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The homotopy Leray spectral sequence

Aravind Asok, Frédéric Déglise, and Jan Nagel

ABSTRACT. In this work, we build a spectral sequence in motivic homotopy
that is analogous to both the Serre spectral sequence in algebraic topology and
the Leray spectral sequence in algebraic geometry. Here, we focus on laying
the foundations necessary to build the spectral sequence and give a convenient
description of its Fa-page. Our description of the FEa-page is in terms of
homology of the local system of fibers, which is given using a theory similar to
Rost’s cycle modules. We close by providing some sample applications of the
spectral sequence and some hints at future work.
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1. Introduction

The goal of this paper is to study an algebro-geometric version of the Leray—
Serre spectral sequence for generalized cohomology theories. To explain the setup,
suppose one is given a topological space X, a sheaf F of abelian groups on X and
a filtration

Xe=XpC...CX,CXpp1C...CX, =X
by closed subsets. One naturally associates an exact couple with the preceding data
and obtains a spectral sequence of the form:

EYY(Xe,F) = HPY(X,\ X, 1,F)= H'TIX,F).

If X, is cellular with respect to F, i.e., if H (X, \ X,_1,F) =0 for all i # p, then
there are isomorphisms of the form H*(X,F) =~ ES%(X,,F). If f : X — B is
a continuous map of topological spaces and B, is a filtration of B that is cellular
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with respect to the direct image sheaves R?f,F for all ¢, then the Ey—term of Leray
spectral sequence

EY?= H?(B,RIf.F) = H'TI(X,F)
is isomorphic to E5'?(X,, F), where X, is the inverse image of B,.

On the other hand, suppose

F—x-LnB

is a Serre fibration of topological spaces, where B has the homotopy type of a
(connected) finite CW complex, and F is a (generalized) cohomology theory in
the sense of classical stable homotopy theory. One may consider an associated
Atiyah—Hirzebruch spectral sequence (see, e.g., [DKO1, §9.2-9.5]): the Es-page of
this spectral sequence is given in terms of the ordinary (co)homology of B with
coefficients in local systems attached to the E-(co)homology of F' and converges to
the E-(co)homology of X. When F is ordinary cohomology and .% is the constant
sheaf Zx , the two spectral sequences coincide. Indeed, Serre showed that the direct
image sheaves R?f,Zx are local systems on B depending only on the cohomology
of the fiber F' and the action of the fundamental group of B on these cohomology
groups.

To explain our algebro-geometric analog, recall that Arapura showed the Leray
spectral sequence is “motivic” [Ara05]. In more detail, suppose f : X — B is a
projective morphism of complex quasi—projective algebraic varieties. After reducing
to a situation where B is affine (via the Jouanolou trick), work of Beilinson and Nori
[Nor02] shows that any constructible sheaf on B can be made cellular with respect
to a filtration by closed algebraic subsets. In this situation, Arapura compares the
Leray spectral sequence

ESt(f) = H(B, R f.Zx) = H*""(X,Zx)

and the spectral sequence associated with the skeletal filtration and uses this to
show that the Leray spectral sequence essentially reflects suitably functorial algebro-
geometric structure present on cohomology groups (e.g., it lifts to Nori’s category
of mixed motives). A similar result holds for the perverse Leray spectral sequence

Ey" = H(B,’R'f.Zx) = H*""(X, Zx)

that is obtained by replacing the classical truncation functor 7 by the perverse
truncation 7 [dCM10].

In this paper, we consider a variant of this setup. Let us now consider a
simple case to highlight our considerations. Suppose k is a field, B is a finite
dimensional irreducible smooth k-variety, and f : X — B is a smooth morphism
of k-varieties. As usual, f may be thought of as an étale locally trivial fibration
in algebraic geometry. We write B(™ for the set of codimension n points of B. If
B has dimension d, we view the collection B() as i ranges from 0 through d as
an algebro-geometric analog of the skeletal filtration of B. In this situation, the
scheme-theoretic fiber X, for b € B is then a smooth variety over b.

There is a comparison theorem between the Leray spectral sequence and the
spectral sequence associated to the Bloch-Ogus complex. If H*(X, A) is a suit-
able cohomology theory defined using a Grothendieck topology that is finer than
the Zariski topology (e.g., étale cohomology, or Betti cohomology over C), one

Licensed to Univ of Southern Calif. Prepared on Thu Jul 30 19:00:06 EDT 2020for download from IP 128.125.211.56.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



THE HOMOTOPY LERAY SPECTRAL SEQUENCE 23

can consider the Leray spectral sequence associated with the morphism of sites
7: Xfne = Xzar- The higher direct image sheaves Rim, A are the Zariski sheaves
H? associated with the presheaves U ~ HI(n~1(U), A). Bloch and Ogus show
that the Leray spectral sequence EY? = HP(X,H?) = HPT9(X, A) can be identi-
fied from the E3—term onward with the spectral sequence

BT = &,cxo0 HY P (k{a)) = N*HP9(X)

that gives the coniveau filtration on cohomology. (The argument uses Deligne’s
technique of “décalage”, see [Par96].) Furthermore, there are variants of the pre-
vious constructions where one replaces cohomology by Borel-Moore homology and
works with the niveau (rather than coniveau) filtration. More generally, one can
work with the bivariant theory

H'(X % Y) = Hom(RfiQux, Qv i)
that simultaneously generalizes both Borel-Moore homology and cohomology.

Building on this analysis, by analyzing formal properties of Gersten complexes,
Rost developed a notion of “local coefficient system” on a k-scheme B, which he
called a cycle module. Given a morphism f: X — B and a cycle module M on X,
Rost defined Chow groups with coefficients in M, A, (X, M). For example, there is
a cycle module built out of Milnor K-theory for which the associated Chow groups
with coefficients coincide with usual Chow groups. Finally, Rost constructed a
spectral sequence of the form:

E2 = Ap(B,Ag(X, M)) = Apqg(X, M);
here A,(X, M) is a cycle module on B obtained by taking homology of the fibers.

Our approach in motivic homotopy theory essentially mixes all the ideas above
and combines the classical Leray spectral sequence of a fibration with Rost’s spectral
sequence. The jumping off point is the work of the second author exploring the
close relationship between the notion of cycle module in the sense of Rost and
the heart of a t¢-structure on the motivic stable homotopy category. We use a
relative version of Morel’s homotopy t-structure, the so-called perverse homotopy
t-structure, defined initially by Ayoub [Ayo07] and developed further in [BD17].
The approach to constructing this ¢-structure in [BD17] is rather flexible and works
in great generality: the basic definition requires only the existence of a dimension
function § on the base scheme; for this reason, the t-structure was called the §-
homotopy t-structure in op. cit..

The heart of the é-homotopy t-structure consists of d-homotopy modules, or
simply homotopy modules. These objects are closely related to cycle modules
and their homology (with respect to the truncation functors in the d-homotopy t-
structure) can be computed by a Gersten-type complex that is formally extremely
similar to that written down by Rost (see Definition 3.2.4 for more details). The
approach we take via ¢t-structures has technical advantages: functoriality properties
and multiplicative structure are easy to obtain (see Proposition 3.2.7 and Propo-
sition 3.3.2 for more details). With these tools in hand, we state a version of our
main result here (the notation and terminology in the statement that we have not
yet mentioned may be found in the notations and conventions section below).

THEOREM 1 (see Theorem 4.1.2). Fiz a base scheme S with a dimension func-
tion &, and suppose f : X — B is a separated morphism of S-schemes having finite
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type. Let E be a motivic spectrum (or a mized motive) over S, and put: IE'X = f'E.
Then there exists a convergent spectral sequence of the form:

E, ,(f.E) = A)(B, H)(f.Ex))) = Epiq(X/5),

abutting to the E-homology of X relative to S, or rather, the bivariant theory of
X/S with coefficients in E (see below our Notations and conventions). In fact, E |

i) wvanishes outside a range of columns bounded by the mazimum and mini-
mum of the dimension function § on B; and

ii) is described as the homology of a Gersten type complex with coefficients
in the homotopy module Hg(f*IE'X))

The spectral sequence above is obtained by filtering f, (]E'X) by truncations with
respect to the d-homotopy t-structure. It is closely related to the spectral sequence
one would obtain by filtering E*(—/S) via the pullback of the (-)niveau filtration
on B along f (for the dimension function ). The following result gives a precise
formulation.

PROPOSITION 2 (Sce Proposition 4.1.9). Let °FJE,(X/S), p € Z, be the abut-
ing filtration of the homotopy Leray spectral sequence. Define the §-niveau filtration
on E.(X/S) relative to f by the following formula:

'NJE.(X/S) = U Im(i.:Eu(X x5 Z/S) = E.(X/S)).
©wZ—X,6(Z)<p

For any pair of integer (p,n) € Z2, the following relation holds:
5 _dnrf
FIE,.(X/S)=°N]_E.(X/S).

This proposition may be viewed as an analogue of Washnitzer’s conjecture (that
the coniveau filtration on de Rham cohomology coincides with the filtration arising
from the second hypercohomology spectral sequence), which was established by
Bloch and Ogus [BO74].

There is also a cohomological form of the homotopy Leray spectral sequence,
which is better suited to analysis of product structures.

THEOREM 3 (See Theorem 4.2.5). Fiz a base scheme S with a dimension func-
tion &, and suppose f : X — B is a separated morphism of S-schemes having finite
type. If E is a motivic ring spectrum over X, then there is a convergent spectral
sequence of the form

EP(f,E) = AY(B, H{(f.Ex)) = H"™(X,E),

where we write H* (X, E) for the groups usually denoted E*(X) to emphasize the link
with Leray spectral sequence. As before the Eo-page is a) concentrated in a range of
columns bounded by the maximum and minimum of the dimension function § on B,
and b) described in terms of (co)homology of the Gersten-style complex associated
with homotopy module H{(f.Ex). Moreover,

i) each page E, has the structure of a differential graded algebra, and
ii) the induced product structure on the abutment coincides with the E-cohomo-
logy product structure.

While the reader may consult the beginning of each section for further discus-
sion of its contents, we close the introduction with a brief overview of the paper.
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Section 2 is devoted to reviewing the basic properties of this homotopy t—structure.
Section 3 then studies homotopy modules, Gersten complexes and the associated
niveau spectral sequences. In particular, we describe multiplicative structure on
the niveau spectral sequences when considering cohomology theories equipped with
suitable multiplicative structure. Section 4 is the theoretical heart of the paper. We
build the homotopy Leray spectral sequence (see, e.g., Theorem 4.1.2) and study
an analog of “locally constant sheaves” in our context. Finally, Section 5 contains
some sample applications of these spectral sequences. In particular, we analyze
fibrations with A'-contractible fibers, construct Gysin and Wang sequences and,
in the motivic case, prove a degeneration result for the homotopy Leray spectral
sequence for relative cellular spaces.

Acknowledgements. The authors want to thank Adrien Dubouloz for fruitful
discussions about fibrations, and, especially, Fabien Morel for providing the ini-
tial impetus to pursue this work. Aravind Asok was partially supported by Na-
tional Science Foundation Awards DMS-1254892 and DMS-1802060. F. Déglise
and J. Nagel received support from the French “Investissements d’Avenir” pro-
gram, project ISITE-BFC (contract ANR-IS-IDEX-OOOB).

Notations and conventions

Geometry. All schemes in this paper will be noetherian, finite dimensional and
assumed to come equipped with a dimension function, usually denoted §. While we
fix such a dimension function throughout, and while it may even appear explicitly
in various notions we use, we emphasize that the choice is inessential in the sense
that the most of the relevant notions do not depend on the fixed choice of dimension
function up to a suitable notion of canonical equivalence; see Remark 2.1.6 for a
more precise statement.! Anyway the dimension function is used to fix conventions
regarding degrees of (co)homology as in 2.1.10.

Fix a base scheme S. An S-scheme X will be said to have essentially finite
type or, equivalently, X — S has essentially finite type, if X can be written as a
(co)filtered limit a S-schemes of finite type with affine étale transition morphisms.
By a point of a scheme X, we will mean a map z : Spec(K) — X where i) K is a
field and ii) if & is the residue field of the image of x in X, then the extension K/k
is finitely generated; equivalently, the morphism x : Spec(K) — X has essentially
finite type. We will simply write such a point by z € X (K).

The dimension function § on 5, is extended to a dimension function on X as
follows:

Va/s € X/S,0(x) :=d(s) + trd(k(z)/k(s)).
§(X) = 64+ (X) := max(3(x)).
0_(X):= irél)l(l(é(l‘))

IThere is an exception to this rule. this is when one considers the underlying monoidal struc-
ture and its interaction with the J-homotopy ¢-structure. It will appear once in our applications,
when we consider products on the homotopy Leray spectral sequence. We refer the reader to
Sections 3.3 and 4.2.
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Two examples to keep in mind include:
(S1) if S is the spectrum of a field k, 6 = 0, then 6(z) = trd(k(z)/k);
(S2) if S is an excellent regular scheme of dimension less or equal than 3 and
0 is the Krull dimension.

In both cases, if X/S has finite type, then the integer §(X) coincides with the Krull
dimension of X.

Finally, the following formulas will be used in the paper:

(D1) if S is regular connected, § = d — codimg where d = §(5);

(D2) if the morphism f : X — S has essentially finite type, and is lci with
cotangent complex Ly, for any point z € X, 6(z) = rk(Lf_,z) + (s).
Moreover, if X and S are irreducible, and d = dim(f) is the rank of Ly,
one has:

0(X) =d+4(9).
Motivic stable homotopy. We fix a motivic triangulated category 7 in the
sense of [CDO09, Def. 2.4.45], equipped with a motivic adjunction:

SH= 7.

In brief, .7 consists of the following data: for any scheme S, a triangulated closed
symmetric monoidal category .7 (S); for any morphism of schemes f and any sepa-
rated morphism of finite type p, pairs of adjoint functors (f*, f.), (p1, p') satisfying
the so-called Grothendieck six functor formalism (see [CD09, Th. 2.4.50] for a pre-
cise statement). Following the terminology from stable homotopy theory objects of
T (S) will be called .7 -spectra over S.

We write 1g for the monoidal unit in .7 (S), and 1g(1) for the Tate twist. In
the sequel, various combinations of Tate twists and shifts naturally arise, and we
introduce a separate notation for these twists:

Is{1} == 1s(1[1], 15(1):= 15(1)[2].

Given an object E in 7 (S), and a morphism f : X — S (resp. a separated
morphism having finite type) we may define E-cohomology and bivariant E-theory
by means of the formulas:

e (Cohomology) E™*(X) = Hom g x)(1x, f*E(i)[n]).

e (Bivariant theory E, ;(X/S) = Homgzx) (1x(i)[n], f'E).
This notation is a standard in motivic homotopy theory. When dealing with spectral
sequences, and homotopy modules, it will both be useful and meaningful to use the
following notations:

e H'(X,E) =E"°(X).

o H,(X/S,E)=E, o(X/5).
We will use the later notations exclusively in Sections 4 and 5.

The definition of the bivariant theory attached to E will be extended to the
situation where X has essentially finite type over S (see Paragraph 2.1.1). The
indexing for cohomology used above may also be expressed in terms of the other
conventions for twists mentioned above, with notation changed accordingly: one
has equalities of the form

Emi (X) _ ]En—i7{i} (X) _ En—?i,(i} (X),

similar notation will be used for the associated bivariant theory. When E = 1g,
the various cohomology groups will be referred to as .7 -cohomology and bivariant
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T -theory respectively, and we write H™(X,.7) (resp. HPM(X/S, 7)) for these
groups.

Write K(S) for the category of virtual vector bundles over S, associated with
the category of vector bundles over S with morphisms the isomorphisms of vector
bundles. The Thom space construction may be viewed as a functor

Ths : K(S) — Z(S)

that sends sums to tensor products. Following [DJK18], we may twist cohomology
and bivariant theories by pairs (n,v) € Z x K(X); we use the following notation
for these twists:

En(X,’U) :Homg(x)(ﬂx,f*E®ThX(v)[n])
E,(X/S,v) = Hom 7 x) (ThX(v)[n],f!]E).

Given an integer i € Z, we denote by (i) the unique free virtual vector bundle of
rank ¢ — the underlying scheme is implicit — so that this notation is compatible with
our conventions on twists. If K is a perfect complex over X, we denote by (K) the
associated virtual bundle (see [DJK18, 2.1.5]).

In order to be able to apply the construction of the §-homotopy t-structure of
[BD17], we will require that  satisfies the following assumptions:

(T1) 7 is generated by Tate twists of smooth schemes: more precisely, for any
scheme S, 7(9) is generated as a triangulated category by objects of the
form Mg(X)(i) with X/S smooth and i € Z.2

(T2) 7 is continuous with respect to Tate twists: see [CD09, 4.3.2].3

(T3) 7 is homotopically compatible: see [BD17, 3.2.12].4

(T4) A suitable form of resolution of singularities holds: property (Resol) of
[BD17, 2.4.1].5

Examples. The abstract setting being given, we now give our list of concrete
frameworks, that will be used in all of our examples. We first fix some absolute
base Sy and restrict our schemes to Sp-schemes essentially of finite type.

(1) Motivic case. Let R be a ring of coefficients, and assume one of the
following situation:
e S) is the spectrum of a field k& whose characteristic exponent is in-
vertible in R and .7 = DM(—, R) is Voevodsky’s cdh-local category
of triangulated mixed motives, introduced in [CD15].

2All objects in .7 (S) are obtained by taking extensions of arbitrary coproducts. Equivalently,
an object K of () is zero if and only if:

VX/S smooth,(n,i) € ZQ,Homg(S) (Ms(X)(i)[n], K) = 0.

3Recall that this expresses the compatibility of .7 with projective limits.
4This condition is automatically verified (see [BD17, 3.2.13]) if 7 satisfies absolute purity
and the following vanishing statement holds:

Viields E,Vn > m, H™™(Spec(E), 7) = 0.

5Under two geometric assumptions, this means that:
e In case (S1), we will require that, for p the characteristic exponent of k, .7 is Z[1/p]linear.
e In case (S2), we require that 7 is Q-linear.
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e Sy is a Dedekind ring (or more generally an excellent scheme of
dimension greater or equal than 3), R is a Q-algebra and 7 =
DM(—, R) is one the many models of the triangulated category of
R-motives introduced in [CDO09].

(2) Homotopical case. The absolute base Sy is the spectrum of a field with
characteristic exponent p, and 7 = SH[p~!] is the Z[p~!]-linearization of
the Morel-Voevodsky stable homotopy category of P!-spectra. Particular
motivic ring spectra of interest to us will include:

e 5% = I the sphere spectrum.

e HRg the motivic Eilenberg-MacLane ring spectrum with coefficients
in RS

e HRg the Milnor-Witt motivic ring spectrum with coefficients in R.
See [DF17].

To fix ideas, the reader may take the dimension function §y on Sy satisfying the
conditions (S1) or (S2) fixed above, and for any Sp-scheme essentially finite type,
take the induced dimension function (as described above).

2. Homotopy t-structure and duality

The goal of this section is to review a variant of the homotopy t-structure
analyzed in [BD17] that makes sense over rather general base schemes. In more
detail, Section 2.1 reviews the necessary theory from [BD17] and fixes additional
notations and conventions to be used in the sequel. We highlight here Theorem 2.1.4
which summarizes the required existence result and Point 2.1.8 which describes
homological conventions for t-structures that will be in force throughout the paper.
On the other hand, Section 2.2 is somewhat orthogonal to the above considerations
and is concerned with recalling some facts about purity and duality that will be
used in the remainder of the paper.

2.1. Recollections on the homotopy t-structure.

2.1.1. For any J-spectrum E over a scheme S, bivariant E-theory extends
canonically from the category of separated S-schemes of finite type to that of sep-
arated S-schemes essentially of finite type. Indeed, suppose X is a separated S-
scheme essentially of finite type. By assumption, there exists a pro-scheme (Xy)x
with affine and étale transition morphisms, such that each X is separated and has
finite type over S, and with limit X. We set:

E, (X/S) :=lmE, ;(X\/S).

—
A

This definition is independent of the pro-scheme presenting X as a limit [GD67,
§8.2]. The resulting definition presents a canonical extension of the original functor
by the continuity assumption on 7 (i.e., property (T2) from our conventions).
Moreover, when X has finite type over S the new definition agrees with the old
definition by using again the continuity assumption on 7.

6Recall this ring spectrum is obtained as the image of the constant motive under the canonical
map: K o, : DM(S,Z[p~]) — SH(S)[p~!], by forgetting the transfer and then taking the
Nisnevich Eilenberg-MacLane functor. See for example [CDO09].
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PRrROPOSITION 2.1.2. IfE is a T -spectrum over S, then the following conditions
are equivalent.

(i) For any separated scheme X/S of finite type, one has:
E, (X/S) =0 when n —i < §_(X),
respectively n —i > 64 (X).
(ii) For any point x € S(K) (see our Notations and conventions), one has:
E,(z) =0 when n —i < §(x),
respectively n — i > §(x).

PROOF. The equivalence of (i) and (ii) follows by combining Theorem 3.3.1
and Corollary 3.3.5 of [BD17]. Alternatively, it is a straightforward consequence
of the existence and convergence of the d-niveau spectral sequence ([BD17, Def.
3.1.5] or Paragraph 3.2.2 in this paper). a

REMARK 2.1.3.

(1) In [BD17], the extension E.. to separated schemes essentially of finite
type was denoted by B, Since, according to paragraph 2.1.1, this exten-
sion is unique and well-defined — using in particular the assumption (T2)
for coherence, we will not follow this notational convention here (and we
caution the reader that the decoration [ is used with a different meaning
in this paper.)

(2) If we use the d-niveau spectral sequence, then the proof of the previous
proposition does not use the assumptions (T1), (T3) and (T4). Therefore,
the preceding proposition is true without assuming these conditions.

We can now state the main theorem of [BD17] (see loc. cit. Th. 3.3.1 and
Cor. 3.3.5).

THEOREM 2.1.4. Given any scheme S, there exists a t-structure on 7 (S) whose
homologically non-negative (resp. mon-positive) objects are the T -spectra E over
S satisfying the equivalent conditions (i) and (ii) of the above proposition. This t-
structure is, moreover, non-degenerate and satisfies gluing in the sense of [ BBD82,
1.4.10] (see also Remark 2.1.12).

DEFINITION 2.1.5. Given any scheme S, the ¢-structure on .7 (S) of the above
theorem will be called the d-homotopy t-structure. Objects of the heart of this
t-structure, denoted by .7 (S)Y, will be called §-homotopy modules, or simply ho-
motopy modules when this does not lead to confusion.

REMARK 2.1.6. The t-category 7 (S) is “independent” of the choice of § in a
sense we now explain. Given another choice §’, we know that the function §' — ¢
is constant on connected components of S. As Z(SUS') = T(S)® T(5), we
may obviously assume S is connected so that §' = § + n. It follows from the above
definition that

o500 (T(9),t5) = (T(S),ts5), E — E[n]
is an equivalence of {-categories. It may be useful to remember the formula:
(2.1.6.2) T =1

(see the conventions of Par. 2.1.8 for these truncation functors).
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ExXAMPLE 2.1.7.

(1) Motivic case: Let k be a perfect field and assume § is the obvious di-
mension function on k. In the motivic case, the J-homotopy t-structure
on DM(k, R) coincides with the stable version of Voevodsky’s homotopy
t-structure introduced in [Dégll, Sec. 5.2]. See [BD17, Ex. 2.3.5] for
details. In particular, a 6-homotopy module E over k is just a Z-graded
homotopy invariant sheaf with transfers equipped with an isomorphism:

(En+1)—1 =~ En-

We refer the reader to [Dégll, 1.17] for more details.

(2) Homotopical case: In the homotopical case, given a field k with the ob-
vious dimension function, the §-homotopy t-structure on SH(k) coincides
with Morel’s homotopy t-structure (see [Mor03, Sec. 5.2]). We refer the
reader again to [BD17, Ex. 2.3.5] for more details. In this case, a J-
homotopy module E over k is a Z-graded strictly Al-invariant Nisnevich
sheaf over smooth k-schemes with a given isomorphism:

(En+1)—1 =~ En-

In other word, this is a homotopy module in the sense of Morel. Recall also
that a spectrum E is called orientable if it admits the structure of a module
over the ring spectrum MGL. Orientability for homotopy modules turns
out to be equivalent to requiring that the Hopf map 7 (an element in the
graded endomorphisms of the motivic sphere spectrum) acts trivially. In
fact, orientability is also equivalent to requiring that E admits transfers, in
which case these transfers are unique (see [Dégl3, 4.1.5, 4.1.7] for further
details).

(3) Over a general base S, in both the homotopical and motivic cases, the
d-homotopy t-structure can be compared with the perverse homotopy t-
structure defined by Ayoub in [Ayo07, §2.2.4]. This comparison requires
an appropriate choice of §, and we refer the reader to [BD17, 2.3.11] for
details.

2.1.8. Homological conventions.— For the most part, we adopt homological con-
ventions, as they are better suited to issues that arise involving singularities. We
will write E >5 n (resp. E <s n) to say that E is concentrated in homological degree
above n — 1 (resp. below n + 1) and denote by 73 (resp. 72, ) the correspond-
ing homological truncation functor. Using homological conventions, the truncation
triangles read:

o(E) = E — 72,(B) =5

and Hom(E,F) =0if E >5 0 and F <5 0.
We denote by H? the n-th homology functor with respect to the ¢s-homotopy
t-structure. Finally, we summarize conventions with respect to suspensions:

H,(E[i]) = Hy_;(E), 78, (Eli]) = 72, ;(B)[i], 72, (E[i)) = 72, _;(E)[d].

REMARK 2.1.9. We may pass from homological to cohomological indexing by
writing indices as superscripts and reversing signs. In formulas:

Hgl(]E) = an(E)v ngn = Tgfnv 7—6>n = Tgfn'
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2.1.10. For the record, we now give a number of equivalent characterizations of
positivity or negativity with respect to the §-homotopy t-structure — this is simply a
consequence of Proposition 2.1.2, using the above conventions and the construction
in Paragraph 2.1.1.

Given a J-spectrum E over S and an integer m € Z, the following conditions
are equivalent:

(i) E >5 m (resp. E <5 m)
(ii) For any separated scheme X /S having finite type, one has:

E,;(X/S) =0 whenn —i<m+d_(X),
respectively n —i > m + 4 (X).

(ii’) For any separated scheme X/S being essentially of finite type, one has:

E,:(X/S) =0 whenn —i<m+46_(X),
respectively n —i > m + 64 (X).

(iii) For any point z € S(K) (see again our Notations and conventions), one
has:

E,i(x) =0 when n —i < m+ d0(x),
respectively n — i > m + 6(x).

2.1.11. t-ezxactness of the siz operations.— Given a functor F' between triangu-
lated categories equipped with ¢-structures, one says that F' is left (resp. right)
t-exact if it respects homologically negative (resp. positive) objects; such a functor
F is t-exact if it is both left and right ¢-exact. One says that F' has homological
amplitude [a, b] if for any object E:

e E>0= F(E)>a.
e E<0= F(E)<b.

Let f : X — S be a morphism essentially of finite type, and d the maximum
dimension of its fibers. We consider the 6f-homotopy t-structure on .7 (X), where
67 is the dimension function on X induced by that of S with respect to the morphism
f (see Notations and conventions page 25). Then one has the following results:

e f*[d] is right ts-exact.

o If f is smooth, f*[d] is ts-exact.

e The functor f, has ts-amplitude [0, d].
The first, second and third points are respectively proved in [BD17], 2.1.6(3),
2.1.12, 3.3.7.
If in addition f is separated of finite type, we get:

e fi is right ¢s-exact.

o f'is ts-exact.

e If § > 0 then ® is right ts-exact.
These points are respectively proved in [BD17], 2.1.6(1), 3.3.7(4), 2.1.6(2).

REMARK 2.1.12. As mentioned in Theorem 2.1.4, the J-homotopy t-structure

satisfies gluing. We recall here precisely what this means. Consider a closed immer-
sion ¢ : Z — S with complementary open immersion j : U — S and a .7-spectrum
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E over S. The following conditions are equivalent:
e E is homologically non-ts-negative (resp. non-ts-positive).
e j*E and i*E are homologically non-ts-negative (resp. j*E and i'E are
homologically non-ts-positive).
The equivalence of these conditions can be deduced from the localization property
of 7 and the t-exactness stated above (see [BD17, Cor. 2.1.9]).

Let us now explicitly state the following consequence of the result on the tensor
product.

PROPOSITION 2.1.13. Assume the dimension function § on S is non-negative.
Let E be a T -spectrum over S. Then for any pair (p,q) € Z?, one has a canonical
pairing:

¢, (E) @7, (F) > 72, (ERF)
which is bi-functorial in E.

PROOF. According to the preceding paragraph, the assumption implies that the
tensor product ® in .7 (S) preserves non-negative objects. Consider the canonical
map

2 ([E) @i, F) LESF.
According to the preceding assertion, the left hand-side is in homological degrees
> p+ q. Consider the distinguished triangle:

8, (EeF) SEQF L 72 (EeF)

We deduce that the composition bo¢ is zero. So ¢ uniquely factors through a giving
us the desired map ¢. The bifunctoriality of ¢ follows from the uniqueness. |

ExAMPLE 2.1.14. Consider the assumptions of the preceding proposition.

The previous pairing is associative in an obvious sense - this follows from the
uniqueness of the map ¢. Hence the symmetric monoidal structure on .7 (X) in-
duces a canonical symmetric monoidal structure on .7 (X)¥, using the formula, for
d-homotopy modules E and F:

E @ F:=rl((E®F).
Note in particular that the canonical functor:
T(X)s50 = T(X),E— 75,(E) = H)(E)
is monoidal.

REMARK 2.1.15. Beware that the monoidal structure defined above a priori
depends on § > 0. To be more precise, though the heart for two different choices of
dimension functions § > 0, ' > 0 are equivalent as additive categories, according
to Remark 2.1.6, this equivalence is not compatible in general with the tensor
structures induced by § and ¢'.

Indeed, if k is a field and we are in the motivic (or the homotopical) case, if
we take a dimension function § on k such that §(k) = n > 0, then the induced
tensor product on the heart is just the zero bi-functor ! The situation of a positive
dimensional base is more complicated though, and it seems there are as many non-
trivial tensor structures induced as in the above example as the dimension of the
base.
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2.2. Recollection on purity and duality.

2.2.1. Consider a 7 -spectrum E over a scheme S.

Let us recall a construction from [DJK18]. Let f : ¥ — X be a quasi-
projective lci morphism of S-schemes with cotangent complex L¢. Let Ex be the
pullback of E along X/S. Then we associate to f a purity transformation (see
[DJK18, 4.3.1]); evaluated at the object Ex, it gives a canonical map:

Py f*(Ex) ® Th(Ly) = f'(Ex).
where Th(Ly) is the Thom space associated with the perfect complex L. The fol-

lowing definition extends classical considerations; in the motivic case, see [DJK18,
4.3.9].

DEFINITION 2.2.2. Consider the above notations. We will say that E is ab-
solutely pure if for any quasi-projective morphism f : Y — X between regular
schemes, the map py is an isomorphism.

If S is regular, we will say that E is S-pure if for any quasi-projective morphism
f:X — S with X regular, p; is an isomorphism.

ExaAMPLE 2.2.3.

(1) Motivic case: the constant motive 1g, is absolutely pure. Equivalently,
I g is S-pure for any regular scheme S.

(2) Homotopical case: Then any spectrum E over the base field k is abso-
lutely pure (see [DJK18, 4.3.10(ii)]). Equivalently, any spectrum E over
a regular base S is S-pure.

An almost immediate corollary of the S-purity assumption is the following
duality statement.

PrROPOSITION 2.2.4. Let f : X — S be a morphism and E be a T -spectrum
over S. We assume one of the following hypothesis is fulfilled:

o f is essentially smooth.
o f is essentially quasi-projective, X and S are reqular and E is S-pure.

Then for any pair (n,v) € Z x K(X), the map py gives an isomorphism:
(2.2.4.a) E™"(X,v) = E_,(X/S,(Ls) —v)
which is contravariantly natural in X with respect to étale maps.

PROOF. The case where f is of finite type is tautological, while the contravari-
ance with respect to étale map follows from the compatibility of p; with étale
pullbacks (apply [DJK18, 3.3.2(iii)] in the case where p is étale).

The general case is obtained using the previous one, together with the naturality
with respect to étale maps, and the extension of bivariant theory described in
2.1.1. O

REMARK 2.2.5.

(1) This isomorphism can be described, at least when f is of finite type, as
the cap-product by the fundamental class n; € Eo(X/S, (L)) of f: see
[DJK18, 4.3.9, 2.3.14]. In fact, the description of the above isomorphism
in the general case immediately follows when one considers the obvious ex-
tension of the notion of fundamental classes to essentially quasi-projective
lci morphisms.
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(2) Recall that if either E is an object of DM(S, R) or if F is an MGL-module”
over S then the Thom isomorphism implies we can canonically identify
the twist by a virtual vector bundle with the Tate twist by its rank. In
particular, the above isomorphism takes the following classical form:

(2.2.5.a) E™(X) = Esg—n.a—i(X/S)

where d is the relative dimension of f.

3. Fiber homology and Gersten complexes

In this section, we investigate the heart of the homotopy t-structure discussed
in the preceding section in greater detail. Section 3.1 is concerned with studying
an approximation to the notation of homology associated with the truncation func-
tors for the homotopy t-structure. Definition 3.1.2 introduces the notion of fiber
d-homology, which is esentially the restriction of §-homology to points. This sec-
tion concludes with Theorem 3.1.7, which introduces an “effective” variant of the
t-stucture of Section 2.1, ameliorating some unboundedness issues that naturally
arise because we work in a stable context. Section 3.2 recalls conventions for exact
couples, and introduces Gersten complexes (see Definition 3.2.4), built out of fiber
d-homology, which essentially form the Ej-page of the niveau spectral sequence.
We also give a detailed description of the differentials of the Gersten complexes
and important formal properties of these complexes are summarized in Proposi-
tion 3.2.7. Finally, Section 3.3 is devoted to analyzing multiplicative structure in
these complexes and the associated spectral sequences.

3.1. Fiber /-homology.

3.1.1. Recall from the introduction that we have also considered G,,-twists
on bivariant theory. Indeed these twists are more natural with respect to the 6-
homotopy ¢-structure, because the functor —(1)[1] is ts-exact. Using this grading,
one can reformulate Proposition 2.1.2 for a given Z-spectrum E over S as the
equivalence of the following conditions:
(i) E >0 (resp. E <0).
(ii) For any separated scheme X/S essentially of finite type, one has:
E, (1 (X/S) =0 when n < 6_(X) (resp. n > 6,(X)).
(iii) For any point x € S(K), one has:
E, {«}(z) = 0 when n < §(z) (resp. n > é(x)).

In view of this characterization of the d-homotopy t¢-structure, we have adopted
the following definition in [BD17].

DEFINITION 3.1.2. Let E be a Z-spectrum over S. We define the fiber §-
homology of E in degree n € Z as the functor

ﬂ—g(]E) : PtS(S) — ﬂbz,l' — (Eé(w)-l—n,{zS(ac)—r} (1’))T6Z

where Pts(S) is the discrete category of points of S. Dually, we define the fiber
§-cohomology of E as HY(E) = H? (E) (the G,,-grading does not change).
Given an object F of the §-homotopy heart, we set FS := fIg(IF)

7in other words, an oriented spectrum; here module is to be understood in the sense of the

monoidal category SH(S) 4.e. in the weak homotopical sense.
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Therefore E > 0 (resp. E < 0) if and only if H(E) = 0 for n < 0 (resp. n > 0).

REMARK 3.1.3. Fiber é-homology is a good approximation of J-homology. In
fact, given an object F of the heart of the §-homotopy t-structure on 7 (S5), the
functor Iﬁ‘i is an approximation of a cycle module in the sense of Rost.

In the motivic case, this idea can be turned into an equivalence of categories
between the §-homotopy heart of DM(S, R) and the category of Rost R-linear cycle
modules over S in the sense of [Ros96]. The details of such a theorem have not
yet been written up, but see [Dégl4a]. In the homotopical case, a generalization
of Rost’s theory is in the work (see [Fell8]).

In any case, we have already obtained in [BD17, 4.2.2] that, in the general case
of an abstract triangulated motivic category .7 satisfying our general assumptions,
the functor:

F(8)Y — PSh(Pts(S), R — mod?),F > 2
is conservative, exact and commmutes with colimits. Similarly, the family of func-

tors (H?),cz is conservative on the whole category .7 (S).

EXAMPLE 3.1.4. Let S be a regular connected scheme, and put d = §(S5). We
fix a point z : Spec(K) — S.
(1) Abstractly, using any S-pure spectrum E, one obtains, because of the
duality isomorphism (2.2.4.a) and relation (D2) of dimension functions, a
canonical isomorphism:

H}(B), () ~ E~"""(Spec(K), (Ly/s) — (3()) + (r)).

(2) Assume we are in the motivic case. One then obtains (using the previous
computation) a canonical isomorphism:

HP (1g),(z) = Hy; "2~ %(Spec(K), R).

This follows because under our assumptions, motivic cohomology satisfies
absolute purity, and is oriented.

Observe, for example, that:

Hj(ls). = Hy%(1g). = KM|s,

the restriction of the Milnor K-theory functor to the discrete category
Pts(S).

Additionally, the only vanishing that we have is: H(1g) = 0ifn > d.
In other words, 1g is concentrated in t5-homological degrees | — 0o, d]. On
the other hand, we know for a fact, at least when S is a complex scheme,
that for all n < d, HS(S) # 0 (this is due to the existence and non-
triviality of polylogarithm elements; see [BD17, Ex. 3.3.2]). So lg is
ts-unbounded below.

(3) Assume we are in the homotopical case. Then one obtains, using the

computation of point (1), a non-canonical isomorphism:

H (1), (2) 2 w0l a(S5)r—al1 /).
This is because absolute purity is automatic in the homotopical case: see
point (2) of Example 2.2.3.
In particular, Morel’s computation of the zeroth stable A'-homotopy
sheaf of the sphere gives an isomorphism, again non-canonical:

Hj(1s)r(2) = KMY(K)
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where the right hand side is the r-th Milnor—Witt cohomology group of
the field K.

Moreover, the zero sphere spectrum 1 g is concentrated in homological
degrees | — o0, d] for the d-homotopy t-structure. Not much else can be said
in this case since, when S is a complex scheme, the rational homology of
the zero sphere spectrum agrees with the rational homology of the motivic
spectrum, which is non-trivial. Thus, 1g is unbounded below for the 6-
homotopy t-structure.

(4) Again in the homotopical case, we can consider the Milnor-Witt motivic
ring spectrum HRg. Known computations of Milnor-Witt cohomology
imply, as in the case of motivic cohomology, that HRyg is concentrated in
homological degrees | — 0o, d]. Moreover, the unit of this ring spectrum
induces a canonical isomorphism:

A%(1s), = A% (HR)..
REMARK 3.1.5. In the non-oriented context, it appears more natural to intro-
duce another twist for a virtual vector bundle v over a scheme X, namely:

1 x{v} := Thx(v)[— rk(v)].

This notation is consistent with our notation 1x{r} for the G,,-twist (where r
corresponds to the trivial bundle of rank r).

Assuming §(S) = 0 to simplify, the isomorphism of point (1) can be rewritten
as:

H)(E), () = E™"(Spec(K), {Ly/s} + {r})-

The unboundedness of the constant object, observed in Points (2), (3), (4) of
the previous example, appears to be a consequence of working in the stable context —
recall that stability with respect to Tate twists is among the axioms of triangulated
motivic categories used in [CD09]. This potentially unpleasant feature can be
corrected as follows.

DEFINITION 3.1.6. (see [BD17, Def. 2.2.1]) Let S be an arbitrary scheme.
We define the triangulated category of d-effective 7 -spectra over S, denoted by
T (8), as the full localizing subcategory of .7 (S) generated by objects of the
form:

Sil(lx)(n)
where f: X — S is separated of finite type and §(X) > n.
Given a 7 -spectrum E over S, we define its effective fiber §-homology H2¥ (E)
as the negatively graded functor obtained from Hg (E) by restricting the Gy,-
grading to negative integers.

It follows from [BD17, 3.1.1] that one can define an effective version of the
d-homotopy t-structure.

THEOREM 3.1.7. Consider the notations of the previous definition. For any
scheme S, there exists a t-structure on T (S) whose homologically non-negative
(resp. non-positive) objects are those 7 -spectra E over S such that H T (E) = 0
forn < 0 (resp. n > 0). This t-structure is non-degenerate and satisfies glueing
(recall: [BBD82, 1.4.10], Remark 2.1.12).
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EXAMPLE 3.1.8. Let S be a regular connected scheme, and put d = 4(.5).

(1) Assume we are in the motivic case. Then the computation done in Exam-
ple 3.1.4(1) shows that H(1g)<o = 0 if n # d. In other words, 1g[—d] is
in the heart of the effective §-homotopy t¢-structure. This is exactly what
happens for the perverse t-structure.

(2) Assume we are in the homotopical case. The preceding example shows
that the Eilenberg-MacLane motivic ring spectrum HRg[—d] is in the
heart of the effective §-homotopy t-structure.

The computations of higher stable homotopy groups of spheres do not
allow us at the moment to conclude anything about the sphere spectrum.
However, the computations of Milnor-Witt motivic cohomology imply, as
in the motivic case, that Hpsw Rg[—d] is in the heart of the effective
0-homotopy t-structure.

3.1.9. The d-effective categories .7°%7(S), with the t-structure just defined,
satisfy good properties. We refer the reader to [BD17] for the following facts.
First, by construction, one has a pair of adjoint functors:

s:. 7 (8) =5 7(9) :w

such that s is fully faithful and w is ¢s-exact.

e If § > 0, the subcategory 79 (S) of 7 (S) is stable under tensor prod-
ucts. So 7% () becomes a closed symmetric monoidal category with
internal hom given by:

Homgéeﬁ (S) = w o Homy(s)(M, N)

Moreover, the tensor product on 7% (S) is right ts-exact.
e For f : X — S essentially of finite type with dim(f) < d, we get an
adjunction of t-categories:

fr@)2d] : 7°0(S) = T (X) s wo (fu(—d)[-2d)).

When f is smooth of pure dimension d, f*(d)[2d] is ts-exact.
e For f: X — S separated and essentially of finite type, we get an adjunc-
tion of t-categories:

fi: T (X) s T (8) :wo f'.

1.
Moreover, w o f* is ts-exact.

In the last two points, the dimension function on X is that induced by the one fixed
on S (see our notations and conventions).

3.2. Gersten complexes. We now build a spectral sequence using the theory
of exact couples. Since conventions for exact couples vary in the literature, we now
fix our conventions, which agree with those used in [BD17, 3.1.2].

DEFINITION 3.2.1. Let o/ be an abelian category. A homological exact couple
of degree d > 0 in of is the data of a pair of bigraded objects (D, E) of &/ together
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with a triangle of homogeneous maps (a, b, ¢)

—1,+1
D (=1,41) D

a

c b
(=d,d—1) (0,0)

E

such that consecutive maps fit together to form an exact sequence.

As usual, one derives a (homologically indexed) spectral sequence from such an
exact couple [McCO1]: at page r, the r-th term is equal to the differential bigraded
abelian group (F,bo c).

3.2.2. We first recall §-niveau spectral sequences, in the abstract setting and
using dimension function following [BD17, 3.1.5].8

Let X be a separated S-scheme essentially of finite type. Recall from [BD17,
3.1.1] that a é-flag of X is an increasing sequence of reduced closed subschemes
Z. = (Zp)pez of X such that §(Z,) < p for all p. The set F(X) of d-flags, ordered
by term-wise inclusion, is cofiltered. Given such a §-flag, the classical properties of
the bivariant theory E.(—/—) (see our Notations and conventions) imply that we
have a long exact sequence:

Ep+q(Zp71/S) = Eerq(Zp/S) i) Ep+q(Zp - prl/s) = Ep+q71(prl/S)

where a (resp. b) is pushfoward (resp. pullback) along the obvious closed (resp.
open) immersion, and ¢ the boundary map. These long exact sequences are covari-
antly functorial with respect to inclusion of flags. Thus we can combine them into
the following homological exact couple of degree 1:

5Dp,q = hﬂ (Ep+q(Zp/S))7
Z.eF(X)

5E11),q = h_n>1 (Eerq(Zp - prl/S))-
Z.eF(X)

Finally, observe that one can express the E;-term as follows:
[ nit
Ep,q = @GJEX(]J)EP-‘:-Q(J:/S)?

where
X(p) = {.23 eX ‘ (5(3?) :p}.

DEFINITION 3.2.3. Under the assumptions and notations above, the spectral
sequence:

5E;7q = @ Ep-i—q(x/s) = Ep-‘rq(X/S)
IEX(p)

will be called the §-niveau spectral sequence of X/S with coefficients in E.

8The main idea is of course classical, introduced by Grothendieck, and thoroughly developed
in [BO74]. The main novelty of [BD17] is to work over an arbitrary base scheme S (rather than
a field) and appeal to abstract dimension functions. This use of dimension functions can also be
found in the homological indexing for Chow groups in [wel5]. See [BD17, 3.1.7] for more on this
point.

Licensed to Univ of Southern Calif. Prepared on Thu Jul 30 19:00:06 EDT 2020for download from IP 128.125.211.56.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



THE HOMOTOPY LERAY SPECTRAL SEQUENCE 39

The spectral sequence converges to the following filtration, called the d-niveau
filtration:

LEL(X/S) = U  Im(i.:E.(2/S) - E.(X/9)),
©:Z—X,0(Z)=p
where i runs over the closed immersions whose source has §-dimension p.
It is standard to consider this spectral sequence not just for E itself, but also

for all Tate twists. In fact, if we apply this definition to the graded spectrum E(n)
for an integer n € Z, we get the following form:

Bly= P Eprgn(z/S) = Eprgn(X/5).
LEEX(F)

In view of Rost’s theory of cycle modules, it will be useful to introduce the
following definition.

DEFINITION 3.2.4. Under the assumptions of the preceding definition, we define
the Gersten (§-homological) complex of X/S with coefficients in E, denoted by
C%(X,E), as the complex of abelian groups located at the line ¢ = 0 of the E;-term
of the d-niveau spectral sequence. The p-th homology of this complex will be called
the Gersten §-homology of E and be denoted by:

AY(X,E) = Hy(C2(X,E)).

Note that the Gersten complex is concentrated in degrees [0_(X),d4+(X)].
Moreover, using Definition 3.1.2 for fiber J-homology, the p-th term of this complex
takes the following form:

CHX,E)= @ HIE,(z/S).
T€X(p)
REMARK 3.2.5. The complex defined above is closely linked with Rost’s theory
of cycle modules. We have used a simplification here. Indeed recall that cycle

modules, as well as their associated complexes, are Z-graded. We can recover this
Z-grading by applying the above definition to the Z-graded spectrum:

E{x} = (E(n)n]),cp-

It is also standard in stable Al'-homotopy theory to consider this grading, called
the G, -grading.
The complex C%(X,E{*}) is Z-graded, and has the following form:

CUXE{+}) = @ HIE,—.(z/5).
z€X (p)

The main reason to use this grading is that the differentials of the Gersten complex
are then homogeneous of degree —1.

3.2.6. Consider the notations of the above definition. The differentials of the
Gersten complex associated with E and X/ S take the following form:

BXE= P E (2/8) 2 P E,(s/9)=C) (X.E)

2€X(p) $€X(p—1)
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The differential d,, is obtained as the inductive limit of differentials df associated
with a d-flag Z, and is described as follows:

Ep(Zy/S) —= Ep(Zp — Zp-1/S) ~— p—1(Zp-1/5)
dP

Ep1(Zp—2/S) —= Ep1(Zp-1/5) —> Ep-1(Zp-1 — Zp-3/5)

where the rows arise as pieces of localization long exact sequences.

Using the functoriality of the localization long exact sequences with respect to
pullbacks along open immersions, it is therefore possible to explicitly describe the
differentials of this complex as follows. Consider a pair (z,s) € X,y x X(,_1) and
denote by (dp)y @ Ep(2/S)r—p — Ep—1(y/S)r—p the corresponding component of
the above differential. Let us write Z(x) the reduced closure of z in X. From the
construction of the Gersten complex given above, and the functoriality of localiza-
tion long exact sequence in bivariant theory with respect to pullbacks along open
immersions and pushforward along closed immersions, one then deduces that:

o if s € Z(x): we let Z(x)(4) be the localization of Z(x) at s; this is a 1-
dimensional scheme so that Z(z)(s) = {z,s}. Then (d,)? is the boundary
map of the localization long exact sequence associated with the closed
immersion i : {s} — Z(z)(). Explicitly, it is the middle map in the
following exact sequence:

" (dp)s i
Ey(Z(2)(5)/S) 2= Ep(x/S) —5 Ep_1(s/S) = Ep_1(Z(2)(5)/S)
e Otherwise, (dp)? = 0.
The next result summarizes the formal properties of Gersten complexes.

PROPOSITION 3.2.7. Consider the notations of the above definition.

(1) The complex C3(X,E) is covariantly functorial in E. Given any integer
p, the induced maps

C2(X,E) = CY(X,7<,E), C2X, 7> ,E) = CJ(X,E)
are isomorphisms provided p > 0. In particular, one has a canonical
isomorphism:
C)X.E) ~ CJ(X, H{E).
(2) The complex CO(X, ) is functorial in X/S, covariantly with respect to
proper maps and contravariantly with respect to étale maps.
(3) If the F -spectrum E is homologically non-ts-negative (resp. non-ts-positive),
there exists a canonical epimorphism (resp. monomorphism):
E,(X/S) = Ap(X,E)
Tesp. Ai(X, E) - E,(X/S).

These two maps are functorial in the S-scheme X, covariantly with respect
to proper maps and contravariantly with respect to étale maps.

If E is in the d-homotopy heart, or more generally is concentrated
in one degree for the §-homotopy t-structure, these two maps are inverse
isomorphisms giving a functorial identification:

E,(X/S) ~ AS(X,E).

Licensed to Univ of Southern Calif. Prepared on Thu Jul 30 19:00:06 EDT 2020for download from IP 128.125.211.56.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



THE HOMOTOPY LERAY SPECTRAL SEQUENCE 41

PRrROOF. Point (1) follows from the §-niveau spectral sequence and its obvious
functoriality in E (Paragraph 3.2.2).

Point (2) follows from the classical functoriality of the (4-)niveau spectral se-
quences. We refer the reader to [Jin16], proof of Proposition 3.11 for proper func-
toriality, and proof of Proposition 3.12 for étale contravariance. Note an important
technical point here: we deal with the case of a general triangulated category 7,
in contrast with the special case 7 = DM which is oriented. In the case of proper
functoriality, this does not come into play. The case of étale contravariance works
as well as the tangent bundle of an étale map is trivial.

Point (3) is a consequence of the convergence of the d-niveau spectral sequence
and of the computation of its E;-term. |

REMARK 3.2.8.

(1) According to the isomorphism of Point (3) above, one obtains using the
main result of [DJK18] that, given a J-homotopy module E, the Gersten
homology A?(X,E) is contravariant in X with respect to any smoothable
lci morphism f : Y — X. More precisely, one gets a canonical morphism:

ANX,E) > E,p(X/S) = Ep(Y/S, (Ly/x)) =~ ALY, E(Ly,x))

where the last identification uses the fact E(Ly,x) is concentrated in one
degree over any connected component of Y — which is the virtual rank of
Ly/x,, where 1 is any generic point of the chosen connected component.
(2) As another illustration of the connexion of our Gersten complexes with
Rost’s theory of cycle complexes, when S is the spectrum of a perfect
field k, ¢ is the obvious dimension function, and we are in the motivic
case .7 = DM(k, R). Then any object E in the heart of DM(k, R) is a
homotopy module with transfers in the sense of [Dég11] which canonically

corresponds to a cycle modules E, = I@i — this notation corresponds to
the one of Definition 3.1.2. Moreover, according to [Dégl2, 2.7(ii)], there
exists a canonical isomorphism of complexes

where the right hand-side is Rost cycle complex associated with the cycle
module E,.

3.3. Products.

3.3.1. Consider a 7 -spectrum E over S.
In order to describe products, we will use cohomological notations. We put:

CE(S,E) = C° (S,E), resp. A}(S,E) := A° (S,E)

and call it the Gersten 0-cohomological complex (resp. J§-cohomology) of S with
coefficients in [E. Note in particular that, when E is in the heart, we get from
Proposition 3.2.7 a canonical isomorphism:

AL(S,E) ~ HP(S,E).
Consider now a morphism of .7 -spectra over S:
p:EQF — G.
We deduce as usual a morphism at the level of cohomologies:
EP(S) ®z F1(S) — GPTI(S)
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by sending a pair of maps (a: 1g — E[p],b: 1s — F|g]) to the following map:
1s ““5 EQF[p+q % Glp+q|.

Using the preceding isomorphism, we deduce a canonical pairing:
AP(S,E) @z AYS,F) — AZTI(S,G).
We deduce the following results.

PROPOSITION 3.3.2. IfE is a ring 7 -spectrum over S, then A3(S,E) has a
ring structure. If F is a F -spectrum with equipped with an E-module-structure,
then A*(S,TF) is equipped with the structure of a module over A%(S,E).

ExaMPLE 3.3.3. If E be a ring Z-spectrum over S, then according to Ex-
ample 2.1.14, the graded é-homotopy module H?(E) has the structure of a ring
spectrum. According to the preceding proposition, A%(S, H?(E)) has the structure
of a bigraded ring.

REMARK 3.3.4.

(1) Products are thus easy to obtain on our Gersten d-homology. It is possible
to follow Rost’s approach in [Ros96] and to get a definition of the product
on the level of complexes. Using classical techniques due to Levine, it is
even possible to find a dg-algebra underlying our Gersten J-homology
(see [Lev06,Lev08,BY18]). An advantage of our approach is that it
circumvents these technicalities.

(2) One can also extend the preceding considerations to the case of smooth
S-schemes. Indeed, in that case, one has:

AP(X,E) = A° (X,E) ~E_,(X/S) = H?(X,E(Lx/s))

according to Proposition 2.2.4. The preceding proposition obviously ex-
tends to that case. Note that the product obtained for smooth S-schemes
is now compatible with étale pullbacks as defined in Proposition 3.2.7,
and even with respect to smooth pullbacks.

4. The homotopy Leray spectral sequences

This section contains the main theoretical results of the paper and constructs
the spectral sequences we mentioned in the introduction. We introduce two versions
of this spectral sequence. Section 4.1 studies a homological version of the Leray
spectral sequence; the main result is Theorem 4.1.2, which gives a description of
the Fs-page of the relevant spectral sequence. Proposition 4.1.4 summarizes for-
mal properties of the resulting spectral sequences. On the other hand, Section 4.2
contains a cohomological version of the spectral sequence (summarized in Theo-
rem 4.2.5) and discusses compatibility with product structures. Finally, Section 4.3
contains a discussion of an analog of locally constant sheaves in our situation.

4.1. The homological version.

4.1.1. Let us fix a J-spectrum E over S and consider the following geometric
situation:
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where f is any morphism of schemes, which plays the role of the fibration. We
assume 7 is a separated morphism essentially of finite type and put IE'X = 7'E.
Given a .7 -spectrum E over B, we put according to what was announced in the
paragraph on Notations and conventions:

HP(BvE) = Homg(B)(ﬂB[p]’E>'

Then one can look at the tower of homological truncations of f.(EY) for the -
homotopy ¢-structure, which is the analogue of the Postnikov tower in our situation:

co quJrl(f*E!X) — qu(f*E!X) — qufl(f*E{X) — ...

It is standard to deduce from this filtration a spectral sequence. Let us be more
precise. We first consider the canonical distinguished triangle:

qu—i-l (f*E'X) - qu(f*ElX) - 7'iq(f*IE'X) - qu-l—l(f*E!X) [1}
where:

Applying the functor Hp44(B, —) to the preceding distinguished triangle, we get a
long exact sequence:

Hp+q (BaT§q+1(f*E!X)) 5 Hp+q (B, qu(f*E‘X))

b H, (B,HJ(f.EY)) S Hprgor (B, 72,01 (FEY)) .

Using the conventions of definition 3.2.1, we then get a homological exact couple
of degree 2 such that:

DPaq = Hp+q (B’ qu(f*E‘X))) )
Epq=Hp (B>H§(f*Elx)) :
We deduce from that exact couple our main construction.

THEOREM 4.1.2. Fix assumptions and notations as in 4.1.1. The exact couple
defined above gives a convergent spectral sequence of the form:

E} (f.B)=H, (B, H)(f.EX)) ~ A} (B, H)(f.ExX))) = Epq(X/5).

The Eq-term is concentrated in the range p € [0_(X),d+(X)] and is the homology
in degree p of the §-homological Gersten complex C? (B, Hg(f*IE))) (see Definition
3.2.4) which takes the form:

dG
o P Bp(Xa/S) = P Epyga(Xe/S) =
2€B(y) s€B-1)

where X is the fiber of f above the point x € B.

Note, in particular, that the differentials dj, , are trivial for r > ((5+(X ) —
0_(X ))

PRrROOF. The spectral sequence follows from the theory of (derived) exact cou-
ples. One can compute the Es-term as in the above statement by using Proposition
3.2.7:

H, (B, HJ(f.EY)) ~ A% (B, H)(f.EY)).
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Going back to the definition, this is the p-th homology of the following Gersten
d-homological complex:

dG
! !
o= D Epg(/B fEY) —= P Eprga(s/B, LEY) = ...
:CEB(p) SEB(p,l)
Given any point & € B®) one considers the cartesian square:
X, X

o %

Spec(k,) % B
The computation:

E.(z/B, f.Ex) = [a11p[#], f.Ex] = [Lo[+], «' f.E]

= [1o[#], foripBly] = (1], i,7'E] = E. (X./S)

yields the Fs-term in the form of the statement and implies that the spectral
sequence converges. |

DEFINITION 4.1.3. The above spectral sequence will be called the (homological)
homotopy Leray spectral sequence associated with f and with coefficients in E.

The spectral sequence is obviously functorial in the .7-spectrum E over S. If
we want to analyze the behavior with respect to Tate twists, we can look at the
spectral sequence with coefficients in E(n), which takes the following form:

By, = Ay (B, H)(FEx)(n))) = Eprgn(X/S5).

Similarly, twists by more general Thom spaces man be considered. The following
result summarizes the formal properties of the spectral sequence.

PROPOSITION 4.1.4. We consider the following diagram of schemes:
S — lp B
T~y —7

and a T -spectrum E over S. Set E'y = 7'E and B}, = 7" (E). Given any point
x € B, let p, : Y, — X, be the induced morphism on the fibers over a point x € B.

e If p is proper, then there is an adjunction map:
by [LE} = fir'(E) = fpp'n'(B) 227 o7t (B) = f.(EY)

which induces a morphism of spectral sequences converging to the indicated
map on the abutment:

A (B, HY(JIEy))) = Ep14(Y/S)

o ip*

AS (B, HS(f.EY))) = Eprq(X/S).
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Moreover, the map ¢p. is induced by the following morphism of Gersten
complexes:

€]
dp,Y

T @mGB(p) Ep+q(ym/s)
> pz*i
dS «
]Eerq(Xz/S) - @

@seB(p,l) Eerqfl(Ys/S)
lZs .
Eptq-1(Xs/S) —— ...

e ®

z€B(p) s€B(p-1)

o If p is étale, then there is an adjunction map:

Vot L(BY) = [ (B) S fop.pt! (B) = fin(E) = fIBY

which induces a morphism of spectral sequences, converging to the indi-
cated map on the abutment:

Ai(ﬂ Hg(f*E'X))) = Ep+q(X/S)

o) I

A (B, H)(fIEy ) = Epiq(Y/S).

Moreover, the map ¢, is induced by the following morphism of Gersten
complezxes:

dS x
L — ®weB(p) Eptrq(Xy/S) —— @SeB(rl) Eprg—1(Xs/S) — ...

>, p;l ) lz v’

dyy
T @xeB(p) Ep+q(Yx/S) - EBseB(p,l) Ep+q—1(YS/S) - -

PROOF. Each point is obtained by using the functoriality of the homotopy
Leray spectral sequence with respect to the 7 -spectrum E. The computation of
the map on the abutment follows from the definition of the functoriality of the
bivariant theory. The map on the Es-terms follows from point (2) of Proposition
3.2.7. |

REMARK 4.1.5. Using fundamental classes as defined in [DJK18], and the
induced functoriality on bivariant theory, one can extend the contravariant étale
functoriality to smoothable lci morphisms f : Y — X, up to considering twists by
the Thom space of the cotangent complex of f. We leave the formulation to the
reader.

It is possible to describe the filtration on the abutment of the homotopy Leray
spectral sequence in geometric terms. The following definition is the obvious gen-
eralization of the classical definition of Grothendieck (see [BO74]).

DEFINITION 4.1.6. Consider the setting of Paragraph 4.1.1. We define the
d-niveau filtration on E,(X/S) relative to f as:

'NIE.(X/S) = U Im(i, : E.(X x5 Z/S) = E.(X/S)).
:Z—X,0(Z)<p

where ¢ runs over the closed immersions with target X.
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REMARK 4.1.7. One can also describe this filtration by the following formula:

"NJE.(X/S) = U Im(m, : Eo(X x5 Y/S) = E.(X/S)).
Y —=X,6(Y)<p

where 7 : Y — X runs over the proper morphism with target X. Indeed, such a
morphism always factors as

Y Soay) S X

where 7(Y") denotes the image of Y, with its canonical structure of a closed sub-
scheme of X. As the map 7 is surjective, one has §(m(Y")) < p. This concludes.

4.1.8. Before stating the computation of the filtration on the d-homotopy spec-
tral sequence, we will introduce notations in order to simplify the proof. We consider
again the assumptions and notations of Paragraph 4.1.1.

First, note that by definition, the filtration induced by the J-homotopy spectral
sequence on E,(X/S) is defined as:

"FIE.(X/S) =Im(H.(B,754f.Ey) = E.(X/9)).

Second, we can define the d-niveau filtration relative to f at the level of schemes,
by considering the following ind-schemes:

B<p = 7 hg’ Zp.
Z.€F(B)

Therefore we get a closed ind-immersion B<p, ‘s B. We can define a kind of
complementary immersion by considering the following pro-objects:

B.,= "’ (B~ 7,)
Z.€F(B)

together with the pro-open immersion B, 2 B.
Using these notations, we can consider the localization long exact sequence

E.(X x5 Bp/S) 2% E.(X/S) 225 Eo(X x5 Bsy/S) 2 E.(X x5 B<,/S)

where the third (resp. first, fourth) member(s) is the obvious colimit, using the con-
travariance of E.(—/S) with respect to open immersion (resp. contravariance with
respect to closed immersions). This long exact sequence is nothing else than the
filtered colimit of the localisation sequences with respect to the closed immersions
X xp Z, = X for é6-flags Z, of B.

With these notations, the J-niveau filtration relative to f simply equals the
image of 7p..

PROPOSITION 4.1.9. Consider the above assumptions and notation. Then for
any pair of integer (p,n) € Z2, one has the following relation:

Sf _onrf
FIE.(X/S) =°"N]_ E.(X/S),

where the left hand-side is the filtration on the abutment of the homotopy Leray
spectral sequence associated with f and the right-hand side is the 6-niveau filtration
relative to f.
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PrROOF. Let us put E' = f,Ey = f.n'E. We want to compare the following
filtrations:

°FIE.(X/S) = Im(H.(B,m>.E") = H.(B,E")),
°NJE.(X/S) = Im(H.(B<,,E') = H.(B,E)).

So, reasoning with E’ instead of E, we reduce to the case X = B =S, f = Idx,
™= IdX
We will start with the following lemma:

LEMMA 4.1.10. Let E be a 7 -spectrum over a scheme X. Then one has the
following vanishing:
Hy (X<p.72,E) =0 if n>p+aq,
Hn(X>p,7'§qE) =0ifn<p+gq.
This follows from the case X = .5, m = ¢, ¢ = 0 of the equivalent conditions of
Paragraph 2.1.10.

We can now consider the following commutative diagram, whose rows and
columns are exact sequences:

Hypa (XSIH quE)

Hig1 (Xop, 78,E) —= Ha(X<p, 78,B) ——= Hn (X,78,E) —= Ha (X5, 78,E)

Hy(X<p, B) ——> H,(X,E)

H, (X<p72y,E)

According to the preceding lemma, one gets that:

e ¢ is an isomorphism if n > p + q.

e b is an isomorphism if n < p+ ¢ — 1, and an epimorphism if n = p + q.
Therefore, we obtain that Im(c) = Im(d) if n = p 4+ ¢. This concludes. O

ExAMPLE 4.1.11. The preceding proposition recovers the conjecture of Wash-
nitzer proved by Bloch and Ogus in [BO74, 6.9]. This is obtained as follows:
e S is the spectrum of a perfect field k£, X is smooth over k;
e E = E,p is the (ring) spectrum representing De Rham cohomology as in
[CD12, §3.1] while 7 = DM(—, Q).
The fact the truncation of E4r for the homotopy t-structure agrees with the trunca-
tion of the De Rham complex follows from the construction of Eqr ([CD12, 3.1.5]).

REMARK 4.1.12. The proof of Bloch and Ogus is less precise and more the-
oretical. It consists in proving that the niveau spectral sequence for De Rham
cohomology agrees with the hypercohomology spectral sequence associated with
the De Rham complex.

We do not need such a comparison to prove our result, and our proof is more
direct. But however, let us indicate that there is also an underlying comparison of
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spectral sequences. In fact, it is possible to prove that the homotopy Leray spectral
sequence defined above agrees from Fs-on with the d-niveau spectral sequence 3.2.3
of X/S with coefficients in the spectrum f,(E). The case where X = B, f = Idp,
S is the spectrum of a perfect field was proved in [Bonl10] and [Dégl4b]. The
general case will be treated in future work.

4.2. The cohomological version.

4.2.1. Let us consider again the assumptions of Paragraph 4.1.1, but with X =
S. So we fix a morphism of schemes:

f:X—B
and a 7 -spectrum E over X.

To get products on the d-homotopy spectral sequence of (f,E), we will use a
classical construction of Douady (see [Doub9, Section II]) which uses the theory
of spectral diagrams from [CE99, XV.7] rather than that of exact couples.

Here is how one gets such a spectral diagram underlying the spectral sequence
(4.2.8.a). We first define the following tautological functors in a 7 -spectrum F over
B (in the end F plays the role of f.E):

Tg—oo(F) = IF? Tg—i-oo(F)
Ti—oo(F) = 07 Ti-‘,—oo(F)

Consider the following poset:
P={(p,qa) | p,q € ZU{+oo},p < q}.

such that (p,q) < (p',¢’) when p < p’ and ¢ < ¢’. Then for any (p, q) € P, we put:
T[‘;’q[(F) = Tngiq(]F).
This defines a contravariant functor
°(F): P — T(X), (p,q) — 7)) 51 (F).

Using the truncation triangles associated with the §-homotopy t-structure, we
obtain distinguished triangles for p < ¢ < r:

)

F.

d
Tour( () = 70 o (F) = 70, () = 70, (F)[1]

where the first two maps are given by the functoriality of 7°. These formulas imply
that the contravariant functor:

P~ b, (p,q) = H. (B, 7], (f.E))

defines a Z-graded spectral diagram in the sense of loc. cit..” Again, this construc-
tion is obviously functorial in E.

Note that for F = f.(E), the exact couple of Paragraph 4.1.1 is contained in
the preceding spectral diagram — it corresponds to pairs (p,p + 1). Therefore,
the spectral sequence associated with the preceding spectral diagram in [CE99|
coincides with the d-homotopy Leray spectral sequence of (f,E). In particular, we
get the following formula:

Ezrz,q(f’ E) =Im (Hp+q (B’ T[(;—r,p[(f*]E)) — Hpiyg (B’ T[(;fl,errfl[(f*E)))'

9Property (SP.5) of loc. cit. is not immediate. It follows from the convergence of the
homotopy Leray spectral sequence — see Theorem 4.1.2.
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REMARK 4.2.2. After the seminal work of Cartan and Eilenberg, spectral dia-
grams have appeared in other forms in the literature. In the triangulated context,
one can refer, mainly for historical purposes, to [Ver96]. The oo-categorical con-
text is much more recent, but also much more powerful and satisfactory. The
notion of spectral diagram in the oco-categorical context is introduced by Lurie in
[Lurl8, Section 1.2.2], under the name of Z-complex. The advantage of using oco-
category with pushouts (eg: stable co-categories) is that a Z-complex is essentially
equivalent to a tower of objects: see [Lurl8, Lemma 1.2.2.4]. The fact that we
can stay in the old-fashioned world of triangulated categories stems from the good
behavior of ¢-structures.

To obtain products on the homotopy Leray spectral sequence following Douady,
we need to refine Proposition 2.1.13 as follows.

PROPOSITION 4.2.3. We consider the preceding notations and assume § > 0.
Suppose we are given a morphism of 7 -spectra over a scheme B:

w:FeF —F".

Then for any triple of integers (p,q,r) such that r > 0, there exists a canonical
map:
[ ) Pp,q,r k)
T[p7p+r[(F) ® 7'[q,q+7“[(]F,) T[p+q7p+q+r[(F//)'
Moreover, this pairing satisfies the formulas (SPP 1) and (SPP 2) of [Dou59, IL.A,
Définition, p. 19-06].1°

PROOF. It is sufficient to treat the case where F”/ = FQF’ and p is the identity.
As by assumption d > 0, the tensor product respects homologically positive objects
(see the end of Paragraph 2.1.11).

According to Proposition 2.1.13, we get a canonical pairing:

3, E)®78,(F) = 1, (EQF).
Let us consider the following diagram:

Tgp(E) ® quﬂ“(F) - T§p+q+r (E®F)

b i

4, (E) @78, (F) ——~——>73,,(EcF)
l ]
Tgp(]F) ® T[(;q_,'_r[(ﬂﬁ") ——— T[(;)+q,p+q+r[(IF ® IF/)

where the solid arrows form a commutative diagram. The two columns of this
diagram come from distinguished triangles. First this implies that the slanted
dotted arrow is zero. Second, it implies that there exists a unique dotted horizontal
arrow making the bottom square commutative.

10(SPP1) is the functoriality of this pairing with respect to (p,p + r) (resp. (q,q + 7))
considered as an object of P. (SPP2) is the Leibniz rule for the boundary map of type 0.
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Then we consider the following diagram:

Tngrr(E) ® T[fz,qur[(]F)

l S~
T~ A
) ) )
TZP(E) ® 7—[q,q-i-T[(IF) 7-[P-i-qp-i-q-i-T[(]E ®F)
_ Ed
l )

§ 4 /
7-[p,p+7“[(H‘T) ® 7-[<17q+r[(]F )

As the tensor product is right ts-exact, the object T§p+T(E) ® 7&7q+r[(F) is in
homological degree > p + g + r. By definition, the object T[‘;)+q7p+q+r[(E ®F) is in
homological degree < p + ¢+ r. So the map labeled (1) must be 0. Therefore, the
map (2) must exist and gives the existence of the pairing ¢, 4. The uniqueness
of the construction then guarantees Douady’s coherence properties (SPP1) and

(SPP2). O

4.2.4. Granted Proposition 4.2.3, one may now apply the construction of
[Dou59, Th. II]. Going back to the setting of Paragraph 4.2.1, and to our morphism
f: X — B, we consider a pairing of .7 -spectra over X:

p:EQE — E”.

As f, is weakly monoidal (left adjoint of a monoidal functor), we get a pairing:

Wi f(B)® f.(E)) — £.(E").
Applying the preceding proposition and Douady’s construction, we get a pairing of
spectral sequences:
EPI(f,E) @z BY(f,E') — EEFH(f,E")
such that the differentials d, satisfy the usual Leibniz rule.

Following standard usage, when considering products, we renumber the J-
homological spectral sequence cohomologically, and use our cohomological conven-
tions (see in particular Paragraph 3.3.1). We then obtain the following result.

THEOREM 4.2.5. Suppose f : X — B is a morphism of schemes, and let E
be a T -spectrum over X. The constructions of Paragraph 4.2.1 and 4.2.4 yield a
convergent spectral sequence of the form:

E3(f,B) = AY(B, H{(£.E)) = H""*(X,E).

If E admits a ring structure, then the spectral sequence is equipped with a multi-
plicative structure; the product on the Fo-term is induced by the construction of

Ezample 3.3.3.

Before proceeding to a computation of the above Fs-term, let us introduce the
following general construction within the six functors formalism satisfied by 7:

PROPOSITION 4.2.6. Let f : X — S be a separated morphism essentially of
finite type.
Then there exists a pair of adjoint functors:

fi: 7(X)—= 7(S): f
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such that for any factorisation X 5 X, 1, S where u is pro-étale and f is of finite
type, one has: f'=u*f*.

PRrROOF. We write X as a projective limit of a pro-S-scheme (X;);c; whose
transition morphisms are étale affine of finite type and X;/S is separated of finite
type. If we choose an index i € I, considering the induced factorisation

X M x, I g

we put fi = faus, and f "= w! f!. This definition does not depend on the chosen
index i. First assume we have two indexes 7,5 € I with a map j7 — ¢. Then we get
a commutative diagram:

x—Yox, U ox
| H
Pi
H w v
Xt x,—tox

and we get:
! * pl * x pl x| | * pl
[=uifi = “j%‘jfi = uj@ijfi = ujfj'
In general, given two indices ¢,j € I, there exists an third index k£ € I and maps
k — i, k — 7 which gives the canonical identification.
The definition does not depend on the pro-object chosen to present X/S. In-
deed, any two such pro-objects are isomorphic. Finally, any factorisation as in the

statement of the proposition can be taken as an element of a pro-object presenting
X/8S. ]

REMARK 4.2.7.

(1) A more rigorous approach for the preceding proof will use a limit argument
as in Deligne’s construction of the functor f; when f is separated of finite
type. Details are left to the reader.

(2) The procedure described in the previous proposition extends a classical
trick used in [BBD82, 2.2.12].

(3) The extension of the pair of adjoint functors (fi, f') to the case where
f: X — S is essentially of finite type immediately gives an extension
of the definition of bivariant theories to schemes X/.S essentially of finite
type. It is straightforward to check this extension, under the continuity
assumption (T2) agrees with that defined in Paragraph 2.1.1.

4.2.8. We endeavor to describe the Fs-term of the cohomological form of the
homotopy Leray spectral sequence associated with a morphism f : X — B and
a J-spectrum E over X. Recall from Theorem 4.1.2 (with X = S and with
cohomological conventions) that E5?(f,E) is the p-cohomology of the Gersten 4-
cohomological complex C5 (B, H{ f.E). Moreover, for p € Z, one has:

(4.2.8.a) CY(B,H{f.E)= € H""(X,/X,E),
zeB(P)

where we have used the extension of the bivariant theory defined by E as explained
in the preceding remark.
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PROPOSITION 4.2.9. Notations and assumptions as in 4.2.8, the following state-
ments hold.

(1) If f is smooth and E = f*Eq for a T -spectrum Eqy over B, then, for any
p € Z, one has:
C?(B,Hf.E) = @ HP(X,,E,)
x€BP)

where B, = x'E. More generally, given any point x : Spec(K) — B such
that §(z) = —p, and any integer v € Z, one has (recall Definition 3.1.2
and Paragraph 3.3.1):

HfE (x) = H (X, Ex{p +7}),

again with X, = ' X and E, = z'E.
(2) If X is regular, the fibers of f are regular and E is X -pure (Definition
2.2.2), then for any p € Z, one has:
CY(B,H{f.E)= @ H""(X.,E(-N(X,/X)))
z€B®)
where N(X,/X) is the normal bundle of the regular closed immersion
ie: Xe — X and we set E(—N(X,/X)) = i,E® Th(-N(X,/X)).

PROOF. Consider the first point. We directly prove the assertion concerning a
general point x : Spec K — B, as it implies the remaining assertion.!' As in the
proof of Theorem 4.1.2, consider the following cartesian diagram:

X, —= o X

Jz l lf
Spec(K) —> B
Since f is smooth, there is a canonical isomorphism of functors: i\, f* = frx' (using

the notation introduced just before the statement of the proposition for the shriek
functors). The following computation then concludes the proof:

HP (X, /X,E) = [1x,, i f* B)p+dq]] = [1x,, fr2'(E)[p + q]]
= [fos(12),Ex[p + q]] = HPT9(X,,E,).

The second point is a direct consequence of the form (4.2.8.a) of the Gersten
complex and of Proposition 2.2.4. O

Again, this spectral sequence has good functoriality properties (e.g., in the
(ring) J-spectrum F). The next result summarizes other functoriality properties.

PRrOPOSITION 4.2.10. Consider a commutative diagram:

q

N

Y X

1176 be clear, recall:
HPT(X,/X,E) = (H{ f+E) _p(a).
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and a ring T -spectrum E. Let us put By = ¢*E. There exists a morphism of
converging spectral sequences:

Eg’q(fu E) = Ag(Bv Hg(f*]E)) - Hp-l—q(X’ ]E)
v o
ER(f',E") = A§(B, Hi(9.E")) = HP*(Y,Ey)
where ¢* is the usual pullback on cohomology.

The morphism of spectral sequences is simply obtained using the functoriality
in E with respect to the following map:

E — ¢.q"(E) = ¢.Ey.
4.3. Remarkable properties of homotopy modules.

4.3.1. d-effectivity— Consider the situation of Paragraph 4.1.1: E is a -
spectrum over S and one looks at morphisms:

x—' .p
RN
S
where 7 is separated essentially of finite type, and put IE'X = 7'E. We assume in

addition:

(1) E'y and 1p are d-effective (Definition 3.1.6).

(2) f is proper.
Then the first and second assumptions imply f.(EY) = fi(El) is d-effective (see
Paragraph 3.1.9). Moreover, one can compute the Fa-term of the homotopy Leray
spectral sequence as follows:

Hom 7 (p)(1glp], H) f.E) = Hom () (s15(p), Hy s f.E)
B[pl, wafsf*lE)
slpl, HYV ws f.E)
slpl, HyY f.E).
The first identification uses the assumption (1), the second the adjunction (s, w),

the third the fact w is tg-exact and the last one the fact s is fully faithful.
We have obtained the following remarkable result.

B
= Homgspﬁ(B (]1
= Homyspﬁ(B (]1

1

= Homgapﬁ(B (

PROPOSITION 4.3.2. With the assumptions of 4.3.1 in place, the homotopy
Leray spectral sequence takes the following form:

E2, = AN(B,HYT £,EYy) = Epiq(X/9).
If X = S, then we can also consider the cohomological form of the §-homotopy
Leray spectral sequence:

EPY = AY(B, H{,, f.E) = EP1(X).

ExaAMPLE 4.3.3. The interest of the preceding proposition is that it is easier to
get bounded objects with respect to the d-effective category: see Example 3.1.8.

Let us consider either the homotopical or motivic case. We consider a proper
morphism f : X — B of schemes essentially of finite type over k such that X is
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k-smooth. We let our dimension functions be induced by that computed relative
to k. Then 1x(n) for n > 0 and 1 are both J-positive.

If we assume X is of pure dimension d, so that §(X) = d according to the pre-
ceding choice, then the constant object 1 x is concentrated in homological degree d.
Therefore the preceding spectral sequence, in its homological form, is concentrated
in degrees ¢ € [d,d + dim(f)].

The following definition is an analog of the notion of local system in classical
topology.

DEFINITION 4.3.4. Suppose p : B — S is a separated morphism of finite type
and E is a J-spectrum over B. We will say that E is S-simple if there exists a
T -spectrum Eq over S and an isomorphism E ~ p'Ey. We will say that .7 is locally
simple over S (or locally S-simple) if there exists a Nisnevich cover 7 : W — B
such that 7*E is S-simple (with respect to the projection p o 7).

Note that the terminology S-simple is analogous to the classical terminology
of ”simple local system”. This corresponds to the case of trivial monodromy.

REMARK 4.3.5. This notion will come into play mainly when S is the spectrum
of a base field k, or, in the motivic case, of a base Dedekind ring A. For us, the
interest comes, as in topology, in the study of the homotopy Leray spectral sequence
(Definition 4.1.3). Usually, we will start with a k-simple 7-spectrum E over S —
thus Ex is k-simple. If we know that the homotopy module H, g f+«E over B is k-
simple, then the Es-term depends only on the homotopy type (resp. motive) of B
over k. We will give examples in Section 5.

REMARK 4.3.6.

(1) Obviously, locally S-simple 7-spectra over B are stable under suspen-
sions, twists and even tensor products by Thom spaces of virtual bundles
over B. The same is true for S-simple .7 -spectra except that one can only
twist them by virtual bundles over B that come from S. Neither of these
notions is stable under extensions or even direct factors in general.

(2) Let f : B — S be smooth and consider the motivic case. Then f' =
f*(d)[2d] where d is the relative dimension of f. One deduces that S-
simple motives over B are stable under tensor products. The same remark
applies to oriented spectra over B, but not to arbitrary spectra.

(3) Note that if k is a field, k-simple over a scheme B implies B-pure (Defi-
nition 2.2.2).

(4) One could say that a homotopy module over B is S-constructible if it
is obtained by a finite number of extensions and direct factors of locally
S-simple homotopy modules, within the abelian category of homotopy
modules over B.

This notion is not so well-behaved, compared to its model for torsion
étale sheaves, as it lacks some notion of finiteness. It would be desirable
to have some good finiteness condition on S-simple homotopy modules.
But even when S is a base field, it is not obvious to find such a finiteness
condition; see [Dégll, Rem. 6.7] for further discussion.
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Note the following fact.

LEMMA 4.3.7. Consider a separated morphism f: B — S of finite type, and a
T -spectrum E over B. Let us fix unrelated dimension functions 6 on B and dg on
S.

If E is S-simple, then for any p € Z, the homotopy module Hg(IE) over B is
S-simple.

PrOOF. We just need to be precise about dimension functions. By additivity,
we can assume that B is connected. Then the dimension function 55 on B, induced
by dg, satisfies the relation 6 = d+n for a fixed integer n € Z (see Remark 2.1.6).
In particular, Hgo (E) = Hg+n(IE) according to loc. cit.

By assumption, E = f'Eq. it remains to apply the fact f' is ts,-exact to
conclude:

HY(E) = Hy ,(E) ~ H ,(f'Eo) = f'H}" . (Eo).

O

EXAMPLE 4.3.8. In the motivic case, if f : X — S is smooth, then the constant
object 1x is S-simple. In contrast, if f has sufficiently complicated singularities,
then 1 x may fail to be S-simple.

Similarly, the classical oriented ring spectra HRx, KGLx (K-theory), MGL x
(algebraic cobordism), I:IQg’ x (representing continuous ¢-adic cohomology) are all
S-simple.

On the contrary, spectra representing non-orientable theories such as HRX,
KQy (hermitian K-theory), or the sphere spectrum S%, are not S-simple except
when the tangent bundle of f is trivial (or is the pullback of a vector bundle over S).
In any case, they all are locally S-simple.

Note finally that when f : X — S is arbitrary separated of finite type, the
main result of [Jin18], Theorem 1.3, tells us that the spectrum GGL x representing
algebraic G-theory in SH(X) is S-simple.

As expected, here is the generic case where the homotopy modules appearing
in the Es-term of the homotopy Leray spectral sequence are simple.

PROPOSITION 4.3.9. Let B and F be S-schemes separated essentially of finite
type. We consider the trivial fibration f : X = FxgB — B. Then for any S-simple
T -spectrum E over X, the T -spectrum f,E is S-simple.

ProoF. This is a trivial exercise on the six functors formalism. We consider
the cartesian square:
f

X —B
q A p
fo

Then we get an associated exchange isomorphism: Ex(AL) : p'fo. = fiq¢'. By
assumption, there exists a .7-spectrum Eq over S such that E = h'Eq, h = pf = foq.
Thus we can do the computation:

Er(A!*)’l
£E = f.h'Eg = fud fiEo ——=— p' fou fiEo.

This concludes the proof. (Il
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COROLLARY 4.3.10. Let f : X — B be Nisnevich locally principle fibration of
S-schemes. Then for any locally S-simple T -spectrum E over B, the F -spectrum
f+E is locally S-simple.

5. Applications

In this section, we study the homotopy Leray spectral sequence in various simple
cases and include some applications. Section 5.1 studies morphism with (stably)
Al_contractible fibers, and then morphisms with fibers that are “A'-homology
spheres”. Section 5.2 studies “fibrations” with either base or fiber that are motivic
spheres. Finally, Section 5.3 is concerned with some applications of the spectral
sequence to relative cellular spaces.

5.1. Morphisms with A'-contractible fibers. We first analyze the case
where the fibers are A'-homotopically “as simple as possible”, i.e., Al-contractible.

PROPOSITION 5.1.1. Suppose f : X — B be a smooth morphism with A'-
contractible fibers. Let M be a spectrum (resp. a motive) that is a homotopy
module over B and set Mx := f*M. Then,

M q=0,
0 q#0.
In particular, the homotopy Leray spectral sequence is concentrated on the line

q = 0, and thus degenerates; pullback along f yields identifications (in cohomological
notation) of the form:

HP(X,Mx) = HP(B, HY f.(Mx)) = H?(B, M).

Hgf*MX = {

Note in particular that f, respects S-simple and locally S-constant objects.

PRrROOF. Consider the map
a:HI(M)— Hl(fMx)

induced by the adjunction map M — f.f*(M). We need only to prove it is an
isomorphism on fiber homology (Remark 3.1.3). We compute the above map, evat-
uated at a point x : Spec K — B and in G,,-degree r € Z:

H{(M),(x) = Hi(f«Mx)(2).
We use the computation of Proposition 4.2.9(1), which we can apply as f is smooth.
So if we put §(z) = —p and M, = z'M (using the notation of Proposition 4.2.6),
one obtains:
H{ (Mx)r(x) = H""(x, Mo {p + 1}),
Hg(f*MX)T(I) = Herq(Xacv My {p+r}).
Moreover, the canonical map « is isomorphic to the pullback map:

f; . Hq+r—2pm—p(x7Mz) — Hq-&-r—2pﬂ“—p(XI,]\/[m)7

which is itself an isomorphism as f, is assumed to be an Al-weak equivalence.
Note also that, because the spectral sequence is functorial with respect to pullbacks
(Proposition 4.2.10), we know that the identification of the statement arises from
the pullback map along f. The remaining assertions are straightforward. (Il
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ExAMPLE 5.1.2. There exist many examples of morphisms satisfying the hy-
potheses of Proposition 5.1.1. For concreteness, assume k is a field having character-
istic 0. In [ADO7, Theorem 1.3], it is shown that there exist connected k-schemes
B of arbitrary dimension and smooth morphisms f : X — B of relative dimension
> 6 whose fibers are Al-contractible and such that fibers over distinct k-points of
B are pairwise non-isomorphic. Because of the last point, such morphisms f are
not Zariski locally trivial. These results were improved in [DF18, DP(18], where
it was shown that one could build f as above that are smooth of relative dimension
> 3. On the other hand, it is expected that the only A'-contractible smooth k-
scheme of dimension 2 is A2, and a long-standing conjecture of Dolgachev—Weisfeiler
[VDT74, 3.8.5] states that every flat morphism of (say) smooth schemes with all
fibers isomorphic to affine space is Zariski locally trivial.

Suppose f is a smooth morphism f with A'-contractible fibers. It is not clear
to the authors whether such an f is unstably an A'-weak equivalence without
imposing further hypotheses (e.g., that f is Nisnevich locally trivial). Nevertheless,
the following remark demonstrates that such f are stable A'-weak equivalences in
a strong sense, which makes Proposition 5.1.1 somewhat unsurprising.

REMARK 5.1.3. Given a map f : X — B as in Proposition 5.1.1, one can
directly show that the adjunction map:

Id — f.f*

is an isomorphism of functors. Indeed, we can use the same argument as above and
the fact the family of functors ' : SH(B) — SH(Spec(#(x))), indexed by schematic
points & € B, is conservative.!? In particular, one does not need to work over a
base field; nor does one need to invert any integers.

As f is smooth, we also get a natural transformation f;f* — Id, which is an
isomorphism according to the result of the preceding paragraph. In particular, the
map

XXy = fif* (1) = 1p =X*B;
is an isomorphism in SH(B). In fact, f is a universal stable A'-weak equivalence
since f is a stable A'-weak equivalence and the property mentioned above remains
true after base change.

5.2. Gysin and Wang sequences. The relative Atiyah—Hirzebruch spectral
sequence takes a particularly simple form when the Serre fibration ' — X — B
under consideration has either the property that B is a sphere, or F' is a homology
sphere and the associated local system on B is trivial. In those cases, the spectral
sequences yields the so-called Wang or Gysin long exact sequences. The fact that
the differentials in the cohomological form of the spectral sequence are derivations
yields additional structure in these long exact sequences that is frequently useful in
computations.

Al-homology spheres. In motivic homotopy theory, there are many smooth
schemes over a base S that have the stable A'-homotopy type of a motivic sphere
$iG)J. For example, Morel-Voevodsky showed that A™\ 0g has the A'-homotopy
type of X" 1GA™. Likewise, the split smooth affine quadric Qa,_1 defined by
the hypersurface >, z;2,4; = 1 in A?g” is Al-weakly equivalent to A™\ 0 and

120ne uses for example Proposition 4.2.6 to define '. The conservativity property is obtained
using the continuity property of SH and the localization property.
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[ADF17, Theorem 2] demonstrates that the smooth affine quadric Q2,, defined by
the equation ), 2;%n4i = Tant1(1 —22n41) in Aé"“ is a model of X*G/A™. On the
other hand, it is known that X/G/Y has no smooth model if i > j and conjecturally
has no smooth model if i < 7 — 1. We now formulate a definition of “homology
sphere” in Al-homotopy theory.

DEFINITION 5.2.1. We say that a (pointed) smooth S-scheme X is an Al-
homology sphere if there exist integers p,q,r > 0 and an A'-weak equivalence
X ~ XPGHA.

The next proposition gives a construction of many A'-homology spheres, at
least over a field.

PROPOSITION 5.2.2. Fixz a smooth base scheme S, and an A'-contractible
smooth S-scheme X. Assume there ezists a closed immersion of S-schemes x :
S — X with trivial normal bundle v, x .

(1) A choice of trivialization of v, x determines an A'-weak equivalence BX'\
r = BAYN\0, ie., X\ x is an Al-homology sphere.

(2) If S = Spec(k) for a perfect field k, X has dimension d > 3 and is Al-
connected, then X \ z is Al-simply connected as well.

PROOF. For the first point, note that there is a cofiber sequence of the form
X\z— X — X/(X\z) - 2X\z— -

Because the A'-local model structure is left proper, the fact that X is A'-contract-
ible implies that the map Th(v, x) — XX \ « is an A'-weak equivalence. Un-
der the assumptions on S, there is a homotopy purity isomorphism X/(X \ z) &
Th(v,,x) and a choice of trivialization of v, ,x determines an Al-weak equivalence
Th(vy x) = S4G)?, which can be written SA?\ 0.

For the second point, since X \ z is Al-connected, X \  has a non-empty set
of k-points by the unstable 0-connectivity theorem [M'V99, §2 Corollary 3.22]. Fix
a base k-point in X \ z, and point X by its composite with the open immersion
X \z — X. Finally, since d > 3, we may appeal to [AD09, Theorem 4.1] to
conclude that the morphism 72" (X \ z) — 7A" (X) is an isomorphism. Since X is
Al-contractible, the latter sheaf is trivial and X \z is thus Al-simply connected. [J

REMARK 5.2.3. If k is a field, and X is furthermore affine, then X \ z is
isomorphic to A4\ 0 if and only if X is isomorphic to A?. Indeed, if there exists an
isomorphism from X \ z to A4\ 0, then normality of X allows one to extend this
isomorphism to an isomorphism of X with A%; the other implication is immediate.

EXAMPLE 5.2.4. If X is the smooth affine threefold defined by z+x2y+22+t3 =
0, then the main result of [DF18] implies that X is Al-contractible, at least if k
is an infinite field. In that case, for any extension L/k, B. Antieau observed that
X is connected by chains of affine lines (see [DP@18, Example 2.28] for a proof).
If L is an infinite field, we may always assume our chains avoid a codimension
> 2 subset, and in particular it follows that X \ z is connected by chains of affine
lines; it follows that, X \ x is Al-connected. Thus, if k is infinite and perfect, X \ =
satisfies the hypotheses of the proposition and yields an “exotic motivic sphere”. In
dimension d > 4, the examples in [ADO07] or [ADF17] also satisfy the hypotheses
of the theorem, at least over an infinite base field.
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Gysin and Wang sequences for homotopy modules. Our goal now is to analyze
the homotopy Leray spectral sequence for f : X — B a smooth morphism where
B is an A'-homology sphere in the sense above; the outcome will be a version of
the Gysin sequence. We begin by observing that from the appropriate cohomolog-
ical standpoint, A'-homology spheres behave in a fashion analogous to spheres in
classical homotopy theory, i.e., cohomology with “locally constant coefficients” is
concentrated in precisely 2 degrees. To make this precise, assume we work over a
field, and let ¢ be the usual dimension function relative to k. We consider homotopy
modules M over k such that f,M is k-simple in the sense of Definition 4.3.4.

LEMMA 5.2.5. Assume k is a field, and X is a (pointed) smooth k-scheme that
is an A'-homology sphere as in Definition 5.2.1, with p,q > 1. Let f : X — Spec(k)
be the canonical projection. For any homotopy module M over k, Mx := f*M,

M ifi=0
Hi(fMx) = { M, ifi=p—r
0 otherwise.

PROOF. This result follows essentially immediately from [AF14, Lemma 4.5].
However, to keep the presentation self-contained, we sketch a proof in the spirit of
this paper: one proceeds along the same lines as the proof of Proposition 5.1.1 and
appeals to Proposition 4.2.9(1). Again we need only to compute fiber homology of
f«(Mx). To this end, take a pair (x,n) where x : Spec(K) — Spec(k) is a induced
by a field extension of finite type, and n € Z. To simplify the notation, let us
assume that §(z) = 0; set M, = ' M.

We may then appeal to the computation of Proposition 4.2.9(1):

Hi(feMx)n(2) 2 H'(Xo, My {r}) = H' (K, Mp{n}) & H'(X;, Mo{n}).
As X /k is pointed, X, /K is also pointed and we obtain an identification:
HY(X,, M.{n}) = H(K, M,{n}) ® H (X, M,{n})

where H* stands for the reduced cohomology of a pointed scheme. Furthermore
there are isomorphisms of the form:
HY(X,, M {n}) = H*" (X" X,, M,) = H*"(XPGN, M,) = HH""P(GN, M,).

m 7

Since M, is a homotopy module over K, the last group vanishes if ¢ + r — p is not
equal to 0 and is precisely M_,(Spec(k)) if ¢ = p — r. The result then follows by
unwinding the definitions. O

PROPOSITION 5.2.6. Assume k is a field and f : X — B is a Zariski locally
trivial smooth morphism of k-varieties with B connected and where the fibers F of f
are At-homology spheres (where X" F ~ YPGA with p,q > 1). Assume furthermore
that f trivializes on a Zariski open cover U = {U,;}icr of B, and that we may fix
x € NicrUi(k) (i.e., the intersection is non-empty). If M is a homotopy module
and Hg(f*MX) is k-simple for each i > 0, then

Mg ifj=0
Hi(fsMx) =1 (M_g)p ifj=p—r,
0 otherwise.
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and there is a long exact “Gysin” sequence of the form:
oo — H'(B,M) — H'(X, M) — H*"?(B,M_,) -2 H (B, M) — -
Proor. By Theorem 4.2.5, there is a spectral sequence with
Ey) = AYB, H(f.Mx)) = H™ (X, M).

Granted the first statement, the spectral sequence is concentrated in two rows, and
the existence of the resulting long exact sequence is immediate.

Thus, it remains to prove the first statement. If B is a field, the computation
of H}(f«Mx) is simply Lemma 5.2.5. The general case reduces to that one using
the simplicity assumption and a Zariski patching argument. In more detail, by
assumption, we may choose a k-point = : Spec(k) — B. By Lemma 5.2.5 there
are induced morphisms M — z*HY(f.Mx) and M_, — z*HY "(f.Mx). Since
Hg (f«Mx) is k-simple by assumption, pulling back these morphisms along the
structure map B — Spec(k) yields morphisms Mp — HY(f.Mx) and (M_,)p —
HY™"(f.Mx); moreover, these maps are compatible with restrictions to open sets
U C B. The vanishing statement for Hg (f«Mx) will be established in an identical
manner. Since f is Zariski locally trivial, upon fixing a trivialization over the open
cover U, appeal to Proposition 4.3.9 yields isomorphisms My, — Hg(f*MX) u, for
any i € I, and similarly isomorphisms of the form (M_,)y, = HY " (f.Mx)|u,.
To check the maps of sheaves on B are isomorphisms, it suffices to check that
the isomorphisms upon restriction to U; just described are compatible on 2-fold
intersections. However, since the all the sheaves in question are k-simple, this
compatibility may be checked after pullback along x, where it is immediate. (Il

REMARK 5.2.7. Proposition 5.2.6 avoids the “degenerate” case where f: X —
B is a G,,-torsor. Such morphisms are, of course, always Zariski locally trivial, but
behave like covering spaces in topology. Indeed, under the additional hypotheses
in the statement, the sheaf Hg( f«Mx) is only non-vanishing when j = 0, in which
case it is isomorphic to Mp & (M_1)p.

Proposition 5.2.6 admits a refinement when M is a homotopy module that
admits a ring structure (e.g., KM or KMW). In such cases, H°(B, M) is a ring,
and we may fix a generator £ of H(B, f.Mx 4) = H°(B, M) as a module over this
ring. The class 9(§) then determines an element of HP~" (B, M,) that we will
refer to as the Euler class of f.

THEOREM 5.2.8. Assume k is a field and f : X — B is a Zariski locally trivial
smooth morphism of k-varieties with B connected and where the fibers F' of f are
Al-homology spheres (where X"F ~ YPGAN with p,q > 1). Assume furthermore
that f trivializes on a Zariski open cover U = {U,;}icr of B, and that we may fix
x € NierU;(k) (i.e., the intersection is non-empty). Suppose M is a homotopy
module that admits a ring structure. If Hg(f*MX) 1s k-simple for each i > 0, then
a choice of generator & of H(B, f.Mx ) = H°(B, M) determines an Euler class
e(f) € HP="*1(B, M,), and the exact sequence of Proposition 5.2.6 takes the form:

o HY(B, M) — H(X, M) — H*" (B, M_,) B o+ (B, M) — -,

where the connecting homomorphism is given by product with e(f) arising from the
ring structure.
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PROOF. Granted the identifications mentioned before the statement, the result
follows from the existence of multiplicative structure in the homotopy Leray spectral
sequence as discussed in Paragraph 4.2.4. ([l

PROPOSITION 5.2.9. Assume k is a field, and f : X — B is a smooth morphism
where B is an A'-homology sphere (where X" X ~ PG with p,q > 1). If M is
a homotopy module such that Hg (f«M) is k-simple for each j > 0, then there is a
long exact “Wang” sequence of the form:

s HY(X, M) — Hi(f M)(k) % HAYWTP(f0M) (k) — HYH(X, M) — - -
where the map 0 is a graded derivation.

PRrROOF. This result follows immediately by combining Theorem 4.2.5 and
Lemma 5.2.5, which shows that the resulting spectral sequence is concentrated
in two columns. O

5.3. Relative cellular spaces. The notion of “algebraic cell decomposition”
and the related notion of “relative algebraic cell decomposition” has a long his-
tory. E.g., if a split torus acts on a smooth projective scheme X over a field,
then Bialynicki-Birula [ByB73| showed that X may be decomposed as a disjoint
union of smooth varieties that are total spaces of vector bundles over connected
components of the fixed point loci (which are necessarily smooth). The coho-
mological consequences of the existence of such filtrations were observed almost
immediately (e.g., one immediately computes Chow groups for smooth projective
varieties equipped with a torus action with isolated fixed points).

Karpenko was one of the first to exploit the existence of such algebro-geometric
cell decompositions to produce motivic decompositions of varieties ([Kar00]), in
his case absolute Chow motives (over a base field). Such results have been devel-
oped in numerous directions, but we will mainly be concerned with the relative
version studied in [MINP13, 8.4.2]. We begin by introducing our own version of
“cellularity”.

DEFINITION 5.3.1. Suppose f : X — B be a morphism of schemes. Say that f
(or X/B) admits a flat (resp. lci) cellular structure if there exists a filtration:

=X, ,cXpCc...CcX,CX,11=X
of closed subschemes of X such that for all «, the following conditions are satisfied:
(a) fo = flx. : Xo — B is flat (resp. lci);

(b) setting U, := X, — Xo_1, the restriction p, = flua : Us — S is a smooth
morphism and stable Al-weak equivalence (eg: see Remark 5.1.3).

REMARK 5.3.2. In Karpenko’s definition, the morphisms p, are assumed to
be vector bundles, which is sufficient for his purposes since he essentially uses the
method of Bialynicki-Birula, where the geometric decomposition arises from the
action of a split torus on a smooth projective variety. In contrast, our defini-
tion allows, e.g., cellular spaces where the “cells” are merely A'-contractible and
we allow ourselves to consider varieties that are not necessarily projective. Ex-
amples show that this additional generality is natural. For example, the smooth
affine quadrics @2, of dimension 2n (the hypersurface in affine space defined by
the equation ), z;5; = 2(1 — z)) admit a decomposition as an affine space (z; =
-+ = 2, = z = 0) of dimension n, and an open complement that is a strictly

Licensed to Univ of Southern Calif. Prepared on Thu Jul 30 19:00:06 EDT 2020for download from IP 128.125.211.56.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



62 ARAVIND ASOK, FREDERIC DEGLISE, AND JAN NAGEL

quasi-affine Al-contractible scheme [ADF17, Theorems 2.2.5 and 3.1.1] (in partic-
ular the complement is an A'-contractible variety that is not isomorphic to affine
space). Likewise, the Panin—-Walter model of quaternionic projective space HP" ad-

mits a “cell decomposition” where the cells are strictly quasi-affine A'-contractible
schemes [PW10, Theorem 3.1].

Since the morphism p, is smooth, its relative dimension is a Zariski locally
constant function on U, that we denote by d,. In other words, d, simply consists
of integers for each connected component of U,. To state the next results, we will
use the following notation:

(5.3.2.a) 15(da)[2de) = € 15(da(z))[2da(z)].

zGUL(,(O)

5.3.3. Let us first recall the computation obtained in [MINP13, 8.4.3], for Chow
motives. We work over a quasi-projective base B over a perfect field k. Taking into
account the comparison result of Jin [Jin16, Th. 3.17], the category of relative
Chow motives defined by Corti-Hanamura corresponds to the weight 0 part of the
triangulated category of rational mixed motives DM(B, Q).

Given a projective morphism f : X — B such that X is smooth over k, one
defines the Chow motive (i.e. cohomological motive) of X/B as:

hp(X) = fi(1x).
With this notation, [MINP13, Prop. 8.4.3] can be stated as follows.

PROPOSITION 5.3.4. Assume f : X — B is a projective morphism of k-
varieties, with X smooth and admitting a flat relative cellular structure. There
is a canonical isomorphism (using notation (5.3.2.a)) of the form:

hp(X) = P 15(—da)[2da).

Note [MNP13, 8.4.3] is stated for k¥ = C but this assumption is not used in
the proof, which works over an arbitrary base field k. We appeal to the assumption
k perfect implicitly via the comparison result (i.e., [Jin16]).

5.3.5. We can actually extend the previous computation to A'-homotopy, if
one restricts to oriented spectra. Let us adopt the following definition. We will say
that the abstract triangulated motivic category 7 is oriented if:

e There exists a premotivic adjunction ¢* : SH S T : ¢,;
e The ring spectrum ¢, (1g) is oriented.

These assumptions in place, we will use the theory of Borel-Moore objects as de-
scribed in [BD17, section 1.3], together with the theory of fundamental classes as
developed in [Dég18] (see also [DJK18] for a more general account).

For the convenience of the reader, we recall the definitions and properties we
use. Given any separated B-scheme of finite type 7 : Y — B, we define its Borel-
Moore 7 -motive'® by the formula:

MEM(Y/B) := 1 (1y).

13 Another appropriate terminology would be cohomological .7-motive with compact support.
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We will need the following properties:

(P1) According to the localization property of triangulated motivic categories,
given any closed immersion i : Z — X of B-schemes with complementary
open immersion j : U — X, one obtains a distinguished triangle:

MBM(U/B) L5 MBM(X/B) £ MBM(z/B) — MBM(U/B)[1].

(P2) Using the main construction of [Dégl8, Th. 2.5.3], one associates to any
quasi-projective morphism f : Y — X of relative dimension d, a morphism
(also called a fundamental class in loc. cit.):

fi: MBM(Y/X) = fi(ly) = 1x(—d)[-2d].

(P3) If in addition to the assumptions of the previous point, one suppose that
f is smooth, then the following diagram is commutative:

fi(ly) f
by [~ \ﬂx(—d)[—Zd]
e

fi(ly)(=d)[-2d]

where p; is the purity isomorphism associated with the smooth morphism
f in the six functors formalism, fy(1y) is the .7-motive represented by
Y/B, and f, refers to the classical functoriality. Note in particular that
f« is the image of the canonical map X*°Y, — ¥*°B_ of spectra over B
under the map ¢* : SH(B) — 7 (B).

(P4) If under the assumptions of point (2), X is separated of finite type over a
scheme B, with structural morphism p, we obtain by applying p; a Gysin
morphism:

fi : MBM(Y/B) — MBM(X/B)(—d)[—2d).

It follows from the compatibility of fundamental classes with composition
[Dég18, 2.5.3] that these Gysin morphism are compatible with composi-
tion.

PROPOSITION 5.3.6. We consider a morphism f : X — B with an lci cellular
structure, and B an arbitrary scheme.

Then, using notation (5.3.2.a), there exists a canonical isomorphism in MIGL—
mod(B):

f(lx) = @D 15(—da)[~2d]

ProoF. We look at the localization triangle of property (P1) associated with
the closed immersion i, : X, : Xq—1 — X, with complementary open immersion
Ja 1 Us = Xyt

MBM (U, /B) 2255 MBM(X,,/B) ‘2 MPM(Xo_1/B) — MM (U, /B)[1].
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Next we apply property (P4) to get a commutative diagram:

MPM(U, /B) MBM (X, /B)

Pax foux
MBM(B/B)(_da)[_2da]

Point (P3) applied to the smooth morphism p,, which by assumption is a sta-
ble weak Al-equivalence, implies the map pa. is an isomorphism. In particular,
Jax 18 a split monomorphlsm (with spliting p. ! fas) and one gets an isomorphism
MPM(U,/B) = 15(~da)[~2da].

This completes the proof. O

COROLLARY 5.3.7. Assume that f : X — B is a projective morphism with lci
cellular structure.

(1) Then one gets an isomorphism of the followz'ng cohomological .7 -motives:
Fol(lx) @ 15(—da)[~2ds].

In particular, one gets an womorphzsm of T -cohomology:

H**(X, HX) ~ @H*—Qda7*—da (B, HB)

(2) For any 9-spectrum E over B, there exists a canonical isomorphism:
@ 1 5(—da)[—2dq].

Only the second point needs a proof. One simply uses the preceding proposition
and the projection formula from the six functors formalism:

L (E) ~ fi(lx ® f1(E)) ~ fi(lx) ®E.
EXAMPLE 5.3.8.

(1) In the motivic case, one gets back the result of Proposition 5.3.4. In fact,
with rational coefficients, we have shown that one can get rid of a base
field, if one replaces the flatness by lci. (See also next Remark.)

(2) We can apply the preceding result to classical oriented ring spectra, such
as MGL and KGL, by using the theory of modules over ring spectra (see
[CDO09, §7]). The corollary extends a previously known result in [NZ06],
from characteristic 0 to the absolute case (without the need of a base
field).

REMARK 5.3.9.

(1) The above corollary applies to strict MGL-modules M over B. That is
the M GL-module structure on M must be defined at the model category
level. This assumption is too strong in many situations. One can avoid
it, assuming only that M is a spectrum in SH(B) with a module struc-
ture over MGLpg. Indeed, it is possible to use the proof of Proposition
5.3.6 after replacing fi(1x) = fif*(1x) with the spectrum fif*(M). One
uses the theory of fundamental classes as developed in [DJK18] and the
fact that one has Thom isomorphisms for M, using the MGL g-module
structure.
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We leave the details to the reader.

(2) The orientation assumptions in the preceding proposition and corollary
is essential. Indeed, recall that the Chow-Witt ring does not satisfy the
projective bundle formula though it is representable in SH by the Milnor-
Witt homotopy module.

Nevertheless, one can extend the validity of the above result by con-
sidering weaker orientability conditions. For example, we can consider a
symplectically oriented (ring) spectrum M (see [PW18]), provided that
we give for each index a a symplectic structure on the tangent bundle of
U./B.

(3) At least in the rational motivic case (which is equivalent to the rational
orientable case), it is possible in principle to generalize both the flat and
Ici case. Indeed, it is visible in the proof that we only need a good the-
ory of fundamental classes for the projections X, — B. The recent work
[Jin18] opens the way to define these fundamental classes for arbitrary fi-
nite tor-dimension morphisms, which contains both flat and lci cases. The
main tool to do that is to extend Jin’s work to a suitable representability
theorem for relative K-theory (as defined in [BGI71, IV, 3.3]).

The relative cellular space provides us with a situation where the homotopy
Leray spectral sequence is particularly simple.

PrOPOSITION 5.3.10. Let f : X — B be a proper morphism with an lci relative
cellular structure. We consider a homotopy module M over B satisfying one of the
following conditions:

e Homotopical case.— M is an oriented homotopy module in SH(B).
o Motivic case.— M is a homotopy module in DM(B, R).

We consider the homotopy module Mx = f'M. Then there exists an isomorphism:

d
Fe(Mx) =y Hi(fuMx)[~i]
i=0
where d is the maximum of the dimension of the fibers of f.
Moreover, the homotopy Leray spectral sequence:

ENY = AP(B, H}(f.Mx)) = APT(X, Mx)

degenerates at Fo, and the abutting filtration splits giving an isomorphism.:

AMX, M) = @D AP (B, Hy "(f.Mx)).
p=0
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