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Abstract—In this paper, we investigate covert communication
over millimeter-wave (mmWave) frequencies. In particular, a
dual-beam mmWave transmitter, comprised of two independent
antenna arrays, attempts to reliably communicate to a receiver
Bob when hiding the existence of transmission from a warden
Willie. In this regard, operating over mmWave bands not only
increases the covertness thanks to directional beams, but also
increases the transmission data rates given much more available
bandwidths and enables ultra-low form factor transceivers due to
the lower wavelengths used compared to the conventional radio
frequency (RF) counterpart. We assume that the transmitter Alice
employs one of its antenna arrays to form a directive beam for
transmission to Bob. The other antenna array is used by Alice to
generate another beam toward Willie as a jamming signal with its
transmit power changing independently from a transmission block
to another block. We characterize Willie’s detection performance
with the optimal detector and the closed-form of its expected
value from Alice’s perspective. We further derive the closed-form
expression for the outage probability of the Alice-Bob link, which
enables characterizing the optimal covert rate that can be achieved
using the proposed setup. Our results demonstrate the superiority
of mmWave covert communication, in terms of covertness and
rate, compared to the RF counterpart.

I. INTRODUCTION

Rapid growth of wireless networks and emerging variety
of applications, including Internet of Things (IoT) and criti-
cal controls, necessitate sophisticated solutions to secure the
data transmission. Traditionally, the main objective of security
schemes, using either cryptographic or information-theoretic
approaches, is to secure data in the presence of adversary
eavesdroppers. However, a stronger level of security can be
obtained in wireless networks if the existence of communication
is hidden from the adversaries. To this end, recently, there has
been increasing attention to investigate covert communication,
also referred to as communication with low probability of
detection (LPD), in different setups with the goal of hiding
the existence of communication [1]–[8]. Generally speaking,
covert communication refers to the problem of reliable com-
munication between a transmitter Alice and a receiver Bob
while maintaining a low probability of detecting the existence
of communication from the perspective of a warden Willie [2].

The information-theoretic limits on the rate of covert commu-
nication have been presented in [1] for additive white Gaussian
noise (AWGN) channels, where it is proved that O(

√
n) bits

of information can be transmitted to Bob, reliably and covertly,
in n → ∞ uses of the channel. The same square root law
have been developed for binary symmetric channels (BSCs)
[3] and discrete memoryless channels (DMCs) [4]. Moreover,
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the principle of channel resolvability has been used in [5] to
develop a coding scheme that can reduce the number of required
shared key bits. Also, the first- and second-order asymptotics
of covert communication over binary-input discrete memoryless
channels are studied in [6]. The covert communications setup
is also extended to a broadcast scenario [7] and mutiple-access
scenarios [8] from an information-theoretic perspective.

The achievable covert rate in the aforementioned frame-
work is zero in the limit of large n when noting that
limn→∞ O(

√
n)/n = 0. However, it is demonstrated that

positive covert rates can be achieved by introducing additional
uncertainty, from Willie’s perspective, into the system. For
instance, it is shown in [9], [10] that Willie’s uncertainty
about his noise power helps in achieving positive covert rates.
Moreover, by considering slotted AWGN channels, it is proved
in [11] that positive covert rates are achievable if the warden
does not know when the transmission is taking place. The possi-
bility of achieving positive-rate covert communication is further
demonstrated for amplify-and-forward (AF) relaying networks
with a greedy relay attempting to transmit its own information
to the destination on top of forwarding the source’s information
[12], dual-hop relaying systems with channel uncertainty [13],
a downlink scenario under channel uncertainty and with a
legitimate user as cover [14], and a single-hop setup with a
full-duplex receiver acting as a jammer [15].

Prior studies on covert communication in wireless setups
often consider transmission over conventional radio frequency
(RF) wireless links. However, a superior performance, in terms
of covertness and achievable rates, can be attained when
performing the covert communication over millimeter-wave
(mmWave) bands. This makes mmWave bands a suitable option
for covert communication to increase the security level of
wireless applications involving critical data, motivating the
investigation of mmWave covert communications. Given the
significant differences between the channel models and sys-
tem architectures of mmWave communication and that of RF
communication, the existing results on covert communications
can not be immediately extended to covert communication over
mmWave band. In particular, communication over mmWave
bands can exploit directive beams, thanks to the deployment
of massive antenna arrays, to compensate for the path losses
over these ranges of frequencies. In this paper, we study covert
communication over mmWave channels from a communication
theory perspective, i.e., by analyzing the performance of the
system in the limit of large block-lengths n → ∞, and show
the superiority of mmWave covert communication, in terms of
covertness and rate, compared to the RF counterpart.



II. CHANNEL AND SYSTEM MODELS

A. Channel Model
Recent experimental studies have demonstrated that

mmWave links are highly sensitive to blocking effects [16],
[17]. In order to model this characteristic, a proper channel
model should differentiate between the LOS and non-LOS
(NLOS) channel models since the path loss in the NLOS
links can be much higher than that of the LOS path due
to the weak diffractions in the mmWave band. Therefore,
two different sets of parameters are considered for the LOS
and NLOS mmWave links, and a deterministic function
PLOS(dij) ∈ [0, 1], that is a non-increasing function of dij ,
the link distance (in meters) between nodes i and j, is the
probability that an arbitrary link of length dij is LOS. We
consider a generic PLOS(dij) throughout our analysis and use
the model PLOS(dij) = e−dij/200, suggested in [17], for our
numerical analysis.

Similar to [17], we express the channel coefficient for an
arbitrary mmWave link between the transmitter i and receiver j
as hij = h̃ij

√︁
GijLij , where h̃ij , Gij , and Lij are respectively

the channel fading coefficient, the total directivity gain (includ-
ing both the transmitter and receiver beamforming gains), and
the path loss of the i-j mmWave link.

To characterize the path loss Lij of the i − j link with
the length dij , we consider different path loss exponents
(αL, αN) and intercepts (CL, CN) for the LOS and NLOS links,
respectively. Consequently, denoting the path losses associated
with the LOS and NLOS links as L

(L)
ij and L

(N)
ij , respectively,

the path loss Lij is either L
(L)
ij = CLd

−αL
ij with probability

PLOS(dij) or L(N)
ij = CNd

−αN
ij with probability 1−PLOS(dij).

To ascertain the total directivity gain Gij , we use the
common sectored-pattern antenna model adopted in [18], [19]
which approximates the actual array beam pattern by a step
function, i.e., with a constant main lobe M

(q)
X over the

beamwidth θ
(q)
X and a constant side lobe m

(q)
X otherwise, where

X ∈ {TX,RX} and q ∈ {i, j}. Then, for a given link, if the
spatial arrangement of the beams of the transmitter and receiver
are known, the total directivity gain can be known from the
product of the gains of the transmitter and receiver. In a partic-
ular case where the main lobe of a node q (either transmitter or
receiver) is pointed to another node, we assume some additive
beamsteering errors denoted by a symmetric random variable
(RV) E(q)

X around the transmitter-receiver direction. Similar to
[19], it is assumed that node q will have a gain of M

(q)
X if

|E(q)
X | < θ

(q)
X /2, i.e., with probability F|E(q)

X |(θ
(q)
X /2) and a gain

of m(q)
X otherwise, where FX(x) is the cumulative distribution

function (CDF) of the RV X .
Finally, it is common in the literature to model the fading am-

plitude of mmWave links as independent Nakagami-distributed
RVs each with shape parameter ν ⩾ 1/2 and scale parameter
Ω = E[|h̃ij |2] = 1, and consider different Nakagami parameters
for the LOS and NLOS links as νL and νN, respectively [17],
[18]. In the case of Nakagami-m fading with parameters νB,
B ∈ {L,N}, and Ω = 1, |h̃ij |2 has a normalized gamma
distribution with shape and scale parameters of νB and 1/νB,
respectively, i.e., |h̃ij |2 ∼ Gamma(νB, 1/νB).

Note that, from an information-theoretic perspective,
mmWave communications, and in general wideband communi-
cations, can be viewed as low-capacity scenarios [20] suggest-
ing a natural framework for mmWave covert communications.

B. System Model

We consider the common setup of covert communication
comprised of three parties: a transmitter Alice is intending to
covertly communicate to a receiver Bob over mmWave bands
when a warden Willie is attempting to realize the existence
of this communication. Alice employs a dual-beam mmWave
transmitter consisting of two antenna arrays. The first antenna
array is used for the transmission to Bob while the second array
is exploited as a jammer to enable positive-rate mmWave covert
communication. Therefore, when Bob is not in the main lobe of
Alice-Willie link, he receives the jamming signal gained with
the side lobe of the second array in addition to receiving the
desired signal from Alice with the main lobe of the first array.
Similarly, when Willie is not in the main lobe of Alice-Bob
link, he receives the desired signal gained with the side lobe
of the first array in addition to receiving the jamming signal
from Alice with the main lobe of the second array. On the
other hand, when Bob is in the main lobe of Willie’s link, or
vice versa, both of their received signals are gained with main
lobes. Throughout our analysis we assume that Alice, Bob, and
Willie are in some fixed locations (hence having some given
directivity gains) and evaluate the impact of changing Willie’s
location in our numerical results.

Denoting the channel coefficients between Alice’s first and
second arrays and the node j ∈ {b, w} (representing Bob and
Willie) as haj,f and haj,s, respectively, one can observe that
the path loss gains are the same, i.e., Laj,f = Laj,s = Laj ,
while the fading gains |h̃aj,f |2 and |h̃aj,s|2 are independent
normalized gamma RVs. We assume quasi-static fading chan-
nels meaning that fading coefficients remain constant over a
block of n channel uses. We further assume that Alice transmits
the desired signal with a publicly-known power Pa while the
jamming transmit power PJ of its second array is not known
and changes independently from a block to another block. In
this paper, we assume that PJ varies according to a uniform
distribution in the interval [0, Pmax

J ] while the results can
be extended to other distributions using a similar approach.
Let Gaj,f and Gaj,s denote the total directivity gains of the
links between Alice’s first and second arrays and the node
j ∈ {b, w}, respectively. Then, when Alice is transmitting to
Bob, the received signals by Bob and Willie at each channel
use i = 1, 2, ..., n can be expressed as

yb(i) =
√︁

PaGab,fLab h̃ab,fxa(i)

+
√︁

PJGab,sLab h̃ab,sxJ(i) + nb(i), (1)

yw(i) =
√︁
PaGaw,fLaw h̃aw,fxa(i)

+
√︁
PJGaw,sLaw h̃aw,sxJ(i) + nw(i), (2)

respectively, where xa and xJ are Alice’s desired and jamming
signals, respectively, satisfying E[|xa(i)|2] = E[|xJ(i)|2] = 1.
Moreover, nb and nw are zero-mean Gaussian noises at Bob
and Willie’s receiver with variances σ2

b and σ2
w, respectively.



III. WILLIE’S DETECTION ERROR RATE

As discussed earlier, Willie attempts to detect whether Alice
is transmitting to Bob or not. We assume that Willie has a
perfect knowledge about his channel from Alice and applies
binary hypothesis testing when he is unaware of the value of
PJ . The null hypothesis H0 states that Alice did not transmit
to Bob while the alternative hypothesis H1 specifies that Alice
did transmit to Bob. There are two types of errors that can
occur. Willie’s decision of hypothesis H1 when H0 is true
is referred to as a false alarm and its probability is denoted
by PFA. On the other hand, Willie’s decision in favor of H0

when H1 is true classifies a missed detection, whose probability
is denoted by PMD. Then Willie’s overall detection error is
denoted by Pe,w ≜ PFA + PMD. We say a positive-rate covert
communication is possible if for any ϵ > 0 there exists a
positive-rate communication between Alice and Bob satisfying
Pe,w ⩾ 1− ϵ as the number of channel uses n → ∞.

A. Pe,w with the Optimal Detector at Willie

As it is proved in [21, Lemma 2] for AWGN channels and
also pointed out in [14, Lemma 1], the optimal decision rule
that minimizes Willie’s detection error is given by

Tw ≜
1

n

n∑︂
i=1

|yw(i)|2
H1

≷
H0

τ, (4)

where τ is Willie’s detection threshold for which we obtain its
optimal value/range later in this subsection. Also, using (2), the
strong law of large numbers, and noting that n → ∞ (see, e.g.,
the proof of [14, Theorem 3]), Tw under hypotheses H0 and
H1 is given by

TH0
w = PJGaw,sLaw|h̃aw,s|2 + σ2

w, (5)

TH1
w =PaGaw,fLaw|h̃aw,f |2+PJGaw,sLaw|h̃aw,s|2+σ2

w,
(6)

respectively. The optimal threshold of Willie’s detector and his
corresponding detection error are characterized in the following
theorem.

Theorem 1. The optimal threshold τ∗ for Willie’s detector is
in the interval

τ∗ ∈
{︃
[λ1, λ2], λ1 < λ2,
[λ2, λ1], λ1 ⩾ λ2,

(7)

and the corresponding minimum detection error rate is

P ∗
e,w =

{︄
0, λ1 < λ2,

1− PaGaw,f |h̃aw,f |2

Pmax
J Gaw,s|h̃aw,s|2

, λ1 ⩾ λ2,
(8)

where λ1 ≜ Pmax
J Gaw,sLaw|h̃aw,s|2 + σ2

w and λ2 ≜
PaGaw,fLaw|h̃aw,f |2 + σ2

w.

Proof: Using (5) the false alarm probability is given by

PFA = Pr
(︁
TH0
w > τ

)︁
= Pr

(︄
PJ >

τ − σ2
w

Gaw,sLaw|h̃aw,s|2

)︄

=

⎧⎪⎨⎪⎩
1, τ < σ2

w,

1− τ−σ2
w

Pmax
J Gaw,sLaw|h̃aw,s|2

, σ2
w ⩽ τ ⩽ λ1,

0, τ ⩾ λ1.

(9)

Moreover, using (6) the missed detection probability is given
by

PMD = Pr
(︁
TH1
w < τ

)︁
= Pr

(︄
PJ <

τ − λ2

Gaw,sLaw|h̃aw,s|2

)︄

=

⎧⎨⎩
0, τ < λ2,

τ−λ2

Pmax
J Gaw,sLaw|h̃aw,s|2

, λ2 ⩽ τ ⩽ λ3,

1, τ ⩾ λ3,

(10)

where λ3 ≜ λ2 +Pmax
J Gaw,sLaw|h̃aw,s|2. Using (9) and (10),

and by following a similar argument as in the proof of [15,
Theoem 1], the range of optimal threshold and the correspond-
ing error rate are obtained as (7) and (8), respectively.
Remark 1. Eq. (8) shows that for small values of Pmax

J such
that Pmax

J Gaw,s|h̃aw,s|2 ⩽ PaGaw,f |h̃aw,f |2 Willie can attain
a zero error rate negating the possibility of achieving a positive-
rate covert communication in the limit of n → ∞. Although in-
creasing Pmax

J beyond PaGaw,f |h̃aw,f |2/(Gaw,s|h̃aw,s|2) can
increase P ∗

e,w and enable a positive-rate covert communication
(P ∗

e,w → 1 as Pmax
J → ∞), it also degrades the performance

of the desired Alice-Bob link as we will see in Section IV. The
superiority of mmWave covert communication to that of omni-
directional RF communication can be observed by noticing
the beneficial impact of beamforming. In fact, in the received
signal by Willie, PJ is gained with Gaw,s which is much
larger than the gain Gaw,f of Pa; this significantly degrades
the performance of Willie’s detector. The opposite situation
happens for the Alice-Bob link where the desired signal is
gained with Gab,f which is much larger than the gain Gab,s

of the jamming signal.

B. E[P ∗
e,w] From Alice’s Perspective

Since Alice and Bob are unaware of the instantaneous
realization of the channel between Alice and Willie, they should
rely on the expected value of P ∗

e,w. Note also that the minimum
error rate P ∗

e,w in (8) is independent of the beamforming gain of
Willie’s receiver as it cancels out in the ratio of Gaw,f/Gaw,s

and also in the comparison between λ1 and λ2. Furthermore,
Alice perfectly knows the gain ma,f of the side lobe of her
first array to Willie. However, she has uncertainty about the
gain g(a,s) of the main lobe of the second array toward Willie
due to the misalignment error; it is either g

(a,s)
1 ≜ Ma,s with

probability b
(a,s)
1 ≜ F|Ea,s| (θa,s/2) or g

(a,s)
2 ≜ ma,s with

probability b
(a,s)
2 ≜ 1 − F|Ea,s| (θa,s/2). Moreover, Alice and

Bob do not know whether the Alice-Willie link is LOS or
NLOS; hence, they should take into account two possibilities
given the LOS probability PLOS(daw). Next, the expected
value of P ∗

e,w form Alice’s perspective is characterized in the
following theorem.

Theorem 2. The expected value of P ∗
e,w form Alice’s perspec-

tive can be characterized as (11) shown at the top of the next
page where Paw(L) = PLOS(daw), Paw(N) = 1−PLOS(daw),
Γ(·) is the gamma function [22, Eq. (8.310.1)], and g

(a,s)
k and

b
(a,s)
k are defined above for k ∈ {1, 2}. Moreover, the function



E[P ∗
e,w]=

∑︂
B∈{L,N}

Paw(B)
2∑︂

k=1

b
(a,s)
k

[︃
1+S(νB, g

(a,s)
k )

]︃
×
[︃
1−S(νB, g

(a,s)
k )+

Pama,fν
νB
B

Pmax
J g

(a,s)
k ηBΓ(νB)

νB∑︂
l=1

(︃
νB
l

)︃
(−1)l

l
I(νB, l, g

(a,s)
k )

]︃
. (11)

S(νB, g
(a,s)
k ) is defined as

S(νB, g
(a,s)
k )≜

νB∑︂
l=1

(︃
νB
l

)︃
(−1)l

(︄
1+l

ηBP
max
J g

(a,s)
k

Pama,fνB

)︄−νB

, (12)

and I(νB, l, g
(a,s)
k ) for νB = 1 and νB ⩾ 2 is defined as

I(1, l, g
(a,s)
k ) ≜ ln

(︄
1 + l

Pmax
J g

(a,s)
k

Pama,f

)︄
, (13)

I(νB ⩾ 2, l, g
(a,s)
k ) ≜

(νB − 2)!

ννB−1
B

[︃
1

−

(︄
1 + l

ηBP
max
J g

(a,s)
k

Pama,fνB

)︄−νB+1 ]︃
. (14)

Proof: Let PC
e,w, λC

1 , and λC
2 denote the values of P ∗

e,w,
λ1, and λ2, respectively, conditioned on the blockage instance
B ∈ {L,N} and the gain g(a,s) of Alice’s second array to
Willie. Then using (8) we have

E[PC
e,w]=EλC

1 <λC
2
[PC

e,w]Pr(λ
C
1<λ

C
2 )+EλC

1 ⩾λC
2
[PC

e,w]Pr(λ
C
1⩾λ

C
2 )

= Pr(λC
1 ⩾λC

2 )

⎛⎝1− Pama,f

Pmax
J g(a,s)

EλC
1 ⩾λC

2

⎡⎣|h̃(B)

aw,f |2

|h̃
(B)

aw,s|2

⎤⎦⎞⎠. (15)

The closed form of Pr(λC
1 ⩾ λC

2 ) can be derived as

Pr(λC
1 ⩾λC

2 ) = Pr

(︃
|h̃

(B)

aw,f |2 ⩽
Pmax
J g(a,s)

Pama,f
|h̃

(B)

aw,s|2
)︃

(a)
=

νB∑︂
l=0

(︃
νB
l

)︃
(−1)l E|h̃(B)

aw,s|2

[︃
exp

(︃
−ηBl

Pmax
J g(a,s)

Pama,f
|h̃

(B)

aw,s|2
)︃]︃

(b)
=

νB∑︂
l=0

(︃
νB
l

)︃
(−1)l

(︃
1 + l

ηBP
max
J g(a,s)

Pama,fνB

)︃−νB

, (16)

where step (a) follows from Alzer’s lemma [23], [18, Lemma
6] for a normalized gamma RV X ∼ Gamma(νB, 1/νB),
which states that Pr (X < x) can tightly be approximated
with [1− exp(−ηBx)]

νB where ηB = νB(νB!)
−1/νB , and then

applying the binomial theorem assuming νB is an integer [18].
Moreover, step (b) is derived using the moment generating
function (MGF) of a normalized gamma RV X , i.e., E[etX ] =
(1− t/νB)

−νB for any t < νB.
Moreover, for the expectation term in (15) we have

EλC
1 ⩾λC

2

⎡⎣|h̃(B)

aw,f |2

|h̃
(B)

aw,s|2

⎤⎦=E

⎡⎣|h̃(B)

aw,f |2

|h̃
(B)

aw,s|2

⃓⃓⃓⃓
⃓|h̃(B)

aw,f |2⩽
Pmax
J g(a,s)

Pama,f
|h̃

(B)

aw,s|2
⎤⎦

=

∫︂ ∞

0

f|h̃(B)
aw,s|2

(y)

y

[︄∫︂ C1y

0

xf|h̃(B)
aw,f |2

(x)dx⏞ ⏟⏟ ⏞
V1

]︄
dy, (17)

where C1 ≜ Pmax
J g(a,s)

Pama,f
, and f|h̃(B)

aw,f |2
(x) and f|h̃(B)

aw,s|2
(y)

are the probability density functions of the fading coefficients
|h̃

(B)

aw,f |2 and |h̃
(B)

aw,s|2, respectively. Applying the part-by-part

integration rule to V1 and then using Alzer’s lemma together
with the binomial theorem yields

V1 =C1y

νB∑︂
l1=0

(︃
νB
l1

)︃
(−1)l1e−l1ηBC1y

− C1y −
νB∑︂

l2=1

(︃
νB
l2

)︃
(−1)l2

ηBl2

[︁
1− e−l2ηBC1y

]︁
. (18)

By plugging (18) into (17), using the MGF of the normalized
gamma RV |h̃

(B)

aw,s|2, and then noting that f|h̃(B)
aw,s|2

(y) =

ννB
B yνB−1e−νBy/Γ(νB) we have

EλC
1 ⩾λC

2

⎡⎣|h̃(B)

aw,f |2

|h̃
(B)

aw,s|2

⎤⎦ = C1

νB∑︂
l1=1

(︃
νB
l1

)︃
(−1)l1

(︃
1 + l1

ηBC1

νB

)︃−νB

−
νB∑︂

l2=1

(︃
νB
l2

)︃
(−1)l2ννB

B
ηBl2Γ(νB)

[︃ ∫︂ ∞

0

yνB−2e−νBydy

−
∫︂ ∞

0

yνB−2e−(l2ηBC1+νB)ydy

]︃
. (19)

Now given that the parameter νB of Nakagami-m fading is
always larger than or equal to 0.5 and it is assumed an integer
here, we have νB ∈ N where N stands for the set of natural
numbers. For νB ⩾ 2 using [22, Eq. (3.351.3)] we have∫︁∞
0

yνB−2e−αydy = (νB − 2)!/ανB−1 for any real α > 0.
On the other hand, for νB = 1 using [22, Eq. (2.325.1)]
we have

∫︁∞
0

y−1e−αydy = Ei(−αy)|∞0 , where Ei(·) is the
exponential integral function defined as [22, Eq. (8.211.1)] for
negative arguments. Therefore, following a similar approach
to the proof of [24, Corollary 2] we can calculate the differ-
ence of the two integrals in (19) as limy→0[Ei(−(l2ηBC1 +
νB)y)−Ei(−νBy)] = ln([l2ηBC1 + νB]/νB) which is equal to
ln(1 + l2C1) for νB = 1 (note that ηB = 1 for νB = 1, and
Ei(−∞) = 0). This completes the proof of the theorem given
the definition of I(νB, l, g(a,s)) in Theorem 2.
Remark 2. In the derivation of Theorem 2 it is assumed that
Willie is not in the main lobe of Alice’s first antenna array
and hence receives the covert signal by a side lobe gain ma,f .
However, if Willie is within the main lobe of the first array,
we should include another averaging over the gain g(a,f) of
the first array given the beamsteering error, i.e., that gain is
either g

(a,f)
1 ≜ Ma,f with probability b

(a,f)
1 ≜ F|Ea,f | (θa,f/2)

or g(a,f)2 ≜ ma,f with probability b
(a,f)
2 ≜ 1−F|Ea,f | (θa,f/2).

IV. PERFORMANCE OF THE ALICE-BOB LINK

A. Outage Probability

We assume that Alice targets a rate Rb requiring the Alice-
Bob link to meet a threshold signal-to-interference-plus-noise
ratio (SINR) γth ≜ 2Rb−1. Then the outage probability PAB

out ≜
Pr(γab < γth) in achieving Rb can be characterized as Theo-



rem 3, where the SINR γab of the Alice-Bob link is given using
(1) as

γab =
PaGab,fLab|h̃ab,f |2

PJGab,sLab|h̃ab,s|2 + σ2
b

. (20)

Note that in addition to |h̃ab,f |2, |h̃ab,s|2 and PJ , the blockage
instance B ∈ {L,N} and the antenna gains can also randomly
change from a transmission block to another block. In particu-
lar, while we assume that the jamming signal arrives with the
deterministic side lobe gain ma,s, there are still uncertainties
in the gains of Alice’s first array and Bob’s receiver (they
are pointing their main lobes) due to the beamsteering error.
Therefore, the gain g(a,f) of the main lobe of Alice’s first
array pointed to Bob is either g

(a,f)
1 ≜ Ma,f with probability

b
(a,f)
1 ≜ F|Ea,f | (θa,f/2) or g

(a,f)
2 ≜ ma,f with probability

b
(a,f)
2 ≜ 1− F|Ea,f | (θa,f/2). Similarly, the gain g(b) of Bob’s

receiver is either g(b)1 ≜ Mb with probability b
(b)
1 ≜ F|Eb| (θb/2)

or g
(b)
2 ≜ mb with probability b

(b)
2 ≜ 1 − F|Eb| (θb/2).

Furthermore, in the derivation of Theorem 3 we assume that
Willie is not in the main lobe of Alice’s first array. However, if
Willie is in the Alice-Bob direction, we should include another
averaging of the gain of the main lobe of Alice’s second array
carrying the jammer signal, i.e., instead of a deterministic ma,s

we should consider two possibilities g
(a,s)
k with probabilities

b
(a,s)
k , k ∈ {1, 2}, defined in Section III-B.

Theorem 3. The outage probability of the Alice-Bob link
in achieving the target rate Rb ≜ log2(1 + γth) can be
characterized as

PAB
out =

∑︂
B∈{L,N}

Pab(B)
2∑︂

k1=1

b
(a,f)
k1

2∑︂
k2=1

b
(b)
k2

[︃
1+

νB∑︂
l=1

(︃
νB
l

)︃
(−1)l

× exp

(︃
− lηBγthσ

2
b

Pag
(a,f)
k1

g
(b)
k2

L
(B)
ab

)︃
V (νB, l, g

(a,f)
k1

)

]︃
, (21)

where Pab(L) = PLOS(dab) and Pab(N) = 1 − PLOS(dab).
Moreover, V (νB, l, g

(a,f)
k1

) for νB = 1 and νB ⩾ 2 is defined as

V (1, l, g
(a,f)
k1

)≜
Pag

(a,f)
k1

Pmax
J lγthma,s

ln

(︃
1+

Pmax
J lγthma,s

Pag
(a,f)
k1

)︃
, (22)

V (νB ⩾ 2, l, g
(a,f)
k1

) ≜
νBPag

(a,f)
k1

Pmax
J lηBγthma,s(νB − 1)

×
[︃
1−

(︃
1 +

Pmax
J lηBγthma,s

νBPag
(a,f)
k1

)︃1−νB]︃
. (23)

Proof: Given the SINR of the Alice-Bob link in (20), we
have for the outage probability conditioned on the blockage

instance B, and the antenna gains g(a,f) and g(b)

PAB
out,C ≜Pr(γab < γth|B, g(a,f), g(b))

(a)
= Pr

(︂
|h̃

(B)

ab,f |2 < C2PJ |h̃
(B)

ab,s|2 + C3

)︂
(b)
=

νB∑︂
l=0

(︃
νB
l

)︃
(−1)le−lηBC3 E

PJ ,|h̃
(B)
ab,s|2

[︂
e−lηBC2PJ |h̃

(B)
ab,s|

2
]︂

(c)
=

νB∑︂
l=0

(︃
νB
l

)︃
(−1)le−lηBC3 EPJ

[︄(︃
1 +

lηBC2PJ

νB

)︃−νB
]︄

(d)
= 1+

νB∑︂
l=1

(︃
νB
l

)︃
(−1)le−lηBC3

Pmax
J

∫︂ Pmax
J

0

(︂
1+

lηBC2x

νB

)︂−νB
dx. (24)

where in step (a) we have defined C2 ≜ γthma,s/(Pag
(a,f))

and C3 ≜ γthσ
2
b/(Pag

(a,f)g(b)L
(B)
ab ). Moreover, step (b) fol-

lows by Alzer’s lemma together with the binomial theorem, and
step (c) is derived using the MGF of the normalized gamma RV
|h̃

(B)

ab,s|2. Finally, taking the integral in step (d) and recalling the
definition of the function V (νB, l, g

(a,f)
k1

) from the statement of
the theorem complete the proof.

B. Maximum Effective Covert Rate

Given any target data rate Rb, Alice and Bob can have the
effective communication rate Ra,b ≜ Rb(1−PAB

out ), where their
outage probability PAB

out is obtained using Theorem 3. The goal
here is to determine the optimal value of Pmax

J that maximizes
Ra,b while also satisfying the covertness requirement, i.e.,
E[P ∗

e,w] ⩾ 1 − ϵ for any ϵ > 0. Given that E[P ∗
e,w] and PAB

out

monotonically increase with Pmax
J (hence Ra,b decreases with

Pmax
J ), we have the following proposition for the maximum

covert communication rate that can be achieved in our setup.
However, the optimal rate per Proposition 4 needs to be evalu-
ated numerically.

Proposition 4. The maximum covert rate achievable in the
considered setup, given fixed system and channel parameters
and fixed covertness requirement ϵ and target data rate Rb,
can be obtained as R

∗
a,b ≜ Rb(1 − P ∗AB

out ) where P ∗AB
out is

defined as (11) while evaluated in Pmax
J,opt that is the solution of

the equation E[P ∗
e,w] = 1− ϵ for Pmax

J .

Remark 3. Since in the special case of νB = 1 the normalized
gamma distribution simplifies to the exponential distribution
with mean one, we argue that the results derived in this paper
particularize to the same system model under Rayleigh fading
channels by substituting νB = 1.

V. NUMERICAL RESULTS

In this section, we provide the numerical results for various
performance metrics delineated in Theorem 2, Theorem 3, and
Proposition 4. We consider the link lengths daw = dab = 25
m, path loss exponents αL = 2, αN = 4, path loss intercepts
CL = CN = 10−7, Nakagami fading parameters νL = 3,
νN = 2, main lobe gains Ma,f = Ma,s = Mb = 15 dB,
side lobe gains ma,f = ma,s = mb = −5 dB, noise power
σ2
w = σ2

b = −74 dBm, and array beamwidths θa,f = θa,s =
θb = 30o, unless explicitly mentioned. We further assume that
the beamsteering error follows a Gaussian distribution with
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Figure 1. The expected value E[P ∗
e,w] of Willie’s detection error rate for a
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Figure 2. The outage probability of the Alice-Bob link for various values of
the transmit power Pa, threshold rate Rb, and noise variance σ2

b .

mean zero and variance ∆2; hence, F|E|(x) = erf(x/(∆
√
2))

where erf(·) denotes the error function [19]. And we choose
∆ = 5o in our numerical analysis unless explicitly specified.

Figure 1 shows the expected value E[P ∗
e,w] of Willie’s detec-

tion error rate for various transceiver parameters. It is observed
that E[P ∗

e,w] monotonically increases with Pmax
J . Moreover,

increasing Ma,s and θa,s increases E[P ∗
e,w] while increasing

ma,f , Pa, and ∆ decreases E[P ∗
e,w].

Figure 2 illustrates that the reliability of Alice-to-Bob trans-
mission degrades by increasing the threshold rate Rb and the
noise variance σ2

b while increasing Pa improves the perfor-
mance. Also, PAB

out monotonically increases with Pmax
J .

Effective covert rates corresponding to the benchmark sce-
nario in Figure 1 is summarized in Table I for ϵ = 0.05 and
various threshold rates. It is observed that, for a given link,
the effective covert rate first increases and then decreases by
increasing the threshold rate. Note that mmWave links benefit
from much larger bandwidths compared to RF links; hence,
the results in Table I imply much higher data rates, in bits per
second.

Table I
COVERT RATES FOR ϵ = 0.05 AND VARIOUS THRESHOLD RATES.

Rb 0.1 0.5 1 2.5 5 10

P ∗AB
out 0.00313 0.04253 0.0935 0.121 0.1308 0.9913

R
∗
a,b 0.0997 0.4787 0.9065 2.1975 4.3460 0.0870

VI. CONCLUSION

In this paper, we investigated covert communication over
mmWave links. We employed a dual-beam transmitter to si-
multaneously transmit the desired signal to the destination
and propagate a jamming signal to degrade the warden’s
performance. We derived the closed-form expressions for the
expected value of the warden’s error rate and the outage
probability of the Alice-Bob link. Our results demonstrated the
superiority of mmWave links compared to RF links in terms of
effective covert rates.
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