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ABSTRACT. ITP is a combinatorial principle that is a strengthening of the
tree property. For an inaccessible cardinal k, ITP at s holds if and only if
K is supercompact. And just like the tree property, it can be forced to hold
at accessible cardinals. A broad project is obtaining ITP at many cardinals
simultaneously. Past a singular cardinal, this requires failure of SCH. We prove
that from large cardinals, it is consistent to have failure of SCH at x together
with ITP xT. Then we bring down the result to k = R 2.

1. INTRODUCTION

A long standing project in set theory is to analyze how much compactness can
be obtained in the universe. Compactness is the phenomenon where if a certain
property holds for all small substructures of an object, then it holds for the entire
object. Compactness properties of particular interest are combinatorial principles
that follow from large cardinals, but can be forced to hold at successors. Key exam-
ples include (in order of increasing strength) failure of squares, the tree property,
and the ineffable tree property (ITP). These principles “capture” the combinatorial
essence of certain large cardinals. At an inaccessible cardinal, the tree property is
equivalent to weak compactness; I'TP is equivalent to supercompactness. Forcing
these principles at successors tells us to what extent small cardinals can behave like
large cardinals.

An old question of Magidor addressing these issues is: can we get principles like
the tree property or ITP simultaneously for every regular cardinal greater than
w1? A positive answer would require many failures of SCH. In this paper we focus
on ITP, the strongest of our key examples, and its relation to singular cardinal
combinatorics. This is of particular interest because failure of SCH is an example
of anticompactness, and so it is difficult to combine it with principles like ITP.

Definition 1.1. Let u be a regular uncountable cardinal.

o A plist is a sequence of functions (da)a<y such that do @ o — 2 for all
a < p. Such a list is thin if for every a < p, {dg | a|a < 8 < p}| < p.

o If (da)a<y is a thin p-list, an ineffable branch of the list is a function
b:p — 2 such that the set {a < p:b | a=ds} is stationary in p.
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e The cardinal p has the ineffable tree property if and only if every thin p-list
has an ineffable branch. We abbreviate this assertion by ITP(f).

It is clear that if x4 has the ineffable tree property then it has the tree property.
When p is inaccessible, then by a classical result u has the ineffable tree property
if and only if p is ineffable: we note that in this context all p-lists are thin. Weiss
[12] showed that if wy has the ineffable tree property then ws is ineffable in L, and
that conversely if p is ineffable then Mitchell forcing at g produces an extension
where 2 = wy = p and the ineffable tree property of p is preserved.

Definition 1.2. Let u and X\ be regular uncountable cardinals with p < .

o AP, (N)-list is a sequence of functions (dz)zep, (n) such that dy : x — 2 for
all z € P,(N). Such a list is thin if for every x € Py(X\), {dy [z |z Cy €
Pu(V} <

o If (di)wep, () s a thin P,())-list, an ineffable branch of the list is a func-
tion b : X — 2 such that the set {x € P,(\) | b | x =d,} is stationary in
Pu(N).

e The pair (u,A) has the ineffable tree property if and only if every thin
P,(N)-list has an ineffable branch. We abbreviate this assertion by ITP(pu, \).

Definition 1.3. Let pu be a regular uncountable cardinal, then v has the super tree
property if and only if ITP(u, A) holds for all reqgular X > u. We abbreviate this
assertion by ITP,.

Since p is club in P,(u), it is not hard to see that ITP(u) is equivalent to
ITP(u, ). The more general property ITP(u, \) is closely related to the property
of supercompactness: in particular a classical result by Magidor [5] shows that for p
inaccessible, p is supercompact if and only if IT' P, holds. Weiss [12] showed that if
1 is supercompact then Mitchell forcing at p produces a model where ITP,,, holds,
and Viale and Weiss [11] showed that this conclusion follows from PFA.

In some recent work, Hachtman and Sinapova [4] showed that if p is the succes-
sor of a singular limit of supercompact cardinals then ITP, holds, and that this
situation is also consistent when p = W,41. In their construction, however, SCH
holds.

This raises the following natural questions:

Question. Is it possible for ITP(u) (or ITP,) to hold when  is the successor of
a singular cardinal v, and the Singular Cardinals Hypothesis fails at v? Can this
hold for a small value of u?

Our main results are:

e In Theorem 2.1, we show it is consistent that there exists v a strong limit
cardinal of cofinality w, such that 2 > v* and ITP(v™") holds.

e In Theorem 3.1, we show it is consistent that there exists v a strong limit
cardinal of cofinality w, such that 2 > v+ and ITP,+ holds.

e In Theorem 4.3, we show it is consistent that X2 is strong limit, 28«2 =
R,210 and ITP(R,2,1, ) holds for all regular A > W 2, 4.

Of course each of these results entails the previous one, but for expository reasons
we will work up to the proof of Theorem 4.3 in steps.



THE ITP AND FAILURE OF THE SCH 3

2. THE ONE-CARDINAL ITP

Neeman [7] constructed a model where v is a singular strong limit cardinal of
cofinality w, 2¥ > v™, and vt has the tree property. We will show that in fact the
ineffable tree property holds at ¥ in this model.

Theorem 2.1. In the model of [7], ITP(v") holds.

Proof. We begin by recalling Neeman’s construction. Let (k, | n < w) be an
increasing sequence of supercompact cardinals. Let £ = kg, and assume that the
supercompactness of x is indestructible under x-directed closed forcing. Let v =
SUP,, <, kn and g = v*. Let p be regular with p > p, and let E be Add(k, p) generic
over V.

In V[E] the cardinal & is supercompact, in particular there is a supercompactness
measure U* on P, (u). For each n < w let U,, be the projection of U* to P, (ky).!
In V[E] define the diagonal supercompact Prikry forcing P from the sequence of
measures U,. Let G be P-generic over V[E|: we will show that ITP(u) holds in
V[E][G]. _

We work in V[E] unless otherwise noted. Let (d,, | & < p) be a P-name for a thin
p-list. We recall that p = x* in V[E][G], and for each v < pu we let {5¢ | £ < K}

be a P-name for an enumeration of {dg | a | 8 > a}.

We recall that every condition in P has a stem h and a top part A, where h is a
finite sequence (xg, ...2,—1) with ; € P,k; (subject to some technical conditions)
and A is an infinite sequence (A4,, Ap41,...) with A; € U;. For our purposes the
main points are that there are k,,_1 stems of length n, and that each such stem lies
in V.. Let h be a stem and ¢ a sentence of the forcing language: then we define
h IF* ¢ to abbreviate “there is an appropriate top part A such that A~ A IF ¢”.

Lemma 2.2. There exist an unbounded set I C u, a natural number n*, and a
function x w— h, with domain Ay € U* such that for all x € Ag: h, is a stem of
length n*, and for all « € I Nz there is & < k such that

ho IF* dgup(a) | @ = 68

Proof. Let j : V[E] — M be the ultrapower by U*. Let G* be generic for j(P)
over M, and work for the moment in the model M[G*]. We note that j(x) > p and
G* adds no bounded subsets of j(k), in particular y is regular and uncountable in
MI[G*].

For each o < p, let p, € G* decide the value of £ < j(k) for which j(d')supjuH i
jla) = j(&)é(a). The stem of p,, is a finite initial segment of the generic w-sequence
added by G*, so there are just countably many possibilities for this stem. We may
therefore find a stem h* for j(IP), such that in M[G*| there exists an unbounded
set I* C p with stem(py) = h* for all a € I*.

Working in V[E], define

I={a<pu|36<jr) B IF §(d)supjon | () = ()1}

1For our purposes in this section we could just choose U, as any supercompactness measure
on Pg Ky, but the more uniform choice is important in Section 4.3 and would also be useful if we
were aiming at a fine analysis of the PCF structure of the model.
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Clearly I* C I and hence I is unbounded.?
Let h* have length n* and let h* = [z — hy]y~ where h, is a stem of length n*
for all z. For every a € I let

= {2 |3 < K hy IF deupa) [ @ =68}

Then A, € U* for all a € I. Let Ag = AyecrAa, that is {z |[Va e INz x € Ay}
Then Ay € U*, and we may assume that the domain of z +— h, is exactly Ag. Then
I, n* x©+— h, and Ay are as required. ([

Lemma 2.3. There are a stem h of length n* and a stationary setT' C u such that
for all v1 < v from T, h IF* d71 = d72 [~y

Proof. Leti:V — N witness that k.11 is p-supercompact in V. We will construct
a generic embedding i : V[E] — N[F] extending i : V' — N, defined in a generic
extension V[F] of V[E].

In V[E], we can factorise i(Add(k, p)) as Qo x Qy, where conditions in Qg have
supports contained in k x i“p and conditions in Q; have supports contained in
Kk x (i(p)\i“p). Clearly i | Add(k, p) is an isomorphism between Add(x, p) and Qy,
so working over V' we may view E as generic for Qp. Forcing over V[E] with Q;
we may obtain a generic object F' such that V[E] C V[F], i“E C F and ¢ lifts in
V[F] to an embedding i : V[E] — N[F].?

Let v € i(I) \ sup(i“p). For each 6 < x and stem h of length n*, we work in
V[F] to define

bsn = {(0n.€) € I x i | hIFp) ()] 1 i(a) = i(6)¢ ™}
Immediately from the definition, keeping in mind that i(h) = h and i | Kk + 1 = id:

e bs 1, is a partial function from I to k, with b5 € VI[F].

o If b, h( ) = &, then working in V[E] we may compute b(; n | a as follows:
for o' € anl, o € dom(bsp) iff hIFp 68 | o = 05, for some & < &,
and bs () = £ for the unique & with this property. We note that this
computation involved the stem A but not the ordinal §.

e By the previous remark, for all o € dom(bs,) we have b, [ a € V[E].

Recall that F was added by forcing over V[E] with Q;. The poset Q1 x @
has xk*-cc in V[E], so Q; has the xT-approximation property. It follows that if
dom(bs,p,) is unbounded in I, then b5 € VI]E].

In general whether or not dom(bs ) is unbounded depends on the choice of F,
and a priori the best we can do in V[E] is to collect the possible values of bs p,
with unbounded domains, and some information about those values with bounded
domains.

Working in V[E], to each pair (J, h) we associate:

o The set Csj, of possible values of bsj, with dom(bs ) unbounded.
e The supremum ~s 5, of the possible values of sup(dom(bs.p)) with dom(bs »)
bounded.

2In fact V[E] and M agree on the power set of u, and M and M[G*] agree to rank j(k), so
I* € V[E]. We prefer the form of the argument we gave here since it also works in more general
situations.

3If we assume that i witnesses p-supercompactness, then the factorisation of i{(Add(k, p)) hap-
pens in N and the construction is slightly simpler.
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Since Q is kT-cc, [Csn| < K and s, < p.

Now let c € s<u Cs,n- Since c is a possible value of bs , it has the corresponding
coherence property:
(t1) If @ € dom(c) with c(a) = £ , then for o/ € I N «, we have that o’ € dom(c)
with ¢(a/) = ¢ if and only if hIF* 6¢ | o/ = 6.

In particular, if ¢,¢’ € s, Csn and a € dom(c) Ndom(c’) with c(a) = ¢'(a),
then ¢ [ @ = ¢’ | a. Since there are fewer than p possibilities for h, we may choose
@ < 4 such that:

e For all h, if ¢ and ¢ are distinct elements of | J5 Cs,, then there is no a > &
such that ¢(a) = ().

e For all 4 and h, it is forced by Q; that if dom(bsp) is bounded then
dom(bs,p) C a.

Claim 2.4. Let a € I\ &. Then for U*-many x there exists ¢ € | Js_, Cs n, such
that

he IF* dyup(ay [ @ = 650
Proof. For a fixed a, we will prove the statement which is ¢ applied to the claim.
Let A" = {z € i(Ao) | 7,i(a) € =}, then by fineness of supercompactness measures
A’ € i(U*). Suppose x € A’. Applying i to the conclusion of Lemma 2.2, there are
0 and £ less than k such that:

i Z(h)x = i(d)sup(w) T“Y = Z(U)g )
o i(h)o IF i(d)supe [ i) = i(6) 1.
It follows that

() I i(d)sup(e) i) = i(6)3 Ti0) = i(0)¢™ = i(6¢)
Hence setting b’ = i(h),, by definition we have that bs (@) = £. Note that A’ is
below the critical point and so A’ = i(h’). Since o > @&, dom(bs /) is unbounded.
Let ¢ = b/, then ¢ € V[E] and ¢ € Cs .

Let ¢/ = i(c), so that ¢ € i(C)s,p and ¢'(i(a)) = £&. We just showed that in N[F]
there is a set A’ € i(U*) with the following property: for all x € A’, there are § < k
and ¢ € i(C)si(n), such that i(h)s M i(d)supa) | 1(0r) = i(6)S(xa)-

By elementarity of ¢ : V[E] — N[F], in V]E] there is a measure one set B, € U*
with the following property: for all x € B,, there are § < x and ¢ € Cs , such that
ho I dgup(a) [ @ = 6%,

d

Let A; be the set of x € P, (n) with the following properties, each of which holds
on a U*-large set:
(1) x € Ao.
(2) Foralla € INz, x € B,.
(3) I Nz is unbounded in =.
(4) a €.
Fix x € A;. It follows from Claim 2.4 that for all « € I Nz \ &, there is
¢ € Us<r. Cs,n, > such that hy IF* dyyp@) [ a = dg(a). The key point is that there is
a unique such ¢ which works for every a.
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To see this let a < 3 both lie in I Nx\ @, and let ¢,d € s, Cs5,n, be such that

o ad By IH dapay |8 = ag(m. Then hy IF* &7

00y SO d(a) = c¢(a) by property (t1) of d. Since a > @, ¢ =d.

he IF* daup(ay | @ = 6 @ =

We have shown that there is a unique ¢ € (J;Cs,pn, such that h, IH* dsup(w) i
o =0, foralae INz \ @. As we already argued, if & < o’ and both lie in

’

INnx\ &, then h, IH* d(‘f‘(a) = dca(a,) I a. Since |z| < K, I Nz is unbounded in z and
the measures appearing in the definition of P are k-complete,

(12) he I dap) = | 0%
aclnz\a

Let S = {sup(z) : © € A;}, and note that S is stationary. For each 8 € S
we may choose x5 € Ay such that sup(zg) = f, and then let cg € Us., Cop.,
be the unique witness to (f2) for 3. Appealing to Fodor’s lemma, we may find a
stationary set T C S and a fixed h and ¢ € s, Cs 5 such that cg = c and hy, = h
for all 5 € T.

Now we can finish the proof of the lemma by collecting some measure one sets.
Let v <y from T', let 1 = =, and 29 = x,,. f @ < &/ witha € TNz \ & and
o € INxzg \ @, then by the coherence property from (f1)

(f3) h I 6% T o= 6%

Collect the measure one sets witnessing (f2) for 1 and x2, and the measure one
sets witnessing all instances of ({3) for relevant « and o’. Intersecting this family
of fewer than x many sets, we see that

hiF*dy, |71 =dy,
O
The remainder of the argument follows Neeman’s argument very closely.

Lemma 2.5. Suppose that h is a stem extending h and T}, is a stationary subset
of T such that for all v1 < o from Tj, hIF* dM = dw [ v1. Then there are pp, <
and measure one sets A’; for v € Ty \ p such that for all B <~ from Ty, \ p and all
ze AN AL h~zl-dg=d, | B.

Proof. The proof is exactly parallel to the proof of [7, Lemma 3.5]. O

Lemma 2.6. There are p < p and conditions p, for v € T\ p with stem h such
that for all B <~ from T\ p, pg Apy - dg =dy | B.
Proof. The proof is exactly parallel to the proof of [7, Lemma 3.14]. |

To finish the proof, we need a minor variation on a well-known fact about A-cc
forcing.

Lemma 2.7. Let \ be a reqular uncountable cardinal, let Q be A-cc and let U be
stationary in X. Then for any sequence (q; : i € U) of conditions in Q, there is
i € U such that g; forces that {j € U : q; € G} is stationary in V[G].

Proof. Suppose not. By A-cc, for every i € U there is a club set C; such that g;
forces {j e U : ¢; € G} is disjoint from Cj;. If C' is the diagonal intersection of the
club sets Cy, then ¢; I- ¢; ¢ G for i,j € CNU with i < j. So {g; :i € CNU} is an
antichain, contradiction. ([
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To finish the proof, we apply this lemma to the sequence (p, : v € T\ p).
O

3. THE TWO-CARDINAL ITP

We will now show that the two-cardinal tree property holds in Neeman’s model.
More precisely:

Theorem 3.1. If G is P-generic, then ITP, holds in V[E][G].

Proof. Fix a regular A > u. We start by collecting some information:

e By a classical theorem of Solovay, A<"» = X for all n. So A"» = X for all n,
and hence \V = AXn®n =T A = A\ = . So |P,(\)| = A.

o If G is P-generic over V[E], then the p-chain condition of P implies that
stationary subsets of (P,(\))VI#! remain stationary in (P,(\))VIFICL. So
it is enough to show ITP(u, \) for lists indexed by (P, (\))VIFL.

e Let U* € V[E] be a normal measure on P,;(A) and let j : V[E] — M be the
induced embedding. Since [P, (\)| = A, we can use some coding to form
diagonal intersections of P, (\)-indexed sequences of elements of U*.

To be explicit: let e : P,(A) = A be a bijection, let (A, : z € P,(\)) with
A, € U*, and define A A, = {z € P,(A\) : Vz (e(2) e 2 = =z € A,)}.
Clearly A,A. € U*. For use later we note that j(e) [ j“Pu()) sets up a
bijection between j“P,(X) and j“A.

Let d = (d. | z € P,(\)) be a P-name for a P,(\)-thin list. Suppose that for
each z € P,()), the z-th level {d, | z | 2 Cy € P,(\)} is forced to be enumerated
by {67 | £ < K}

Since [P,(AN)] = A, 74(Pu(X)) € M and so z* € M where z* = |Jj“P.(N).
Let h(z) = {z € Pu(X) : e(z) € x}, then [Aly- = j(h)(F“N) = j“Pu(A). We let
g(z) = Jh(z), so that g : P.(A) = Pu(A) and [g]lu- = JJj“Pu(N) = 2*.

We remark that here z* and g are the analogues of sup(j“u) and x — sup(z),
that we used in the one cardinal version.

Lemma 3.2. If A € U*, then g“A is stationary in P,(N)

Proof. Let C' C P,(\) be club. Then j“C is an upwards-directed subset of j(C)
and [74C| = X < j(k) < j(n), so that z* = Jj“C € j(C). So {z: g(x) € C} € U*,
and there is z € A with g(x) € C. O
Lemma 3.3. There exist o cofinal set I C P,(X), a natural number n*, and a

function x — h, with domain Ay € U* such that for all x € Ag: hy is a stem of
length n*, and for all z € I with e(2) € x there is £ < k such that

ho IF* dyey | 2 = 6F
Proof. Let G* be j(P)-generic and work in M[G*]. For all z € P,(X) j(2) C 2%, so
there are £ < j(k) and p, € G* such that
pe I j(d)as 1 5(2) = G(6)1).
Since p and A remain regular in M[G*], there exist a stationary (hence cofinal)

I* C P,(N) in M[G*], a natural number n* and a stem h* of length n* with the
following property: for all z € I* there is some £ < j(k) such that

W G(d)a 1) = G(6)L
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Working in V[E], define

I={z €PN |3 < j(k) h* IF* j(d).- 1(2) = j(6){}
Clearly I* C I and hence I is cofinal.

Let h* = [z — hy]u=, so that for all z € I there is A, € U* with the following
property: for all z € A, there exists £ < k such that

he IF* dy(ey [ 2 = 0F.

Take Ag = A,crA,, then everything is as required.
O

Lemma 3.4. There are a stem h of length n* and a stationary set T C P, ()\) such
that for all zy C 2o both from T, h IF* dyy =ds, | 21.

Proof. As in the proof of Lemma 2.3, let i : V — N witness that k,«y1 is M-
supercompact in V' and construct a generic embedding i : V[E] — N[F] extending
i:V — N defined in a generic extension V[F] of V[E]. Let u* € i(I) be such that
Ui“Pu(A) C u*.

For § < k and h of length n*, define

bon={(2,6) € I x w | bl i(0)§ (=) = i(6)7}.

e b5, is a partial function from I to k, with b5, € VI[F].

o If bs () = &, then working in V[E] we may compute bsj, [ P(z) as follows:
for 2 C z with 2’ € I, 2" € dom(bs ) iff h IHj 6¢ | 2/ = c'rf,’ for some &’ < k,
and b5 (2") = & for the unique & with this property. We note that this
computation involved the stem A but not the ordinal §.

e By the previous remark, for all z € dom(bs ;) we have bsj, | P(z) € V]E].

Claim 3.5. For each pair (0, h), if dom(bs ) is cofinal in Py(X), then bs) € V]E].

Proof. Let d C dom(bs,) with d € V]E] and |d| < p. As the domain is cofinal,
there is z in the domain with |Jd C z, and so bsy, | d € V]E]. Since V[F] is an
extension of V[E] with the p-approximation property, bsp € V[E]. a

As in the proof of Lemma 2.3, let Cs, be the set of possible values for bs; with
dom(bs ) cofinal, where |C5p| < k. As before, the elements of |J;Cs , enjoy the
coherence properties of bs .

Arguing exactly as before, we find zZ € P, (\) such that:

e For all h, if ¢ and ¢ are distinct elements of | J; Cs 5 then there is no z 2 2
such that ¢(z) = ¢/(2).

e For all § and h, it is forced by Q; that if dom(bs ) is not cofinal then
dom(bs ;) contains no z with z D Zz.

Claim 3.6. Let z € I with Z C z. Then for U*-many x € A,, e(z) € x and there
exists ¢ € Js.,. Cs,n, such that

Proof. Let A" = {z € i(Ao) | i(e)(u*),i(e(z)) € z}. Suppose x € A’. Then by
applying elementarity to the conclusion of lemma 3.3, there are § and £ less than
k such that:



THE ITP AND FAILURE OF THE SCH 9

o i(h)a I i(d)ig) ) i(2) = i(6)7)
Combining these it follows that
i(h)e IF= i3 1i(z) = i(o)¢™.
Let b’ := i(h)y, so that by definition bsp/(z) = £ Since Z C z, dom(bs ) is
unbounded. Let ¢ = by, then ¢ € V[E] and ¢ € Cs .

Let ¢ =i(c), so that ¢’ € i(C)s,n and ¢/(i(z)) = & We just showed that in N[F]
there is a set A’ € i(U*) with the following property: for all z € A’, there are § < k
and ¢’ € i(C)s,i(n), such that ¢(i(z)) = & and i(h), IF* i(d)i(g)(z) li(z) =i(o )l(z)

By elementarity there is a measure one set B, € U* with the following property
for all z € B,, there are § < k and ¢ € Cs,, such that hy IF* dg(z) [z = O'C(Z)

Let Ay be the set of x with the following properties, each of which holds on a
U*-large set:
(1) z € Ap.
(2) For all z € I such that e(z) € z, x € B,.
(3) The set {z €l:e(z) € x}is cofinal in {z: e(z) € x}.
(4) e(2) €
Fix z € Al. It follows from Claim 3.6 that for all z € I such that e(z) € x and
Z C z, there is ¢ € (Js.,. Cs,n, such that h, IF* dg(z) [z = dj(z). We claim that
there is a unique such ¢ which works uniformly for every relevant z.
To see this let zg,21 € I be such that Z C zp N z; and e(zp),e(z1) € z. Find
2" € I such that e(2') € x and 2o Uz C 2’. Let co,c1,¢” € Us.,, Cs,n, be such that:

o hyl-* dyay | 20 = ‘jg(zg)
o h, IF* dg(z [ 21 —acl(zl)
[ ] hx ”‘ dg(x) [Z = Uc’(z/)'
By the coherence properties of the various branches, zg, 21 € dom(¢’) and ¢/(z9) =
¢o(20), ¢ (21) = ¢1(z1). Since z C zoNzy, ¢ =¢p and ¢ = ¢, 80 ¢y = ¢1 as required.
We have shown that there is a unique ¢ € U5 Cs,p, such that hy IF* dyzy [ 2=
7, for all z € I with e(z) € @. Since [z < x and {z € I : e(z) € } is cofinal in
{z : e(z) € z}, we see that

(fa) he IF* d U{Uc(z) |z€1,zC ze(z2) €}

Let S={g(z):z € Al}, and note that S is stationary in P,(A) by Lemma 3.2.
For each w € S we choose x,, € A; such that g(x,) = w, and then ¢,, witnessing
(f4). for x,. By Fodor’s Lemma we find a stationary set T C S, a stem h and a
function ¢ such that ¢, = ¢ and h,, = h for all w € T. If z; C 2z with 21,20 € T
then exactly as in the proof of Lemma 2.3 we may intersect appropriate measure
one sets to see that

hiF*d,, =d., | 21
So the set T is as required. ([

Let h be the stem of length n and T be the stationary set satisfying the conclusion
of lemma 3.4. We finish the argument as in the proof of Theorem 2.1.
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Lemma 3.7. Suppose that h is a stem extending h and T}, is a stationary subset of
T such that for all z1 C 29 from T}, h I dzl = d;2 [ z1. Then there are zj, € P,(X)
and measure one sets A" for 2 € T, {z | 2z, C 2z} such that for all z;, C y C z with
Y,z € Ty, and allxeAZﬂAQ, h ~xI-* dy:dz [y.

Lemma 3.8. There are z* € P,(\) and conditions (p, | z € TN{z | z* C z}) with
stem h, such that if z* Cy C z withy,z € T, then py Ap.lEdy =d, [y.

This finishes the proof, since by a lemma analogous to Lemma 2.7 there is a
condition which forces that the set {z | p. € G} is stationary in P, (). O

4. THE TWO-CARDINAL ITP AT A SMALL CARDINAL

In this section we use a different model for the tree property at the successor
of a singular cardinal where SCH fails, namely Sinapova’s model [8] where R,
is singular strong limit, 282 = R 2,5 and N,2,; has the tree property. We will
show that in a suitable version of this model, ITP(R,241,A) holds for all regular
A> Ry,

The initial hypothesis is the same as in the preceding sections, namely we have an
increasing w-sequence (k, | n < w) of supercompact cardinals and we let kK = k.
By doing some preparatory forcing we may assume in addition that GCH holds
above k, and « is indestructible under x-directed closed forcing.

Let v = sup,, kn, . = v, p = vTT. Our intention is that in the final model
=82, p=N,211, p=Ny2,0= AN

We force over V' with a full support iteration C of length w, forcing at stage n
with Coll(kn, < Kni1). Let H be C-generic, so that in V[H] we have k,, = 1"
for all n < w. We then force over V[H| with A = Add(k,p)” = Add(k,p)V!H],
obtaining a generic extension V[H][E]. Since H x E is generic for s-directed closed
forcing, x is still indestructibly supercompact in V[H][E]. In V[H][E] we have
bp = kT v =gt u=rgtotl p=gtot2 28 — 98 = p and o<" = ¢ for all
regular o > k.

Next we want to force with a diagonal style supercompact Prikry forcing with
interleaved collapses to make k = N,2. However, we have to be very careful in
how we select the normal measures with which to define this forcing. The reason is
that when proving ITP(u, \), at the stage when we fix the length of the stem, we
need a A-supercompact elementary embedding j with critical point &, so that j(IP)
preserves p and A. This was automatic when the Prikry forcing had no interleaved
collapses. But now, we need p and A to be among the (few) cardinals below j(k)
that are preserved by j(IP). In the next subsection, we will prove that such measures
exist, uniformly for all A.

4.1. Measures and filters. Using techniques of Gitik and Sharon [3], we will
construct in V[H]|[E] sequences of supercompactness measures (U, : n < w) and
filters (F,, : n < w) such that:
e U, is a supercompactness measure on Py (k).
o If j, : V[H][E] — M,, = Ult(V[H][E],U,) is the ultrapower map, then F),
is Coll(k+4T2, < j,(k))Mn-generic over M,,.
e For unboundedly many regular A > p, there is a Coll(ut*, < \)V#]-name
Uy such that U, is forced to be a supercompactness measure on Py ()
whose projection to each Py (k,) is U,.
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The first two bullet points are the hypotheses needed to build the forcing poset of
[8], the third one will be used to argue for ITP in the generic extension.

To construct the measures U, and filters F},, suppose towards contradiction that
for all possible choices of (U, : n < w) and (F), : n < w) satisfying the first two
bullet points there is only a bounded set of A satisfying the third bullet point.
Choose A so large that the third bullet point fails for all choices of U,, and F,,. Let
K be Coll(ut*, < X\)VIH_generic over V[H|[E]. By the indestructibility of # in
V[H][E], let

j: VIHK][E] — M{H[K*)[E7]
be the ultrapower map formed from a supercompactness measure on P (A) in
V[H|[K][E]. Let 7: V — M be the restriction to V. Let

Ju 2 VIH]IK]E] = M[H | [K][E]
be the p-supercompactness embedding derived from j, that is to say the ultrapower

of V[H][K][E] by the supercompactness measure {A : j“u € j(A)}, and let 7, :
V — M, be its restriction to V. Let

k: My [H[KA]EL] — M{H"][K][E"]
be the usual map given by &k : [f] = j(f)(j“u), so that j = ko j,. As usual

p+ 1 Cran(k), so that in particular crit(k) > p. Let k =k [ M.
Since j, is an ultrapower map,
M HRKIEL] = {5u () Guw) : f € VIH][E]K], dom(f) = Pr(p)}-
M,, is the class of elements of the form j,(f)(j“r) where f € V[H|[E|[K] and f :
P(p) = V. Similarly ME*|K*)[E*] = ((HGN) : £ € VIH]E][K], dom(f) =
Pw(A)} and M is the class of elements of the form j(f)(j“)\) where f € V[H][E][K]
and f: Pg(A) — V. It follows that k : M,, — M is elementary and 7=k o J,,.

We will make small changes to E* and Ej; to obtain new generic objects for
J(Add(k, p)) and 7,(Add(k,p)). The goal is to obtain new lifts of 7 and j, onto
VIH]|[K][E], j" and j;,, arranging that j;, is derived from j" and every ordinal below
Ju(r) is of the form j;, (h)(k) for some h : k — r in V[H][K][E]. Note that E};, C M,
and similarly, £* C M.

Since 2# = 2% = p in V[H][K][E], we may enumerate the elements of 7, (k) by
(ua | @ < p). Define F,, C j,(Add(k, p)) to be the set of conditions p such that:

(1) p | dom(p) \ (G “ x {}) €
(2) For all a < p, if (ju(a), k) € dom(p) then p(j,(a), k) = uq.
Intuitively F), is obtained by altering each condition in Ej; on the intersection of
its domain with j, “p x {x}.
Routine calculations show that (working in the model V[H|[E][K]):
e Forevery p € B, [pN (Ju“p X {k})] < .
e Since M, [H|[K;][E}] is closed under jp-sequences and has the same <
Ju(Kk)-sequences as M,,, F}, C 7,(Add(k, ut)).
e Since ), (k) is inaccessible in M, [H}][K}:], 7,(Add(k, p)) is J.(k)-closed in
this model, and p < j,(k), F), is still generic over M, [H][K}].

Next we define F' by making a small change to E*. Let p € 7(Add(k, p)) be such

that:
e dom(p) = 7“p x {x},
o for each a < p, p(j(a), k) = k(uq).
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Now let F' be the set of g € 7(Add(k, p)) such that ¢ [ (dom(q) \ dom(p)) € E* and
g | dom(p) C p. Arguing in the same way as we just did for F,,, F' C j(Add(k, p))
and F is generic over M[H*][K*].
Since dom(j.(q)) C ju“p x & for each ¢ € E, we have that 7,“E C F),, and
similarly 7“F C F. We claim that also k“F,, C F, because:
o K“BL C E*.
o crit(k) > pu.
e Bach condition ¢ in F), is obtained by taking a condition go € Ej;, and
replacing the value go(J.(a), k) by uq.
o (Ju(a),k) € dom(q) <= (j(a), k) € dom(k(q)), and there are at most
such a’s.
e Each condition 7 in F' is obtained by taking a condition r € Ej, and
replacing the value r(j(a), k) by k(ug).
Now we extend 7: V — M to j' : VIH|[K][E] — M[H*|[K*][F), j,:V - M
to i, : VH][K][E] = M[H:|[K:][F,), and k : M, — M to k' : M,[H3|[K}][F,] —
M[H*][K*][F]. Then j' = k"o j,,.

Claim 4.1. In V[H|[K][E], j;, is the ultrapower by a measure on Py (u).

Proof. Let a € M[H][K}][F,.], so that a is the realization of some term 7 in M
by H}; * K}, F,,. Now 7 is of the form j,(f)(j, “n) where f € V[H|[K][E], and f
is a function from P, (u) to terms for the forcing C A * Coll(u™, < ). If f* is
the function which maps = € P, (p) to the realization of f(x) by H * K % E, then

a =G, (f*) G m). 0

Similarly j” is the ultrapower map by an ultrafilter Uy on P, ()), jj, is the ultra-
power map by the projected ultrafilter U, on P, (u) and k" is the standard factor
map. Since K is generic for p**-closed forcing, in fact U, € V[H][E] and ji, is
a lift of the ultrapower map j; : V[H][E] — M,[H}][F,] computed from U, in

Now we can compute suitable ultrafilters U, and filters F,. Let U, be the
projection of U, to Py(kn), and jy : V[H][E] — M, the associated ultrafilter map.

Claim 4.2. There is a Coll(kT¥5 < j,(rk))Mn -generic filter F,, over M,,.

Proof. Let ky, : M,, — M,,[H;][F,] be the usual factor map, and note that ran(ko) =
{ju(R)(K) : h: Kk = k,h € V[H][E]} and ran(k,) C ran(k,+1). By the construction
of Fy,, if « < p and h, is the a'™ Cohen function added by E, then

ko([haluy) = Ju(ha) (k) = ua,

so that j, (k) +1 C ran(kg) C ran(ky) for all n. It follows that j,(k) = j.(x) and
crit(k,) > ju(x) for all n.

To finish, let Q = Coll(kT*+5, < jﬂ(/@))M“[H:”F“]. From the point of view of
V[H][E], the poset Q is p-closed and the set of its antichains which lie in M, [H};][F},]
has cardinality p, so we may build a generic object F*. Pulling back along k,, we

obtain an M,,-generic filter F,.
O

The construction of the measures U,, and filters F,, contradicts our choice of .
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4.2. The Prikry forcing. After the work of the previous section, we have in
V[H][E] measures U, and filters F;, such that:

e U, is a supercompactness measure on Py (£ ).

o If j, : VIH|[E] - M, = Ult(V[H][E],Uy,) is the ultrapower map, then F,
is Coll(k+4*2, < j,(k))™n-generic over M,,.

e For unboundedly many regular A > p, there is a Coll(ut+, < )\)V[H]—name
Uy such that Uy is forced to be a supercompactness measure on Pe(N)
whose projection to each Py (k,) is U,.

The forcing P is a diagonal supercompact Prikry forcing with interleaved col-
lapsing, defined in V[H][E] using the U,’s as the supercompactness measures and
the F,’s as “guiding generics”. We will suppress many technical details, referring
the reader to [8].

Each U,, concentrates on the set of € P,(ky) such that z Nk is a cardinal
reflecting the properties of k, and we denote x Nk by k. A condition p has a stem
s and a top part (A, C) where:

e s has the form (d, zg,co, ... Tn—1,Cn—1).
e (xg,...xp_1) is a stem in supercompact Prikry forcing, that is:
— I; € PK(Hi).
- x; C T
— ot(x;) < Ky
d € Coll(w, < Kg,)-
¢i € Coll(KF“™5, < kg,,,) fori+1<n.
cn—1 € Coll(k}¥TP, < k).
(A, C) has the form (A, Cr : n < k < w) where A = dom(Cy) € Uy,
Ci(z) € Coll(kF*T> < k) for all z € Ay, and [Ck]u, € Fg.

The ordering is the usual one for forcings of this type: a condition is extended by
strengthening the collapsing conditions in the current stem, adding new x;’s and
ci’s to the stem with ¢ < Cy(zk), shrinking the remaining Ay’s and strengthening
the remaining C}’s.

The poset P satisfies the Prikry lemma and is p-cc, as any two conditions with
the same stem are compatible. So we can easily compute the cardinals in the
generic extension. In the extension v is collapsed to cardinality &, so that u = x*
and p = 2% = v, If {x, : n < w) is the diagonal supercompact Prikry sequence
added by P, then below  cardinals in the intervals (w, £z,) and (kF“7°, K, ) are
collapsed while the rest are preserved, so that Kk = N,2.

For a stem s and formula ¢, we define the relation s IF* ¢ in the same way as
we did in the preceding sections, that is there exists a condition p with stem s such
that p I ¢.

4.3. The ineffable tree property.
Theorem 4.3. If G is P-generic over V[H|[E], then ITP, holds in V[H][E][G].

Proof. The argument is similar to that for Theorem 3.1, so we focus on the new
points. One of the new features is that when we extend the embedding with critical
point k,, for some m > 0, we have to deal with the collapses that made the k,’s
successors of each other. That influences the branch pullback arguments. Another
new feature is that we will need some auxiliary poset making A a finite successor of
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1, when we prove ITP(u, \). This is necessary in order to carry out the first step:
fixing the length of the Prikry conditions.

Suppose for contradiction, that the result fails. Then there is p € P forcing that
ITP(u, \) fails for some A. Since P is u-cc, it is enough to consider lists indexed by
(P.(\)VIHIE]L and obtain a contradiction by showing that p forces all such lists
to have an ineffable branch.

Increasing \ if necessary, we may assume that there is a Coll(u™", < X)
name Uy such that Uy is forced to be a supercompactness measure on Pe(N)
whose projection to each Py (k) is U,. Let K be Coll(ut+, < \)V[Hl_generic over
V[H][E], let U* be the realisation of the name Uy and let j* : V[H|[E][K] — M*
be the associated ultrapower map. Note that A = u*++ = kT in V[H][E][K].

Working in V[E][H][K], we define some auxiliary objects as in Section 3. We
let e : P,(A) = A be a bijection, which we use to form diagonal intersections of
P, (N)-indexed sequences of elements of U*. We let 2* = |Jj*“Pu(A), h(z) = {z €
Pu(N) :e(z) € a}, and g(z) = Jh(z), so that [g]y- = 2*.

We fix a P-name in V[H][E] for a thin list indexed by P,,()), say (dy : € P,(\)).
For z € Pu(N), (6¢ : £ < k) names an enumeration of {dy | 2|z Cye PN}
Suppose that p forces that this list has no ineffable branch. Towards a contradiction
we will find such a branch in V[H]|[E][K][G], for some P-generic G with p € G, and
then argue that this branch must already exist in V[H][E][G].

VIH]_

Lemma 4.4. In V[H|[E][K] there ezist a cofinal set I C P,,()), a natural number
n*, and a function x — h, with domain Ay € U* such that for all x € Ag, hy is a
stem of length n* for some condition extending p, and for all z € I with e(z) € x
there s & < k such that
hx IF* dg(w) fZ = ('Tg

Proof. Let p have a stem of length n, let C, be the first function in the upper part
of p and let A,, = dom(C,). Since U, is the projection of U*, j*“k, € j*(A,).
Consider the condition j*(p), and extend it to a condition p € j*(P) with a stem of
length n + 1 which forces j*“k,, to be the next point on the supercompact Prikry
sequence. Since j*“k, Nj*(k) = K, it follows from our analysis of the forcing P that
p forces all cardinals in the interval [x, sT“75] to be preserved. In particular, since
p =kttt and A = k™™ in V[H][E][K] (and hence by closure in M*), p forces
that ¢ and A remain regular cardinals.

Let G* be j*(P)-generic with p € G*, and work in M*[G*]. For all z € P, ()
j7*(2) C z*, so there are £ < j(k) and p, € G* such that p, < p < j*(p) and

pe Ik 5 (d)o- |57 (2) = j(d)é*@).

Then there is some stationary (hence cofinal) I* C P, () in M*[G*] and n* < w,
such that for all z € I*, p, has length n*. For each z € I*, denote the stem of p, by
(d%, 20, G, ..., Tnx—1,Con_q). First, by passing to a stationary subset of I*, we may
assume that for some d, ¢y, ...,c,—1, for all z € I'*, d =d* and ¢; = ¢} for i <n.

Now at the k-th coordinate for n < k < m*, by construction each ¢f is in a
generic filter for a collapsing poset that is AT-closed, so we can take a lower bound
¢k, in this generic filter. The key point here is that A = k7%, and we arranged by
forcing below p that & is the n*" point on the Prikry sequence that j*(P) adds in

J* (k).
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Let h* = (d, xo, Coy - Tnx—1, Cn=—1). Then for all z € I* there is some & < j*(k)
such that |
RS 57%(d) o~ | 7%(2) :j*(d)é (2)
Working in V[H][E][K], define
I={z¢ PM(/\) | 3¢ < 5%(k) h* I ]*(d)z* 5*(2) :j*(d)é (Z)}

Clearly I* C I and hence [ is cofinal.

Let h* = [z — hy]u~, where h, is the stem of an extension of p of length n*. For
all z € I there is A, € U* with the following property: for all x € A, there exists
¢ < k such that

he IF* dy(ey | 2 = 6F.

Take Ag = A,crA,, then everything is as required. U

For the next lemma we need the notion of a system and a system of branches on
a cofinal subset of P, () with some relations.

Definition 4.5. Let I be a cofinal subset of P,(X), p be an ordinal, and D be an
index set. A system on I X p is a family (Rs)sep of transitive and reflexive relations
on I X p, so that:

(1) If (x,8)Rs(y, ¢) and (x,§) # (y,C) then x C y.
(2) If(:L'OagO) and (xlagl) are both Rs'below (yvc) and To C T1, then (x(]af())Rs(xlagl)'
(3) For every x,y both in I, there are z € I, s € D and &,&',( € p so that
A branch through Ry is a partial function b: I — p, such that:
(1) If x C y are both in dom(d), then (z,b(x))Rs(y,b(y)).
(2) If y € dom(b), and (x,&)Rs(y,b(y)), then (x,§) € b, i.e. b is downwards
Rg-closed.

A system of branches through (Rs)scp is a family (by)yes so that each by is a

branch through some Ry, and I =J, ¢ ; dom(by).

We have the following abstract branch preservation lemma from Lemma 5.11
from [4], which builds on [8]; see for example, Lemma 3.3 of [6].

Lemma 4.6. Let V. C W be models of set theory, let W be a T-c.c. forcing extension
of V, and let Q € V be 7-closed in V. In W suppose (Rs)scp is a system on I X p, for
some cofinal I C P, (N), such that forcing with Q over W adds a system of branches
(bj)jes through this system. Finally suppose x := max(|J|,|D|, p)* <7 < p. Then
there is a cofinal branch b; € W.

Now we are ready for the second step: fixing the stem.

Lemma 4.7. In V[H|[E][K] there are a stem h of length n* and a stationary set
T C Pu(A) such that for all z; C zo both from T,

hib*d,, =d., | 2.

Proof. Let i : V. — N be a A-supercompact embedding with critical point K« 3.
Lift i to 7 : V[H|[K][E] — N* in a generic extension of V; := V[H|[K][E] of the
form V1[K* x F|, where K* is generic for a kp«2-closed forcing (in V[H]|[K]) and
F is generic for a kT-Knaster forcing A*.
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As in Lemma 3.4, let u* € i(I) be such that [Ji“P,(X) C u*, and in V1[K* X F/,
define partial functions (bsj, | 6 < &, h a stem of length n*) from I to x by:

bon = {(2,6) € I x k| hIFp, i(0)¥ 1i(2) = i()¢7}.
Note that I = J5 ) dom(bs). Also, the number of such stems is 1. Let

W := V[H][K][F]. First we will show that there are such partial functions in W.

For each h, let Ry be the relation on I X &, given by

(2,€) R (2, &) iff hIF* 67 | 2 = &¢.
Then (Rp)p is a system on I X k, and every bsj, is a (possibly bounded) branch
through R;,. Moreover, the bs;’s are a system of branches through the Rj’s as in
Definition 4.5. So by the preservation lemma 4.6, at least one of them is cofinal
and is in W = V[H][K][F].

Let D := {(0,h) | bs,, € W}. Since K* is generic for a < kp»yo-distributive
poset over W, and there are only x,+_1 relevant stems h, D € W. Similarly,
<b57h | (5, h) S D> eWw.

Now continue as in Lemma 3.4:

(1) for every (4, h) € D, if by, is cofinal, then it is in V[H]|[K][E];
(2) for all pairs (4, h) define Cs, to be the set of possible values for bs 5, when
(0, h) is forced to be in D. More precisely, Cs, = {C' | (3a € A*)a | (0,h) €
D,C = bsp}*.
As before we have that |Cs55| < & for each (d,h), and for any two ¢, ¢’ in ;s Cs.n
there is some z € P, (\), such that for all 2’ O z, we cannot have ¢(z") = ¢/(2/).
Pick zZ € P, (\) such that
(1) There is no z such that Z C z and z € bs, with dom(bs ;) not cofinal.
(2) There is no z such that z C z and there are distinct ¢,¢’ € (J; Cs,p, with
c(z) = (2).

Next we want to show an analogue of Claim 3.6. However, we cannot argue
exactly as in the claim, for the following reason. Suppose that z € I,Z C z. Then
we can still find some (4, h) and £ < &, such that bs ;(2) = £ and the domain of b5,
is unbounded. The problem is that we don’t know that (4,h) € D and so cannot
conclude that the branch is in V[H][K][E]. So, instead, we will show the claim
holds on some unbounded subset of I.

We need some definitions. For every z € I and z € Ay, let (1), be the statement
that: '

e € | Comha IF* dyay T2 =067,
0<K

Let A, :={xz € Ao | e(z) € z and ({),,, holds }.

Claim 4.8. There is a cofinal S C I, such that for all z € S, A, € U*.

Proof. Suppose otherwise, i.e. there is some zy, Z C zg, such that for all z O z,
A, ¢ U*. Define B, := Ag\ A, and B := A, ce1B, € U*.

Next, in W, we define a subsystem of (Rj,), by “erasing” the branches that are
in VIH|[K][E]. Let I' :=IN{z| 20 C z}. For every h, let R}, be the relation on
I’ X k, given by

(2, )Ry, (2", &) iff (2,€)Rp(2', &) and whenever (8, h) € D then (z,£) ¢ bs p.

4Note that Cs,n can be empty.
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We claim that (R},)p is a system on I’ x k. The first two properties are straight-
forward. For the third property we will use our assumption that B € U*. Let
21,22 € I'. Let z € I’ be such that 23 Uz2s C z and = € i(B) be such that
i(e)(u*),i(e(z1)),i(e(#2)),i(e(z)) € z. By elementarity, applied to the conclusion of
Lemma 4.4, there are 6, &y, fg,«f < K such that:

o i(h), IF*i(d ) () [ u* =i(o )6*.

o i(h), I z(dwm i(z) =i(6)")
o i(h)e IF i(d)igg)m) | i(21) = i(0 )5 v
o i(h)s IF i(d)igg) ) [ i(22) = ()™

Let h' :=i(h),. Then we get that:

o b/ IF* z(a)z i(z1) = Z(O’)z(lzl)

o WIFi(6)[ ) Ti(z) = i(6)

o bsn(2) =&, bsp(21) = &1, b (22) = &2

Then (z1,&1)Ri (2, €) and (22, &) R/ (2,£). We want to show that they are actu-
ally R}, -related. Since we are above all the splittings, note that if z; € dom(b, /),
then by, 5y = bs /. So it is enough to show that (4, h") ¢ D.

By elementarity of ¢, there is some y € B, such that e(z1),e(22),e(z) € y and
hy = K. Then, by definition of B, (1)z,2, (f)z,21, (T)z,- all fail. Since z C z,
dom(bs /) is unbounded, so if (6,h) were in D, then we can take ¢ = bsy to
witness (1)z.z,, (T)a,2 - It follows that (4, h) ¢ D.

So, we have a system.

Now, in W[K*], for every (d,h) ¢ D, let b, be the restriction of bsy to R},.
Then (b5, | (6,h) ¢ D) is a system of branches through (Rj,)n. Then by Lemma
4.6, one of these branches b:s,h is in . But then, so is bs . Contradiction with the
assumption that (9, h) ¢ D.

(]

The rest is as in lemma 3.4, replacing I with S.
O

Fix h,T as in the conclusion of the above Lemma. Next we want to build top
parts for the Prikry conditions, using the following lemma:

Lemma 4.9. Suppose that h is a stem extending h of length n, and Tj, is a sta-
tionary subset of T such that for all z1 C 2o from Ty, h IF dz1 = dz2 [ z1. Then
there are z, € P,(\) and AL, CP for z € T, N {z | 2, C 2} such that:
(1) for each z, dom(Ch) = A" € U, [C!] € F,,, and
(2) for all zn Cy C z withy,z € T, and all x € Ah N Ak,
are compatible, then
h~ (z,Cla)UCH(x) IF dy=d. [ y

Proof. The proof is as in [8, Lemma 16]. O

if Cl'(z) and O} (x)

Then as before, we can find z* € P,(\) and conditions (p, | z € Tﬂ{z | z* € z})
with stem h, such that if 2* Cy C 2z with y, 2 € T, then py, Ap, IF d =d, [y

As before there is a condition which forces that the set {z | p. € G} is sta—
tionary in P, (X). It follows that there is an ineffable branch b through the list in
V[H][E][K][G] for some P-generic G over V[H|[E][K] with p € G.
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Finally, note that V[H][K][E][G] = V[H][K x (E % G)]. Since Add(k,u") P
has the p-chain condition and Coll(u™+,< X) is ptt-closed (u-closure suffices),
it follows that CollV!l(u+*, < A) has the p-thin approximation property over
V[H][E = G]: that is to say, K cannot add a new set a such that every < p-sized
subset ¢ of a is already in V[H]|[E][G], and the number of possible values for ¢ is
less than p. It follows that the branch b is in V[H][E][G]. Since stationarity is
downward-absolute, b is an ineffable branch.

(]

5. OPEN PROBLEMS

Having obtained the failure of SCH together with ITP at the successor of a
singular, this opens up the path to forcing ITP at more successive cardinals. The
long term project is getting ITP at every regular cardinal greater than N;. The
first natural question is if we can get ITP at successive successors of a singular:

Question. Can we obtain ITP simultaneously at N 2,1 and N 2,5 where N2 is
strong limit?

We conjecture the answer to be yes. The strategy would be to do an iteration
of Mitchell style forcing followed by diagonal Prikry forcing.

The other direction is to combine our result with forcing ITP at successive regular
cardinals below the singular cardinal. In 2013, Fontanella [2] and Unger [9] showed
independently that it is consistent from large cardinals, to have ITP at N,,, for every
n > 1. More precisely, this happens in the Cummings-Foreman model [1] for the
tree property at the W,,’s. In that construction SCH does hold at . This brings
up the following old open problem:

Question. Does ITP at k (or even just the strong tree property) imply that SCH
holds for every strong limit singular cardinal above k? °

On the positive side of this question, we have Solovay’s old theorem that SCH
holds above a strongly compact cardinal. Also, in 2008, Viale proved that PFA
implies SCH [10], and by a theorem of Weiss [13], ITP at N, is a consequence
of PFA. Viale and Weiss also defined a strengthening of ITP called ISP. ISP is a
guessing type principle and at Ny it is also a consequence of PFA. Very recently,
Krueger and Hachtman independently showed that ISP at Ny also implies SCH. On
the other hand, by Specker’s result that 7<™ = 7 negates the tree property at 7+,
a negative answer to this question is required to obtain ITP successively across a
singular strong limit cardinal.
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