
HDMF: Hierarchical Data Modeling Framework for
Modern Science Data Standards

Andrew J. Tritt∗‖, Oliver Rübel∗‖, Benjamin Dichter†, Ryan Ly∗, Donghe Kang‡, Edward F. Chang¶, Loren M. Frank§
Kristofer Bouchard†

∗Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

{ajtritt, oruebel, rly}@lbl.gov
†Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

{kebouchard, bdichter}@lbl.gov
‡ Computer Science and Engineering, Ohio State University, Columbus, OH, USA

kang.1002@osu.edu
§ Howard Hughes Medical Institute, Kavli Institute for Fundamental Neuroscience, Department of Physiology,

University of California, San Francisco, San Francisco, CA, USA

loren@phy.ucsf.edu
¶ Department of Neurological Surgery and the Center for Integrative Neuroscience,

University of California, San Francisco, San Francisco, CA, USA

edward.chang@ucsf.edu

Abstract—A ubiquitous problem in aggregating data across
different experimental and observational data sources is a lack
of software infrastructure that enables flexible and extensible
standardization of data and metadata. To address this challenge,
we developed HDMF, a hierarchical data modeling framework
for modern science data standards. With HDMF, we separate the
process of data standardization into three main components: (1)
data modeling and specification, (2) data I/O and storage, and (3)
data interaction and data APIs. To enable standards to support
the complex requirements and varying use cases throughout the
data life cycle, HDMF provides object mapping infrastructure
to insulate and integrate these various components. This ap-
proach supports the flexible development of data standards and
extensions, optimized storage backends, and data APIs, while
allowing the other components of the data standards ecosystem
to remain stable. To meet the demands of modern, large-scale
science data, HDMF provides advanced data I/O functionality
for iterative data write, lazy data load, and parallel I/O. It also
supports optimization of data storage via support for chunking,
compression, linking, and modular data storage. We demonstrate
the application of HDMF in practice to design NWB 2.0 [13],
a modern data standard for collaborative science across the
neurophysiology community.

Index Terms—data standards, data modeling, data formats,
HDF5, neurophysiology

This work was sponsored by the Kavli foundation. Research reported in
this publication was supported by the National Institute of Mental Health of
the National Institutes of Health under Award Number R24MH116922 to O.
Rübel and by the Simons Foundation for the Global Brain grant 521921 to
L. Frank. The content is solely the responsibility of the authors and does not
necessarily represent the official views of the National Institutes of Health.

‖These authors contributed equally to this work

I. INTRODUCTION

As technological advances continue to accelerate the vol-

umes and variety of data being produced across scientific

communities, data engineers and scientists must grapple with

the arduous task of managing their data. A subtask to this

broader challenge is the curation and organization of complex

data. Within expansive scientific communities, this challenge is

exacerbated by the idiosyncrasies of experimental design, lead-

ing to inconsistent and/or insufficient documentation, which in

turn makes data difficult or impossible to interpret and share.

A common solution to this problem is the adoption of a data

schema, a formal description of the structure of data.

Proper data schemas ensure data completeness, allow for

data to be archived, and facilitate tool development against

a standard data structure. Despite the benefit to scientific

communities, efforts to establish standards often fail. Diverse

analysis tools and storage needs drive conflicting needs in data

storage and API requirements, hindering the development and

community-wide adoption of a common standard. Here, we

present HDMF, a framework that addresses these problems

by separating data standardization into three components:

Data Specification, Data Storage, and Data Interaction. By

creating interfaces between these components, we have created

a modular system that allows users to easily modify these

components without altering the others. We demonstrate the

utility of HDMF by evaluating its use in the development of

NWB, a data standard for storing and sharing neurophysiology

data across the systems neuroscience community.

In this work, we first present an assessment of the state of

the field (Sec. II) and common requirements for data standards

2019 IEEE International Conference on Big Data (Big Data)

978-1-7281-0858-2/19/$31.00 ©2019 IEEE 165

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:34:52 UTC from IEEE Xplore. Restrictions apply.

(Sec. III). Motivated by these requirements, we then describe

HDMF, a novel software architecture for hierarchical data

standards that addresses key limitations of the current state

of the art (Sec. IV). Finally, we assess this novel architecture

and demonstrate its utility in building NWB 2.0, a community

data standard for collaborative systems neuroscience (Sec. V).

II. RELATED WORK

A. File Formats

File formats used in the scientific community vary broadly,

ranging from: 1) basic formats that explicitly specify how data

is laid out and formatted in binary or text data files (e.g., CSV,

flat binary, etc.), 2) text files based on language standards,

e.g., the Extensible Markup Language (XML) [3], JavaScript

Object Notation (JSON) [6], or YAML [2], to 3) self-

describing array-based formats and libraries, e.g., HDF5 [19],

NetCDF [10], or Zarr [21]. While basic, explicit formats are

common, they often suffer from a lack of portability, scalabil-

ity and rigor in specification, and as such are not compliant

with FAIR [20] data principles. Text-based standards, e.g.,

JSON, (in combination with character-encoding schema, e.g.,

ASCII or Unicode) are popular for standardizing documents

for data exchange, particularly for relatively small, structured

documents; however, they are impractical for storage and

exchange of large, scientific data arrays. For storing large sci-

entific data, self-describing, array-based formats, e.g., HDF5,

have gained wide popularity in the scientific community.

B. Data Standards

Building on file formats, data standards specify the or-

ganization of data and metadata to enable standardized ex-

change, access, and use and to facilitate reuse, integration,

and preservation of data assets. Tool-oriented data standards,

e.g., VizSchema [16], NIX [17], XDMF [4], propose to bridge

the gap between general-purpose, self-describing formats and

the need for standardized tools via additional lightweight, low-

level schema to further standardize the description of the low-

level data organization to facilitate data exchange and tool

development. However, such tool-oriented standards are still

fairly low-level and often do not consider semantics of the

data critical for applications.

Conversely, application-oriented data standards, such as

NeXus [7], BRAINformat [11], or CXIDB [8] among many

others, provide community-specific solutions that focus on the

semantic organization of data for target applications. However,

the approaches and tools developed do not generalize to other

scientific communities.

III. REQUIREMENTS

Data standards are central to all aspects of the data life-

cycle, from data acquisition, pre-processing, and analysis to

data publication, preservation, and reuse. A data standard must

be flexible enough to accommodate the diversity of data types

and metadata that arise throughout this cycle. Additionally,

different use cases often emphasize different requirements.

This leads to broad, and sometimes conflicting, requirements

for data standards. Broadly speaking, requirements are driven

by properties of and constraints on the data that need to be

stored.

The 5 V’s of Big Data—volume, velocity, variety, value, and

veracity—emphasize properties of the data itself, leading to

strict requirements with regard to performance and flexibility

of data standards. A data standard should be flexible enough

to allow for the diversity of data generated by the scientific

community. At the same time, it must not hinder scientists

from storing and accessing large volumes of data. Providing

this functionality requires that APIs for data access, I/O, and

specification be decoupled in such a way that these attributes

of big data can be properly addressed. For example, a standard

should not be tied to a storage format that gives poor I/O

performance nor a format that hinders interactive exploration.

FAIR data principles—findable, accessible, interoperable,

reusable—aim to assist humans and machines in the discovery,

access, and integration of data [20]. In contrast to the 5

Vs, FAIR focuses on requirements for reusability of data.

Achieving FAIRness goals requires that data and metadata be

properly curated and documented, and that data and metadata

be properly associated, both onerous tasks. To ensure that

researchers adhere to these principles, APIs for data access,

I/O, and specification should simplify the process for including

necessary documentation, have data documentation as a core

capability, and facilitate machine and human readability.

IV. SOFTWARE ARCHITECTURE

The HDMF software architecture (see Fig. 1) consists of

four main components:

(i) specification interfaces (blue) for creation and use of the

data standard schema (orange),

(ii) data storage and I/O interfaces for read/write (green),

(iii) front-end data containers defining the user API (purple),

and

(iv) a flexible object mapping API to insulate and integrate

the different system components (red).

Through its modular architecture, HDMF supports:

(i) specification and sharing of data standards (Sec. IV-A),

(ii) advanced data storage, including multiple different stor-

age backends (Sec. IV-B),

(iii) design of easy-to-use user APIs (Sec. IV-C),

(iv) flexible mapping between the specification, user APIs,

and storage to insulate and integrate the various aspects

of the system (Sec. IV-D), and

(v) advanced I/O features to optimize data storage and I/O

(Sec. IV-E).

HDMF is implemented in Python 3 (with 2.7.x support)

and can be easily installed via the popular PIP and Conda

package managers. All sources and documentation for HDMF

are available online via GitHub at https://hdmf-dev.github.io/

using a BSD-style open source license.

A. Format Specification

A data standard describes the rules by which data is

described and stored. In order to share, exchange, and un-

166

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:34:52 UTC from IEEE Xplore. Restrictions apply.

D
at

a
Tr

an
sl

at
io

n
D

at
a

In
te

ra
ct

io
n

�������	
���

������
���

Data
Specification

��������������
��
�����������

R
ea

d
/

W
rit

e

Sp
ec

ifi
ca

tio
n

I/O

��
�����������
���
����
��

���������
�����
���

����������������

����������
��

Object Mapping

������
�

D
at

a
St

or
ag

e
Fig. 1: Software architecture of HDMF (blue box). HDMF

is designed to facilitate the creation of formal data standards

(orange), advanced application APIs (top), and flexible inte-

gration with modern data storage (bottom right).

derstand scientific data, standards need to facilitate human

and programmatic interpretation and formal verification. While

use of text-based documents to describe standards is common,

this approach is not scalable to increasingly complex data and

impedes formal verification. To address this challenge, HDMF

defines a formal language for specification of hierarchical

data standards, i.e., a schema for defining hierarchical data

schemas. This specification language enables the formal defini-

tion, programmatic interpretation, and verification of scientific

data standards, as well as efficient sharing and versioning of

standards documents.

1) Primitives: The HDMF specification language supports

the following main primitives for defining data standards. A

Group (similar to a folder) defines a collection of objects

(subgroups, datasets, and links). A Dataset defines an n-

dimensional array with associated data type and dimensions.

An Attribute defines a small metadata dataset associated with a

group or dataset. Attributes and datasets may store i) basic data

types, e.g., strings (ASCII, UTF-8) or numeric types (float, int,

uint, bool, etc.), ii) flat compound data types similar to structs,

iii) special types, e.g., ISO 8061 [5] datetime string, and iv)

references to other objects.

2) Defining Reusable Data Types: To enable the modular

specification and reuse of data standard components, HDMF

supports the concept of data types. A group or dataset may

be assigned a data type to support referencing and reuse of

the types elsewhere in the specification. Types here are similar

to the concept of a class in object-oriented programming. All

components (groups, datasets, attributes, links) in a standard

specification must have either a unique type or unique name

within a type specification, ensuring a unique mapping be-

tween objects on disk to components of a standard speci-

fication. HDMF enables reuse of types through inheritance

and composition via the keys: i) data type inc to include

an existing type and ii) data type def to define a new type

(Tab. I).

data type inc data type def Description
not set not set Define a dataset/group without a type

(the name must be fixed)
not set set Define a new type

set not set Include an existing type (i.e., com-
position)

set set Define a new type that inherits com-
ponents of an existing type

TABLE I: Defining and reusing types in a format specification.

Using the HDMF specification language, a data standard

schema typically defines a collection and organization of

reusable types. This approach supports modular creation and

extension of data standards through definition of new data

types, while allowing new types to build on existing ones

through inheritance and composition.
3) Data Referencing: In addition to the primitives described

earlier, HDMF also supports the specification of Links to other

types in the specification. Object references are similar to

links but are stored as values of datasets or attributes (rather

than objects inside groups). Using datasets of object references

allows for efficient storage of large collections of references.

Object references, like links, may point to datasets or groups

with an assigned type. Finally, region references are similar to

object references, but in contrast point to regions (i.e., select

subsets) of datasets with an assigned type.
4) Namespaces: The concept of a namespace is used to

collect all specifications corresponding to a data standard,

to document high-level concepts, and to insulate standard

specifications. Within a namespace, specified type names

must be unique, while the same type name may be used

in different namespaces. The namespace further documents

metadata about a standard, e.g., the authors, description, and

version. Using the concept of a namespace makes it easy to

create new data standards, avoids collisions between standards

and format extensions, and facilitates sharing, versioning, and

dissemination of standards.
5) Specification API: HDMF provides a specification API

for building and maintaining data type specifications. The

specification API lets users progressively and programmati-

cally build up data types and add them to namespaces. As these

data types are definitions for groups and datasets, the specifi-

cation API provides corresponding classes (i.e. GroupSpec
and DatasetSpec) for building up these primitive objects

into data type specifications. Additionally, the specification

API provides AttributeSpec, LinkSpec, and RefSpec
for specifying attributes, links, and references, respectively.

After building up data type specifications and adding them to

a namespace, users can serialize the namespace to YAML or

JSON, which can be stored and used elsewhere.
6) Tools: To validate files against a data standard, HDMF

provides a built-in validator. Further, HDMF provides dedi-

167

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:34:52 UTC from IEEE Xplore. Restrictions apply.

cated tools to automatically generate reStructuredText docu-

mentation and figures from a format specification.

B. Storage and I/O

The role of data I/O is to translate data primitives to

and from storage. In practice, requirements of the storage

backend vary depending on the particular use case, e.g.,

data archiving and publication emphasize FAIR principles,

whereas data pipelines place more stringent demands on

performance. Recognizing that no single storage modality can

meet all requirements optimally, HDMF provides an abstract

I/O interface to support integration of new I/O backends.

The HDMF I/O interface consists of two main components:

1) Builders to describe data primitives (Sec. IV-B1) and 2)

the HDMF I/O interface for reading/writing builders from/to

storage (Sec. IV-B2). Leveraging this general design, HDMF

implements a reference storage backend based on HDF5

(Sec. IV-B3), while providing the flexibility to add additional

backends (see Sec. V-B).

1) Builder: Builders define intermediary objects

for I/O and represent the main data primitives.

HDMF defines a corresponding builder class for

each primitive from the specification language, i.e.,

GroupBuilder, DatasetBuilder, LinkBuilder,

ReferenceBuilder, RegionBuilder, etc. Builders

provide a format-independent description of data objects for

storage.

2) HDMF I/O: HDMFIO provides a general, abstract in-

terface for creating new I/O backends. The role of the

backend I/O is then to translate (i.e., read/write) builders

to and from storage. The interface that new I/O backends

need to implement consists of five main functions: the

__init__(...) function to initialize the storage backend,

the open() and close() functions to open and close

the file (or connection to the storage, e.g., a database), the

write_builder(builder) function to translate a given

builder to storage, and the read_builder() function to

load data from storage.

3) HDF5 I/O: HDMF provides HDF5IO, a reference

implementation of a storage backend based on HDF5. As

a concrete implementation of the abstract HDMFIO class,

HDF5IO depends only on the Builders. As such, HDF5IO
is agnostic to the data format specification and front-end API

and supports read/write of any data format specified via the

HDMF specification language. HDF5 was chosen as the main

storage backend for HDMF because it meets a broad range

of the fundamental requirements of scientific data standards.

In particular, HDF5 is self-describing, portable, extensible,

optimized for storage and I/O of large scientific data, and is

supported by many programming languages and analysis tools.

C. User APIs

The role of the user API is to enable users to efficiently

interact with data in memory and to provide usable interfaces

for building user applications. HDMF uses an object-oriented

approach toward user interfaces in which each type in the

format specification is represented by a corresponding front-

end container class.

1) Containers: Containers are Python object representa-

tions of the data specified in a data type specification.

Containers are endowed with an object ID and pointers to

other containers to facilitate internal tracking of relation-

ships, e.g. parent-child relationships. Apart from this, the base

Container class provides no other functionality to the user

to working with instances. Instead, it provides a base for

users to add functionality associated with more specialized

data types. The base Container class is generated from

the metaclass ExtenderMeta, which provides decorators for

designating routines to be used for programmatically defining

behavior and functionality of Container subclasses.

2) Dynamic Containers: HDMF supports the dynamic gen-

eration of container classes to represent data types defined in

a format specification. This functionality enables HDMF to

read and write arbitrary data standards and extensions based

on the format specification alone, i.e., without requiring users

to write custom Container classes. Using dynamic containers

allows users to easily prototype, evaluate, and share new data

types and their definitions.

3) Data Validation: Ensuring compliance of data with the

format specification is central to data standardization. This

includes checking of data compliance at run-time during data

generation as well as tools for post-hoc validation of files.

As a dynamically-typed language, Python does not enforce

data types and only recently added support for type hints

(which are also not enforced). To address this challenge,

HDMF defines docval; a function decorator that allows

documentation and type declaration for inputs and outputs

of a function. Using docval, functions and methods can

enforce variable types and generate standardized Sphinx-style

docstrings for comprehensive API documentation.

HDMF also includes a user-friendly tool for post-hoc valida-

tion. Using the validator, a file can be checked for compliance

to a given format specification to identify errors, such as

missing objects or additional components in a file that are

not governed by the given standard.

D. Object Mapping

The role of the object mapping (Fig 1, red) is to insulate and

integrate the specification, storage, and user API components

of HDMF. Using the format specification, the object mapping

translates between front-end containers and data builders for

I/O. Fig. 2 provides an overview of the main components of the

object mapping API, consisting of the Object Mapper classes,

the Type Map, and the Build Manager.

An Object Mapper maintains the mapping between front-

end API container attributes and the data type specification

components. Its role is to translate data containers using the

format specification to builders for I/O and vice versa. For

each type in the data standard, there exists a corresponding

Container and ObjectMapper class. In many cases, the

default ObjectMapper can be used, which implements a

168

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:34:52 UTC from IEEE Xplore. Restrictions apply.

��������	�
���

��������

ObjectMapper
���������������	���	���
����������

�����
����

Fig. 2: Overview of the HDMF object mapping API. Object

Mappers map between containers and builders while the Type

Map maintains the mapping between data types and containers

and containers and object mappers. Finally, the Build Manager

manages the mapping process to construct containers and

builders and memoizes builders and containers.

default mapping for: 1) objects in the specification to construc-

tor arguments of the Container class and 2) Container
attributes to specification objects. These mappings can be

customized by creating a custom class that inherits from the

default ObjectMapper. To optimize storage and improve

usability of the data API, the representation of data in memory

as part of the container can differ from the organization of

the data in a file. In this case, a direct mapping between

Container attributes, Container constructor arguments,

and specification data types may not be possible. To ad-

dress this challenge, custom functions can be designated

for setting Container constructor arguments or retrieving

Container attributes.

The role of the Type Map then is to map between types

in the format specification, Container classes, and Object

Mapper classes. Using TypeMap instance methods, users

specify which data type specification corresponds to a defined

Container class and which Container class corresponds

to a defined ObjectMapper class. By maintaining these

mappings, a Type Map is then able to convert between all

data types to and from their respective Container classes.

Finally, the BuildManager is responsible for memoiz-

ing Builders and Containers. To ensure a one-to-one cor-

respondence between in-memory Container objects and

stored data (as represented by Builder objects), the

BuildManager maintains a map between Builder objects

and Container objects, and only builds a Builder (from a

Container) or constructs a Container (from a Builder) once,

thereby maintaining data integrity.

E. Advanced Data I/O

Due to the large size of many experimental and observa-

tional datasets, efficient data read and write is essential. HDMF

includes optional classes and functions that provide access to

advanced I/O features for each storage backend. Our primary

storage system, HDF5, supports several advanced I/O features:

1) Lazy Data Load: HDMF uses lazy data load, i.e., while

HDMF constructs the full container hierarchy on read, the

actual data from large arrays is loaded on request. This allows

users to efficiently explore data files even if the data is too

large to fit into main memory.

2) Data I/O Wrappers: Arrays, such as numpy ndarrays,

can be wrapped using the HDMF DataIO class to define per-

dataset, backend-specific settings for write. To enable standard

use of wrapped arrays, DataIO exposes the normal interface

of the array. Using the concept of array wrappers allows

HDMF to preserve the decoupling of the front-end API from

the data storage backend, while providing users flexible control

of advanced per-dataset storage optimization.

To optimize dataset I/O and storage when using HDF5 as

the storage backend, HDMF provides the H5DataIO wrapper,

which extends DataIO, and enables per-dataset chunking and

I/O filters. Rather than storing an n-dimensional array as a

contiguous block, chunking allows the user to split the data

into sub-blocks (chunks) of a specified shape. By aligning

chunks with typical read/write operations, chunking allows

the user to accelerate I/O and optimize data storage. With

chunking enabled, HDF5 also supports a range of I/O filters,

e.g., gzip for compression. Chunking and I/O filters are applied

transparently, i.e., to the user the data appears as a regular n-

dimensional array independent of the storage options used.

3) Iterative Data Write: In practice, data is often not readily

available in memory, e.g., data may be acquired continuously

over time or may simply be too large to fit into main memory.

To address this challenge, HDMF supports writing of dataset

iteratively, one data chunk at a time. A data chunk, represented

by the DataChunk class, consists of a block of data and a

selection describing the location of data in the target dataset.

The AbstractDataChunkIterator class then defines

the interface for iterating over data chunks. Users may define

their own data chunk iterator classes, enabling arbitrary divi-

sion of arrays into chunks and ordering of chunks in the itera-

tion. HDMF provides a DataChunkIterator class, which

implements the common case of iterating over an arbitrary di-

mension of an n-dimensional array. DataChunkIterator
also supports wrapping of arbitrary Python iterators and gen-

erators and allows buffering of values to collect data in larger

chunks for I/O.

4) Parallel I/O: The ability to access (read/write) data in

parallel is paramount to enable science to efficiently utilize

modern high-performance and cloud-based parallel compute

resources and enable analysis of the ever-growing data vol-

umes. HDMF supports the use of the Message Passing Inter-

face (MPI) standard for parallel I/O via HDF5. In practice,

experimental and observational data consists of a complex

collection of small metadata (i.e, few MB to GB), with the bulk

of the data volume appearing in a few large data arrays (e.g.,

raw recordings). In practice, parallel write is most appropriate

for populating the largest arrays, while creation of the metadata

structure is usually simpler and more efficient in serial. With

169

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:34:52 UTC from IEEE Xplore. Restrictions apply.

HDMF, therefore, the initial structure of the file is created

on a single node, and bulk arrays are subsequently populated

in parallel. This use pattern has the advantage that it allows

the user to maintain their workflow for creating files while

providing explicit, fine-grained control over the parallel write

for optimization. Similarly, on read, the object hierarchy is

constructed on all ranks, while the actual data is loaded lazily

in parallel on request.

5) Append: As scientific data is being processed and ana-

lyzed, a common need is to append (i.e., add new components)

to a file. HDMF automatically records for all builders and

containers whether they have been written or modified. On

write, this allows the I/O backend to skip builders that have

already been written previously and append only new builders.

6) Modular Data Storage: Separating data into different

files according to a researcher’s needs is essential for efficient

exploratory analysis of scientific data, as well as production-

level processing of data. To facilitate this, HDMF allows

users to reference objects stored in different files. By default,

backend sources are automatically detected and corresponding

external links are formed across files. For cases where this

default functionality is not sufficient, the H5DataIO wrapper

allows users to explicitly link to objects.

V. EVALUATION

We demonstrate the application of HDMF in practice to

design the NWB 2.0 [13] neurophysiology data standard.

Developed as part of the US NIH BRAIN Initiative, the

NWB data standard supports a broad range of neurophysi-

ology data modalities, including extracellular and intracellular

electrophysiology, optical physiology, behavior, stimulus, and

experiment data and metadata. HDMF has been used to both

design NWB 2.0 as well as to implement PyNWB, the Python

reference API for NWB. Following the same basic steps as

in the previous section, we first discuss the use of HDMF

to specify the NWB data standard (Sec. V-A). Next, we

demonstrate the use of the HDMF I/O layer to integrate Zarr as

an alternate storage backend and show its application to store

NWB files from a broad range of neurophysiology applications

(Sec. V-B). We then discuss how HDMF facilitates the design

of advanced user APIs (here, PyNWB; Sec. V-C). Finally, we

demonstrate how HDMF facilitates the creation and use of

format extensions (Sec. V-D) and show the application of the

advanced data I/O features of HDMF to optimize storage and

I/O of neurophysiology data (Sec. V-E).

A. Format Specification

Neurophysiology data consists of a wide range of data types,

including recordings of electrical activity from brain areas

over time, microscopy images of fluorescent activity from a

brain areas over time, external stimuli, and behavioral mea-

surements under different experimental conditions. A common

theme among these various types of recordings is that they

represent time series recordings in combination with complex

metadata to describe experiments, data acquisition hardware,

and annotations of features (e.g., regions of interest in an

image) and events (e.g., neural spikes, experimental epochs,

etc.). Because HDMF supports the reuse of data types through

inheritance and composition, NWB defines a base TimeSeries

data type consisting of a dataset of timestamps in seconds

(or staring time and sampling rate for regularly sampled

data), a dataset of measured traces, the unit of measurement,

and a name and description of the data. TimeSeries then

serves as the base type for more specialized time series types

that extend or refine TimeSeries, such as ElectricalSeries for

voltage data over time, ImageSeries for image data over time,

SpatialSeries for positional data over time, among others.

By supporting reusable and extensible data types, HDMF

allows the NWB standard and its extensions to be described

succinctly and modularly. In addition, NWB specifies generic

types for column-based tables, ragged arrays, and several other

specialized metadata types. On top of these modular types,

NWB defines a hierarchical structure for organizing these

types within a file. In total, the NWB standard defines 68

different types, which describe the vast majority of data and

metadata used in neurophysiology experiments (see [13]).

NWB uses links to specify associations between data types.

For example, the DecompositionSeries type, which represents

the results of a spectral analysis of a time series, contains a link

to the source time series of the analysis. A link can also point

to a data type stored in an external file, which is often used for

separating the results of different analyses from the raw data

while maintaining the relationships between the results and

the source data. As such, HDMF links facilitate documenting

relationships and provenance while avoiding data duplication.

To model relationships between data and metadata and to

annotate subsets of data, NWB uses object references. For

example, neurophysiology experiments often consist of time

series where only data at selected epochs of time are important

for analysis, e.g. the electrical activity of a neuron during a one

second period immediately following presentation of stimuli.

These epochs are stored as a dataset of object references

to time series and indices into the time series data. HDMF

object references provide an efficient way to specify the large

datasets of metadata that are often required to understand

neurophysiology data.

Because HDMF supports storage of format specifications as

YAML/JSON text files, the NWB schema is version controlled

and hosted publicly on GitHub [14]. Sphinx-based documen-

tation for the standard is then automatically generated from

the schema using HDMF documentation tools, and is version

controlled and integrated with continuous documentation web

services with minimal customization required. These features

make updating the NWB schema and its documentation to

a new version simple and transparent, while maintaining a

detailed history of previous versions.

B. Data Storage

In practice, different storage formats are optimal for differ-

ent applications, uses, and compute environments. As such,

it is critical that users can use data standards across stor-

age modalities. Using the HDMF abstract storage API, we

170

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:34:52 UTC from IEEE Xplore. Restrictions apply.

1 from pynwb import NWBHDF5IO, NWBZarrIO
2 # Read the NWB file from HDF5
3 h5r = NWBHDF5IO(’H19.28.012.11.05-2.nwb’ , ’r’)
4 f = h5r.read()
5 # Write the NWB using Zarr
6 zw = NWBZarrIO(’H19.28.012.11.05-2.zarr’, ’w’,
7 manager=h5r.manager)
8 zw.write(f)
9 # Close the files

10 zw.close()
11 h5r.close()

(a) Converting the NWB file from HDF5 to Zarr. NWBZarrIO
extends ZarrIO to define common NWB settings to simplify the
use of Zarr with NWB.

1 from pynwb import NWBHDF5IO, NWBZarrIO
2 from matplotlib import pyplot as plt
3 import numpy as np
4

5 # Plot acquisition index_000 from an \nwb{} file
6 def plot_acquistion(nwb_file, fmt, **plotargs):
7 dat = nwb_file.get_acquisition(’index_000’)
8 start = dat.starting_time
9 time = np.arange(dat.num_samples) / dat.rate + start

10 values = dat.data
11 plt.plot(time, values, fmt, **plotargs)
12 return (dat.starting_time_unit, dat.unit)
13

14 # Open the HDF5 file
15 h5r = NWBHDF5IO(’H19.28.012.11.05-2.nwb’, ’r’)
16 hf = h5r.read() # NWBFile object read from HDF5
17 # Open the Zarr file
18 zr = NWBZarrIO(’H19.28.012.11.05-2.zarr’, ’r’)
19 zf = zr.read() # NWBFile object read from Zarr
20 # Create the same plot for both NWBFile’s
21 xunit, yunit = plot_acquistion(nwb_file=hf, fmt=’r’,
22 linewidth=4, label=’hdf5’)
23 xunit, yunit = plot_acquistion(nwb_file=zf, fmt=’b--’,
24 linewidth=0.8, label=’zarr’)
25 plt.legend()
26 plt.show()

(b) Plot the same data from the NWB file stored in HDF5 and Zarr.

(c) Resulting visualization from the code in 3b.

Fig. 3: Example showing: (a) convert of dataset D2 (Tab. II)

from HDF5 to Zarr and (b,c) use of the two files for analysis.

demonstrate the integration of Zarr’s DirectoryStore
with HDMF by defining the ZarrIO class (see Appendix

F). The goal of this evaluation is to demonstrate feasibility

and practical use of multiple storage backends via HDMF.

However, it is beyond the scope of this manuscript to evaluate

and compare HDF5 and Zarr.

To integrate Zarr with HDMF and PyNWB, we only had to

define new classes defining the backend, i.e., no modifications

(D1)
Allen
EPhys

(D2)
Allen
ICEphys

(D3)
Allen
OPhys

(D4)
NSDS
EPhys

C
on

te
nt #Groups 30 142 41 33

#Datasets 49 604 83 69
#Attributes 251 1565 408 283
#Links 8 127 12 6

H
D

F5

#Files 1 1 1 1
Size 705MB 168MB 1,569MB 57,934MB
Size (gzip=4) 533MB 49MB 704MB 49,057MB

Z
ar

r #Folders 79 731 124 102
#Files 198 2045 320 263
Size 696MB 165MB 1565MB 57,925MB

Z
ar

r-
C #Folders 79 731 124 102

#Files 622 2383 1153 12,799
Size 709MB 167MB 1584MB 59,579MB

TABLE II: Overview of four NWB neurophysiology data files

(top rows) stored in i) HDF5 without compression and with

gzip compression enabled for all datasets, ii) Zarr, and iii)

Zarr-C with automatic chunking enabled for all datasets.

to the frontend container classes or the format specification

were needed. As this example demonstrates, using the HDMF

abstract storage API facilitates the integration of new storage

backends and allows us to make new storage options broadly

accessible to any application format built using HDMF.

Table II illustrates the use of the Zarr backend in practice.

We converted four NWB files from the Allen Institute for

Brain Science and one from the BouchardLab at LBNL from

HDF5 to Zarr. We chose these datasets as they are very

complex and allow us to cover a wide range of data sizes

and NWB use cases, i.e., extracellular electrophysiology (D1,

D4), intracellular electrophysiology (D2), as well as optical

physiology and behavior (D3) (see also Appendix G).

As an example, Fig. 3a shows the conversion of dataset D2

from HDF5 to Zarr. Fig. 3b then shows a simple analysis to

compare the same recording from the HDF5 and Zarr file,

illustrating that both indeed store the same data (Fig. 3c).

Importantly, as the front-end API is decoupled from the storage

backend, we can use the same code to access and analyze the

data, independent of whether it is stored via Zarr or HDF5.

C. Data API

Building on top of HDMF, the PyNWB Python package

is used for reading and writing NWB files. PyNWB pri-

marily consists of a set of HDMF Container classes and

ObjectMappers to represent and map NWB types. PyNWB

provides a modified base Container class, NWBContainer,

upon which the rest of the API is built. NWBContainer

uses HDMFs ExtenderMeta metaclass decorators for defining

functions that autogenerate setter and getter methods from pa-

rameterized macros, creating uniform functionality across the

API and simplifying integration of new types. To ensure com-

pliance of constructor arguments with the schema, PyNWB

uses docval. Three main classes that exercise additional

functionality of HDMF are NWBFile, TimeSeries, and

DynamicTable.

1) NWBFile: The NWBFile data type is the top-level

type in the NWB standard, which defines the hierarchical

171

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:34:52 UTC from IEEE Xplore. Restrictions apply.

organization of all data types in a file. These data types, in the

form of Containers, are added to the NWBFile object through

automatically generated instance methods. These methods are

generated using the parameterized macros provided by the

base NWBContainer class.

Another notable feature of the NWBFile Container is the

copy method, which allows users to create a shallow copy

of an NWBFile Container. Leveraging the modular storage

capabilities of HDMF, this copy method allows users to easily

create an interface file, which does not store any large data

itself, but contains external links to all objects in the original

file. This is useful for storing the results of exploratory data

analysis separate from the raw data.

2) TimeSeries: The TimeSeries Container represents the

base TimeSeries type of the NWB data standard, which allows

us to define a consistent base interface to all time series data in

NWB. Neurophysiology experiments often use the same time

axis for all time series data. To facilitate reuse of the same

timestamps across different time series data, the timestamps of

a TimeSeries Container can be defined as another TimeSeries

object. To resolve this sharing, a custom ObjectMapper is used

to override the base behavior for retrieving the timestamps

from a given TimeSeries Container. This is done using deco-

rators provided by ObjectMapper class in HDMF.

3) DynamicTable: The DynamicTable data type is a

group that represents tabular data, where each column is stored

as a dataset. Using different types of datasets (i.e. unique data

types), a DynamicTable can store one-to-one and one-to-many

relationships. The details for populating and working with

these different types of datasets are all managed by custom add

and retrieval instance methods of the DynamicTable Container

class, thereby shielding the user from details of the format

specification.

As the DynamicTable data type does not predefine

specific columns, users can extend DynamicTable to pro-

vide a stable specification for certain types of tabular data.

To simplify development of corresponding DynamicTable
Container subclasses, the DynamicTable Container uses

directives of the ExtenderMeta metaclass in HDMF to auto-

matically define structure of the Container class.

D. Extensions

Scientific data standards, by necessity, evolve slower than

scientific experiments, but rather emerge from common needs

across experiments. As a result, there is often a gap between

common practices supported by scientific standards and the

data needs of bleeding-edge science experiments. To address

this challenge, HDMF enables users to extend data standards,

enabling the integration of new data types while facilitating use

(and reuse) of best practice and existing standard components.

To demonstrate the creation and use of format extensions

in practice, we show the extension of the NWB data standard

for electrocorticography (ECoG) data. ECoG uses electrodes

placed directly on the exposed surface of the brain to record

electrical activity from the cerebral cortex (Fig. 4 left). To

enable localization of electrodes on the brain surface, we create

��������	
�����

� �������
��
���������	
���
�� ���������	
���
��1 1..*

�� �� ��
���� ���� ����
���� ���� ����
��� ��� ���
���� ���� ����

�
����

�
�������������
�� �� ��
��� ��� ���
�� �� ���

���

�
1 1

1

F 0
F m

V 0

V 1

V 2

V 11

��� ��� ���� � �
�
�

F

VVVVVVVVVVVVV 0 000

��� ��� ����
��� ��� ���
��� ��� ����

��
�

VVVVVVVVVVVVV 11

� ��
���
��

0
F

�
���
�

F 0
F m

V 11

1111

�

F m

VV 2 22

Fig. 4: Left: Visualization of the cortical surface of the brain

showing the location of the electrodes of the ECoG recording

device. Right: Format extension for storing a triangle mesh of

the cortical surface.

1 from pynwb.spec import NWBDatasetSpec,
NWBNamespaceBuilder, NWBGroupSpec, NWBAttributeSpec

2 # Create the data specification
3 surface = NWBGroupSpec(
4 neurodata_type_def=’Surface’,
5 neurodata_type_inc=’NWBDataInterface’,
6 quantity=’+’,
7 doc=’brain cortical surface’)
8 surface.add_dataset(doc=..., name=’faces’,
9 shape=(None, 3), dtype=’uint’, dims=...)

10 surface.add_dataset(doc=..., name=’vertices’,
11 shape=(None, 3), dtype=’float’, dims=...)
12 surface.add_attribute(...)
13 # Create the namespace specification
14 ns_builder = NWBNamespaceBuilder(doc=..., name=’ecog’,
15 version=’1.0’, author=’Ben Dichter’, ...)
16 ns_builder.add_spec(’ecog.extensions.yaml’, surface)
17 # Export/save the extension YAML files
18 ns_builder.export(’ecog.namespace.yaml’)

Fig. 5: Example illustrating the creation of an extension for

storing a mesh describing the cortical surface of the brain.

a format extension to store a triangle mesh describing the

cortical surface of the brain (Fig. 4 right). Similar to how

one would typically write data to disk, we use the HDMF

specification API to specify all data objects (groups, datasets,

and attributes) and data types for our extensions (Fig. 5).

We then specify a new namespace and export our extensions.

The result is a collection of YAML files that describe our

extensions (see Appendix A).

Using the HDMF load_namespace method to load our

extension and get_class method to automatically create

a Python class to represent our new Surface data type,

we can then then immediately write and read data using our

extension (Fig. 6). The ability to read/write extension data

purely based on the specification supports fast prototyping,

evaluation, sharing, and persistence of extensions and data.

To enable users to define custom functionality for extensions,

e.g., to facilitate specialized queries and visualizations, HDMF

supports the creation of custom container classes.

E. Data I/O

Next, we discuss the impact of HDMF’s advanced data

I/O features for lazy data load, compression, iterative write,

parallel I/O, append, and modular storage in practice.

1) Lazy Data Load: Lazy data load enables us to efficiently

read large data files, while avoiding loading the whole file

into main memory. To demonstrate the impact of lazy data

172

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:34:52 UTC from IEEE Xplore. Restrictions apply.

1 from pynwb import load_namespaces, get_class,
2 NWBHDF5IO, NWBFile ...
3 nwbfile = NWBFile(...) # Create file as usual
4 load_namespaces(’ecog.namespace.yaml’) # Load extension
5 Surface = get_class(’Surface’, ’ecog’) # Get extension

class
6 surf = Surface(faces=... , vertices=..., # Populate data
7 name=’Surface_1’...)
8 nwbfile.add_acquisition(surf) # Add to file
9 with NWBHDF5IO(’surface_example.nwb’, ’w’) as io:

10 io.write(nwbfile) # Write to disk

1 from pynwb import load_namespaces, NWBHDF5IO
2 # Read ECoG extension data
3 load_namespaces(’ecog.namespace.yaml’) #
4 io = NWBHDF5IO(’surface_example.nwb’, ’r’)
5 nwbfile = io.read()
6 nwbfile.get_acquisition(’Surface 1’).vertices

Fig. 6: Write (top) and read (bottom) ECoG extension data.

load, we evaluate the performance and memory usage for

reading the NWB files from Table II. Here, file read includes

opening the HDF5 file and subsequent lazy read to construct

all builders and containers. We performed the tests on a 2017

MacBook Pro using the profiling scripts shown in Appendix C.

We repeated the file read 100 times for each file and report

the mean times: D1) 0.16s, D2) 0.92s, D3) 0.31s, and D4)

0.22s. For memory usage, we observe that instantiating the

NWBHDF5IO object requires ≈ 0.3MB for all files. The

actual read then requires: D1) 4.1MB, D2) 11.9MB, D3)

4.7MB, and D4) 3.5MB. We observe that data read requires

only a few MB and less than one second in all cases. Here,

read performance and memory usage depend mainly on the

number of objects in the file, rather than file size. In fact, D2

as the smallest file overall but with the most objects, requires

the most time and memory on initial read.

2) Chunking: Chunking (and I/O filters, e.g., compression)

allow us to optimize data layout for storage, read, and write.

To illustrate the impact of chunking on read performance,

we use as an example a dataset from file D4, which stores

the frequency decomposition of an ECoG recording. The

dataset consists of 916,385 timesteps for 128 electrodes and

54 frequency bands. We store the data as a single binary

block as well as using (32 × 128 × 54) chunks. We evaluate

performance for reading random blocks in time consisting of

512 consecutive time steps. We observe a mean read time of

0.179s without chunking and 0.012s with chunking, i.e., a

≈ 15× speed-up (see Appendix D). Design of optimal data

layouts is a research area in itself and we refer the interested

reader to the literature for details [1], [9], [12], [15], [18].

3) Compression: NWB uses GZIP for compression. GZIP

is available with all HDF5 deployments, ensuring that files are

readable across compute systems. As shown in Table II, using

GZIP we see compression ratios of 1.32×, 3.43×, 2.23×, and

1.18× for the four NWB files, respectively. Compression and

chunking are applied transparently by HDF5 on a per-chunk

basis. This ensures that we only need to de/compress chunks

that we actually need and it allows users to interact with files

the same way, independent of the storage optimizations used.

 Data Array

Main Memory

Storage

(a) Converting large data arrays.

Storage Input Data Stream

(b) Streaming/iterative data write.

Data Array

Storage

(c) Writing sparse data arrays.

Fig. 7: Example applications of iterative data write.

4) Iterative Data Write: Iterative data write allows us

to optimize memory usage and I/O for large data, e.g., to

avoid loading all data at once into memory during data

import (Fig. 7a) and support streaming write during acquisition

(Fig. 7b). By combining the iterative write approach with

chunking and compression, we can further optimize both

storage and I/O of sparse data and data with missing data

blocks (Fig. 7c).

A common example in neurophysiology experiments is

intervals of invalid observations, e.g., due to changes in the

experiment. Using iterative data write allows us to write only

blocks of valid observations to a file, and in turn reduce the

cost for I/O. To illustrate this process, we implemented a

Python iterator that yields a set of random values for valid

timesteps and None for invalid times. For write, we then wrap

the iterator using HDMFs DataChunkIterator, which in

turn collects the data into data chunks for iterative write,

while automatically omitting write of invalid chunks (see

Appendix E). When using chunking in HDF5, chunks are

allocated in the file when written to. Hence, chunks of the

array that contain only invalid observations are never allocated.

In our example, the full array has a size of 2569.42MB while

only 1233.51MB of the total data are valid. The resulting

NWB file in turn has a size of just 1239.07MB. In addition,

iterative write can help to greatly reduce memory cost, since

we only need to hold the chunks relevant for the current write

in memory, rather than the full array. In our example, memory

usage during write was only 6.6MB.

5) Append: The process for appending to a file in HDMF

consists of: 1) reading the file in append mode, 2) adding new

containers to the file, and finally 3) writing the file as usual.

Using this simple process allows us to easily add, e.g., results

from data processing pipelines, to an existing data file. See

Appendix B for a code example.

6) Modular Data Storage: HDMF’s support for modular

storage, enables us to easily separate data from different

acquisition, processing, and analysis stages across individual

files. This approach is useful in practice to facilitate data

173

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:34:52 UTC from IEEE Xplore. Restrictions apply.

management, avoid repeated file updates, and manage file

sizes. At the same time, links are resolved transparently,

enabling convenient access to all relevant data via a single

file.

VI. CONCLUSION

Creating data standards is as much a social challenge as

it is a technical challenge. With stakeholders ranging from

application scientists to data managers, analysts, software

developers, administrators, and the broader public, it is critical

that we enable stakeholders to focus on the data challenges that

matter most to them while limiting conflict and facilitating col-

laboration. HDMF addresses this challenge by clearly defining

and insulating data specification, storage, and interaction as the

core technical components of the data standardization process.

At the same time, HDMF supports the integration of these core

components via its sophisticated data mapping capabilities.

HDMF facilitates, in this way, the creation, expansion, and

technical evolution of data standards while simultaneously

shielding and enabling collaboration between stakeholders.

The successful use of HDMF in developing NWB 2.0, a

standard for diverse neurophysiology data, suggests that it

may be suitable for addressing analogous problems in other

experimental and observational sciences.

In the future, we plan to enhance the specification lan-

guage and API of HDMF to support complex data constraints

to define dimensions scales, dependencies between datasets

(e.g., alignment of shape), and mutually exclusive groups of

attributes and datasets. We also plan to further expand the

integration of HDMF with common Python analysis tools.

ACKNOWLEDGMENTS

The authors thank Nicholas Cain, Nile Graddis, Lydia Ng,

and Thomas Braun for providing us with pre-release data

from the Allen Institute for Brain Science. We thank Max

Dougherty for providing us with the NSDS dataset. We thank

the NWB Executive Board, Technical Advisory Board, and the

whole NWB user and developer community for their support

and enthusiasm in developing and promoting the NWB data

standard.

LEGAL DISCLAIMER

This document was prepared as an account of work spon-

sored by the United States Government. While this document

is believed to contain correct information, neither the United

States Government nor any agency thereof, nor the Regents

of the University of California, nor any of their employees,

makes any warranty, express or implied, or assumes any legal

responsibility for the accuracy, completeness, or usefulness

of any information, apparatus, product, or process disclosed,

or represents that its use would not infringe privately owned

rights. Reference herein to any specific commercial product,

process, or service by its trade name, trademark, manufacturer,

or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United

States Government or any agency thereof, or the Regents of the

University of California. The views and opinions of authors

expressed herein do not necessarily state or reflect those of

the United States Government or any agency thereof or the

Regents of the University of California

REFERENCES

[1] B. Behzad, S. Byna, Prabhat, and M. Snir. Optimizing i/o performance
of hpc applications with autotuning. ACM Trans. Parallel Comput.,
5(4):15:1–15:27, Mar. 2019.

[2] O. Ben-Kiki, C. Evans, and B. Ingerson. Yaml ain’t markup language
(yaml) version 1.2. yaml. org, Tech. Rep, page 23, October 2009.

[3] T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler, and F. Yergeau.
Extensible markup language (xml), 2008. [URL] http://www.w3.org/
TR/2008/REC-xml-20081126/.

[4] J. Clarke and E. Mark. Enhancements to the extensible data model and
format (xdmf). In DoD High Performance Computing Modernization
Program Users Group Conference, 2007, pages 322–327, June 2007.

[5] Date and time format - ISO 8601 - An internationally accepted way to
represent dates and times using numbers., 2019.

[6] JSON: JavaScript Object Notation, 1999 – 2015. [URL] http://json.org/.
[7] P. Klosowski, M. Koennecke, J. Tischler, and R. Osborn. Nexus:

A common format for the exchange of neutron and synchroton data.
Physica B: Condensed Matter, 241:151–153, 1997.

[8] F. R. Maia. The coherent x-ray imaging data bank. Nature methods,
9(9):854–855, 2012.

[9] B. Nam and A. Sussman. Improving access to multi-dimensional
self-describing scientific datasets. In CCGrid 2003. 3rd IEEE/ACM
International Symposium on Cluster Computing and the Grid, 2003.
Proceedings., pages 172–179, May 2003.

[10] R. Rew and G. Davis. NetCDF: an interface for scientific data access.
Computer Graphics and Applications, IEEE, 10(4):76–82, July 1990.

[11] O. Rübel, M. Dougherty, Prabhat, P. Denes, D. Conant, E. F. Chang,
and K. Bouchard. Methods for specifying scientific data standards and
modeling relationships with applications to neuroscience. Frontiers in
Neuroinformatics, 10:48, 2016.

[12] O. Rübel, A. Greiner, S. Cholia, K. Louie, E. W. Bethel, T. R. Northen,
and B. P. Bowen. Openmsi: A high-performance web-based platform for
mass spectrometry imaging. Analytical Chemistry, 85(21):10354–10361,
2013.

[13] O. Rübel, A. Tritt, B. Dichter, T. Braun, N. Cain, N. Clack, T. J.
Davidson, M. Dougherty, J.-C. Fillion-Robin, N. Graddis, M. Grauer,
J. T. Kiggins, L. Niu, D. Ozturk, W. Schroeder, I. Soltesz, F. T. Sommer,
K. Svoboda, N. Lydia, L. M. Frank, and K. Bouchard. NWB:N 2.0: An
Accessible Data Standard for Neurophysiology. bioRxiv, 2019.

[14] O. Rübel, A. Tritt, and et al. NWB:N Format Specification V 2.0.1, July
2019. https://nwb-schema.readthedocs.io/en/latest/index.html [2019-07-
29].

[15] S. Sarawagi and M. Stonebraker. Efficient organization of large mul-
tidimensional arrays. In Proceedings of 1994 IEEE 10th International
Conference on Data Engineering, pages 328–336, Feb 1994.

[16] S. Shasharina, J. R. Cary, S. Veitzer, P. Hamill, S. Kruger, M. Durant, and
D. A. Alexander. VizSchema–Visualization Interface for Scientific Data.
In IADIS International Conference, Computer Graphics, Visualization,
Computer Vision and Image Processing, page 49, 2009.

[17] A. Stoewer, C. J. Kellner, and J. Grewe. NIX, 2019. [URL] https:
//github.com/G-Node/nix/wiki.

[18] H. Tang, S. Byna, S. Harenberg, X. Zou, W. Zhang, K. Wu, B. Dong,
O. Rübel, K. Bouchard, S. Klasky, and N. F. Samatova. Usage pattern-
driven dynamic data layout reorganization. In 2016 16th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CC-
Grid), pages 356–365, May 2016.

[19] The HDF Group. Hierarchical Data Format, version 5, 1997-2015.
[URL] http://www.hdfgroup.org/HDF5/.

[20] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Ax-
ton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E.
Bourne, et al. The fair guiding principles for scientific data management
and stewardship. Scientific data, 3, 2016.

[21] Zarr Dev. Zarr v. 2.3.2, 2019. [URL] https://zarr.readthedocs.io.

174

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:34:52 UTC from IEEE Xplore. Restrictions apply.

APPENDIX A

ECOG EXTENSION EXAMPLE

Sources for the ECoG extension used in the paper are available

at: https://github.com/bendichter/nwbext ecog

1 namespaces:
2 - author: Ben Dichter
3 contact: ben.dichter@gmail.com
4 doc: ecog extensions
5 name: ecog
6 schema:
7 - namespace: core
8 neurodata_types:
9 - NWBDataInterface

10 - Subject
11 - source: ecog.extensions.yaml
12 version: 1.2.1

(a) ecog.namespace.yaml file with the namespace specification.

1 groups:
2 - neurodata_type_def: ECoGSubject
3 neurodata_type_inc: Subject
4 name: subject
5 doc: extension of subject that holds cortical surface

data
6 groups:
7 - neurodata_type_def: CorticalSurfaces
8 neurodata_type_inc: NWBDataInterface
9 name: cortical_surfaces

10 doc: triverts for cortical surfaces
11 attributes:
12 - name: help
13 dtype: text
14 doc: help
15 value: This holds the vertices and faces for the

cortical surface meshes
16 groups:
17 - neurodata_type_def: Surface
18 neurodata_type_inc: NWBDataInterface
19 doc: brain cortical surface
20 attributes:
21 - name: help
22 dtype: text
23 doc: help
24 value: This holds Surface objects
25 datasets:
26 - name: faces
27 dtype: uint32
28 doc: faces for surface, indexes vertices
29 shape:
30 - null
31 - 3
32 dims:
33 - face_number
34 - vertex_index
35 - name: vertices
36 dtype: float
37 doc: vertices for surface, points in 3D space
38 shape:
39 - null
40 - 3
41 dims:
42 - vertex_number
43 - xyz
44 quantity: +
45 quantity: ’?’
46 - neurodata_type_inc: Images
47 name: images
48 doc: images of subject’s brain
49 quantity: ’?’

(b) ecog.extensions.yaml file with the type specifications.

Fig. A.1: Source YAML files with the complete specification

for the ECoG extension used in Sec. V-D.

APPENDIX B

APPENDING TO AN EXISTING FILE

1 from pynwb import NWBHDF5IO
2 from pynwb.behavior import SpatialSeries
3 from pynwb.behavior import Position
4

5 from datetime import datetime
6 from dateutil.tz import tzlocal
7 from pynwb import NWBFile
8 import numpy as np
9

10 ###
11 # Setup: Create an example NWB file
12 ###
13 start_time = datetime(2017, 4, 3, 11, tzinfo=tzlocal())
14 create_date = datetime(2017, 4, 15, 12, tzinfo=tzlocal())
15

16 nwbfile = NWBFile(session_description=’test file’,
17 identifier=’NWB123’,
18 session_start_time=start_time,
19 file_create_date=create_date)
20 position = Position()
21 nwbfile.create_processing_module(name=’behavior’,
22 description=’preprocessed behavioral data’)
23 nwbfile.processing[’behavior’].add(position)
24 with NWBHDF5IO(’example_file_path.nwb’, ’w’) as io:
25 io.write(nwbfile)

1 from pynwb import NWBHDF5IO
2 from pynwb.behavior import SpatialSeries
3

4 ##
5 # Append a SpatialSeries to the file
6 ##
7 # Open the NWB file in append mode
8 io = NWBHDF5IO(’example_file_path.nwb’, mode=’a’)
9 # Read the NWB file

10 nwbfile = io.read()
11 # Access data as usual
12 behavior = nwbfile.processing[’behavior’]
13 position = behavior.data_interfaces[’Position’]
14 # Add data to the file as usual
15 data = list(range(300, 400, 10))
16 timestamps = list(range(10))
17 test_spatial_series = SpatialSeries(’test_seria’,
18 data,
19 reference_frame=’starting_gate’,
20 timestamps=timestamps)
21 position.add_spatial_series(test_spatial_series)
22 # Write the file as usual to append the new data
23 io.write(nwbfile)
24 io.close()

Fig. B.1: Example illustrating the creation of an example

NWB file (top) and process for appending a new SpatialSeries

container to an existing file using HDMF (bottom).

175

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:34:52 UTC from IEEE Xplore. Restrictions apply.

APPENDIX C

PROFILING LAZY DATA LOAD

All tests for lazy data load were performed on a MacBook

Pro with macOS 10.14.3, a 4-core, 3.1 GHz Intel Core i7

processor, a 1TB SSD hardrive, and 16GB of main memory.

A. Profiling Memory Usage for Lazy Data Load

1 from pynwb import NWBHDF5IO, load_namespaces
2 from memory_profiler import profile
3 load_namespaces("AIBS_ophys_behavior_namespace.yaml")
4 import sys
5

6 infile = sys.argv[1]
7

8 @profile
9 def read_nwb(fn):

10 h5r = NWBHDF5IO(fn, ’r’)
11 _ = h5r.read()
12

13 print("Profiling %s" % infile)
14 read_nwb(infile)

(a) Script used to evaluate memory usage for lazy data read.

1 #!/usr/bin/env bash
2 python -m memory_profiler memprofile_lazy_open.py ecephys_session_785402239.nwb
3 python -m memory_profiler memprofile_lazy_open.py H19.28.012.11.05-2.nwb
4 python -m memory_profiler memprofile_lazy_open.py

behavior_ophys_session_783928214.nwb
5 python -m memory_profiler memprofile_lazy_open.py R70_B9.nwb

(b) Script used to run memory profiling.

Profile D1: ecephys_session_785402239.nwb

Line# Mem usage Increment Line Contents
==

8 84.7 MiB 84.7 MiB @profile
9 def read_nwb(infile):

10 85.1 MiB 0.3 MiB h5r = NWBHDF5IO(fn, ’r’)
11 89.2 MiB 4.1 MiB _ = h5r.read()

Profile D2: H19.28.012.11.05-2.nwb

Line# Mem usage Increment Line Contents
==

8 84.2 MiB 84.2 MiB @profile
9 def read_nwb(infile):

10 84.5 MiB 0.3 MiB h5r = NWBHDF5IO(fn, ’r’)
11 96.5 MiB 11.9 MiB _ = h5r.read()

Profile D3: behavior_ophys_session_783928214.nwb

Line# Mem usage Increment Line Contents
==

8 84.4 MiB 84.4 MiB @profile
9 def read_nwb(infile):

10 84.8 MiB 0.3 MiB h5r = NWBHDF5IO(fn, ’r’)
11 89.4 MiB 4.7 MiB _ = h5r.read()

Profile D4: R70_B9.nwb

Line# Mem usage Increment Line Contents
==

8 84.4 MiB 84.4 MiB @profile
9 def read_nwb(infile):

10 84.8 MiB 0.4 MiB h5r = NWBHDF5IO(fn, ’r’)
11 88.2 MiB 3.4 MiB _ = h5r.read()

(c) Memory profiling results for the four files list in Tab II.

Fig. C.1: Evaluating the memory usage for lazy data load for

the files listed in Tab. II.

B. Profiling Time for Lazy Data Load

1 import timeit
2 import numpy as np
3

4 def time_dataset(infile, repeat=100):
5 # code snippet to be executed only once
6 mysetup = """
7 from pynwb import NWBHDF5IO, load_namespaces
8 load_namespaces("AIBS_ophys_behavior_namespace.yaml")
9

10 def read_nwb():
11 h5r = NWBHDF5IO(’%s’ , ’r’)
12 f = h5r.read()
13 """ % infile
14

15 # code snippet whose execution time is to be measured
16 mycode = "read_nwb()"
17

18 # timeit statement
19 repeats = timeit.repeat(setup = mysetup,
20 stmt = mycode,
21 repeat=repeat,
22 number = 1)
23

24 # print stats
25 print(infile)
26 print("Min: %s seconds" % np.min(repeats))
27 print("Mean: %s seconds" % np.mean(repeats))
28 print("Std: %s seconds" % np.std(repeats))
29 print("Max: %s seconds" % np.max(repeats))
30 print("")
31

32 repeat = 100
33 test_files = [’ecephys_session_785402239.nwb’,
34 ’H19.28.012.11.05-2.nwb’,
35 ’behavior_ophys_session_783928214.nwb’,
36 ’R70_B9.nwb’]
37 for tf in test_files:
38 time_dataset(tf, repeat)

(a) Script used to evaluate lazy data read performance.

Profile D1: ecephys_session_785402239.nwb

Min: 0.15611473898752593 seconds
Mean: 0.16406609811092493 seconds
Std: 0.005397679173686011 seconds
Max: 0.20559409901034087 seconds

Profile D2: H19.28.012.11.05-2.nwb

Min: 0.8805205250100698 seconds
Mean: 0.9208410138092585 seconds
Std: 0.02828484200246134 seconds
Max: 1.0624379950168077 seconds

Profile D3: behavior_ophys_session_783928214.nwb

Min: 0.29385584298870526 seconds
Mean: 0.3193827117001638 seconds
Std: 0.01966348677270168 seconds
Max: 0.40456622300553136 seconds

Profile D4: R70_B9.nwb

Min: 0.1986688420001883 seconds
Mean: 0.21583941377990412 seconds
Std: 0.01037254439266336 seconds
Max: 0.2417856660031248 seconds

(b) Timing results for the four files list in Tab II.

Fig. C.2: Evaluating read time for lazy data load for the files

listed in Tab. II.

176

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:34:52 UTC from IEEE Xplore. Restrictions apply.

APPENDIX D

PROFILING CHUNKING PERFORMANCE

1 from pynwb import NWBHDF5IO, NWBFile, TimeSeries
2 from hdmf.backends.hdf5.h5_utils import H5DataIO
3 from hdmf.data_utils import DataChunkIterator
4 import timeit
5 from numpy.random import randint
6 import numpy as np
7 import os
8

9

10 def create_test_file(innwb, outname, **kwargs):
11 # Create a single file to test a particular chunking
12 # Create our NWB file
13 nwbfile = NWBFile(innwb.session_description,
14 innwb.identifier,
15 innwb.session_start_time)
16 # Get the polytrode data
17 ecog = innwb.get_processing_module(’Wvlt_4to1200_54band_CAR0’).get(’ECoG’)
18 # Wrap our data array to define I/O. Use iterative convert to save memory
19 ecog_data = H5DataIO(data=DataChunkIterator(ecog.data,
20 maxshape=ecog.data.shape,
21 dtype=ecog.data.dtype,
22 buffer_size=10000),
23 **kwargs)
24 # Create our time series
25 test_ts = TimeSeries(name=’testseries’,
26 data=ecog_data,
27 unit=ecog.unit,
28 rate=ecog.rate ,
29 starting_time=ecog.starting_time)
30 nwbfile.add_acquisition(test_ts)
31 # Write the data to file
32 h5w = NWBHDF5IO(outname, ’w’)
33 h5w.write(nwbfile)
34 h5w.close()
35

36

37 def create_test_files():
38 """Create a battery of test files"""
39 # Read the input file
40 h5r = NWBHDF5IO("R70_B9.nwb" , ’r’)
41 innwb = h5r.read()
42 # Define I/O example
43 io_options = {
44 "R70_B9_chunks=(32,128,54).nwb": {’chunks’: (32,128,54)},
45 "R70_B9_chunks=False.nwb": {’chunks’: None},
46 }
47 # Generate the various test files if necessary
48 for k, v in io_options.items():
49 if not os.path.exists(k):
50 create_test_file(innwb, k, **v)
51 # Close our input file and return
52 h5r.close()
53 return io_options
54

55

56 def time_chunk_read(selections, timeseries, repeat):
57 """Read a set of chunks"""
58

59 mysetup = """
60 from numpy.random import randint
61 def read_chunk(timeseries, select):
62 _ = timeseries.data[select]
63 index = randint(0, len(selections), 1)[0]
64 select = selections[index]
65 """
66 mycode = """read_chunk(timeseries, select)"""
67

68 # timeit statement
69 repeats = timeit.repeat(setup = mysetup,
70 stmt = mycode,
71 repeat=repeat,
72 number = 1,
73 globals={’selections’: selections, ’timeseries’:

timeseries})
74

75 print("Min: %s seconds" % np.min(repeats))
76 print("Mean: %s seconds" % np.mean(repeats))
77 print("Std: %s seconds" % np.std(repeats))
78 print("Max: %s seconds" % np.max(repeats))
79

80

81 if __name__ == "__main__":
82 # Create the test files if necessary
83 io_options = create_test_files()
84 # Time reading a time slices
85 main_shape = (916385, 128, 54)
86 select_shape = (512, main_shape[1], main_shape[2])
87 repeats = 1000
88 start_index = randint(0, main_shape[0]-select_shape[0], repeats)
89 stop_index = start_index + select_shape[0]
90 decomp_chunks = [np.s_[start_index[i]: stop_index[i], :, :]
91 for i in range(repeats)]
92 for k, v in io_options.items():
93 print("Evaluating: Time slice read %s for %s" % (str(select_shape), k))
94 h5r = NWBHDF5IO(k, ’r’)
95 f = h5r.read()
96 ts = f.get_acquisition(’testseries’)
97 time_chunk_read(decomp_chunks, ts, repeats)
98 h5r.close()

Fig. D.1: Code used to test chunking performance

Evaluating: Time slice read (512, 128, 54) for
R70_B9_chunks=(32,128,54).nwb

Min: 0.003641556017100811 seconds
Mean: 0.012455755540286191 seconds
Std: 0.006699374489408962 seconds
Max: 0.142697595001664 seconds

Evaluating: Time slice read (512, 128, 54) for
R70_B9_chunks=False.nwb

Min: 0.08462936701835133 seconds
Mean: 0.1785103283036442 seconds
Std: 0.062357915124483104 seconds
Max: 0.7758364329929464 seconds

Fig. D.2: Timing results for reading blocks in time with and

without chunking.

177

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:34:52 UTC from IEEE Xplore. Restrictions apply.

APPENDIX E

ITERATIVE DATA WRITE

1 from hdmf.data_utils import DataChunkIterator
2 from datetime import datetime
3 from dateutil.tz import tzlocal
4 from pynwb import NWBFile, TimeSeries, NWBHDF5IO
5 import numpy as np
6 import numpy.random as random
7 from memory_profiler import profile
8 import os
9

10

11 @profile
12 def write_nwb(filename, nwbfile, data):
13 # Use data chunk iterator as data
14 ts = TimeSeries(name=’ts’,
15 data=data,
16 unit=’volts’,
17 rate=1.0,
18 starting_time=0.0)
19 nwbfile.add_acquisition(ts)
20 with NWBHDF5IO(filename, ’w’) as io:
21 io.write(nwbfile)
22

23

24 # track the number of values added
25 num_dim1 = 0
26 num_dim2 = 128
27 # includes chunks that have zeros but not chunks that are all zeros/not yielded
28 num_occupied = 0
29

30

31 def iter_data(chunk_length=400, max_num_blocks=20, max_data_block_size=400000):
32 """Generate chunks of random values in range [0,1) or chunks
33 of zeros/None (no data)"""
34 global num_dim1, num_dim2, num_occupied
35 data_shape = (chunk_length, num_dim2)
36 num_blocks = 0
37 num_data_in_block = 0
38 # False means data are missing/zeros and to yield None. Will start as True
39 is_gen_data = False
40

41 while num_blocks < max_num_blocks:
42 if num_data_in_block == 0:
43 end_block_ind = round(random.random() * max_data_block_size) + 1
44 is_gen_data = not is_gen_data
45

46 if num_data_in_block + chunk_length > end_block_ind:
47 num_data_in_chunk = end_block_ind - num_data_in_block
48 part1_shape = (num_data_in_chunk, num_dim2)
49 part2_shape = (chunk_length - num_data_in_chunk, num_dim2)
50 if is_gen_data:
51 # add data until next_data_end and pad the rest with zeros
52 val = np.concatenate((random.random(part1_shape).astype(’float32

’), np.zeros(part2_shape)))
53 else:
54 # add zeros until next_data_end and then add data
55 val = np.concatenate((np.zeros(part1_shape),
56 random.random(part2_shape).astype(’float32’)))
57 num_occupied += data_shape[0] * data_shape[1]
58

59 num_blocks += 1 # reset counters
60 num_data_in_block = 0
61 else:
62 if is_gen_data:
63 val = random.random(data_shape).astype(’float32’)
64 num_occupied += data_shape[0] * data_shape[1]
65 else:
66 val = None
67 num_data_in_block += chunk_length
68

69 num_dim1 += chunk_length
70 yield val
71 return
72

73

74 if __name__ == ’__main__’:
75 random.seed(0)
76 filename = ’sparse_iterwrite_example.nwb’
77 data = DataChunkIterator(data=iter_data())
78

79 start_time = datetime(2019, 8, 7, 11, tzinfo=tzlocal())
80 nwbfile = NWBFile(’description’, ’NWB123’, start_time)
81 write_nwb(filename, nwbfile, data)
82

83 expected_size = num_dim1 * num_dim2 * np.dtype(data.dtype).itemsize
84 occupied_size = num_occupied * np.dtype(data.dtype).itemsize
85 file_size = os.stat(filename).st_size
86

87 with NWBHDF5IO(filename, ’r’) as io:
88 read_nwbfile = io.read()
89 data = read_nwbfile.acquisition[’ts’].data[()]
90 read_size = np.prod(data.shape).astype(np.dtype(’uint32’)) * \
91 np.dtype(data.dtype).itemsize
92

93 print("1) Sparse Matrix Size:")
94 print(" Expected Size : %.2f MB" % (expected_size / 1e6))
95 print(" Occupied Size : %.2f MB" % (occupied_size / 1e6))
96 print("2) NWB HDF5 file:")
97 print(" File Size : %.2f MB" % (file_size / 1e6))
98 print(" Reduction : %.2fX" % (expected_size / file_size))
99 print("3) On read from file:")

100 print(" Read Size : %.2f MB" % (read_size / 1e6))

Fig. E.1: Code used to test iterative data write performance

Line# Mem Incr Line Contents
==
11 80.8 MiB @profile
12 def write_nwb(filename, nwbfile, data):
13 # Use data chunk iterator as data
14 0.0 MiB ts = TimeSeries(name=’ts’,
15 0.0 MiB data=data,
16 0.0 MiB unit=’volts’,
17 0.0 MiB rate=1.0,
18 0.0 MiB starting_time=0.0)
19 0.0 MiB nwbfile.add_acquisition(ts)
20 0.9 MiB with NWBHDF5IO(filename, ’w’) as io:
21 6.6 MiB io.write(nwbfile)

Fig. E.2: Memory profiling results for iterative data write

1) Sparse Matrix Size:
Expected Size : 2569.42 MB
Occupied Size : 1233.51 MB

2) NWB HDF5 file:
File Size : 1239.07 MB
Reduction : 2.07X

3) On read from file:
Read Size : 2569.42 MB

Fig. E.3: File size comparison for writing of sparse data

178

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:34:52 UTC from IEEE Xplore. Restrictions apply.

APPENDIX F

ZARRIO IMPLEMENTATION DETAILS

Similar to HDF5, Zarr allows us to directly map groups,

datasets, and attributes from a format specification to cor-

responding storage types. Specifically, groups are mapped

to folders on the filesystem, datasets are mapped to folders

storing a flat binary file for each array chunk, and attributes

are stored as JSON files. The latter requires that we take

particular care when creating attributes to ensure the data is

JSON serializable.

As Zarr does not natively support links and references, we

define the ZarrReference class to store the path of the

source file and referenced object. On write, we then determine

the required paths for each reference and serialize the ZarrRef-

erence objects via JSON. To identify and resolve reference on

read, we define the reserved attribute zarr_type.

To support per-dataset I/O options (e.g, for chunking),

we define ZarrDataIO. Like H5DataIO for HDF5,

ZarrDataIO implements the HDMF DataIO class to wrap

arrays for write to define I/O parameters.

Finally, NWBZarrIO extends our generic ZarrIO backend

to setup the build manager and namespace for NWB.

APPENDIX G

RESOURCES

All software and the majority of the data files used in the

manuscript are available online. Here we summarize these

resources.

A. Software

All software described in the manuscript is available online:

• HDMF: https://hdmf-dev.github.io/

• PyNWB: https://github.com/NeurodataWithoutBorders/

pynwb

• ZarrIO: The Zarr I/O backend for HDMF and PyNWB

are available online as part of the following pull requests:

– HDMF: https://github.com/hdmf-dev/hdmf/pull/98

– PyNWB: https://github.com/

NeurodataWithoutBorders/pynwb/pull/1018

B. Data

Datasets D1, D2, and D3 (see Tab. II) are avail-

able online from the Allen Institute for Brain Sci-

ence at: http://download.alleninstitute.org/informatics-archive/

prerelease/. Here we used the following files from this collec-

tion:

• (D1): ecephys session 785402239.nwb is a passive

viewing extracellular electrophysiology dataset,

• (D2): H19.28.012.11.05-2.nwb is an intracellular in-vitro

electrophysiology dataset,

• (D3) behavior ophys session 783928214.nwb is a vi-

sual behavior calcium imaging dataset.

Dataset D4 refers to R70 B9.nwb from the Neural Systems

and Data Science Lab (NSDS) led by Kristofer Bouchard at

Lawrence Berkeley National Laboratory https://bouchardlab.

lbl.gov/. D4 is not available publicly yet.

In the case of (D2) as available online, compression is

used for several datasets to reduce size. To gather data sizes

without compression we used the h5repack tool available

with the HDF5 library to remove compression from all datasets

via h5repack -f NONE. To illustrate the potential impact

of compression on file size we then used the h5repack
to apply GZIP compression to all datasets via h5repack
-f GZIP=4. This approach allows us to assess the expected

impact of compression on file size. Using h5repack provides

us with a convenient tool to test compression settings for

existing HDF5 files. In practice, when generating new data

files, users will typically use HDMF directly to specify I/O

filters on a per-dataset basis, which has the advantage that it

allows us to optimize storage layout independently for each

dataset.

179

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:34:52 UTC from IEEE Xplore. Restrictions apply.

