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Abstract—In this paper, we consider a relay-assisted uplink
non-orthogonal multiple access (NOMA) system. In this system,
two radio frequency (RF) users are grouped for simultaneous
transmissions, over each resource block, to an intermediate relay.
The relay then forwards the amplified version of the users’
aggregated signals, in the presence of multiuser interference, to
a relatively far destination. In order to cope with the users’ ever-
increasing desire for higher data rates, a high-throughput free-
space optics (FSO) link is employed as the relay-destination back-
haul link. It is assumed that the FSO backhaul link is subject to
Gamma-Gamma turbulence with pointing error. Also, a Rayleigh
fading model is considered for the user-relay access links. Under
these assumptions, we derive closed-form expressions for the
outage probability and tractable forms, involving only one-
dimensional integrals, for the ergodic capacity. Moreover, the
outage probability and ergodic capacity analysis are extended
to the conventional RF-backhauled systems in the presence of
multiuser interference to both relay and destination nodes, and
Rician fading for the relay-destination RF link. Our results reveal
the superiority of FSO backhauling for high-throughput and
high-reliability NOMA systems compared to RF backhauling.
This work can be considered as a general analysis of dual-hop
uplink NOMA systems as well as the first attempt to incorporate
power-domain NOMA in mixed RF-FSO systems.

Index Terms—NOMA, mixed RF-FSO, AF relaying, outage
probability, ergodic capacity, dynamic-order decoding, Rician
fading, Gamma-Gamma turbulence, dual-hop transmission.

I. INTRODUCTION

NON-ORTHOGONAL multiple access (NOMA) is widely
considered as one of the enabling technologies for the

fifth generation (5G) wireless networks. With its two general
power- and code-domain forms, NOMA can potentially pave
the way toward higher throughput, lower latency, improved
fairness, higher reliability, and massive connectivity [2]. Mo-
tivated by these fascinating advantages, extensive research
activities have been carried out in the past few years to advance
NOMA in diverse directions [3], [4].

Excavating the rich literature on NOMA, some research
activities have focused on the code-domain NOMA which,
generally speaking, attempts to serve a set of users in a smaller
set of orthogonal resource blocks using a pattern matrix. In
this context, variety of multiple access mechanisms have been
proposed such as sparse code multiple access (SCMA) [5],
lattice partition multiple access (LPMA) [6], interleave-grid
multiple access (IGMA) [7], and pattern division multiple
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access (PDMA) [8]. However, code-domain NOMA usually
suffers from a high detection complexity due to the need
for complex multiuser detection methods such as maximum
likelihood (ML) detection, massage passing algorithm (MPA),
and maximum a posteriori (MAP) detection. To this end,
some of the recent work in code-domain NOMA have focused
on lowering the detection complexity, e.g., using list sphere
decoding [9], and recursive detection approaches enabled by
sophisticated designs of the overall pattern matrix [10].

Power-domain NOMA, on the other hand, has attracted
more attention from the research and industrial communities
because of its relative simplicity. For example, a two-user
downlink power-domain NOMA system, also referred to as
multiuser superposition transmission, has been proposed for
inclusion in the Third Generation Partnership Project (3GPP)
long-term evolution advanced (LTE-A) standard [11]. Moti-
vated by this, power-domain NOMA has been explored in
various directions, including multiple-input multiple-output
systems [12], cooperative transmission [13], simultaneous
wireless information and power transfer [14]–[16], ultra-
reliable and low-latency communications [17], visible-light
communications [18], and millimeter-wave (mmWave) com-
munications [19], (see, e.g., [3] for a comprehensive survey).

In a variety of applications, there is a need to transmit
the users’ data to a central unit or a wired base station
(BS); however, given the limited power of the users, it is
not feasible for the users to directly communicate with the
relatively far destination. To this end, several recent works
have considered the relaying problem in downlink and uplink
NOMA communications. In particular, capacity analysis of a
simple cooperative relaying system, consisting of a source,
a relay, and a destination node is provided in [20]. The
outage probabilities and ergodic sum rate of a downlink
two-user NOMA system, with a full-duplex relay helping
one of the users, are characterized in [21]. Performance of
downlink NOMA transmission with an intermediate amplify-
and-forward (AF) relay for multiple-antenna systems, and
over Nakagami-m fading channels is investigated in [22]
and [23], respectively. The performance of coordinated direct
and relay transmission for two-user downlink and uplink
NOMA systems is investigated in [24] and [25], respectively.
Hybrid decode-and-forward (DF) and AF relaying in NOMA
systems is proposed in [26], and forwarding strategy selection
(either AF or DF) problem is explored in [27]. Moreover, a
comprehensive performance evaluation of a two-user downlink
cooperative NOMA system is provided in [28], where one
of the users acts as a relay switching between half-duplex
and full-duplex modes. In addition, a dynamic DF-based
cooperative scheme has been proposed in [29] for downlink
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NOMA transmission with spatially random users.
The aforementioned prior works often assume communi-

cations in the absence of external multiuser interference to
the NOMA users and the conventional sub-6 GHz radio
frequency (RF) for the backhaul links. However, the available
bandwidth in the sub-6 GHz band is scarce and falls short of
supporting the users’ aggressive demand for the higher data
rates, especially when NOMA is employed in the user-relay
access links to provide higher throughputs. In this case, the
relay-destination backhaul link can pose a severe bottleneck
on the end-to-end performance and substantially negate the
NOMA advantages through reducing the users’ achievable
throughput and reliability which can in turn even increase their
latency.

A potential approach to overcome the aforementioned draw-
back is to utilize higher frequency bands, e.g., through the
deployment of mmWave and/or free-space optics (FSO) back-
haul links [30], [31]. MmWave communication is usually
preferred for relatively short communication lengths due to
the severe propagation conditions at millimeter frequencies
[32]. FSO links, on the other hand, can provide much more
available bandwidth and support ranges in the order of several
kilometers [33]. To this end, in this paper, we investigate
the performance of uplink NOMA transmission over mixed
RF-FSO systems. In particular, an AF relay is employed to
forward the amplified received signal from the Rayleigh fading
access links to the destination through an ultra high-throughput
directive interference-free FSO link subject to Gamma-Gamma
(GG) fading with beam misalignment error. This paper can be
considered as a general analysis of dual-hop uplink NOMA
systems, and also an initial attempt to incorporate power-
domain NOMA in mixed RF-FSO systems.

Our main contributions can be summarized as follows.

• We consider a general dual-hop uplink NOMA trans-
mission subject to the presence of multiuser interference
from some independent users. Such interference can
be induced, e.g., due the co-channel interference from
nearby users aiming to communicate to other relays or
destinations. The inclusion of external interference can be
also helpful in the analysis of mmWave NOMA, where
side-lobes of nearby mmWave beams cause inter-beam
interference to the power-domain NOMA users grouped
over a given mmWave beam [34], [35].

• We apply dynamic-order decoding to determine the de-
tection order of the NOMA users at the destination.

• We derive the closed-form expressions for the individual-
and sum-rate outage probabilities of the mixed RF-FSO
uplink NOMA system with respect to dynamic-order
decoding at the destination, AF scheme at the relay,
Rayleigh fading for the user-relay access links, and GG
turbulence with the inclusion of pointing error for the
relay-destination backhaul FSO link.

• We further derive the outage probability closed forms
(in terms of an infinite series that can effectively be
approximated by some finite number of terms) for the
RF-backhauled system when the relay-destination back-
haul link is subject to Rician fading, and both relay
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Fig. 1. Block diagram of the uplink NOMA transmission over mixed RF-FSO
and dual-hop RF/RF systems.

and destination nodes are subject to external multiuser
interference.

• Average individual- and sum-rate formulas are charac-
terized for both FSO- and RF-backhauled systems up to
only one-dimensional integrals over the fading coefficient
of the backhaul link. That is equivalent to say that the
ergodic capacity closed-form expressions are obtained for
the single-hop uplink NOMA subject to some exterior
multiuser interference, or better to say, for the aforemen-
tioned dual-hop system model given each realization of
the backhaul fading coefficient.

• Extensive numerical results are provided to validate the
accuracy of the derived formulas and also ascertain the
system performance over different channel conditions.

The rest of the paper is organized as follows. In Section
II, we describe the system model. In Section III, we derive
the individual- and sum-rate outage probability closed-form
formulas for both FSO- and RF-backhauled dual-hop uplink
NOMA systems. Section IV is devoted to the ergodic capacity
analysis for the same system model, Section V provides the
numerical results, and Section VI concludes the paper.

II. SYSTEM MODEL

As shown in Fig. 1, consider two RF users U1 and U2

grouped together for uplink NOMA transmission to an AF
relay R. Denote the composite RF channel gain of the
Ui − R link by hi =

√
Lih̃i, i = 1, 2, where Li and h̃i

are the path-loss gain and the independent-and-identically-
distributed (i.i.d.) Rayleigh fading coefficient of the Ui − R
RF link, respectively. The path-loss gain is given by Li =

GRF
t,i G

RF
r,R ×

[︁
λRF/(4πdRF

ref )
]︁2 ×

[︁
dRF
ref /d

RF
i

]︁ν
[36, Eq. (2)]

in which λRF is the wavelength of the RF signal, GRF
t,i and

GRF
r,R are the RF transmit and receive antenna gains of the

Ui −R link, respectively, dRF
ref is a reference distance for the

antenna far-field, dRF
i is the Ui −R link length, and ν is the

RF path-loss exponent. Furthermore, assume that the uplink
transmission to the relay is affected by undesired multiuser
interference from K interfering users Ik, k = 1, 2, ...,K,
each with the transmit power p′k, path-loss gain L′

k, and i.i.d.
Rayleigh fading coefficient h̃

′
k. As explained in Section I,

this interference can be from the users scheduled for the
concurrent transmission to some other relays in the cellular
network or any other non-vanishing interference during the
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desired transmission block. The received signal by the relay
can then be expressed as

yR =

2∑︂
i=1

xih̃i

√︁
aiLiP +

K∑︂
k=1

x′
kh̃

′
k

√︂
L′
kp

′
k + nR, (1)

where xi and x′
k are the transmit symbols by Ui and Ik,

respectively, a1 and a2 = 1 − a1 are the power coefficients,
and nR is the additive white Gaussian noise (AWGN) of the
relay receiver with mean zero and variance σ2

R. Note that for
the users with independent Rayleigh fading, all fading gains
|h̃i|2’s and |h̃

′
k|2’s have an exponential distribution with mean

one (to ensure that fading neither amplifies nor attenuates the
received power) as f|h̃i|2(x) = f|h̃′

k|2
(x) = exp(−x), x ≥ 0.

The received signal yR at the relay is then converted
to optical signal using intensity-modulation direct-detection
(IM/DD), and is amplified with a constant gain G to keep
the disparity between the power levels of different NOMA
users for successive interference cancellation (SIC) detection
at the destination. In this case, the transmitted optical signal
by the relay toward the destination D can be expressed as
SR = G(1 + ηyR), where η is the electrical-to-optical con-
version coefficient [37]. The transmitted signal then undergoes
the FSO channel with the composite gain g = glg̃ where gl
is the path-loss gain of the R−D FSO backhaul link, with
the length dRD, defined as gl = ρ × 10−κdRD/10 where ρ is
the responsivity of the photodetector, and κ is the weather-
dependent attenuation coefficient [36]. Moreover, g̃ = gpgf is
the total fading coefficient due to pointing error gp and optical
turbulence gf . In the case of GG optical turbulence with beam
misalignment, the distribution of g̃ can be expressed as [38]

fg̃(g̃) =
αβξ2

A0Γ(α)Γ(β)
G3,0

1,3

[︃
αβ

A0
g̃

⃓⃓⃓⃓
ξ2

ξ2 − 1, α−1, β−1

]︃
, (2)

where α and β are the fading parameters of the GG dis-
tribution, ξ is the ratio of the equivalent beam radius and
the pointing error displacement standard deviation (jitter)
measured at the receiver, Γ(·) is the gamma function [39,
Eq. (8.310)], and G[·] is the Meijer’s G-function [39, Eq.
(9.301)]. Furthermore, A0 is the geometric loss in the case
of perfect beam alignment (zero radial displacement) defined
as A0 = [erf(

√
πr/(

√
2ϕdRD))]

2 in which erf(·) is the
error function, r is the receiver aperture radius, and ϕ is the
transmitter beam divergence angle.

The destination then filters out the direct current (DC)
component of glg̃G from glg̃SR + nD to obtain the received
signal as

yD =ηglg̃G

(︃ 2∑︂
i=1

xih̃i

√︁
aiLiP +

K∑︂
k=1

x′
kh̃

′
k

√︂
L′
kp

′
k + nR

)︃
+ nD, (3)

where nD is the destination AWGN with mean zero and
variance σ2

D.
We assume that the NOMA users are indexed based on

their path-loss gains, i.e., L1 ≥ L2, and the power allocation
strategy proposed in [40] is adopted to determine a1 and a2
as a1L1 = a2L2 × 10s/10 where s ≥ 0 is the power back-
off step; hence, a1 = L2 × 10s/10/(L1 + L2 × 10s/10) and

a2 = L1/(L1 + L2 × 10s/10). We further consider dynamic-
order decoding at the destination [41], [42], that is expected
to achieve a higher performance compared to fixed-order
decoding assuming that the BS has perfect knowledge about
the channel state information (CSI) and sorts the NOMA users
based on their instantaneous received power. In fact, based on
the principles of uplink power-domain NOMA [40], [43], the
BS sorts the users based on their channel conditions from the
best to the worst. Therefore, depending on the fading coeffi-
cients h̃1 and h̃2, the detection order is π1 = (1, 2), meaning
that the first user is decoded first, if a1L1|h̃1|2 ≥ a2L2|h̃2|2;
otherwise, the detection order is π2 = (2, 1).

III. OUTAGE PROBABILITY ANALYSIS

In this section, we first characterize the individual- and sum-
rate outage probabilities for mixed RF-FSO NOMA systems
and then extend the results to the RF-backhauled systems.

A. Individual-Rate Outage Analysis

Note that if the detection order is π1, the SIC receiver
first treats the signal from the second NOMA user as noise
to decode x1 with the signal-to-interference-plus-noise ratio
(SINR) given by

γ(1)
π1

=
a1L1P g̃2|h̃1|2

a2L2P g̃2|h̃2|2+
∑︁K

k=1 L
′
kp

′
kg̃

2|h̃
′
k|2+g̃2σ2

R+CD
, (4)

and then, after removing the received power from the first user,
decodes x2 with the SINR given by

γ(2)
π1

=
a2L2P g̃2|h̃2|2∑︁K

k=1 L
′
kp

′
kg̃

2|h̃
′
k|2 + g̃2σ2

R + CD
, (5)

where CD ≜ σ2
D/(η

2g2l G
2). Similarly, when the detection

order is π2 the SINR values γ
(1)
π2 and γ

(2)
π2 can be obtained

by properly changing the indices in (4) and (5).
Let γ

(i)
th = 2R

(i)
th − 1 denote the threshold SINR for an

IM/DD FSO link to achieve the desired data rate R
(i)
th , i = 1, 2.

Then the outage probability of the first user U1 in achieving
an individual rate of R(1)

th can be characterized as

P
(1)
out

(a)
= P (π1)P

(1)
out|π1

+ P (π2)P
(1)
out|π2

(b)
= 1−

[︂
Pr(γ(1)

π1
> γ

(1)
th , π1)+

Pr(γ(2)
π2

> γ
(2)
th , π2)× Pr(γ(1)

π2
> γ

(1)
th , π2)/P (π2)

]︂
, (6)

where step (a) follows from the law of total probability by
defining P

(1)
out|πi

, i = 1, 2, as the conditional outage probability
of the first NOMA user given the decoding order πi. Moreover,

P (π1) = Pr(|h̃1|2 ≥ |h̃2|2 × 10−s/10)

= E|h̃2|2 [exp(−|h̃2|2 × 10−s/10)]

= (1 + 10−s/10)−1, (7)

and P (π2) = 1−P (π1) = (1+10s/10)−1 are the probabilities
of having decoding orders π1 and π2, respectively. Further-
more, step (b) follows, first, by defining P

(1)
cov|πi

≜ 1−P
(1)
out|πi

,
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Pr(γ(1)
π1

< γ
(1)
th , π1)

⃓⃓⃓
γ
(1)
th <1

(a)
= Pr

(︂
|h̃1|2 < γ

(1)
th

[︂
|h̃2|2 × 10−s/10 + I1 + CD/(a1L1P g̃2)

]︂
, |h̃1|2 ≥ |h̃2|2 × 10−s/10

)︂
(b)
= E

|h̃2|2<J(1)
th

(︁
I1+CD/(a1L1P g̃2)

)︁[︂exp(︂−|h̃2|2×10−s/10
)︂
− exp

(︂
−γ

(1)
th

[︂
|h̃2|2×10−s/10 + I1 + CD/(a1L1P g̃2)

]︂)︂]︂
= EI1,g̃

[︂
(1 + 10−s/10)−1 ×

[︂
1− exp

(︂
−
[︂
1 + 10−s/10

]︂
J
(1)
th

(︁
I1+CD/(a1L1P g̃2)

)︁)︂]︂]︂
−EI1,g̃

[︃
(1+γ

(1)
th ×10−s/10)−1

×
[︂
1−exp

(︂
−
[︂
1+γ

(1)
th ×10

−s/10
]︂
J
(1)
th

(︁
I1+CD/(a1L1P g̃2)

)︁)︂]︂
exp
(︂
−γ

(1)
th

[︂
I1+CD/(a1L1P g̃2)

]︂)︂]︃
(c)
=

10s/10

1 + 10s/10

(︄
1−exp

(︃−J
(1)
th,1σ

2
R

a1L1P

)︃
Eg̃

[︄
exp

(︃−J
(1)
th,1CD

a1L1P g̃2

)︃]︄ K∏︂
k=1

a1L1P

a1L1P + J
(1)
th,1L

′
kp

′
k

)︄
− 10s/10

γ
(1)
th + 10s/10

(︄
exp

(︃
−γ

(1)
th σ2

R
a1L1P

)︃

×Eg̃

[︄
exp

(︃
−γ

(1)
th CD

a1L1P g̃2

)︃]︄ K∏︂
k=1

a1L1P

a1L1P + γ
(1)
th L′

kp
′
k

− exp

(︃−σ2
RJ

(1)
th,2

a1L1P

)︃
Eg̃

[︄
exp

(︃−CDJ
(1)
th,2

a1L1P g̃2

)︃]︄ K∏︂
k=1

a1L1P

a1L1P + L′
kp

′
kJ

(1)
th,2

)︄
. (9)

i = 1, 2, as the probability of successfully achieving R
(1)
th for

U1 conditioned on the decoding order πi, and then noting that
the correct detection of x1 for the decoding order π2 also
requires successful decoding of the preceding symbol x2, i.e.,1

P
(1)
cov|π1

= Pr(γ(1)
π1

> γ
(1)
th |π1),

P
(1)
cov|π2

= Pr(γ(2)
π2

> γ
(2)
th |π2)× Pr(γ(1)

π2
> γ

(1)
th |π2). (8)

In the following, we calculate the three joint probabilities in
(6) to ascertain the outage probability of the first user U1.

In order to calculate Pr(γ
(1)
π1 > γ

(1)
th , π1) we first note

that Pr(γ
(1)
π1 > γ

(1)
th , π1) = P (π1) Pr(γ

(1)
π1 > γ

(1)
th |π1) =

P (π1)[1−Pr(γ
(1)
π1 < γ

(1)
th |π1)] = P (π1)−Pr(γ

(1)
π1 < γ

(1)
th , π1).

Then using (4), Pr(γ
(1)
π1 < γ

(1)
th , π1) for γ

(1)
th < 1 can be

calculated as (9) shown at the top of this page where, in step
(a), I1 ≜ (

∑︁K
k=1 L

′
kp

′
k|h̃

′
k|2 + σ2

R)/(a1L1P ) is the sum of
the power of multiuser interference and noise, at the relay,
normalized to the average power of the first NOMA user.
Moreover, step (b) follows, first, by defining the constant
J
(1)
th ≜ 10s/10 × γ

(1)
th /(1 − γ

(1)
th ) > 0 for γ

(1)
th < 1, and then

noting that Pr(X < Y,X ≥ Z) for three random variables
(RVs) X , Y , and Z can be calculated using the law of total
probability as Pr(X < Y,X ≥ Z) = Pr(Z ≤ X < Y,Z <
Y ) since Pr(Z ≤ X < Y,Z ≥ Y ) = 0. Finally, step (c) of
(9) follows by noting that for any constant C

EI1,g̃

[︁
exp

(︁
−C
[︁
I1 + CD/(a1L1P g̃2)

]︁)︁]︁
=

exp

(︃
−Cσ2

R
a1L1P

)︃
Eg̃

[︃
exp

(︃
−CCD

a1L1P g̃2

)︃]︃ K∏︂
k=1

a1L1P

a1L1P+CL′
kp

′
k

, (10)

1More precisely, P
(1)
cov|π2

in (8) should be written in the form of

the joint probability P
(1)
cov|π2

= Pr(γ
(2)
π2 > γ

(2)
th , γ

(1)
π2 > γ

(1)
th |π2) =

Pr(γ
(2)
π2 > γ

(2)
th |π2) × Pr(γ

(1)
π2 > γ

(1)
th |γ(2)

π2 > γ
(2)
th , π2) since

the events {γ(1)
π2 > γ

(1)
th } and {γ(2)

π2 > γ
(2)
th } are not independent

due to the presence of multiuser interference and the backhaul link
imposing common random variables I1 (defined in (9)) and g̃ on both
γ
(1)
π2 and γ

(2)
π2 . However, these two events are independent conditioned

on I1 and g̃. Therefore, we can calculate Pr(γ
(1)
π2 > γ

(1)
th |γ(2)

π2 >

γ
(2)
th , π2) = EI1,g̃

[︂
Pr(γ

(1)
π2 > γ

(1)
th |γ(2)

π2 > γ
(2)
th , π2,I1, g̃)

]︂
=

EI1,g̃

[︂
Pr(γ

(1)
π2 > γ

(1)
th |π2,I1, g̃)

]︂
= Pr(γ

(1)
π2 > γ

(1)
th |π2).

due to the independence of I1 and g̃, and then applying the
independency among |h̃

′
k|2’s to get EI1

[︁
exp(−CI1)

]︁
=

exp
(︁−Cσ2

R
a1L1P

)︁∏︁K
k=1 E|h̃′

k|2

[︂
exp

(︂
−CL′

kp
′
k|h̃

′
k|2/(a1L1P )

)︂]︂
.

Furthermore, in step (c) of (9), J
(1)
th,1 ≜ J

(1)
th (1 + 10−s/10)

and J
(1)
th,2 ≜ γ

(1)
th + J

(1)
th (1 + γ

(1)
th × 10−s/10).

We should further emphasize that (9) is obtained for γ(1)
th <

1. If γ(1)
th ≥ 1, the upper limit of |h̃1|2 in the equality (a) of (9)

is always greater than its lower limit meaning that the condi-
tion (1− γ

(1)
th )|h̃2|2× 10−s/10 < γ

(1)
th

[︁
I1 + CD/(a1L1P g̃2)

]︁
holds for all values of |h̃2|2 and there is no need to impose
such an extra condition on the derivation of the corresponding
probability. Consequently, by averaging over |h̃2|2, I1, and g̃,
Pr(γ

(1)
π1 < γ

(1)
th , π1) for γ(1)

th ≥ 1 can be derived as (11) shown
at the top of the next page.

Finally, using (9) for γ
(1)
th < 1 or (11) for γ

(1)
th ≥ 1,

one can obtain the coverage probability of the first NOMA
user for the decoding order π1 as P

(1)
cov(π1) = Pr(γ

(1)
π1 >

γ
(1)
th , π1) = (1 + 10−s/10)−1 − Pr(γ

(1)
π1 < γ

(1)
th , π1). However,

the closed-form characterization of P (1)
cov(π1) still requires the

calculation of expressions of the form Eg̃

[︁
exp

(︁
−A/g̃2

)︁]︁
,

where A is a constant and g̃ is distributed according to
(2). To do so, we first apply [44, Eq. (11)] and [39, Eq.
(9.31.2)] to write exp

(︁
−A/g̃2

)︁
in the form of a Meijer’s

G-function as exp
(︁
−A/g̃2

)︁
= G0,1

1,0

[︂
g̃2/A

⃓⃓1
−

]︂
. Then we can

apply [44, Eq. (21)] to calculate the infinite integral of product
of Meijer’s G-functions involved in Eg̃

[︁
exp

(︁
−A/g̃2

)︁]︁
=∫︁∞

0
exp

(︁
−A/g̃2

)︁
fg̃(g̃)dg̃ as (12) shown at the top of the next

page. Note that the order of G-function in (12) is reduced
using [39, Eq. (9.31.1)]. For the ease of notation, hereafter,
we denote Eg̃

[︁
exp

(︁
−A/g̃2

)︁]︁
by G(A) for any constant A.

Similarly, the second term in (6) can be obtained, first, by
writing Pr(γ

(2)
π2 > γ

(2)
th , π2) = P (π2) − Pr(γ

(2)
π2 < γ

(2)
th , π2).

Then using the symmetry of the problem, it can be shown
that Pr(γ

(2)
π2 < γ

(2)
th , π2) for γ

(2)
th < 1 and γ

(2)
th ≥ 1 can be

obtained as (13) and (14), respectively, shown at the top of the
next page, where G(·) is given in (12), and J

(2)
th ≜ 10−s/10 ×

γ
(2)
th /(1 − γ

(2)
th ) > 0 is defined for γ

(2)
th < 1. Also, J (2)

th,1 ≜

J
(2)
th (1 + 10s/10) and J

(2)
th,2 ≜ γ

(2)
th + J

(2)
th (1 + γ

(2)
th × 10s/10).
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Pr(γ(1)
π1

< γ
(1)
th , π1)

⃓⃓⃓
γ
(1)
th ≥1

=
10s/10

1+10s/10
− 10s/10

γ
(1)
th +10s/10

exp

(︃
−γ

(1)
th σ2

R
a1L1P

)︃
Eg̃

[︄
exp

(︃
−γ

(1)
th CD

a1L1P g̃2

)︃]︄ K∏︂
k=1

a1L1P

a1L1P+γ
(1)
th L′

kp
′
k

. (11)

G(A)≜Eg̃

[︃
exp

(︃
− A

g̃2

)︃]︃
=

ξ2×2α+β−2

2πΓ(α)Γ(β)
G0,6

6,1

[︃
16A2

0

A(αβ)2

⃓⃓⃓⃓
1, (2− ξ2)/2, (1− α)/2, (2− α)/2, (1− β)/2, (2− β)/2

−ξ2/2

]︃
. (12)

Pr(γ(2)
π2

< γ
(2)
th , π2)

⃓⃓⃓
γ
(2)
th <1

=
1

1+10s/10

(︄
1−exp

(︃−J
(2)
th,1σ

2
R

a2L2P

)︃
G
(︃
J
(2)
th,1CD

a2L2P

)︃ K∏︂
k=1

a2L2P

a2L2P+J
(2)
th,1L

′
kp

′
k

)︄
− 10−s/10

γ
(2)
th + 10−s/10

×

[︄
exp

(︃
−γ

(2)
th σ2

R
a2L2P

)︃
G
(︃
γ
(2)
th CD

a2L2P

)︃ K∏︂
k=1

a2L2P

a2L2P + γ
(2)
th L′

kp
′
k

− exp

(︃−σ2
RJ

(2)
th,2

a2L2P

)︃
G
(︃
CDJ

(2)
th,2

a2L2P

)︃ K∏︂
k=1

a2L2P

a2L2P + L′
kp

′
kJ

(2)
th,2

]︄
. (13)

Pr(γ(2)
π2

< γ
(2)
th , π2)

⃓⃓⃓
γ
(2)
th ≥1

=
1

1+10s/10
− 10−s/10

γ
(2)
th +10−s/10

exp

(︃
−γ

(2)
th σ2

R
a2L2P

)︃
G
(︃
γ
(2)
th CD

a2L2P

)︃ K∏︂
k=1

a2L2P

a2L2P+γ
(2)
th L′

kp
′
k

. (14)

Moreover, the last probability term in (6) can be
calculated by first writing Pr(γ

(1)
π2 > γ

(1)
th , π2) =

Pr
(︂
γ
(1)
th

[︁
I1 + CD/(a1L1P g̃2)

]︁
< |h̃1|2< |h̃2|2 × 10−s/10

)︂
,

where γ
(1)
π2 can be expressed similar to (5). Then using a

similar approach to (9), the closed-form expression for all
values of γ

(1)
th can be expressed as (15) shown at the top of

this page. This completes the closed-form characterization of
the outage probability of the first NOMA user U1.

Finally, the outage probability of the second NOMA user
U2 can be characterized as

P
(2)
out = 1−

[︂
Pr(γ(2)

π2
> γ

(2)
th , π2)+

Pr(γ(1)
π1

> γ
(1)
th , π1)× Pr(γ(2)

π1
> γ

(2)
th , π1)/P (π1)

]︂
, (16)

where Pr(γ
(2)
π2 > γ

(2)
th , π2) and Pr(γ

(1)
π1 > γ

(1)
th , π1) have

already been calculated, and, using the symmetry of the
problem, Pr(γ(2)

π1 > γ
(2)
th , π1) can be obtained as

Pr(γ(2)
π1

> γ
(2)
th , π1) = (1 + 10−s/10)−1×

exp

(︃
−γ

(2)
th σ2

R(1+10−s/10)

a2L2P

)︃
G
(︃
γ
(2)
th CD(1+10−s/10)

a2L2P

)︃
×

K∏︂
k=1

a2L2P

a2L2P + γ
(2)
th L′

kp
′
k(1 + 10−s/10)

. (17)

Remark 1: The latter analysis suggests that the outage
probability of the second NOMA user can be characterized
using the preceding analysis by substituting −s for s and
appropriate change of indexing 1 ↔ 2. This is because the
only difference between U1 and U2 is that the user with
a lower average gain is labeled as the second user, i.e.,
a2L2 = a1L1 × 10−s/10.

B. Sum-Rate Outage Analysis

For the uplink NOMA transmission with logarithmic func-
tions for the rates as R

(i)
πj = log2(1 + γ

(i)
πj ), i, j ∈ {1, 2}, it

can be verified that the sum of the NOMA users, regardless
of their decoding order, can be expressed as

RΣ= log2([1 + γ(1)
πj

][1 + γ(2)
πj

])

= log2

(︄
1+

a1L1P g̃2|h̃1|2 + a2L2P g̃2|h̃2|2∑︁K
k=1L

′
kp

′
kg̃

2|h̃
′
k|2 + g̃2σ2

R+CD

)︄
. (18)

Denoting the fractional term of the logarithm argument
in (18) by γΣ, the sum-rate outage probability defined as
PΣ
out = Pr(γΣ < γΣ

th), where γΣ
th = 2R

Σ
th − 1 is the threshold

equivalent SINR to achieve the desired sum rate of RΣ
th, can

be expressed as

PΣ
out=Pr

(︃
|h̃1|2<γΣ

th

[︃
I1+

CD

a1L1P g̃2

]︃
−|h̃2|2×10−s/10

)︃
. (19)

Let B represent the event {|h̃2|2 < γΣ
th ×

10s/10[I1 + CD/(a1L1P g̃2)]}, and OS ≜ {|h̃1|2 <
γΣ
th

[︁
I1+CD/(a1L1P g̃2)

]︁
−|h̃2|2×10−s/10} denote the sum-rate

outage event defined in (19). Clearly, Pr(OS ,Bc) = 0
where Bc is the complementary event of B. Therefore,
using the law of total probability, PΣ

out can be expressed as
PΣ
out = Pr(OS ,B), which is calculated in a closed form as

(20) at the top of the next page.
Remark 2: In the special case of the absence of multiuser

interference (except the NOMA users themselves), one can
obtain the outage probability closed-form expressions by sub-
stituting L′

kp
′
k = 0, ∀k = 1, 2, ...,K, which replaces all the

product terms of the form
∏︁K

k=1[·] by 1 and summations of
the form

∑︁K
k=1[·] by 0.

C. RF Backhaul Analysis

In this part, for the sake of completeness and comparison,
we extend our preceding analysis to the case of conven-
tional RF-backhauled systems. In particular, we investigate
the performance of dual-hop uplink NOMA where the R−D
backhaul link forwards the amplified version of yR in (1) by
a gain Gb through an RF link with the path-loss gain Lb and
fading coefficient h̃b, i.e., with the composite channel gain
hb =

√
Lbh̃b. For the backhaul link, a line-of-sight (LOS)
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Pr(γ(1)
π2

>γ
(1)
th , π2)=

1

1+10s/10
×exp

(︃
−γ

(1)
th σ2

R(1+10s/10)

a1L1P

)︃
G
(︃
γ
(1)
th CD(1+10s/10)

a1L1P

)︃K∏︂
k=1

a1L1P

a1L1P + γ
(1)
th L′

kp
′
k(1+10s/10)

. (15)

PΣ
out =E

|h̃2|2<γΣ
th×10s/10

[︁
I1+CD/(a1L1P g̃2)

]︁ [︂1− exp
(︂
−γΣ

th

[︁
I1 + CD/(a1L1P g̃2)

]︁
+ |h̃2|2 × 10−s/10

)︂]︂
=1 +

1

10s/10 − 1
× exp

(︃
−σ2

RγΣ
th × 10s/10

a1L1P

)︃
G
(︃
CDγ

Σ
th × 10s/10

a1L1P

)︃ K∏︂
k=1

a1L1P

a1L1P + L′
kp

′
kγ

Σ
th × 10s/10

− 10s/10

10s/10 − 1
× exp

(︃
−γΣ

thσ
2
R

a1L1P

)︃
G
(︃
γΣ
thCD

a1L1P

)︃ K∏︂
k=1

a1L1P

a1L1P + γΣ
thL

′
kp

′
k

. (20)

path should be available from the relay to destination for
the applicability of the directive FSO link. Therefore, for the
R−D RF backhaul link we assume Rician fading, with the
shape parameter Ω and scale parameter Ψ, which takes into
account the effects of both LOS and scattered paths. The scale
parameter Ψ is the total average power of fading and hence
Ψ = 1, and Ω represents the ratio of the power contributions
by the LOS path to the remaining scattered paths. In this case,
κb ≜ |h̃b|2 can be characterized according to a non-central
chi-square distribution given by

fκb
(κb)=

1+Ω

eΩ
exp(−(1+Ω)κb) I0

(︂
2
√︁
Ω(1+Ω)κb

)︂
, (21)

where I0(·) is the zeroth-order modified Bessel function of the
first kind [45].

Given that the second hop is employing the RF band, it is
practically possible for the destination receiver to be exposed
to the presence of some external interfering users. In what
follows we characterize the outage probability of the uplink
NOMA transmission when the destination, in addition to the
directive signal from the R−D Rician channel, receives
the superposition of the signals of Kd interfering users I ′′

j ,
j = 1, 2, ...,Kd, each with the transmit power p′′j , path-loss
gain L′′

j , and i.i.d. Rayleigh fading coefficient h̃
′′
j . In this case,

the received signal can be expressed as yRF
D =

√
Lbh̃bGbyR+∑︁Kd

j=1 x
′′
j h̃

′′
j

√︂
L′′
j p

′′
j +nRF

D , where x′′
j is the transmitted signal

by the j-th interfering users and nRF
D is the RF noise at the des-

tination with mean zero and variance N0. Therefore, it is easy
to verify that all the SINR equations (e.g., (4) and (5)) remain
the same except that g̃2 and CD will be replaced by κb ≜ |h̃b|2
and (N0 + I ′′)/(LbG

2
b) = CRF

D + I ′′/(LbG
2
b), respectively,

where I ′′ ≜
∑︁Kd

j=1 L
′′
j p

′′
j |h̃

′′
j |2 is the total external interference

to the destination and CRF
D ≜ N0/(LbG

2
b). Therefore, in

order to characterize the outage probability formulas, instead
of calculating Eg̃[exp(−BCD/g̃

2)] or equivalently G(BCD),
we need to evaluate Eκb,I′′ [exp(−B(I ′′ +N0)/(LbG

2
bκb))].

Note that the constant B represents the factor of −CD/g̃
2 or

CD in the arguments of Eg̃[exp(·)] or G(·), respectively, in the
previously-derived formulas. The required expectation can be

characterized as

Eκb,I′′ [exp(−B(I ′′ +N0)/(LbG
2
bκb))]

= Eκb

⎡⎣exp(︃−BCRF
D

κb

)︃
×EI′′

[︄
Kd∏︂
j=1

exp

(︄
−
BL′′

j p
′′
j |h̃

′′
j |2

LbG2
bκb

)︄]︄⎤⎦
= Eκb

⎡⎣exp(︃−BCRF
D

κb

)︃
×

Kd∏︂
j=1

LbG
2
bκb

LbG2
bκb +BL′′

j p
′′
j

⎤⎦
(a)
=

1+Ω

eΩ
×
(︃
LbG

2
b

B

)︃Kd−1 Kd∑︂
l=1

(︄
Kd∏︂
j=1
j ̸=l

1

L′′
j p

′′
j − L′′

l p
′′
l

)︄
×

∫︂ ∞

0

xKd×e−(1+Ω)x−BCRF
D /x

x+BL′′
l p

′′
l /(LbG2

b)
I0

(︂
2
√︁
Ω(1+Ω)x

)︂
dx

(b)
=

1+Ω

eΩ
×
(︃
LbG

2
b

B

)︃Kd−1 Kd∑︂
l=1

{︄(︄
Kd∏︂
j=1
j ̸=l

1

L′′
j p

′′
j − L′′

l p
′′
l

)︄

×
∞∑︂
k=0

{︄
(Ω(1+Ω))k

(k!)2

(︃
BL′′

l p
′′
l

LbG2
b

)︃Kd+k

exp

(︃
BL′′

l p
′′
l (1+Ω)

LbG2
b

)︃

×G2,1
1,2

[︃
LbG

2
bC

RF
D

L′′
l p

′′
l

⃓⃓⃓⃓
(Kd+k+1, BL′′

l p
′′
l (1+Ω)/(LbG

2
b))

(0, 0), (Kd + k + 1, 0)

]︃}︄}︄
,

(22)

where (a) is obtained by the partial fraction decomposition of
the involved rational function assuming L′′

j p
′′
j ̸= L′′

l p
′′
l ̸= 0,

∀j ̸= l, which is a reasonable assumption given that L′′
j p

′′
j ’s are

continuous quantities2. Moreover, step (b) is obtained accord-
ing to Appendix A, where G.,.

.,. denotes the upper incomplete
Meijer’s G-function which is a special case of the generalized
upper incomplete Fox’s H-function H.,.

.,. introduced in [46].3

Remark 3: As a special case, in the absence of external
RF interference to the destination, the received signal can be
expressed as yRF

D =
√
Lbh̃bGbyR + nRF

D ; hence, I ′′ = 0.
Therefore, all the preceding results in Sections III-A and III-
B are valid for the RF-backhauled NOMA relaying system

2From the stochastic geometry perspective, the interfering users are located
in stochastic locations leading to path-losses that are continuous RVs. Hence,
the probability of having exactly equal L′′

kp
′′
k ’s in a real-world scenario is

zero. Accordingly, our derived closed-form expressions hold with probability
one in real-world networks. However, if, hypothetically, some users have equal
distances and hence equal L′′

kp
′′
k ’s, then some of our derived formulas cannot

further be simplified, e.g., we cannot write the equality in step (a) of (22).
3A simple implementation of H.,.

.,. in Mathematica is presented in [46,
Appendix B].
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when CRF
D and Eκb

[exp(−A/κb)] are substituted for CD and
Eg̃[exp(−A/g̃2)], respectively, where A is a constant, i.e., the
argument of G(·) in the formulas derived earlier. A particularly
interesting form for Eκb

[exp(−A/κb)] can be obtained by
applying [39, Eq. (8.447.1)] to expand I0

(︂
2
√︁
Ω(1+Ω)κb

)︂
in the form of an infinite series and then applying [39, Eq.
(3.471.9)] to express Eκb

[exp(−A/κb)] as

Eκb
[exp(−A/κb)] =
∞∑︂

n=0

2e−Ω[A(1 + Ω)]
n+1
2

Ωn

(n!)2
Kn+1(2

√︁
A(1 + Ω)), (23)

where Kn(·) is the n-th order modified Bessel function of
the second kind. As verified in [47], the summation in (23)
can effectively be calculated using only few terms, resulting
in closed-form expressions for the outage probabilities.

Finally, it is worth mentioning that given any thresh-
old/target data rate, the individual data rates of R(i)

th (1−P
(i)
out),

i = 1, 2, and sum rate of RΣ
th(1 − PΣ

out) are achievable
where the outage probabilities are calculated with respect
to the threshold rates R

(1)
th , R

(2)
th , and RΣ

th according to the
analysis in this section. In addition to this characterization of
achievable rate regions, we are also interested to determine
the average data rates of the users, known as their ergodic
capacity, which is obtained using the assumption that the
users’ threshold/target data rates are adjusted by their channel
conditions, i.e., γ(i)

th = γ(i) and γΣ
th = γΣ, meaning that they

can always decode their signals without outage. Such analysis
will be proceeded in the next section in a same sequential
order as this section.

IV. ERGODIC CAPACITY ANALYSIS

A. Average Individual Rates

Given that the instantaneous individual rate Ri of the i-th
NOMA user, i = 1, 2, is related to its instantaneous SINR γ(i)

as Ri = log2(1 + γ(i)), and that γ(i) can take two different
forms of γ

(i)
π1 and γ

(i)
π2 each with the probabilities P (π1) and

P (π2), respectively, the average individual rate Ri of the i-th
NOMA user can be characterized as

Ri = EI1,g̃,|h̃2|2,|h̃1|2>|h̃2|2×10−s/10

[︂
log2(1 + γ(i)

π1
)
]︂

+ EI1,g̃,|h̃2|2,|h̃1|2<|h̃2|2×10−s/10

[︂
log2(1 + γ(i)

π2
)
]︂
. (24)

In this subsection, we first characterize the first user’s average
rate R1 (equivalently, calculate the two expectation terms in
(24) for i = 1), and then relate R2 to R1.

The first expectation term in (24), for the first user, can
be evaluated as (25) shown at the top of the next page,
where step (a) is written using (4), and step (b) follows
from the cumulative density function (CDF) of the exponential
distribution and applying the part-by-part integration equality∫︂ b

a

log2(1 + cy)fY (y)dy =
1

ln 2

[︄
c

∫︂ b

a

1− FY (y)

1 + cy
dy

+ (1− FY (a)) ln(1 + ca)− (1− FY (b)) ln(1 + cb)

]︄
, (26)

with c being a constant, and fY (·) and FY (·) being the
probability density function (PDF) and CDF of the RV Y ,
respectively.

The first expectation term of the step (b) in (25), denoted
by V1, can be calculated as

V1=EI1,g̃

[︃∫︂ ∞

0

e−y(1+10−s/10)ln

(︃
2y×10−s/10+I1+

CD

a1L1P g̃2

)︃
dy

−
∫︂ ∞

0

e−y(1+10−s/10)ln

(︃
y×10−s/10+I1+

CD

a1L1P g̃2

)︃
dy

]︃
(a)
=

1

1+10−s/10

2∑︂
i1=1

(−1)i1+1 EI1,g̃

[︄
exp

(︃
v1,i1

[︃
I1+

CD

a1L1P g̃2

]︃)︃

×Ei

(︃
−v1,i1

[︃
I1+

CD

a1L1P g̃2

]︃)︃]︄
, (27)

where step (a) is obtained using the integral formula [39, Eq.
(4.337.1)] with Ei(·) being the exponential integral function
defined as [39, Eq. (8.211.1)] for negative arguments, and
v1,i1 = (1+10s/10)/i1, i1 = 1, 2. As it is proven in Appendix
C, the expectation term involved in step (a) of (27) can be
calculated as (28) shown at the top of the next page where the
coefficients for k = 2, 3, ...,K can, recursively, be obtained as

β(k)
αi

=
−L′

ip
′
iβ

(k−1)
αi

L′
kp

′
k − L′

ip
′
i

, i = 1, 2, ..., k − 1,

β(k)
αk

=
a1L1Pβ

(k−1)
vi1

L′
kp

′
kv1,i1− a1L1P

+

k−1∑︂
i=1

L′
ip

′
iβ

(k−1)
αi

L′
kp

′
k − L′

ip
′
i

,

β(k)
vi1

=
−a1L1Pβ

(k−1)
vi1

L′
kp

′
kv1,i1− a1L1P

=
(−a1L1P )k∏︁k

i=1(L
′
ip

′
iv1,i1− a1L1P )

,

(29)

with the initial values β
(1)
α1 = −β

(1)
vi1

= a1L1P/(L
′
1p

′
1v1,i1 −

a1L1P ). We should remark that this result is obtained with
the reasonable assumption L′

ip
′
i ̸= L′

jp
′
j ̸= 0, ∀i ̸= j, and also

a1L1P ̸= L′
lp

′
lv1,i1 , ∀l = 1, 2, ...,K.

The second expectation term in (25), denoted by V2, can be
expressed as

V2
(a)
= EI1,g̃

[︄
− exp

(︃
I1+

CD

a1L1P g̃2

)︃∫︂ ∞

0

e−y(1−10−s/10)

×Ei

(︃
−2y×10−s/10 − I1−

CD

a1L1P g̃2

)︃
dy

]︄
(b)
=

1

1−10−s/10

2∑︂
i2=1

(−1)i2+1 EI1,g̃

[︄
exp

(︃
v2,i2

[︃
I1+

CD

a1L1P g̃2

]︃)︃

×Ei

(︃
−v2,i2

[︃
I1+

CD

a1L1P g̃2

]︃)︃]︄
, (30)

where step (a) follows by calculating the integration over |h̃1|2
using [39, Eq. (3.352.2)], and step (b) is derived using (42) in
Appendix B by defining v2,1 = (1 + 10s/10)/2 and v2,2 = 1.
The expectation term involved in step (b) can be calculated
according to (28) and (29) by substituting v2,i2 for v1,i1 .

On the other hand, the second expectation term in (24) can
be characterized as (31), shown at the top of the next page,
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EI1,g̃,|h̃2|2,|h̃1|2>|h̃2|2×10−s/10

[︂
log2(1+γ(1)

π1
)
]︂
(a)
= EI1,g̃,|h̃2|2

[︄∫︂ ∞

|h̃2|2×10−s/10

log2

(︃
1+

x

|h̃2|2×10−s/10+I1+CD/(a1L1P g̃2)

)︃
f|h̃1|2(x)dx

]︄
(b)
=

1

ln 2
EI1,g̃,|h̃2|2

[︄
exp
(︂
−|h̃2|2×10−s/10

)︂
× ln

(︄
1 +

|h̃2|2×10−s/10

|h̃2|2×10−s/10 + I1 + CD/(a1L1P g̃2)

)︄]︄
⏞ ⏟⏟ ⏞

V1

+
1

ln 2
EI1,g̃,|h̃2|2

[︄∫︂ ∞

|h̃2|2×10−s/10

exp(−x)

x+ |h̃2|2×10−s/10 + I1 + CD/(a1L1P g̃2)
dx

]︄
⏞ ⏟⏟ ⏞

V2

. (25)

EI1,g̃

[︄
exp

(︃
v1,i1

[︃
I1 +

CD

a1L1P g̃2

]︃)︃
Ei

(︃
−v1,i1

[︃
I1 +

CD

a1L1P g̃2

]︃)︃]︄
=

β(K)
vi1

Eg̃

[︃
exp

(︃
v1,i1

σ2
R+CD/g̃

2

a1L1P

)︃
Ei

(︃
−v1,i1

σ2
R+CD/g̃

2

a1L1P

)︃]︃
+

K∑︂
i=1

β(K)
αi

Eg̃

[︃
exp

(︃
σ2
R+CD/g̃

2

L′
ip

′
i

)︃
Ei

(︃
−σ2

R+CD/g̃
2

L′
ip

′
i

)︃]︃
. (28)

EI1,g̃,|h̃2|2,|h̃1|2<|h̃2|2×10−s/10

[︂
log2(1+γ(1)

π2
)
]︂

(a)
= EI1,g̃,|h̃2|2

[︄∫︂ |h̃2|2×10−s/10

0

log2

(︃
1 +

x

I1 + CD/(a1L1P g̃2)

)︃
f|h̃1|2(x)dx

]︄
(b)
=

1

ln 2
EI1,g̃,|h̃2|2

[︃
exp

(︃
I1+

CD

a1L1P g̃2

)︃{︃
Ei

(︃
−|h̃2|2 × 10−s/10 − I1−

CD

a1L1P g̃2

)︃
− Ei

(︃
−I1−

CD

a1L1P g̃2

)︃}︃]︃
− 1

ln 2
EI1,g̃,|h̃2|2

[︄
e−|h̃2|2×10−s/10

ln

(︄
1 +

|h̃2|2 × 10−s/10

I1 + CD/(a1L1P g̃2)

)︄]︄
(c)
=

1

ln 2
EI1,g̃

[︃
exp

(︃
I1+

CD

a1L1P g̃2

)︃
×
{︃∫︂ ∞

0

e−yEi

(︃
−y×10−s/10 − I1−

CD

a1L1P g̃2

)︃
dy − Ei

(︃
−I1−

CD

a1L1P g̃2

)︃}︃]︃
+

1

ln 2
× 1

1+10−s/10
EI1,g̃

[︃
exp

(︃
(1 + 10s/10)×

[︃
I1+

CD

a1L1P g̃2

]︃)︃
Ei

(︃
−(1 + 10s/10)×

[︃
I1+

CD

a1L1P g̃2

]︃)︃]︃
(d)
=

1

ln 2
× −1

1 + 10s/10
EI1,g̃

[︃
exp

(︃
(1 + 10s/10)×

[︃
I1+

CD

a1L1P g̃2

]︃)︃
Ei

(︃
−(1 + 10s/10)×

[︃
I1+

CD

a1L1P g̃2

]︃)︃]︃
. (31)

where step (a) is from the definition of γ
(1)
π2 as the dual of

(5). Step (b) is obtained by first evaluating the finite integral
over x in step (a) using the part-by-part integration equality
in (26) and then applying [39, Eq. (3.352.1)]. Moreover, step
(c) follows from applying [39, Eq. (4.337.2)] to evaluate
the expectation over |h̃2|2. Finally, step (d) is written after
calculating the integral involved in step (c) using (42) in
Appendix B. Note that Ei(·) is a negative quantity for the
negative arguments (see, e.g., [48, Table 1]); therefore, the
expression obtained in step (d) of (31) takes positive values.
Similarly, the expectation term involved in step (c) can be
calculated according to (28) and (29) by substituting 1+10s/10

for v1,i1 . Finally, the expectation over g̃ in (28) can be
performed through a one-dimensional integral weighted by
fg̃(g̃) given in (2) which, to the best of our knowledge, cannot
be calculated in a closed form.

The above analysis complete the characterization of the first
NOMA user’s average individual rate. A similar characteri-
zation can be obtained for U2 by substituting −s for s and
appropriate change of indexing 1 ↔ 2.

B. Average Sum Rate

As discussed before, the sum rate of NOMA users can
always be expressed as (18), regardless of their decoding
order. Therefore, the average sum rate of NOMA users can
be calculated as (32) shown at the top of the next page,
where step (a) follows by the definition of instantaneous
sum rate in (18), applying [39, Eq. (4.337.2)], and defining
eEi(t) ≜ etEi(−t), ∀t > 0. Moreover, step (b) is derived by
applying [39, Eq. (4.337.2)] and Eq. (42) in Appendix B, and
then defining vs,1 = 10s/10, vs,2 = 1, As,1 = (10s/10 − 1)−1,
and As,2 = −(1−10−s/10)−1. The expectation term involved
in step (b) can be calculated by first applying (28) and (29)
with substitution of vs,is for v1,i1 , and then taking a one-
dimensional integral over g̃ weighted by fg̃(g̃).

C. RF-Backhauled System

In this subsection, we explain how the preceding er-
godic capacity analysis can be extended to RF-backhauled
systems. As discussed in Section III-C, in the absence of
external interference to the destination, the results for the
FSO-backhauled system can be extended to that of RF-
backhauled one with substituting CRF

D = N0/(LbG
2
b) and

κb = |h̃b|2 for CD and g̃2, respectively. Therefore, the only
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RΣ
(a)
= EI1,g̃

[︃∫︂ ∞

0

e−y

{︃
log2

(︃
1 +

y × 10−s/10

I1 + CD/(a1L1P g̃2)

)︃
− 1

ln 2
eEi
(︂
y × 10−s/10 + I1 + CD/(a1L1P g̃2)

)︂}︃
dy

]︃
(b)
=

1

ln 2

2∑︂
is=1

As,is EI1,g̃

[︄
exp

(︃
vs,is

[︃
I1 +

CD

a1L1P g̃2

]︃)︃
Ei

(︃
−vs,is

[︃
I1 +

CD

a1L1P g̃2

]︃)︃]︄
. (32)

difference will be the calculation of expectation terms of the
form Eκb

[︁
exp
(︁
c′b[σ

2
R+CRF

D /κb]
)︁
Ei
(︁
−c′b[σ

2
R+CRF

D /κb]
)︁]︁

in-
stead of Eg̃

[︁
exp
(︁
c′b[σ

2
R+CD/g̃

2]
)︁
Ei
(︁
−c′b[σ

2
R+CD/g̃

2]
)︁]︁

, in
all of the preceding ergodic capacity analysis, where κb is
distributed according to (21), and c′b > 0 is a constant, e.g.,
c′b = v1,i1/(a1L1P ) in the first expectation term of (28). As
we know, such expectations cannot be characterized in closed
forms and need to be calculated through one-dimensional
integrals weighted by fκb

(κb).
Moreover, when the destination is subject to the pres-

ence of Kd interfering users, CD/g̃
2 in all of the

previously-derived ergodic capacity formulas should be re-
placed by (I ′′ +N0)/(LbG

2
bκb) = CRF

D /κb +I ′′/(LbG
2
bκb),

where I ′′ ≜
∑︁Kd

j=1 L
′′
j p

′′
j |h̃

′′
j |2 is the total external

interference to the destination. Therefore, in order to
characterize the ergodic capacity, instead of calculating
Eg̃

[︁
exp
(︁
c′b[σ

2
R+CD/g̃

2]
)︁
Ei
(︁
−c′b[σ

2
R+CD/g̃

2]
)︁]︁

, we have to
evaluate

Eb ≜ Eκb,I′′

[︂
exp
(︁
c′b
[︁
σ2
R+ CRF

D /κb+I ′′/(LbG
2
bκb)

]︁)︁
× Ei

(︁
−c′b

[︁
σ2
R+ CRF

D /κb+I ′′/(LbG
2
bκb)

]︁)︁]︂
. (33)

By defining Bκb
≜ σ2

R + CRF
D /κb and α′

j(κb) ≜
L′′
j p

′′
j /(LbG

2
bκb), j = 1, 2, ...,Kd, and then applying a similar

approach to Appendix C, one can show that Eb in (33) can be
calculated as (34) shown at the top of the next page where the
coefficients for k = 2, 3, ...,Kd are, recursively, defined as

β
(k)
α′

j
=

−L′′
j p

′′
j β

(k−1)
α′

j

L′′
kp

′′
k − L′′

j p
′′
j

, j = 1, 2, ..., k − 1,

β
(k)
α′

k
=

LbG
2
bκbβ

(k−1)
c′b

L′′
kp

′′
kc

′
b − LbG2

bκb
+

k−1∑︂
j=1

L′′
j p

′′
j β

(k−1)
α′

j

L′′
kp

′′
k − L′′

j p
′′
j

,

β
(k)
c′b

=
−LbG

2
bκbβ

(k−1)
c′b

L′′
kp

′′
kc

′
b − LbG2

bκb
=

(−LbG
2
bκb)

k∏︁k
i=1(L

′′
i p

′′
i c

′
b − LbG2

bκb)
,

(35)

with the initial values β
(1)
α′

1
= −β

(1)
c′b

= LbG
2
bκb/(L

′′
1p

′′
1c

′
b −

LbG
2
bκb). Finally, the ergodic capacity formulas for the RF-

backhauled system can be obtained after one-dimensional
integrals over κb to perform the expectations of the form
expressed in (34). We should again emphasize that this result
is valid under the reasonable assumption L′′

i p
′′
i ̸= L′′

j p
′′
j ̸= 0,

∀i ̸= j, and also LbG
2
bκb ̸= L′′

l p
′′
l c

′
b, ∀l = 1, 2, ...,Kd.

Remark 4: Our characterization of the average individual-
and sum-rate formulas for both FSO- and RF-backhauled sys-
tems are up to only one-dimensional integrals over the fading
coefficient of the backhaul link. That is equivalent to say
that the ergodic capacity closed-form expressions are obtained
for the single-hop uplink NOMA subject to some exterior

TABLE I
SOME OF THE IMPORTANT PARAMETERS USED FOR SIMULATIONS [36].

Coefficient Value
Responsivity of the photodetector, ρ 0.5 V−1

Electrical-to-optical conversion coefficient, η 1
Optical receiver aperture radius, r 10 cm
Laser beam divergence angle, ϕ 2 mrad

Noise power at the relay and destination RF
receivers, σ2

R and N0
−80 dBm

Noise variance at the destination FSO receiver, σ2
D 10−14 A2

Reference distance of the RF link, dRF
ref

80 m
Number of interfering users to the relay, K 10

Number of interfering users to the destination, Kd 10
Transmitter and receiver antenna gains of the

user-relay RF links, (GRF
t,i , G

RF
r,R)

(5, 8) dBi

Transmitter and receiver antenna gains of the
relay-destination RF backhaul link, (GRF

t,R, GRF
r,D)

(10, 15)
dBi

Number of iterations for numerical simulations, Nt 5× 106

Length of the FSO backhaul link, dRD 1200 m

Wavelength of FSO signal, λFSO 1550 nm

Frequency of RF signal, fRF 3 GHz
Parameter of the Rician distribution for the RF

backhaul link, Ω 6 dB

Path-loss exponent of RF links, ν 3.5

multiuser interference, or better to say, for the considered
dual-hop system model given each realization of the backhaul
fading coefficient.

V. NUMERICAL RESULTS

In this section, we present the numerical results to
evaluate the performance of uplink NOMA over mixed
RF-FSO and dual-hop RF/RF systems, and corroborate the
correctness of the derived outage probability and ergodic
capacity formulas. Some of the parameters considered for
simulations (unless explicitly specified) are listed in Table I.
For the multiuser interference, we consider the product of
L′
kp

′
k, k = 1, 2, ...,K, to be the k-th element of the vector

KI,RP0L2u
′
10 where P0 = 1 mW, KI,R ≥ 0 is a constant

to define the upper bound of the received power from each
interfering user to the relay as a factor of P0L2, and u′

10 =
(0.6957,0.6279,0.4504,0.4736,0.9497,0.0835, 0.2798, 0.4470,
0.5876, 0.8776) is a length-10 vector of uniformly generated
numbers over the interval (0, 1). Similarly, we consider the
external interference to the RF receiver of the destination
in the case of the RF-backhauled system to be of the form
KI,DP0L2u

′′
10 with the constant KI,D ≥ 0 defining the

upper bound of the received power from each interfering
user to the destination as a factor of P0L2 and u′′

10 =
(0.5259,0.9635,0.5688,0.2584,0.2959,0.7439, 0.9797, 0.3491,
0.8371, 0.5587) being another length-10 vector of uniformly
generated numbers over the interval (0, 1).

Fig. 2 shows the individual-rate outage performance of
the uplink mixed RF-FSO NOMA system for three different
values of the power back-off step s = 0, 10, and 25 dB.
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Eb=Eκb

[︃
β
(Kd)
c′b

exp

(︃
c′b

[︃
σ2
R+

CRF
D
κb

]︃)︃
Ei

(︃
−c′b

[︃
σ2
R+

CRF
D
κb

]︃)︃]︃
+

Kd∑︂
j=1

Eκb

[︄
β
(Kd)
α′

j
exp

(︄
N0+σ2

RLbG
2
bκb

L′′
j p

′′
j

)︄
Ei

(︄
−N0+σ2

RLbG
2
bκb

L′′
j p

′′
j

)︄]︄
.

(34)
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Fig. 2. Individual-rate outage probability results of the mixed RF-FSO NOMA
system for three values of the power back-off step s = 0, 10, and 25 dB.
The other specific parameters are γ

(1)
th = 0.8 (R(1)

th = 0.8480), γ(2)
th = 0.4

(R(2)
th = 0.4854), dRF

1 = 100 m, dRF
2 = 200 m, KI,R = 1, κ =

0.43× 10−3 m−1 (clear air), α = 4, β = 2, ζ = 2, and G = 100.

We assume that the first and second users are in distances
of dRF

1 = 100 m and dRF
2 = 200 m from the relay,

respectively; this together with the values in Table I implies
L1 = 9.04 × 10−8 and L2 = 8 × 10−9. The other adopted
parameters are listed in the caption of Fig. 2. For s = 0 we
will have a1L1 = a2L2; therefore, one should expect lower
outage probabilities for the second NOMA user given its lower
threshold SINR γ

(2)
th = 0.4 (equivalently, lower target rate

R
(2)
th = 0.485 bits/sec/Hz). However, by increasing s a larger

fraction of power will be assigned to the first NOMA user,
and U1 achieves lower outage probabilities even if it demands
a larger SINR threshold. As a consequence, increasing s
will decrease the outage probability of U1 and increase the
outage probability of U2. Moreover, the match between the
analytical results and Monte-Carlo simulations corroborates
the correctness of the derived closed-form expressions for the
individual-rate outage probabilities.

The comparison between NOMA and orthogonal multiple
access (OMA) is also depicted in Fig. 2. We assume, for the
OMA transmission, that the total transmission time is equally
divided between the two users and each user employs the
entire transmission power P during its corresponding time
slot. Therefore, denoting the SINR of the i-th OMA user
by γ

(i)
OMA, i ∈ {1, 2}, each OMA user will have the rate

R
(i)
OMA = 0.5 log2(1 + γ

(i)
OMA). Then it is easy to verify that,

in order to achieve the target data rate R
(i)
th = log2(1 + γ

(i)
th ),

each i-th OMA user has to satisfy the threshold SINR of
γ
(i)
th,OMA = (1+γ

(i)
th )

2−1. It is observed that NOMA transmis-
sion is in favor of the first user except for very small values of
s while the second user experiences an opposite situation. In
particular for s = 10 dB where a1L1 = 10a2L2, i.e., when the
roughly an order of magnitude difference between the channel
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(1)
 = 0.2,
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(2)
 = 0.8

Fig. 3. Individual-rate outage probability results of the mixed RF-FSO NOMA
system for the power back-off step s = 5 dB, and different values of the
threshold SINRs. The other parameters are the same as Fig. 2.

gains L1 and L2 is reflected in the NOMA power allocation
policy, both of the NOMA users (especially the second user)
achieve better performance than the OMA transmission. This
suggests the possible existence of some optimal values for s
(see also Fig. 5) given some specific figures of merit.

Fig. 3 illustrates the individual-rate outage performance
of the mixed RF-FSO NOMA system for s = 5 dB and
different values of the threshold SINRs. As expected, outage
performance degrades with increasing the threshold SINRs.
More importantly, the induced interference between NOMA
users due to the non-orthogonal operation limits the outage
performance for the large values of the threshold SINRs and
prevents achieving small enough outage probabilities even
for the large values of the transmitted power. As a result,
the system outage performance saturates while the saturation
limits are higher for the larger values of the threshold SINRs.
Note that the channel is stochastic and the decoding order
of the NOMA users changes dynamically. Therefore, the first-
decoded user dynamically changes between U1 and U2; hence,
both NOMA users experience interference and cannot meet
large values of the threshold SINRs even if P is increased.

Sum-rate outage probability results of the mixed RF-FSO
NOMA system are depicted in Fig. 4 for γΣ

th = 1.2, three
different power back-off steps s = 0, 10, and 100 dB, and
two different distances of the second user dRF

2 = 200 and 400
m. The other parameters are the same as Fig. 2. For the sake
of comparison, the simulation results are also provided for
the OMA sum-rate outage probabilities. Similar to Fig. 2, we
assume that the transmission time is equally divided between
the two users while each user transmits with the full power
P during its transmission time. Then it is easy to verify that
the sum-rate outage probability of the OMA transmission in
satisfying the target rate RΣ

th = log2(1+ γΣ
th) can be obtained
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as

PΣ
out,OMA=Pr

(︃√︂
(1+γ

(1)
OMA)(1+γ

(2)
OMA)−1<γΣ

th

)︃
. (36)

For the case of dRF
2 = 2dRF

1 = 200 m, which corresponds to
L1 = 9.04 × 10−8 and L2 = 8 × 10−9, one can see that by
increasing s the sum-rate outage probability decreases first and
then increases, at least for higher transmit powers. Specifically,
for s = 10 dB where a1L1 = 10a2L2, i.e., when the roughly
an order of magnitude difference between the channel gains
L1 and L2 is reflected in the NOMA power allocation policy,
NOMA outperforms OMA in terms of the sum-rate outage
probability. One can easily verify that in the special case of
second user having a very poor channel condition compared
to the first user, NOMA, with assigning the whole power to
the first user (equivalently, s → ∞), can achieve twice the
OMA rate. This can be observed also from the case of dRF

2 =
4dRF

1 = 400 m, corresponding to L1 = 9.04 × 10−8 and
L2 = 7.06×10−10, with the choice of s = 100 dB (at least at
reasonably low transmit powers where R

(2)
OMA = 0.5 log2(1 +

γ
(2)
OMA) ≈ 0).
To better observe the trend of sum-rate outage probability

as a function of s, we have characterized in Fig. 5 the sum-
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Fig. 6. Individual- and sum-rate outage probability results of the dual-hop
RF/RF NOMA system for dRF

1 = 100 m, dRF
2 = 200 m, dRD = 500 m,

γ
(1)
th = 0.8, γ(2)

th = 0.4, γΣ
th = 1.2, s = 10 dB, Gb = 1000, KI,R = 1,

and three different values of KI,D = 0, 0.1 and 1.

rate outage performance of the system for P = 25 dBm,
and different values of dRF

2 and γΣ
th. It is observed that the

outage performance decreases first and then increases with the
increase of s. Therefore, given any set of system parameters,
there is a power back-off step s∗ minimizing the sum-rate
outage probability. However, such a s∗ is not necessarily
the best operation point as such an operation region may
depend to the individual outage probabilities and achievable
rates and not only to the sum-rate outage probability. By
comparing the four plots corresponding to γΣ

th = 1.2 we can
observe that increasing dRF

2 , i.e., differentiating more between
the channel qualities of the NOMA users, shifts s∗ to the
larger values. Moreover, the outage probability is higher for
the larger values of dRF

2 before the minimum of s∗’s and is
lower after their maximum. Furthermore, we have observed
that increasing γΣ

th, while dRF
2 is kept fixed, increases the

outage probability and does not change the outage-minimizing
s. Finally, it can be observed that as s increases, we have
a1 → 1 and a2 → 0. Therefore, further increasing s, beyond a
certain large threshold, does not noticeably change the power
allocation coefficients. Consequently, the outage probability
saturates while increasing s.

The individual- and sum-rate outage probability results of
the dual-hop RF/RF NOMA system with dRD = 500 m are
characterized in Fig. 6 for three different values of KI,D = 0,
0.1 and 1. As observed, even small values of KI,D result in
significant performance degradation, mainly due to the weak
desired signal at the destination. This figure, in addition to
confirming the accuracy of the results derived in Section III-
C, highlights the superiority of FSO backhauling in terms of
outage performance (compare the case of KI,D = 0 in Fig. 6
with the corresponding plots in Figs. 2 and 4, and note that
the length of backhaul link here is much less than that of FSO
backhaul), especially for longer backhaul ranges, noticing that
FSO links with even lower SINRs may be preferred given their
much more available bandwidths compared to RF backhaul
links. We should emphasize that increasing the number of
interfering users increases the outage probability in a similar
fashion. However, the results are not included in this paper
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due to the space limitation.
Average individual and sum rates of the mixed RF-FSO

NOMA system are characterized in Fig. 7 for dRF
1 = 100

m, dRF
2 = 200 m, dRD = 1200 m, and three values

of the power back-off step s = 0, 10, and 30 dB. It is
observed that, at relatively low transmit powers, increasing
s (within the range of s in this figure) increases the rate of
the first NOMA user and decreases the rate of the second user
while the average sum rate is also increased. This is because
a1L1 = a2L2 × 10s/10 and s ≥ 0; therefore, more power is
assigned to the first NOMA user for the larger values of s
which increases the first user’s rate. On the other hand, for
the larger values of s with higher probabilities the decoding
order is π1, i.e., the first user is decoded first in the presence
of interference signal from the second NOMA user; hence, by
increasing P the interference power to the first user increases
limiting its performance and saturating its average rate at
larger P ’s. This is while the second NOMA user is usually
decoded after removing the interference signal of the first user,
especially for larger values of s; hence, the average rate of the
second NOMA user can increase without saturation. Given the
increasing trend of the rate of the second NOMA user and
the saturating trend of the first NOMA user, the average rate
curves of these two users intersect at some power P such
that the first user has a higher rate before that crossing point
and the second user outperforms after that power. Also as
s increases, this crossing point shifts to the right meaning
that the first NOMA user has higher data rates over wider
ranges of the transmit power for the larger values of s. We
have also included the simulation results of the OMA average
rates. The simulation results confirm the superiority of NOMA
over OMA in terms of individual and sum rates (see, e.g., the
results for s = 10 dB).

The impact of the FSO link parameters on the average
sum rate of the NOMA and OMA mixed RF-FSO systems is
investigated in Fig. 8 for s = 25, dRF

1 = 100 m, dRF
2 = 200

m, dRD = 1200 m, and different values of κ, α, β, and
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Fig. 8. Average sum rate of the mixed RF-FSO system for s = 25 dB, and
different values of FSO link parameters κ, α, β, and ζ. The other parameters
are the same as Fig. 2.
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same as Fig. 6.

ζ. It is observed that the average sum rate decreases by
increasing κ (equivalent to having larger path-losses) and
decreasing α, β, and ζ (equivalent to stronger atmospheric
turbulence). As a result, in the extreme atmospheric conditions
the performance of FSO backhauling might be inferior to
that of RF backhauling; this necessitates adaptive switching
between RF and FSO infrastructure to simultaneously take
the advantage of the potentials of both FSO (e.g., higher data
rates and longer ranges) and RF (e.g., resilience to atmospheric
adverse conditions) backhauling. Furthermore, note that for
all of the considered scenarios NOMA average sum rate
outperforms that of the OMA transmission.

Average individual and sum rates of the dual-hop RF/RF
system are characterized in Fig. 9 for s = 8 dB, dRF

1 = 100
m, dRF

2 = 200 m, and two different values of dRD = 500
and 1200 m. It is observed that as the backhaul link length
increases the point for which the individual rates intersect
(see, e.g., Fig. 7) moves to the right hand side, i.e., the first
NOMA user will have higher average rates over a wider
range of the transmit powers. This figure, in addition to
confirming the accuracy of the results derived in Section IV-C,
further highlights the superiority of FSO backhauling in terms
of average achievable rates, especially for longer backhaul
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ranges, given much more available bandwidth of optical links.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We studied the performance of uplink NOMA over mixed
RF-FSO systems where the NOMA users employ RF signals
for concurrent transmission to an intermediate relay which
forwards the amplified version of the received signal in the
presence of multiuser interference to the destination through
an ultra high-speed FSO link. We adopted dynamic-order de-
coding to determine the priority of the users at the destination
based on their instantaneous CSI. The analysis of the paper
carried out in a general model of the channel and system,
such as including different aspects of the RF and FSO channels
and taking into account the presence of multiuser interference,
e.g., due the co-channel interference from some nearby users
aiming to communicate to some other relays or destinations.
We also extended the results to the case of RF-backhauled
systems, i.e., the conventional dual-hop RF/RF systems in
the presence of multiuser interference. In terms of the outage
probability performance, we derived the closed-form expres-
sions for both mixed RF-FSO and dual-hop RF/RF NOMA
systems. Moreover, we characterized the average individual
and sum rates of both FSO- and RF-backhauled systems up
to only one-dimensional integrals over the fading coefficient
of the backhaul link. We presented extensive numerical results
confirming the accuracy of the derived outage probability and
average rate formulas and characterizing the impact of various
design and channel parameters on the system performance.

Our results revealed the superiority of FSO backhauling
compared to RF backhauling in terms of outage probability
and ergodic capacity. This advantage can further be high-
lighted, as a future work, by analyzing the throughput of the
dual-hop RF-FSO and RF/RF NOMA systems (e.g., when the
users of the access links have enough data for transmission
and the backhaul link is imposing a bottleneck) by taking
into account the much higher available bandwidth of optical
links. Moreover, given the sensitivity of FSO links to the
atmospheric conditions (see, e.g., Fig. 8), it is inevitable to
design hybrid RF/FSO backhaul links to simultaneously take
the advantages of both FSO and RF systems; this necessi-
tates further studies to characterize the performance of relay-
assisted NOMA systems when the backhaul link dynamically
switches between FSO and RF systems given properly-defined
switching policies. More importantly, the results of this paper
provide novel expressions for the outage probabilities and
ergodic capacities of dual-hop RF-FSO and RF/RF systems
subject to some external interference to the RF receivers. This
is particularly relevant to mmWave NOMA systems which
recently have received extensive attention. In fact, in mmWave
NOMA systems, inter-beam interference due to the side-lobes
of nearby mmWave beams can adversely affect the power-
domain NOMA users grouped over a given mmWave beam.
As a result, the analysis in this paper can significantly pave
the way toward future research on mmWave NOMA systems.

APPENDIX A
CLOSED-FORM EXPRESSION FOR EQ. (22)

In order to derive the closed form of Eq. (22), we need to
calculate integrals of the form

J1 ≜
∫︂ ∞

0

xn × e−ax−b/x

x+ c
I0

(︂√
dx
)︂
dx, (37)

for some positive constants a, b, c, d, and integer n.4 Using
[39, Eq. (8.447.1)] to expand I0

(︂√
dx
)︂

as an infinite series,
we can rewrite (37) as

J1 =

∞∑︂
k=0

dk

4k(k!)2

∫︂ ∞

0

xn+k × e−ax−b/x

x+ c
dx⏞ ⏟⏟ ⏞

J2

. (38)

Hence, the problem boils down to the closed-form calculation
of J2 defined in (38). To do so, we first use [49, Eq.
(07.34.03.0228.01)] together with [39, Eq. (9.301)] to write
exp(−b/x) in the integral form

exp(−b/x) =
1

2πj

∮︂
C

Γ(−s)
(︂x
b

)︂−s

ds, (39)

where C is a complex contour of integration ensuring the
convergence of the above Mellin-Barnes type integral, e.g., a
vertical line starting from the point −ϵ− j∞ and terminating
at the point −ϵ + j∞ for any ϵ > 0.5 Now, by substituting
(39) in J2 we have

J2 =
1

2πj

∮︂
C

Γ(−s)

b−s

{︃∫︂ ∞

0

xn+k−s × e−ax

x+ c
dx

}︃
ds

(a)
=

cn+keac

2πj

∮︂
C

(︂c
b

)︂−s

Γ(−s)Γ(n+k+1−s)Γ(s−n−k,ac)ds

(b)
= cn+keacH1,2

2,1

[︃
c

b

⃓⃓⃓⃓
(1, 1, 0), (−n− k, 1, 0)

(−n− k, 1, ac)

]︃
(c)
= cn+keacH2,1

1,2

[︃
b

c

⃓⃓⃓⃓
(n+ k + 1, 1, ac)

(0, 1, 0), (n+ k + 1, 1, 0)

]︃
(d)
= cn+keacG2,1

1,2

[︃
b

c

⃓⃓⃓⃓
(n+ k + 1, ac)

(0, 0), (n+ k + 1, 0)

]︃
, (40)

where (a) is calculated using [39, Eq. (3.383.10)] when noting
that Re(n + k + 1 − s) = n + k + ϵ + 1 > 0, and
(b) is obtained using the definition of the generalized upper
incomplete Fox’s H-function H.,.

.,. [46]. Note that the upper
incomplete gamma function Γ(s−n−k,ac) does not have any
poles, and the poles of the other two gamma functions in (a),
i.e., Γ(−s) and Γ(n+ k + 1− s) are at l and k + n+ 1 + l,
respectively, for any nonnegative integer l. Therefore, all the
poles of Γ(−s) and Γ(n + k + 1 − s) lie on the right side
of the vertical line considered above for C; thus, according to
[46], the aforementioned vertical line for the contour C also
guarantees the convergence of the Mellin-Barnes type integral
in (a). We should further mention that step (c) is obtained

4The use of symbols in this appendix should not be confused with the rest
of the paper as we only reuse some symbols during the proof steps.

5Based on [50, Sec. 1.1], this is a proper choice for C that separates
all the poles (i.e., all nonnegative integers) to the right, as required for the
convergence of (39).
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using [46, Eq. (A.9)], and step (d) is from the definition
of the upper incomplete Meijer’s G-function G.,.

.,., which is
a special case of H.,.

.,. obtained when the second element of
all triples corresponding to the coefficients of s or −s in the
arguments of (incomplete) gamma functions are equal to one.
Finally, by inserting n = Kd, a = 1 + Ω, b = BCRF

D ,
c = BL′′

l p
′′
l /(LbG

2
b), and d = 4Ω(1+Ω) in (40) and then

(38), we get the closed-form expression in (22).

APPENDIX B
USEFUL INTEGRAL EQUATIONS OVER Ei(·)

Lemma 1, Corollary 1, and Corollary 2 can be found in the
literature with slight variations. However, independent proofs
are included for the sake of completeness.

Lemma 1: For any c1, c2 > 0, a < 0, and b ∈ R such that
(s.t.) a+ b < 0, we have [49, Eq. (06.35.21.0013.01)]∫︂ c2

c1

ebxEi(ax)dx =
1

b

[︁
ebtEi(at)− Ei([a+ b]t)

]︁⃓⃓⃓c2
c1
, (41)

where f(t)|c2c1 = f(c2)− f(c1) for the function f(t).
Proof: Note that for c1, c2 > 0, a < 0, and a+ b < 0, the

exponential integral functions involved in both right- and left-
hand sides (RHS and LHS) of (41) have negative arguments.
In that case, based on the definition of Ei(x) for x < 0 [39, Eq.
(8.211.1)] we have d

dtEi(lt) = − d
dt

∫︁∞
−lt

e−x

x dx = elt/t, ∀ lt<
0. Then it is easy to verify that the derivative of ebtEi(at)−
Ei([a+ b]t) is equal to bebtEi(at); this completes the proof.

Corollary 1: ∀c1 > 0, a < 0, and b ∈ R s.t. a+ b < 0∫︂ ∞

c1

ebxEi(ax)dx =
1

b

[︁
Ei([a+ b]c1)− ebc1Ei(ac1)

]︁
. (42)

Proof: Note first based on [48, Eq. (2)] that Ei(−∞) =
limx→−∞ Ei(x) = limx→−∞ ex/x = 0. Then by substituting
c2 = ∞ in (41), we have Ei([a + b]c2) = 0 since a + b < 0.
Moreover, ebc2Ei(ac2)|c2=∞ = limx→∞ e(a+b)x/ax = 0.
Therefore, (42) can be inferred from (41) by inserting c2 = ∞.

Corollary 2: ∀c2 > 0, a < 0, and b ∈ R s.t. a + b < 0
[39, Eq. (5.231.2)]∫︂ c2

0

ebxEi(ax)dx=
1

b

[︃
ebc2Ei(ac2)−Ei([a+ b]c2)+ln

(︃
1+

b

a

)︃]︃
.

(43)

Proof: By substituting c1 = 0 in (41), we have ebc1Ei(ac1)−
Ei([a+b]c1) = limx→0 Ei(ax)−Ei([a+b]x). Then using [48,
Eq. (1)], limx→0 Ei(x) = γ+ln |x|, where γ = 0.57721 is the
Euler’s constant. Therefore, for c1 = 0 we have ebc1Ei(ac1)−
Ei([a + b]c1) = − ln (|a+ b|/|a|) = − ln (1 + b/a). This
completes the proof using (41). Furthermore, note that by
substituting c2 = ∞ in (43) and using the discussions along
with the proof of Corollary 1 one can obtain∫︂ ∞

0

ebxEi(ax)dx =
1

b
ln

(︃
1 +

b

a

)︃
, (44)

which is the same result reported in [39, Eq. (6.224.1)].

APPENDIX C
PROOF OF (28) AND (29)

In this appendix, we show how the expectation term in-
volved in V1 in (27) can be calculated in a closed form
over I1. To begin with, let us, for the ease of notation,
define αk ≜ L′

kp
′
k/(a1L1P ), k = 1, 2, ...,K, Bg̃ ≜

[σ2
R + CD/g̃

2]/(a1L1P ), I1,l ≜
∑︁K

k=l+1 αk|h̃
′
k|2 + Bg̃ ,

l = 1, 2, ...,K − 1, and I1,K ≜ Bg̃ . In order to take the
expectation over I1, we first average over |h̃

′
1|2 given that the

other |h̃
′
k|2’s are some constant quantities, then average over

|h̃
′
2|2, and so on. The expectation of the term involved in (27)

over |h̃
′
1|2 can be calculated as

V1,1 ≜

E|h̃′
1|2

[︃
exp
(︂
v1,i1

[︁
α1|h̃

′
1|2+I1,1

]︁)︂
Ei
(︂
−v1,i1

[︁
α1|h̃

′
1|2+I1,1

]︁)︂]︃
(a)
=

1

α1
eI1,1/α1

∫︂ ∞

I1,1

e(v1,i1−1/α1)t1Ei(−v1,i1t1)dt1

(b)
=

1

α1v1,i1−1

[︃
eI1,1/α1Ei

(︃
−I1,1

α1

)︃
−ev1,i1I1,1Ei(−v1,i1I1,1)

]︃
,

(45)

where step (a) is derived by letting f|h̃′
1|2

(x1) = e−x1 and
then t1 = α1x1 + I1,1, and step (b) follows from (42). Note
that in step (a), c1 = I1,1 > 0, a = −v1,i1 < 0, and a+ b =
−1/α1 < 0, allowing to use Corollary 1 in (42). Using a
similar procedure, the expectation of V1,1 over |h̃

′
2|2 can be

expressed as

V1,2≜E|h̃′
2|2

[V1,1]=
1

α1v1,i1−1

1

α2/α1−1

[︃
eI1,2/α2Ei

(︃
−I1,2

α2

)︃
− eI1,2/α1Ei

(︃
−I1,2

α1

)︃]︃
− 1

α1v1,i1−1

1

α2v1,i1−1

×
[︃
eI1,2/α2Ei

(︃
−I1,2

α2

)︃
− ev1,i1I1,2Ei(−v1,i1I1,2)

]︃
. (46)

For the ease of notation, let us further define eEi(x) ≜
exEi(−x), ∀x > 0, and denote by β

(k)
αi , i = 1, 2, ..., k,

the coefficient of eEi(I1,k/αi) in V1,k after taking the k-
th expectation, i.e., averaging over |h̃

′
k|2, k = 1, 2, ...,K,

and β
(k)
vi1

the coefficient of eEi(v1,i1I1,k) in V1,k. Using this
notation, it is easy to observe that V1,3 ≜ E|h̃′

3|2
[V1,2] can be

expressed as

V1,3 =β(2)
α1

1

α3/α1 − 1

[︁
eEi(I1,3/α3)− eEi(I1,3/α1)

]︁
+β(2)

α2

1

α3/α2 − 1

[︁
eEi(I1,3/α3)− eEi(I1,3/α2)

]︁
+β(2)

vi1

1

α3v1,i1− 1

[︁
eEi(I1,3/α3)− eEi(v1,i1I1,3)

]︁
, (47)

where, based on (46), β
(2)
α1 = − 1

α1v1,i1−1
1

α2/α1−1 ,

β
(2)
α2 = 1

α1v1,i1−1
1

α2/α1−1 − 1
α1v1,i1

−1
1

α2v1,i1−1
, and

β
(2)
vi1

= 1
α1v1,i1−1

1
α2v1,i1−1

.
Using some inductive arguments and with the help

of (47) it can be shown that in the k-th expectation
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step, i.e., calculating V1,k, we will have k + 1 distinct
terms of eEi(I1,k/α1), eEi(I1,k/α2), ..., eEi(I1,k/αk), and
eEi(v1,i1I1,k). Therefore,

V1,k = β(k)
vi1

eEi(v1,i1I1,k) +

k∑︂
i=1

β(k)
αi

eEi(I1,k/αi), (48)

where the coefficients for k = 2, 3, ...,K can, recursively, be
obtained as

β(k)
αi

=
−β

(k−1)
αi

αk/αi − 1
, i = 1, 2, ..., k − 1,

β(k)
αk

=
β
(k−1)
vi1

αkv1,i1− 1
+

k−1∑︂
i=1

β
(k−1)
αi

αk/αi − 1
,

β(k)
vi1

=
−β

(k−1)
vi1

αkv1,i1− 1
=

(−1)k∏︁k
i=1(αiv1,i1− 1)

, (49)

with the initial values β
(1)
α1 = −β

(1)
vi1

= (α1v1,i1 − 1)−1.
Finally, we need to prove (48) with the coefficients in (49) by
recurrence. To this end, the base case is true by inserting k = 1
in (48) and (49) and then recalling V1,1 from (45). Moreover,
assuming that the induction hypothesis (i.e., (48) and (49) for
k) is true, we need to show that the induction step holds for
k+1. Using the definition of V1,k+1 ≜ E|h̃′

k+1|2
[V1,k] we have

V1,k+1
(a)
= E|h̃′

k+1|2

[︄
β(k)
vi1

eEi(v1,i1I1,k) +

k∑︂
i=1

β(k)
αi

eEi(I1,k/αi)

]︄
(b)
= β(k)

vi1
E|h̃′

k+1|2

[︂
eEi
(︂
v1,i1

[︂
αk+1|h̃

′
k+1|2 + I1,k+1

]︂)︂]︂
+

k∑︂
i=1

β(k)
αi

E|h̃′
k+1|2

[︃
eEi

(︃
1

αi

[︂
αk+1|h̃

′
k+1|2 + I1,k+1

]︂)︃]︃
(c)
=

β
(k)
vi1

αk+1v1,i1 − 1

[︁
eEi
(︁
I1,k+1/αk+1

)︁
− eEi

(︁
v1,i1I1,k+1

)︁]︁
+

k∑︂
i=1

β
(k)
αi

αk+1/αi −1

[︃
eEi

(︃
I1,k+1

αk+1

)︃
−eEi

(︃
I1,k+1

αi

)︃]︃
, (50)

where step (a) follows from the induction hypothesis in (48),
step (b) is by recalling I1,k ≜ αk+1|h̃

′
k+1|2 + I1,k+1, and

step (c) is obtained using (42) in a similar approach to (45).
Hence, using step (c) in (50), we can characterize V1,k+1 as

V1,k+1 =
−β

(k)
vi1

αk+1v1,i1 − 1
eEi(v1,i1I1,k+1)

+

[︃
β
(k)
vi1

αk+1v1,i1−1
+

k∑︂
i=1

β
(k)
αi

αk+1/αi−1

]︃
eEi(I1,k+1/αk+1)

−
k∑︂

i=1

β
(k)
αi

αk+1/αi − 1
eEi(I1,k+1/αi), (51)

which is equal to β
(k+1)
vi1

eEi(v1,i1I1,k+1) +∑︁k+1
i=1 β

(k+1)
αi eEi(I1,k+1/αi) with the coefficients defined

similar to (49) by substituting k + 1 for k. This suggests
that the induction step holds and completes the proof by
recurrence. At the end, by substituting k = K in (48) and
(49) and noting that I1,K = Bg̃ , one can obtain (28) and
(29).
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