extended to other
distributions in a similar approach.

Theorem 2. The average execution time of any linear-coded
distributed computing system can be expressed as

w] ik 4 Z )

n

T

i=n—k+1

Tavg = E

where p(i, k) is the average conditional probability of de-
coding failure, for an underlying decoder, given i encoded
symbols are erased at random.

Proof: Using the law of total probability and the defini-
tion of p(i, k) we have

- n 7 n—i, (s
=Z(i>e (1= &)™ "p(i, k). 6)
i=1
Accordingly, characterlzlng T.vg requires computing integrals
of the form f; = fo €=1(1—€)"~ide fori = 1,2, ...,n. Using
part-by-part integration one can find the recursive relation

fix1 = == fi which results in 1/f; = i

n—u

p(i, k) =1 for i > n—k, since one cannot extract the k parts
of the original job from less than k& encoded symbols. Then
plugging (6) into @) leads to (@). [

Next, we characterize the average execution time using a
random ensemble of binary linear codes with full-rank gen-
erator matrices. This random ensemble, denoted by R(n, k),
is obtained by picking entries of the k£ x n generator matrix
independently and uniformly at random followed by removing
those matrices not having a full row rank from the ensemble.
Remark 2. Note that (6)) together with the integral form in (@)
suggest that a coded computing system should always encode
with a full-rank generator matrix, otherwise, the average
execution time does not converge. This is the reason behind
picking the particular ensemble described above. Note that
this is in contrast with the conventional block coding, where
we can get an arbitrarily small average probability of error
over a random ensemble of all £xn binary generator matrices.

P.(e,n)

n . Note that

Lemma 3. The probability that the generator matrix of a
code picked from R(n, k) does not remain full row rank after
erasing i columns uniformly at random, denoted by p;s(i, k),
can be expressed as
1 _ 2] 1—n+i
pf(Z,k): _HJ 1( )
[, (=2

Proof: Define I(m,k) as the probability of k binary
uniform random vectors v; € F3' being linearly independent.

It is well-known that
k
H (1—2i=t=m), ®)
i=1

Let G denote the k x (n—1) matrix after removing ¢ columns
of the k£ x n generator matrix G uniformly at random. Then

prlik) = P&hmﬂ)#kaw<>=m) ©)

(M

_ Pr({rank(G) = k})
~ Pr ({rank( )=k}) (19)
k _9j—l-n+i
Hz 1 (1 —2i=1-n)
where (9) is by the definition of py(i, k), . s by noting
k}) =

that Pr({rank(G) = k}|{rank(G) =

1, and (TI) is
by @) [ |

Corollary 4. The average execution time using random linear
codes from the ensemble R(n, k) under maximum a posteriori
(MAP) decoding is given by () while replacing p(i, k) in (3))
by ps(i, k), characterized in Lemma 3.

Proof: The proof is by noting that the optimal MAP
decoder fails to recover the k input symbols given n — 4
unerased encoded symbols if and only if the corresponding
k X (n — i) sub-matrix of the generator matrix of the code is



not full row rank which occurs with probability ps(i,k). W
Remark 3. Theorem[] implies that the average execution
time using linear codes consists of two terms. The first term
is independent of the performance of the underlying coding
scheme and is fixed given k, n, and u. However, the second
term is determined by the error performance of the coding
scheme, i.e., p(i, k) for i = 1,2,...,n — k, and hence, can be
minimized by properly designing the coding scheme.

The following corollary of Theorem[Z] demonstrates that
MDS codes, if they existE] are optimal in the sense that
they minimize the average execution time by eliminating the
second term of the right hand side in (3). However, for a large
number of servers n, the field size needs to be also large, e.g.,
q > n for Reed-Solomon (RS) codes.

Corollary 5 (Optimality of MDS Codes). For given n,k, and
underlying field size q, an (n, k) MDS code, if exists, achieves
the minimum average execution time that can be attained by
any (n, k) linear code.

Proof: MDS codes have the minimum distance of
dMDS — 5 — k +1 and can recover up to dMP5 — 1 =n —k
erasures leading to p(¢,k) =0 for i = 1,2,...,n — k. There-
fore, the second term of (3) becomes zero for MDS codes
and they achieve the following minimum average execution

time that can be attained by any (n, k) linear code:

1 1 "1
e S I

(12)
k /Jk i=n—k+1 ¢

|

Using Theorem[2] and Remark 3, and given that the gener-
ator matrix of any (n, k) linear code with minimum distance
dmin remains full rank after removing up to any dpyi, — 1
columns, we have the following proposition for the optimality
criterion in terms of minimizing the average execution time.

Proposition 6 (Optimality Criterion). An (n, k) linear code
that minimizes Z?;d]fm p(i, k) /i also minimizes the average

execution time of a coded distributed computing system.

Although MDS codes meet the aforementioned optimality
criterion over large field sizes, to the best of our knowledge,
the optimal linear codes, given the field size ¢ and in particular
for ¢ = 2, per Proposition[6| are not known and have not been
studied before, which calls for future studies.

In the following theorem we characterize the gap between
the execution time of binary random linear codes and the
optimal execution time. Then Corollary[§] proves that binary
random linear codes asymptotically achieve the normalized
optimal execution time, thereby demonstrating the existence
of good binary codes for distributed computation over real-
valued data. The reason we compare the normalized nT,,;’s
instead of T,ye’s is that, using (§), T, has a factor of 1/k
and hence, lim,,_, o, Thye = 0 for a fixed rat R=k/n>0.

Theorem 7 (Gap of Binary Random Linear Codes to the Op-
timal Performance). Let TERC denote the average execution
time of a coded distributed computing system using binary
random linear codes. Then, for any given k, n, we have

1
< |nTMPS _ ,,7BRC| o 1,
3uR(1— R)n InTove "Tavg | uR

v(n)

—v(n) L
—nfkfv(n)Jrl—FnRz In(n—k v(n))}, (13)

'Tt is in general an open problem whether given n, k, and g, there exists
an (n, k) MDS code over F,; [19, Ch. 11.2].

2More precisely, the coding rate over field size g is equal to klog, ¢/n
but with slight abuse of terminology we have dropped the factor of logs g
since this factor is not relevant for coded distributed computing.

where R is the rate and v(n) is an arbitrary function of n
with 0 < v(n) < n— k.
Proof: Using Corollary[d] and Corollary[5] we have
n—k
1
S é R TMDS _ TBRC — _ ; k. .
PRIRTYDS — T30 = 3 Sps(ish)

avg avg
i=1

The lower bound in (I3) is by noting that S > ps(n —
k,k)/(n — k), where ps(n — k, k) can be expressed as
1-27F 127K+ 1-271
1—2-n 1—2-n+l " ]_gk—n—T"
Note that ps(n — k,k) = 0 for n = k. For n > k, since
1—27% > 1 -2 for j =0,1,...,k — 2, we have
1-271 1-27t 1

pr(n—k,k)>1- T >1— o113

(14)

pr(n—k,k)=1— (15)

(16)

Therefore, S > m.
To prove the upper bound, the summation in (T4) is split
as § = &1 + S where
n—k

\ L v(n)
£ E = k 17
> i=n—k—v(n)+1 PR < v(n) +1° 4
n—k—v(n) 1
A 1 .
Sy = E ipf(l’k)' (18)

i=1
To upper-bound Ss, we first note that ps(i, k), defined in (7)),
is a monotonically increasing function of i. Then,

n—k—v(n)
1
<ppn—k—v(n),k - 19
Sy <ps(n =k —v(n), k) ; - (19)
<ps(n—k—vn),k)ln(n—k—vn)). (20)
We can further upper-bound ps(n — k —v(n), k) as

k
prn—k—v(n),k) <1—JJ@—2"""F0)

j=1

k

<1- {1 - 2—’U<">} 22)
< nR27VM), (23)

where is by (7) together with Hle (1 - 20717y 1,
(22) follows by noting that Hle(l — i lmkmu(n)y =
H?/zl(l — 277" vy > [1 — 27v(M]k and @23) follows by
Bernoulli’s inequality (1 —2)¥ > 1 — kx for any 0 < z < 1
and then inserting k = nR. ]

Corollary 8 (Asymptotic Optimality of Binary Random Lin-
ear Codes). The normalized average execution time nTaEf,gc
approaches nTxgs as n grows large. More precisely, for a
given rate R, there exist constants c1,co > 0 such that for
sufficiently large n, i.e., k = nR, we have

logy n

1
MDS BRC
1 < nTayg — 1T | < 2

(24)

Proof: The lower bound holds with ¢; = 1/3uR(1 — R)
according to the left hand side of (13). Observe that with the
choice of v(n) = 2log, n both terms in the right hand side of
lb become O(lOgTQ"). Note that n—k = n(1—R) > 2log, n,
or sufficiently large n. Hence, the upper bound of (24) also
holds with a proper choice of c,. ]
Remark 4. Using (12) and a similar approach to [5]], one can
show that the asymptotically-optimal encoding rate R* for an
MDS-coded distributed computing system is the solution to

(1-R)In(l - R*)=u(l—R*)—R*. (25

Corollary[§] implies that for distributed computation using



binary random linear codes, the gap of nTSE,l;C to nT;\f,[gS
converges to zero as n grows large. Accordingly, the optimal
encoding rate also approaches R*, described in (23).

IV. PRACTICAL CODES AND SIMULATION RESULTS

In this section, simulation results for the expected-time
performance of various coding schemes over distributed com-
puting systems are presented. In particular, their gap to the
optimal performance are shown and also, their performance
gains are compared with the uncoded computation.

A. Polar-Coded Distributed Computation

Binary polar codes are capacity-achieving linear codes
with explicit constructions and low-complexity encoding and
decoding [20]. Also, the low-complexity O(nlogn) encoding
and decoding of polar codes can be adapted to work over
real-valued data when dealing with erasures as in coded
computation systems, as also noted in [17]. Next, we briefly
explain the encoding and decoding procedure of real-valued
data using binary polar codes and delineate how we can obtain
the average execution times using Lemmal[l]

1) Encoding@Procedure: Arikan’s n xn polarization matrix

1 T
Gn =11 1

denotes the r-th Kronecker power of A. Next, a design
parameter €, is picked, as specified later in Section IV-C.
Then the polarization transform G, is applied to a binary
erasure channel with erasure probability e;, BEC(e4). The
erasure probabilities of polarized bit-channels, denoted by
{Z;}_,, are sorted and the k rows of G,, corresponding to
the indices of the k smallest Z;’s are picked to construct the
k x n generator matrix G. The encoding procedure using the
resulting k x n generator matrix G, which also applies to any
(n, k) binary linear code operating over real-valued data, is as
follows. First, the computational job is divided into k smaller
tasks. Then the j-th encoded task which will be sent to the
j-th node, for 5 = 1,2,...,n, is the sum of all tasks i’s for
which the (i, j)-th element of G is 1.

2) Decoding Procedure: The recursive structure of polar
codes can be applied for low-complexity detection/decoding
of real-valued data using parallel processing for more
speedups [21]]. It is well-known that in the case of successive
cancellation (SC) decoding over BECs, the probability of
decoding failure of polar codes is P5°(e,n) =1—[],c 4(1—
Z;), where A denotes the set of indices of the selected rows.
Remark 5. Since polar SC decoder is sub-optimal in terms
of successful decoding performance, one can think of optimal
maximum-likelihood (ML) decoder to attain a lower failure
probability at the cost of higher complexities. Consequently,
investigating the possibility of attaining close-to-ML perfor-
mance, e.g., using SC list decoding of polar codes [22],
over real-valued data is an interesting problem deserving
future studies when taking into account all time-consuming
components of a coded distributed computing system.

3) Performance Characterization: Given the decoding
method adopted we can find the average execution time using
Lemma In particular, when SC decoding is adopted, Ty,
can be obtained by numerically evaluating the integral of ()
involving PS¢ (¢, n). Moreover, for the ML decoding, we first
estimate the error probability PM%(e,n) using Monte-Carlo
(MC) simulations and then apply (@).

B. RM-Coded Distributed Computation

RM codes are closely related to polar codes, where for
an (n,k) RM code the generator matrix G is constructed
by choosing the k rows of G,, (defined in Section IV-Al)
having the largest Hamming weights. It is recently shown
that RM codes are capacity achieving over BECs [23]], though

is considered, where r = logy, n and A®T
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Figure 1. Scaled average execution time of a homogeneous distributed

computing system with 4 = 1 using various coding schemes for finite
number of servers n = 8, 16, 32, 64, 128, 256, and 512.
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Figure 2. Scaled average execution time of a homogeneous distributed com-
puting system with ¢+ = 1 using various coding schemes for asymptotically
large number of servers n = 1024, 2048, 4096, and 8192.

under bit-MAP decoding, and numerical results suggest that
they actually achieve the capacity with almost optimal scaling
[24]. There is still a considerable interest in constructing
low-complexity decoding algorithms for RM codes attaining
such performances. In this paper, we apply the MC-based
simulation to estimate PM%Y(¢,n) for RM codes with the
optimal ML decoder, and then evaluate their execution time,
numerically, using (@). The inspiration behind considering
RM codes in this paper is that they are believed to have
the almost optimal scaling which, we conjecture, is sufficient
for asymptotic optimality, similar to random linear codes in
Corollary[§] for coded distributed computing. The simulation
results, provided next, support this conjecture.

C. Simulation Results

Numerical results for the performance of the coded dis-
tributed computing systems utilizing MDS codes, binary ran-
dom linear codes, polar codes, and RM codes, are presented
in Table [[] and are compared with the uncoded scenario over
small block-lengths. We assume p = 1 for all numerical
results in this section. For MDS and random linear codes,
Tavg is calculated using (I2) and Corollary[zl_f], respectively, and
for polar and RM codes, it is numerically evaluated using (@)
as discussed in Sections IV-A and IV-B. Then k* is obtained
by minimizing 7T}, for all possible values of k. We designed
the polar code with ¢; = 0.1, which is observed to be good
enough for this range of block-lengths but one can also attain
slightly better performance for polar codes by optimizing
over €4 specifically for each n. Characterizing the best ¢4
as a function of block-length n is left for the future work.
In Table I, Gioq is defined as the percentage of the gain in
T.vg compared to the uncoded scenario and gy is defined
as the gap of T, for the underlying coding scheme to that
of MDS codes, in percentage. Intuitively, Goq for a coding



Table I
AVERAGE EXECUTION TIME AND OPTIMAL k* VALUES FOR DIFFERENT CODING SCHEMES AS WELL AS THEIR GAP gopt TO THE OPTIMAL
PERFORMANCE AND THEIR PERFORMANCE IMPROVEMENT GAIN G,q COMPARED TO THE UNCODED COMPUTING.

n Uncoded MDS coding Binary random coding

Polar coding with SC

Polar coding with ML RM coding with ML

(Tavgy 90pt) (Tavg7 k¥, Gcod) (Tan: k¥, Jopt, Gcod)

(Tavg7 k¥, Jopt, CT'cod)

(Tavgy k*ygoph Geod) (Tan7 k*7gopt, Geod)

8 (0.4647,25% (0.370, 6, 20%) (0.460,7,25%,1.1%)

(0.412,7, 11%, 12%)

(0.40, 7,5 5%, 16%) (0.389, 7,5.1%, 16%)

(0.191, 11,31%) | (0.226, 11, 18%, 18%)

(0217, 11, 14%, 21%)

(0.199, 11, 4.2%, 28%) | (0.198, 11, 3.6%, 28%)

32 (0.1581,63%) | (0.0968,22,39%)| (0.105,21, 8.6%, 31%)

(0.114, 24, 18%, 28%)

(0.105,26,7.9%, 34%) | (0.104,26,7.2%, 34%)

)
16 || (0.2738,44%)
)
64 || (0.0897,84%) | (0.0438,44,46%)| (0.051,43,3.9%, 44%)

(0.0584, 44, 20%, 35%)

(0.0533, 46, 9.4%, 41%) | (0.050, 42, 2.6%, 44%)

128 ]| (0.0503,105%) | (0.0245,88,51%) | (0.025,87,1.9%,50%) | (0.0293,88,19%,42%) | (0.0255,91,4.2%,50%) | (0.0252,97,2.8%, 50%)
256 [[ (0.0278,127%) ] (0.0123,175, 56%)| (0.0124,174,0.9%, 56%)| (0.0146, 182, 19%, 48%) | (0.0129, 186, 5.5%, 54%)| (0.0123, 166, 0.6%, 56 %)
512 [ (0.0153,149%)[(0.0061, 350, 60%) | (0.0062, 349, 0.5%, 60%) | (0.0073, 388, 19%, 52%) |(0.0065, 393, 5.9%, 57%) | (0.0061, 353, 0.1%, 60%)

scheme determines how much gain this scheme attains and
Jopt indicates how close this scheme is to the optimal solution.
Observe that polar codes with the low-complexity SC decoder
achieve large enough G .q4’s, close to the optimal values of
Geod, €.2., 52% for n = 512 versus 60% for the MDS code.
Closer performance to the optimal T}, can be obtained by
decoding polar codes with ML decoder, e.g., gopt = 5.5%
for n = 256. Figure || shows that random linear codes have
weak performance in the beginning but they quickly approach
the optimal T, so that they have small gaps to the optimal
values, €.g., gopt, = 0.5% for n = 512. Also, observe that RM
codes always outperform polar codes since, perhaps, they have
better distance distribution leading to better p(i, k)’s defined
in Theorem[2l

In the case of u = 1, by numerically solving (23]), we have
for the asymptotically-optimal encoding rate R* = 0.6822.
Motivated by this fact, in Figure 2, the rate of all discussed
underlying coding schemes is fixed to R* and nT,, is plotted
for moderately large block-lengths, i.e., T,y is not optimized
over rates for the results demonstrated in this plot. Addition-
ally, the polar code is designed with ¢ = 1 — R* = 0.3178,
which makes the code to be capacity-achieving for an erasure
channel with capacity equal to R*. Note that there is still a
gap between polar codes with ML decoder and MDS codes.
We believe this is due to the fact that binary polar codes with
the 2 x 2 polarization kernel do not have an optimal scaling
exponent [25]]. Furthermore, Figure [2] suggests that RM codes
attain the optimal performance, and also do so relatively fast,
supporting our conjecture in Section IV-B.

V. CONCLUSION

In this paper, we presented a coding-theoretic approach
toward coded distributed computing systems by connecting
the problem of characterizing their average execution time to
the traditional problem of finding the error probability of a
coding scheme over erasure channels. Using this connection,
we provided results on the performance of coded distributed
computing systems, such as their best performance bounds
and asymptotic results using binary random linear codes. We
further analyzed the performance of polar and RM codes in
the context of distributed computing systems. We conjecture
that achieving the capacity of BECs with optimal scaling
exponent is a sufficient condition for binary codes to be
asymptotically optimal, in the sense defined in Theorem[7]
We have shown this for binary random linear codes which
are well-known to have optimal scaling exponent, even with
sparse generator matrices [26], and numerically verified this
for RM codes by observing that they attain close to optimal
performance using a moderate number of servers. It is also
interesting to see whether having an optimal scaling exponent
is also a necessary condition for codes to be asymptotically
optimal, e.g., whether binary polar codes with the 2 x 2
polarization kernel are asymptotically optimal or not.
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