2019 IEEE International Conference on Big Data (Big Data)

HDMEF: Hierarchical Data Modeling Framework for
Modern Science Data Standards

Andrew J. Tritt*!l, Oliver Riibel*!l, Benjamin Dichterf, Ryan Ly*, Donghe Kangf, Edward F. Chang¥, Loren M. Frank®

Kristofer Bouchard®

*Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
{ajtritt, oruebel, rly} @Ibl.gov
TBiological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
{kebouchard, bdichter} @Ibl.gov
i Computer Science and Engineering, Ohio State University, Columbus, OH, USA
kang.1002@osu.edu
§ Howard Hughes Medical Institute, Kavli Institute for Fundamental Neuroscience, Department of Physiology,
University of California, San Francisco, San Francisco, CA, USA
loren@phy.ucsf.edu
1 Department of Neurological Surgery and the Center for Integrative Neuroscience,
University of California, San Francisco, San Francisco, CA, USA
edward.chang @ucsf.edu

Abstract—A ubiquitous problem in aggregating data across
different experimental and observational data sources is a lack
of software infrastructure that enables flexible and extensible
standardization of data and metadata. To address this challenge,
we developed HDMF, a hierarchical data modeling framework
for modern science data standards. With HDMF, we separate the
process of data standardization into three main components: (1)
data modeling and specification, (2) data I/O and storage, and (3)
data interaction and data APIs. To enable standards to support
the complex requirements and varying use cases throughout the
data life cycle, HDMF provides object mapping infrastructure
to insulate and integrate these various components. This ap-
proach supports the flexible development of data standards and
extensions, optimized storage backends, and data APIs, while
allowing the other components of the data standards ecosystem
to remain stable. To meet the demands of modern, large-scale
science data, HDMF provides advanced data 1I/O functionality
for iterative data write, lazy data load, and parallel I/0. It also
supports optimization of data storage via support for chunking,
compression, linking, and modular data storage. We demonstrate
the application of HDMF in practice to design NWB 2.0 [13],
a modern data standard for collaborative science across the
neurophysiology community.

Index Terms—data standards, data modeling, data formats,
HDFS5, neurophysiology

This work was sponsored by the Kavli foundation. Research reported in
this publication was supported by the National Institute of Mental Health of
the National Institutes of Health under Award Number R24MH116922 to O.
Riibel and by the Simons Foundation for the Global Brain grant 521921 to
L. Frank. The content is solely the responsibility of the authors and does not
necessarily represent the official views of the National Institutes of Health.

HThese authors contributed equally to this work

978-1-7281-0858-2/19/$31.00 ©2019 IEEE 165

I. INTRODUCTION

As technological advances continue to accelerate the vol-
umes and variety of data being produced across scientific
communities, data engineers and scientists must grapple with
the arduous task of managing their data. A subtask to this
broader challenge is the curation and organization of complex
data. Within expansive scientific communities, this challenge is
exacerbated by the idiosyncrasies of experimental design, lead-
ing to inconsistent and/or insufficient documentation, which in
turn makes data difficult or impossible to interpret and share.
A common solution to this problem is the adoption of a data
schema, a formal description of the structure of data.

Proper data schemas ensure data completeness, allow for
data to be archived, and facilitate tool development against
a standard data structure. Despite the benefit to scientific
communities, efforts to establish standards often fail. Diverse
analysis tools and storage needs drive conflicting needs in data
storage and API requirements, hindering the development and
community-wide adoption of a common standard. Here, we
present HDMF, a framework that addresses these problems
by separating data standardization into three components:
Data Specification, Data Storage, and Data Interaction. By
creating interfaces between these components, we have created
a modular system that allows users to easily modify these
components without altering the others. We demonstrate the
utility of HDMF by evaluating its use in the development of
NWRB, a data standard for storing and sharing neurophysiology
data across the systems neuroscience community.

In this work, we first present an assessment of the state of
the field (Sec. II) and common requirements for data standards

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:34:52 UTC from IEEE Xplore. Restrictions apply.

(Sec. III). Motivated by these requirements, we then describe
HDMF, a novel software architecture for hierarchical data
standards that addresses key limitations of the current state
of the art (Sec. IV). Finally, we assess this novel architecture
and demonstrate its utility in building NWB 2.0, a community
data standard for collaborative systems neuroscience (Sec. V).

II. RELATED WORK
A. File Formats

File formats used in the scientific community vary broadly,
ranging from: 1) basic formats that explicitly specify how data
is laid out and formatted in binary or text data files (e.g., CSV,
flat binary, etc.), 2) text files based on language standards,
e.g., the Extensible Markup Language (XML) [3], JavaScript
Object Notation (JSON) [6], or YAML [2], to 3) self-
describing array-based formats and libraries, e.g., HDF5 [19],
NetCDF [10], or Zarr [21]. While basic, explicit formats are
common, they often suffer from a lack of portability, scalabil-
ity and rigor in specification, and as such are not compliant
with FAIR [20] data principles. Text-based standards, e.g.,
JSON, (in combination with character-encoding schema, e.g.,
ASCII or Unicode) are popular for standardizing documents
for data exchange, particularly for relatively small, structured
documents; however, they are impractical for storage and
exchange of large, scientific data arrays. For storing large sci-
entific data, self-describing, array-based formats, e.g., HDFS,
have gained wide popularity in the scientific community.

B. Data Standards

Building on file formats, data standards specify the or-
ganization of data and metadata to enable standardized ex-
change, access, and use and to facilitate reuse, integration,
and preservation of data assets. Tool-oriented data standards,
e.g., VizSchema [16], NIX [17], XDMF [4], propose to bridge
the gap between general-purpose, self-describing formats and
the need for standardized tools via additional lightweight, low-
level schema to further standardize the description of the low-
level data organization to facilitate data exchange and tool
development. However, such tool-oriented standards are still
fairly low-level and often do not consider semantics of the
data critical for applications.

Conversely, application-oriented data standards, such as
NeXus [7], BRAINformat [11], or CXIDB [8] among many
others, provide community-specific solutions that focus on the
semantic organization of data for target applications. However,
the approaches and tools developed do not generalize to other
scientific communities.

III. REQUIREMENTS

Data standards are central to all aspects of the data life-
cycle, from data acquisition, pre-processing, and analysis to
data publication, preservation, and reuse. A data standard must
be flexible enough to accommodate the diversity of data types
and metadata that arise throughout this cycle. Additionally,
different use cases often emphasize different requirements.
This leads to broad, and sometimes conflicting, requirements

166

for data standards. Broadly speaking, requirements are driven
by properties of and constraints on the data that need to be
stored.

The 5 V’s of Big Data—volume, velocity, variety, value, and
veracity—emphasize properties of the data itself, leading to
strict requirements with regard to performance and flexibility
of data standards. A data standard should be flexible enough
to allow for the diversity of data generated by the scientific
community. At the same time, it must not hinder scientists
from storing and accessing large volumes of data. Providing
this functionality requires that APIs for data access, I/O, and
specification be decoupled in such a way that these attributes
of big data can be properly addressed. For example, a standard
should not be tied to a storage format that gives poor 1/O
performance nor a format that hinders interactive exploration.

FAIR data principles—findable, accessible, interoperable,
reusable—aim to assist humans and machines in the discovery,
access, and integration of data [20]. In contrast to the 5
Vs, FAIR focuses on requirements for reusability of data.
Achieving FAIRness goals requires that data and metadata be
properly curated and documented, and that data and metadata
be properly associated, both onerous tasks. To ensure that
researchers adhere to these principles, APIs for data access,
I/0, and specification should simplify the process for including
necessary documentation, have data documentation as a core
capability, and facilitate machine and human readability.

IV. SOFTWARE ARCHITECTURE

The HDMF software architecture (see Fig. 1) consists of
four main components:

(i) specification interfaces (blue) for creation and use of the

data standard schema (orange),

(ii) data storage and I/O interfaces for read/write (green),

(iii) front-end data containers defining the user API (purple),
and

(iv) a flexible object mapping API to insulate and integrate
the different system components (red).

Through its modular architecture, HDMF supports:

(1) specification and sharing of data standards (Sec. IV-A),

(i1) advanced data storage, including multiple different stor-
age backends (Sec. IV-B),

(iii) design of easy-to-use user APIs (Sec. IV-C),

(iv) flexible mapping between the specification, user APIs,
and storage to insulate and integrate the various aspects
of the system (Sec. IV-D), and

(v) advanced I/O features to optimize data storage and I/O
(Sec. IV-E).

HDMF is implemented in Python 3 (with 2.7.x support)
and can be easily installed via the popular PIP and Conda
package managers. All sources and documentation for HDMF
are available online via GitHub at https://hdmf-dev.github.io/
using a BSD-style open source license.

A. Format Specification

A data standard describes the rules by which data is
described and stored. In order to share, exchange, and un-

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:34:52 UTC from IEEE Xplore. Restrictions apply.

Application API c
Data 1/0 l_.[RS
ata . &
[Wl'appers Containers] o s
£
Specification : = T
ObjeCt Mapplng [
i)
S®
c . “ 7’
2 Data Builder o2
: ©
£ S
3 =

2 o8
Q. s

7] HE
>

©
Data §t:anc!ard —— S8
Specification S5
(7))
Data

Specification Storage
Fig. 1: Software architecture of HDMF (blue box). HDMF
is designed to facilitate the creation of formal data standards
(orange), advanced application APIs (top), and flexible inte-
gration with modern data storage (bottom right).

derstand scientific data, standards need to facilitate human
and programmatic interpretation and formal verification. While
use of text-based documents to describe standards is common,
this approach is not scalable to increasingly complex data and
impedes formal verification. To address this challenge, HDMF
defines a formal language for specification of hierarchical
data standards, i.e., a schema for defining hierarchical data
schemas. This specification language enables the formal defini-
tion, programmatic interpretation, and verification of scientific
data standards, as well as efficient sharing and versioning of
standards documents.

1) Primitives: The HDMF specification language supports
the following main primitives for defining data standards. A
Group (similar to a folder) defines a collection of objects
(subgroups, datasets, and links). A Dataset defines an n-
dimensional array with associated data type and dimensions.
An Attribute defines a small metadata dataset associated with a
group or dataset. Attributes and datasets may store i) basic data
types, e.g., strings (ASCII, UTF-8) or numeric types (float, int,
uint, bool, etc.), ii) flat compound data types similar to structs,
iii) special types, e.g., ISO 8061 [5] datetime string, and iv)
references to other objects.

2) Defining Reusable Data Types: To enable the modular
specification and reuse of data standard components, HDMF
supports the concept of data types. A group or dataset may
be assigned a data type to support referencing and reuse of
the types elsewhere in the specification. Types here are similar
to the concept of a class in object-oriented programming. All
components (groups, datasets, attributes, links) in a standard
specification must have either a unique type or unique name
within a type specification, ensuring a unique mapping be-

167

tween objects on disk to components of a standard speci-
fication. HDMF enables reuse of types through inheritance
and composition via the keys: i) data_type_inc to include
an existing type and ii) data_type_def to define a new type
(Tab. I).

data_type_inc | data_type_def | Description
not set not set Define a dataset/group without a type
(the name must be fixed)
not set set Define a new type
set not set Include an existing type (i.e., com-

position)

set set Define a new type that inherits com-

ponents of an existing type

TABLE I: Defining and reusing types in a format specification.

Using the HDMF specification language, a data standard
schema typically defines a collection and organization of
reusable types. This approach supports modular creation and
extension of data standards through definition of new data
types, while allowing new types to build on existing ones
through inheritance and composition.

3) Data Referencing: In addition to the primitives described
earlier, HDMF also supports the specification of Links to other
types in the specification. Object references are similar to
links but are stored as values of datasets or attributes (rather
than objects inside groups). Using datasets of object references
allows for efficient storage of large collections of references.
Object references, like links, may point to datasets or groups
with an assigned type. Finally, region references are similar to
object references, but in contrast point to regions (i.e., select
subsets) of datasets with an assigned type.

4) Namespaces: The concept of a namespace is used to
collect all specifications corresponding to a data standard,
to document high-level concepts, and to insulate standard
specifications. Within a namespace, specified type names
must be unique, while the same type name may be used
in different namespaces. The namespace further documents
metadata about a standard, e.g., the authors, description, and
version. Using the concept of a namespace makes it easy to
create new data standards, avoids collisions between standards
and format extensions, and facilitates sharing, versioning, and
dissemination of standards.

5) Specification API: HDMF provides a specification API
for building and maintaining data type specifications. The
specification API lets users progressively and programmati-
cally build up data types and add them to namespaces. As these
data types are definitions for groups and datasets, the specifi-
cation API provides corresponding classes (i.e. GroupSpec
and DatasetSpec) for building up these primitive objects
into data type specifications. Additionally, the specification
API provides AttributeSpec, LinkSpec, and RefSpec
for specifying attributes, links, and references, respectively.
After building up data type specifications and adding them to
a namespace, users can serialize the namespace to YAML or
JSON, which can be stored and used elsewhere.

6) Tools: To validate files against a data standard, HDMF
provides a built-in validator. Further, HDMF provides dedi-

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:34:52 UTC from IEEE Xplore. Restrictions apply.

cated tools to automatically generate reStructuredText docu-
mentation and figures from a format specification.

B. Storage and I/O

The role of data I/O is to translate data primitives to
and from storage. In practice, requirements of the storage
backend vary depending on the particular use case, e.g.,
data archiving and publication emphasize FAIR principles,
whereas data pipelines place more stringent demands on
performance. Recognizing that no single storage modality can
meet all requirements optimally, HDMF provides an abstract
I/O interface to support integration of new I/O backends.
The HDMF 1/O interface consists of two main components:
1) Builders to describe data primitives (Sec. IV-B1) and 2)
the HDMF 1/O interface for reading/writing builders from/to
storage (Sec. IV-B2). Leveraging this general design, HDMF
implements a reference storage backend based on HDF5
(Sec. IV-B3), while providing the flexibility to add additional
backends (see Sec. V-B).

1) Builder: Builders define intermediary objects
for /O and represent the main data primitives.
HDMF defines a corresponding builder class for
each primitive from the specification language, i.e.,
GroupBuilder, DatasetBuilder, LinkBuilder,
ReferenceBuilder, RegionBuilder, etc. Builders
provide a format-independent description of data objects for
storage.

2) HDMF I/O: HDMFIO provides a general, abstract in-
terface for creating new I/O backends. The role of the
backend I/O is then to translate (i.e., read/write) builders
to and from storage. The interface that new I/O backends
need to implement consists of five main functions: the
__init__ (...) function to initialize the storage backend,
the open() and close () functions to open and close
the file (or connection to the storage, e.g., a database), the
write_builder (builder) function to translate a given
builder to storage, and the read_builder () function to
load data from storage.

3) HDF5 1I/O: HDMF provides HDF5IO, a reference
implementation of a storage backend based on HDF5. As
a concrete implementation of the abstract HDMFIO class,
HDF5IO depends only on the Builders. As such, HDF5IO
is agnostic to the data format specification and front-end API
and supports read/write of any data format specified via the
HDMF specification language. HDF5 was chosen as the main
storage backend for HDMF because it meets a broad range
of the fundamental requirements of scientific data standards.
In particular, HDFS is self-describing, portable, extensible,
optimized for storage and I/O of large scientific data, and is
supported by many programming languages and analysis tools.

C. User APIs

The role of the user API is to enable users to efficiently
interact with data in memory and to provide usable interfaces
for building user applications. HDMF uses an object-oriented
approach toward user interfaces in which each type in the

168

format specification is represented by a corresponding front-
end container class.

1) Containers: Containers are Python object representa-
tions of the data specified in a data type specification.
Containers are endowed with an object ID and pointers to
other containers to facilitate internal tracking of relation-
ships, e.g. parent-child relationships. Apart from this, the base
Container class provides no other functionality to the user
to working with instances. Instead, it provides a base for
users to add functionality associated with more specialized
data types. The base Container class is generated from
the metaclass ExtenderMeta, which provides decorators for
designating routines to be used for programmatically defining
behavior and functionality of Container subclasses.

2) Dynamic Containers: HDMF supports the dynamic gen-
eration of container classes to represent data types defined in
a format specification. This functionality enables HDMF to
read and write arbitrary data standards and extensions based
on the format specification alone, i.e., without requiring users
to write custom Container classes. Using dynamic containers
allows users to easily prototype, evaluate, and share new data
types and their definitions.

3) Data Validation: Ensuring compliance of data with the
format specification is central to data standardization. This
includes checking of data compliance at run-time during data
generation as well as tools for post-hoc validation of files.

As a dynamically-typed language, Python does not enforce
data types and only recently added support for type hints
(which are also not enforced). To address this challenge,
HDMF defines docval; a function decorator that allows
documentation and type declaration for inputs and outputs
of a function. Using docval, functions and methods can
enforce variable types and generate standardized Sphinx-style
docstrings for comprehensive API documentation.

HDMF also includes a user-friendly tool for post-hoc valida-
tion. Using the validator, a file can be checked for compliance
to a given format specification to identify errors, such as
missing objects or additional components in a file that are
not governed by the given standard.

D. Object Mapping

The role of the object mapping (Fig 1, red) is to insulate and
integrate the specification, storage, and user API components
of HDMF. Using the format specification, the object mapping
translates between front-end containers and data builders for
I/O. Fig. 2 provides an overview of the main components of the
object mapping API, consisting of the Object Mapper classes,
the Type Map, and the Build Manager.

An Object Mapper maintains the mapping between front-
end API container attributes and the data type specification
components. Its role is to translate data containers using the
format specification to builders for I/O and vice versa. For
each type in the data standard, there exists a corresponding
Container and ObjectMapper class. In many cases, the
default ObjectMapper can be used, which implements a

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:34:52 UTC from IEEE Xplore. Restrictions apply.

Build Manager

Type Map

v

ObjectMapper

Data Builder

Fig. 2: Overview of the HDMF object mapping API. Object
Mappers map between containers and builders while the Type
Map maintains the mapping between data types and containers
and containers and object mappers. Finally, the Build Manager
manages the mapping process to construct containers and
builders and memoizes builders and containers.

default mapping for: 1) objects in the specification to construc-
tor arguments of the Container class and 2) Container
attributes to specification objects. These mappings can be
customized by creating a custom class that inherits from the
default ObjectMapper. To optimize storage and improve
usability of the data API, the representation of data in memory
as part of the container can differ from the organization of
the data in a file. In this case, a direct mapping between
Container attributes, Container constructor arguments,
and specification data types may not be possible. To ad-
dress this challenge, custom functions can be designated
for setting Container constructor arguments or retrieving
Container attributes.

The role of the Type Map then is to map between types
in the format specification, Container classes, and Object
Mapper classes. Using TypeMap instance methods, users
specify which data type specification corresponds to a defined
Container class and which Container class corresponds
to a defined ObjectMapper class. By maintaining these
mappings, a Type Map is then able to convert between all
data types to and from their respective Container classes.

Finally, the BuildManager is responsible for memoiz-
ing Builders and Containers. To ensure a one-to-one cor-
respondence between in-memory Container objects and
stored data (as represented by Builder objects), the
BuildManager maintains a map between Builder objects
and Container objects, and only builds a Builder (from a
Container) or constructs a Container (from a Builder) once,
thereby maintaining data integrity.

E. Advanced Data 1/0

Due to the large size of many experimental and observa-
tional datasets, efficient data read and write is essential. HDMF
includes optional classes and functions that provide access to

169

advanced 1/O features for each storage backend. Our primary
storage system, HDF5, supports several advanced I/O features:

1) Lazy Data Load: HDMF uses lazy data load, i.e., while
HDMF constructs the full container hierarchy on read, the
actual data from large arrays is loaded on request. This allows
users to efficiently explore data files even if the data is too
large to fit into main memory.

2) Data I/O Wrappers: Arrays, such as numpy ndarrays,
can be wrapped using the HDMF DataIO class to define per-
dataset, backend-specific settings for write. To enable standard
use of wrapped arrays, DataIO exposes the normal interface
of the array. Using the concept of array wrappers allows
HDMF to preserve the decoupling of the front-end API from
the data storage backend, while providing users flexible control
of advanced per-dataset storage optimization.

To optimize dataset I/O and storage when using HDF5 as
the storage backend, HDMF provides the H5DataIO wrapper,
which extends DataIO, and enables per-dataset chunking and
I/O filters. Rather than storing an n-dimensional array as a
contiguous block, chunking allows the user to split the data
into sub-blocks (chunks) of a specified shape. By aligning
chunks with typical read/write operations, chunking allows
the user to accelerate I/O and optimize data storage. With
chunking enabled, HDFS5 also supports a range of 1/O filters,
e.g., gzip for compression. Chunking and I/O filters are applied
transparently, i.e., to the user the data appears as a regular n-
dimensional array independent of the storage options used.

3) Iterative Data Write: In practice, data is often not readily
available in memory, e.g., data may be acquired continuously
over time or may simply be too large to fit into main memory.
To address this challenge, HDMF supports writing of dataset
iteratively, one data chunk at a time. A data chunk, represented
by the DataChunk class, consists of a block of data and a
selection describing the location of data in the target dataset.
The AbstractDataChunkIterator class then defines
the interface for iterating over data chunks. Users may define
their own data chunk iterator classes, enabling arbitrary divi-
sion of arrays into chunks and ordering of chunks in the itera-
tion. HDMF provides a DataChunkIterator class, which
implements the common case of iterating over an arbitrary di-
mension of an n-dimensional array. DataChunkIterator
also supports wrapping of arbitrary Python iterators and gen-
erators and allows buffering of values to collect data in larger
chunks for I/O.

4) Parallel I/0: The ability to access (read/write) data in
parallel is paramount to enable science to efficiently utilize
modern high-performance and cloud-based parallel compute
resources and enable analysis of the ever-growing data vol-
umes. HDMF supports the use of the Message Passing Inter-
face (MPI) standard for parallel I/O via HDF5. In practice,
experimental and observational data consists of a complex
collection of small metadata (i.e, few MB to GB), with the bulk
of the data volume appearing in a few large data arrays (e.g.,
raw recordings). In practice, parallel write is most appropriate
for populating the largest arrays, while creation of the metadata
structure is usually simpler and more efficient in serial. With

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:34:52 UTC from IEEE Xplore. Restrictions apply.

HDMF, therefore, the initial structure of the file is created
on a single node, and bulk arrays are subsequently populated
in parallel. This use pattern has the advantage that it allows
the user to maintain their workflow for creating files while
providing explicit, fine-grained control over the parallel write
for optimization. Similarly, on read, the object hierarchy is
constructed on all ranks, while the actual data is loaded lazily
in parallel on request.

5) Append: As scientific data is being processed and ana-
lyzed, a common need is to append (i.e., add new components)
to a file. HDMF automatically records for all builders and
containers whether they have been written or modified. On
write, this allows the I/O backend to skip builders that have
already been written previously and append only new builders.

6) Modular Data Storage: Separating data into different
files according to a researcher’s needs is essential for efficient
exploratory analysis of scientific data, as well as production-
level processing of data. To facilitate this, HDMF allows
users to reference objects stored in different files. By default,
backend sources are automatically detected and corresponding
external links are formed across files. For cases where this
default functionality is not sufficient, the HSDataIO wrapper
allows users to explicitly link to objects.

V. EVALUATION

We demonstrate the application of HDMF in practice to
design the NWB 2.0 [13] neurophysiology data standard.
Developed as part of the US NIH BRAIN Initiative, the
NWB data standard supports a broad range of neurophysi-
ology data modalities, including extracellular and intracellular
electrophysiology, optical physiology, behavior, stimulus, and
experiment data and metadata. HDMF has been used to both
design NWB 2.0 as well as to implement PyYNWB, the Python
reference API for NWB. Following the same basic steps as
in the previous section, we first discuss the use of HDMF
to specify the NWB data standard (Sec. V-A). Next, we
demonstrate the use of the HDMF I/O layer to integrate Zarr as
an alternate storage backend and show its application to store
NWB files from a broad range of neurophysiology applications
(Sec. V-B). We then discuss how HDMF facilitates the design
of advanced user APIs (here, PyNWB; Sec. V-C). Finally, we
demonstrate how HDMF facilitates the creation and use of
format extensions (Sec. V-D) and show the application of the
advanced data I/O features of HDMF to optimize storage and
I/O of neurophysiology data (Sec. V-E).

A. Format Specification

Neurophysiology data consists of a wide range of data types,
including recordings of electrical activity from brain areas
over time, microscopy images of fluorescent activity from a
brain areas over time, external stimuli, and behavioral mea-
surements under different experimental conditions. A common
theme among these various types of recordings is that they
represent time series recordings in combination with complex
metadata to describe experiments, data acquisition hardware,
and annotations of features (e.g., regions of interest in an

170

image) and events (e.g., neural spikes, experimental epochs,
etc.). Because HDMF supports the reuse of data types through
inheritance and composition, NWB defines a base TimeSeries
data type consisting of a dataset of timestamps in seconds
(or staring time and sampling rate for regularly sampled
data), a dataset of measured traces, the unit of measurement,
and a name and description of the data. TimeSeries then
serves as the base type for more specialized time series types
that extend or refine TimeSeries, such as ElectricalSeries for
voltage data over time, ImageSeries for image data over time,
SpatialSeries for positional data over time, among others.
By supporting reusable and extensible data types, HDMF
allows the NWB standard and its extensions to be described
succinctly and modularly. In addition, NWB specifies generic
types for column-based tables, ragged arrays, and several other
specialized metadata types. On top of these modular types,
NWB defines a hierarchical structure for organizing these
types within a file. In total, the NWB standard defines 68
different types, which describe the vast majority of data and
metadata used in neurophysiology experiments (see [13]).

NWRB uses links to specify associations between data types.
For example, the DecompositionSeries type, which represents
the results of a spectral analysis of a time series, contains a link
to the source time series of the analysis. A link can also point
to a data type stored in an external file, which is often used for
separating the results of different analyses from the raw data
while maintaining the relationships between the results and
the source data. As such, HDMF links facilitate documenting
relationships and provenance while avoiding data duplication.

To model relationships between data and metadata and to
annotate subsets of data, NWB uses object references. For
example, neurophysiology experiments often consist of time
series where only data at selected epochs of time are important
for analysis, e.g. the electrical activity of a neuron during a one
second period immediately following presentation of stimuli.
These epochs are stored as a dataset of object references
to time series and indices into the time series data. HDMF
object references provide an efficient way to specify the large
datasets of metadata that are often required to understand
neurophysiology data.

Because HDMF supports storage of format specifications as
YAML/JSON text files, the NWB schema is version controlled
and hosted publicly on GitHub [14]. Sphinx-based documen-
tation for the standard is then automatically generated from
the schema using HDMF documentation tools, and is version
controlled and integrated with continuous documentation web
services with minimal customization required. These features
make updating the NWB schema and its documentation to
a new version simple and transparent, while maintaining a
detailed history of previous versions.

B. Data Storage

In practice, different storage formats are optimal for differ-
ent applications, uses, and compute environments. As such,
it is critical that users can use data standards across stor-
age modalities. Using the HDMF abstract storage API, we

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:34:52 UTC from IEEE Xplore. Restrictions apply.

I from pynwb import NWBHDF5IO,
2 # Read the NWB file from HDF5
3 h5r = NWBHDF5IO(’H19.28.012.11.05-2.nwb’ , 'zr’
4 £ = h5r.read()

5 # Write the NWB using Zarr

6 zw = NWBZarrIO(’'H19.28.012.11.05-2.zarxr’,
7 manager=h5r.manager)

§ zw.write (f)

9 # Close the files
10 zw.close ()
11 h5r.close ()

NWBZarrIO

g
w 4

(a) Converting the NWB file from HDF5 to Zarr. NWBZarrIO
extends ZarrIO to define common NWB settings to simplify the
use of Zarr with NWB.

I from pynwb import NWBHDF5IO0, NWBZarrIO
2> from matplotlib import pyplot as plt
3 import numpy as np

5 # Plot acquisition index_000 from an \nwb{} file
6 def plot_acquistion (nwb_file, fmt, *xplotargs) :

7 dat = nwb_file.get_acquisition (’index_000’

8 start = dat.starting_time

9 time = np.arange(dat.num_samples) / dat.rate + start
10 values = dat.data

11 plt.plot (time, values, fmt, *xplotargs)

12 return (dat.starting_time_unit, dat.unit)

14 # Open the HDF5 file

15 h5r = NWBHDF5IO(’H19.28.012.11.05-2.nwb’, '’

16 hf = hb5r.read() # NWBFile object read from HDF5
17 # Open the Zarr file

18 zr = NWBZarrIO(’H19.28.012.11.05-2.zarr’, 'r’)

19 zf = zr.read() # NWBFile object read from Zarr
20 # Create the same plot for both NWBFile’s

21 xunit, yunit = plot_acquistion (nwb_file=hf, fmt="r’,

22 linewidth=4, label=’hdf5’
23 xunit, yunit = plot_acquistion(nwb_file=zf, fmt="b--’',

24 linewidth=0.8, label=’zarr’)
25 plt.legend()

26 plt.show()

(b) Plot the same data from the NWB file stored in HDF5 and Zarr.

| Lol
8.0 L
7.5 L L
e
5.5 - ’ r V

005 010 015 020 025 030 035 0.40
(c) Resulting visualization from the code in 3b.

Fig. 3: Example showing: (a) convert of dataset D2 (Tab. II)
from HDF5 to Zarr and (b,c) use of the two files for analysis.

demonstrate the integration of Zarr’s DirectoryStore
with HDMF by defining the ZarrIO class (see Appendix
F). The goal of this evaluation is to demonstrate feasibility
and practical use of multiple storage backends via HDMF.
However, it is beyond the scope of this manuscript to evaluate
and compare HDF5 and Zarr.

To integrate Zarr with HDMF and PyNWB, we only had to
define new classes defining the backend, i.e., no modifications

171

(D1) (D2) (D3) (D4)
Allen Allen Allen NSDS
EPhys ICEphys OPhys EPhys

« | #Groups 30 142 41 33

§ [#Datasets 49 604 83 69

£ | #Attributes 251 1565 408 283

© [#Links 8 127 2 6

w, | #Files 1 1 1 1

E Size 705MB 168MB 1,569MB 57,934MB

T [Size (gzip=4) | 533MB 49MB 704MB 49,057MB

. | #Folders 79 731 124 102

5 | #Files 198 2045 320 263

N ["Size 696MB 165MB 1565MB 57,925MB

Q #Folders 79 731 124 102

£ | #Files 622 2383 1153 12,799

ﬁ Size 709MB 167MB 1584MB 59,579MB

TABLE II: Overview of four NWB neurophysiology data files
(top rows) stored in i) HDFS without compression and with
gzip compression enabled for all datasets, ii) Zarr, and iii)
Zarr-C with automatic chunking enabled for all datasets.

to the frontend container classes or the format specification
were needed. As this example demonstrates, using the HDMF
abstract storage API facilitates the integration of new storage
backends and allows us to make new storage options broadly
accessible to any application format built using HDMF.

Table II illustrates the use of the Zarr backend in practice.
We converted four NWB files from the Allen Institute for
Brain Science and one from the BouchardLab at LBNL from
HDF5 to Zarr. We chose these datasets as they are very
complex and allow us to cover a wide range of data sizes
and NWB use cases, i.e., extracellular electrophysiology (D1,
D4), intracellular electrophysiology (D2), as well as optical
physiology and behavior (D3) (see also Appendix G).

As an example, Fig. 3a shows the conversion of dataset D2
from HDF5 to Zarr. Fig. 3b then shows a simple analysis to
compare the same recording from the HDF5 and Zarr file,
illustrating that both indeed store the same data (Fig. 3c).
Importantly, as the front-end API is decoupled from the storage
backend, we can use the same code to access and analyze the
data, independent of whether it is stored via Zarr or HDFS5.

C. Data API

Building on top of HDMF, the PyNWB Python package
is used for reading and writing NWB files. PyYNWB pri-
marily consists of a set of HDMF Container classes and
ObjectMappers to represent and map NWB types. PyYNWB
provides a modified base Container class, NWBContainer,
upon which the rest of the API is built. NWBContainer
uses HDMFs ExtenderMeta metaclass decorators for defining
functions that autogenerate setter and getter methods from pa-
rameterized macros, creating uniform functionality across the
API and simplifying integration of new types. To ensure com-
pliance of constructor arguments with the schema, PyNWB
uses docval. Three main classes that exercise additional
functionality of HDMF are NWBFile, TimeSeries, and
DynamicTable.

1) NWBFile: The NWBFile data type is the top-level
type in the NWB standard, which defines the hierarchical

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:34:52 UTC from IEEE Xplore. Restrictions apply.

organization of all data types in a file. These data types, in the
form of Containers, are added to the NWBF1i 1e object through
automatically generated instance methods. These methods are
generated using the parameterized macros provided by the
base NWBContainer class.

Another notable feature of the NWBFile Container is the
copy method, which allows users to create a shallow copy
of an NWBFile Container. Leveraging the modular storage
capabilities of HDMF, this copy method allows users to easily
create an interface file, which does not store any large data
itself, but contains external links to all objects in the original
file. This is useful for storing the results of exploratory data
analysis separate from the raw data.

2) TimeSeries: The TimeSeries Container represents the
base TimeSeries type of the NWB data standard, which allows
us to define a consistent base interface to all time series data in
NWB. Neurophysiology experiments often use the same time
axis for all time series data. To facilitate reuse of the same
timestamps across different time series data, the timestamps of
a TimeSeries Container can be defined as another TimeSeries
object. To resolve this sharing, a custom ObjectMapper is used
to override the base behavior for retrieving the timestamps
from a given TimeSeries Container. This is done using deco-
rators provided by ObjectMapper class in HDMF.

3) DynamicTable: The DynamicTable data type is a
group that represents tabular data, where each column is stored
as a dataset. Using different types of datasets (i.e. unique data
types), a DynamicTable can store one-to-one and one-to-many
relationships. The details for populating and working with
these different types of datasets are all managed by custom add
and retrieval instance methods of the DynamicTable Container
class, thereby shielding the user from details of the format
specification.

As the DynamicTable data type does not predefine
specific columns, users can extend DynamicTable to pro-
vide a stable specification for certain types of tabular data.
To simplify development of corresponding DynamicTable
Container subclasses, the DynamicTable Container uses
directives of the ExtenderMeta metaclass in HDMF to auto-
matically define structure of the Container class.

D. Extensions

Scientific data standards, by necessity, evolve slower than
scientific experiments, but rather emerge from common needs
across experiments. As a result, there is often a gap between
common practices supported by scientific standards and the
data needs of bleeding-edge science experiments. To address
this challenge, HDMF enables users to extend data standards,
enabling the integration of new data types while facilitating use
(and reuse) of best practice and existing standard components.

To demonstrate the creation and use of format extensions
in practice, we show the extension of the NWB data standard
for electrocorticography (ECoG) data. ECoG uses electrodes
placed directly on the exposed surface of the brain to record
electrical activity from the cerebral cortex (Fig. 4 left). To
enable localization of electrodes on the brain surface, we create

172

Fig. 4: Left: Visualization of the cortical surface of the brain
showing the location of the electrodes of the ECoG recording
device. Right: Format extension for storing a triangle mesh of
the cortical surface.

1 from pynwb.spec import NWBDatasetSpec,
NWBNamespaceBuilder, NWBGroupSpec,

2> # Create the data specification

3 surface = NWBGroupSpec (

4 neurodata_type_def=’Surface’,

5 neurodata_type_inc=’'NWBDataInterface’,

6 quantity='+’,

7 doc='brain cortical surface’)

8 surface.add_dataset (doc=..., name=’' faces’

9 shape= (None, 3), dtype='uint’, dims=...)

10 surface.add_dataset (doc=..., name='vertices’,

1 shape=(None, 3), dtype=’'float’, dims=...)

12 surface.add_attribute(...)

13 # Create the namespace specification

14 ns_builder = NWBNamespaceBuilder (doc=..., name=’ecog’,

15 version='1.0’, author=’Ben Dichter’, ...)

16 ns_builder.add_spec (’ecog.extensions.yaml’, surface)

17 # Export/save the extension YAML files

18 ns_builder.export (' ecog.namespace.yaml’)

NWBAttributeSpec

Fig. 5: Example illustrating the creation of an extension for
storing a mesh describing the cortical surface of the brain.

a format extension to store a triangle mesh describing the
cortical surface of the brain (Fig. 4 right). Similar to how
one would typically write data to disk, we use the HDMF
specification API to specify all data objects (groups, datasets,
and attributes) and data types for our extensions (Fig. 5).
We then specify a new namespace and export our extensions.
The result is a collection of YAML files that describe our
extensions (see Appendix A).

Using the HDMF load_namespace method to load our
extension and get_class method to automatically create
a Python class to represent our new Surface data type,
we can then then immediately write and read data using our
extension (Fig. 6). The ability to read/write extension data
purely based on the specification supports fast prototyping,
evaluation, sharing, and persistence of extensions and data.
To enable users to define custom functionality for extensions,
e.g., to facilitate specialized queries and visualizations, HDMF
supports the creation of custom container classes.

E. Data I/O

Next, we discuss the impact of HDMF’s advanced data
I/O features for lazy data load, compression, iterative write,
parallel I/O, append, and modular storage in practice.

1) Lazy Data Load: Lazy data load enables us to efficiently
read large data files, while avoiding loading the whole file
into main memory. To demonstrate the impact of lazy data

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:34:52 UTC from IEEE Xplore. Restrictions apply.

from pynwb import load_namespaces, get_class,

Bo—-

NWBHDF5IO, NWBFile ...
3 nwbfile = NWBFile(...) # Create file as usual
4 load_namespaces (' ecog.namespace.yaml’) # Load extension
5 Surface = get_class(’Surface’, ’'ecog’) # Get extension
class
6 surf = Surface(faces=... , vertices=..., # Populate data
7 name=’' Surface_1’...)
8 nwbfile.add_acquisition (surf) # Add to file
9 with NWBHDF5IO (’surface_example.nwb’, 'w’) as io:
10 io.write (nwbfile) # Write to disk

1 from pynwb import load_namespaces, NWBHDF5IO

2 # Read ECoG extension data

3 load_namespaces (' ecog.namespace.yaml’) #

4 io = NWBHDF5IO (’surface_example.nwb’, ’'r’)

5 nwbfile = io.read()

6 nwbfile.get_acquisition (’Surface 1’).vertices

Fig. 6: Write (top) and read (bottom) ECoG extension data.

load, we evaluate the performance and memory usage for
reading the NWB files from Table II. Here, file read includes
opening the HDF5 file and subsequent lazy read to construct
all builders and containers. We performed the tests on a 2017
MacBook Pro using the profiling scripts shown in Appendix C.
We repeated the file read 100 times for each file and report
the mean times: D1) 0.16s, D2) 0.92s, D3) 0.31s, and D4)
0.22s. For memory usage, we observe that instantiating the
NWBHDF5IO object requires ~ 0.3M B for all files. The
actual read then requires: D1) 4.1M B, D2) 11.9M B, D3)
4.7TM B, and D4) 3.5M B. We observe that data read requires
only a few MB and less than one second in all cases. Here,
read performance and memory usage depend mainly on the
number of objects in the file, rather than file size. In fact, D2
as the smallest file overall but with the most objects, requires
the most time and memory on initial read.

2) Chunking: Chunking (and I/O filters, e.g., compression)
allow us to optimize data layout for storage, read, and write.
To illustrate the impact of chunking on read performance,
we use as an example a dataset from file D4, which stores
the frequency decomposition of an ECoG recording. The
dataset consists of 916,385 timesteps for 128 electrodes and
54 frequency bands. We store the data as a single binary
block as well as using (32 x 128 x 54) chunks. We evaluate
performance for reading random blocks in time consisting of
512 consecutive time steps. We observe a mean read time of
0.179s without chunking and 0.012s with chunking, i.e., a
~ 15x speed-up (see Appendix D). Design of optimal data
layouts is a research area in itself and we refer the interested
reader to the literature for details [1], [9], [12], [15], [18].

3) Compression: NWB uses GZIP for compression. GZIP
is available with all HDF5 deployments, ensuring that files are
readable across compute systems. As shown in Table II, using
GZIP we see compression ratios of 1.32x, 3.43x, 2.23x, and
1.18x for the four NWB files, respectively. Compression and
chunking are applied transparently by HDF5 on a per-chunk
basis. This ensures that we only need to de/compress chunks
that we actually need and it allows users to interact with files
the same way, independent of the storage optimizations used.

173

Data Array

(a) Converting large data arrays.

InputData Sreamp g iy . [SiomGe T

(b) Streaming/iterative data write.

Data Array I I I [I |
Storage 1 |

(c) Writing sparse data arrays.

Fig. 7: Example applications of iterative data write.

4) Iterative Data Write: lterative data write allows us
to optimize memory usage and I/O for large data, e.g., to
avoid loading all data at once into memory during data
import (Fig. 7a) and support streaming write during acquisition
(Fig. 7b). By combining the iterative write approach with
chunking and compression, we can further optimize both
storage and I/O of sparse data and data with missing data
blocks (Fig. 7c¢).

A common example in neurophysiology experiments is
intervals of invalid observations, e.g., due to changes in the
experiment. Using iterative data write allows us to write only
blocks of valid observations to a file, and in turn reduce the
cost for I/O. To illustrate this process, we implemented a
Python iterator that yields a set of random values for valid
timesteps and None for invalid times. For write, we then wrap
the iterator using HDMFs DataChunkIterator, which in
turn collects the data into data chunks for iterative write,
while automatically omitting write of invalid chunks (see
Appendix E). When using chunking in HDFS5, chunks are
allocated in the file when written to. Hence, chunks of the
array that contain only invalid observations are never allocated.
In our example, the full array has a size of 2569.42M B while
only 1233.51M B of the total data are valid. The resulting
NWRB file in turn has a size of just 1239.07M B. In addition,
iterative write can help to greatly reduce memory cost, since
we only need to hold the chunks relevant for the current write
in memory, rather than the full array. In our example, memory
usage during write was only 6.6MB.

5) Append: The process for appending to a file in HDMF
consists of: 1) reading the file in append mode, 2) adding new
containers to the file, and finally 3) writing the file as usual.
Using this simple process allows us to easily add, e.g., results
from data processing pipelines, to an existing data file. See
Appendix B for a code example.

6) Modular Data Storage: HDMF’s support for modular
storage, enables us to easily separate data from different
acquisition, processing, and analysis stages across individual
files. This approach is useful in practice to facilitate data

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:34:52 UTC from IEEE Xplore. Restrictions apply.

management, avoid repeated file updates, and manage file
sizes. At the same time, links are resolved transparently,
enabling convenient access to all relevant data via a single
file.

VI. CONCLUSION

Creating data standards is as much a social challenge as
it is a technical challenge. With stakeholders ranging from
application scientists to data managers, analysts, software
developers, administrators, and the broader public, it is critical
that we enable stakeholders to focus on the data challenges that
matter most to them while limiting conflict and facilitating col-
laboration. HDMF addresses this challenge by clearly defining
and insulating data specification, storage, and interaction as the
core technical components of the data standardization process.
At the same time, HDMF supports the integration of these core
components via its sophisticated data mapping capabilities.
HDMF facilitates, in this way, the creation, expansion, and
technical evolution of data standards while simultaneously
shielding and enabling collaboration between stakeholders.
The successful use of HDMF in developing NWB 2.0, a
standard for diverse neurophysiology data, suggests that it
may be suitable for addressing analogous problems in other
experimental and observational sciences.

In the future, we plan to enhance the specification lan-
guage and API of HDMF to support complex data constraints
to define dimensions scales, dependencies between datasets
(e.g., alignment of shape), and mutually exclusive groups of
attributes and datasets. We also plan to further expand the
integration of HDMF with common Python analysis tools.

ACKNOWLEDGMENTS

The authors thank Nicholas Cain, Nile Graddis, Lydia Ng,
and Thomas Braun for providing us with pre-release data
from the Allen Institute for Brain Science. We thank Max
Dougherty for providing us with the NSDS dataset. We thank
the NWB Executive Board, Technical Advisory Board, and the
whole NWB user and developer community for their support
and enthusiasm in developing and promoting the NWB data
standard.

LEGAL DISCLAIMER

This document was prepared as an account of work spon-
sored by the United States Government. While this document
is believed to contain correct information, neither the United
States Government nor any agency thereof, nor the Regents
of the University of California, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof, or the Regents of the

174

University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of
the United States Government or any agency thereof or the
Regents of the University of California

REFERENCES

[1] B. Behzad, S. Byna, Prabhat, and M. Snir. Optimizing i/o performance
of hpc applications with autotuning. ACM Trans. Parallel Comput.,
5(4):15:1-15:27, Mar. 2019.

0. Ben-Kiki, C. Evans, and B. Ingerson. Yaml ain’t markup language
(yaml) version 1.2. yaml. org, Tech. Rep, page 23, October 2009.

T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler, and F. Yergeau.
Extensible markup language (xml), 2008. [URL] http://www.w3.org/
TR/2008/REC-xml-20081126/.

J. Clarke and E. Mark. Enhancements to the extensible data model and
format (xdmf). In DoD High Performance Computing Modernization
Program Users Group Conference, 2007, pages 322-327, June 2007.
Date and time format - ISO 8601 - An internationally accepted way to
represent dates and times using numbers., 2019.

JSON: JavaScript Object Notation, 1999 — 2015. [URL] http://json.org/.
P. Klosowski, M. Koennecke, J. Tischler, and R. Osborn. Nexus:
A common format for the exchange of neutron and synchroton data.
Physica B: Condensed Matter, 241:151-153, 1997.

F. R. Maia. The coherent x-ray imaging data bank. Nature methods,
9(9):854-855, 2012.

B. Nam and A. Sussman. Improving access to multi-dimensional
self-describing scientific datasets. In CCGrid 2003. 3rd IEEE/ACM
International Symposium on Cluster Computing and the Grid, 2003.
Proceedings., pages 172—179, May 2003.

R. Rew and G. Davis. NetCDF: an interface for scientific data access.
Computer Graphics and Applications, IEEE, 10(4):76-82, July 1990.
O. Riibel, M. Dougherty, Prabhat, P. Denes, D. Conant, E. F. Chang,
and K. Bouchard. Methods for specifying scientific data standards and
modeling relationships with applications to neuroscience. Frontiers in
Neuroinformatics, 10:48, 2016.

O. Riibel, A. Greiner, S. Cholia, K. Louie, E. W. Bethel, T. R. Northen,
and B. P. Bowen. Openmsi: A high-performance web-based platform for
mass spectrometry imaging. Analytical Chemistry, 85(21):10354-10361,
2013.

O. Riibel, A. Tritt, B. Dichter, T. Braun, N. Cain, N. Clack, T. J.
Davidson, M. Dougherty, J.-C. Fillion-Robin, N. Graddis, M. Grauer,
J. T. Kiggins, L. Niu, D. Ozturk, W. Schroeder, I. Soltesz, F. T. Sommer,
K. Svoboda, N. Lydia, L. M. Frank, and K. Bouchard. NWB:N 2.0: An
Accessible Data Standard for Neurophysiology. bioRxiv, 2019.

O. Riibel, A. Tritt, and et al. NWB:N Format Specification V 2.0.1, July
2019. https://nwb-schema.readthedocs.io/en/latest/index.html [2019-07-
29].

S. Sarawagi and M. Stonebraker. Efficient organization of large mul-
tidimensional arrays. In Proceedings of 1994 IEEE 10th International
Conference on Data Engineering, pages 328-336, Feb 1994.

S. Shasharina, J. R. Cary, S. Veitzer, P. Hamill, S. Kruger, M. Durant, and
D. A. Alexander. VizSchema—Visualization Interface for Scientific Data.
In IADIS International Conference, Computer Graphics, Visualization,
Computer Vision and Image Processing, page 49, 2009.
A. Stoewer, C. J. Kellner, and J. Grewe. NIX, 2019.
//github.com/G-Node/nix/wiki.

H. Tang, S. Byna, S. Harenberg, X. Zou, W. Zhang, K. Wu, B. Dong,
O. Riibel, K. Bouchard, S. Klasky, and N. F. Samatova. Usage pattern-
driven dynamic data layout reorganization. In 2016 16th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CC-
Grid), pages 356-365, May 2016.

The HDF Group. Hierarchical Data Format, version 5, 1997-2015.
[URL] http://www.hdfgroup.org/HDF5/.

M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Ax-
ton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E.
Bourne, et al. The fair guiding principles for scientific data management
and stewardship. Scientific data, 3, 2016.

Zarr Dev. Zarr v. 2.3.2, 2019. [URL] https://zarr.readthedocs.io.

[2]
[3]

[4]
[5]
[6]
[7]
[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17] [URL] https:

[18]

[19]

[20]

[21]

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:34:52 UTC from IEEE Xplore. Restrictions apply.

APPENDIX A
ECOG EXTENSION EXAMPLE

Sources for the ECoG extension used in the paper are available
at: https://github.com/bendichter/nwbext_ecog

| namespaces:
2> - author: Ben Dichter

3 contact: ben.dichter@gmail.com
4 doc: ecog extensions

5 name: ecog

6 schema:

namespace: core

8 neurodata_types:

9 — NWBDataInterface

10 - Subject

11 source: ecog.extensions.yaml
12 version: 1.2.1

(a) ecog.namespace.yaml file with the namespace specification.

I groups:

2 - neurodata_type_def: ECoGSubject

3 neurodata_type_inc: Subject

4 name: subject

5 doc: extension of subject that holds cortical surface
data

6 groups:

7 — neurodata_type_def: CorticalSurfaces

8 neurodata_type_inc: NWBDataInterface

9 name: cortical_surfaces

10 doc: triverts for cortical surfaces

11 attributes:

12 - name: help

13 dtype: text

14 doc: help

15 value: This holds the vertices and faces for the

cortical surface meshes

groups:

- neurodata_type_def: Surface
neurodata_type_inc: NWBDatalInterface
doc: brain cortical surface
attributes:

1 — name: help

2 dtype: text

doc: help

4 value: This holds

5 datasets:

- name: faces

27 dtype: uint32

doc: faces for surface,

shape:

- null

= 3

32 dims:

- face_number

- vertex_index

name: vertices

dtype: float

37 doc: vertices for surface,

shape:

- null

=3

dims:

— vertex_number

- xyz

quantity: +

quantity: ’?2’

- neurodata_type_inc:
name: images
doc: images of subject’s brain
quantity: ’?’

Surface objects

indexes vertices

points in 3D space

Images

(b) ecog.extensions.yaml file with the type specifications.

Fig. A.1: Source YAML files with the complete specification
for the ECoG extension used in Sec. V-D.

175

APPENDIX B
APPENDING TO AN EXISTING FILE

from
from

1 pynwb import NWBHDF5IO
3 from
|

pynwb.behavior import SpatialSeries
pynwb.behavior import Position

datetime import datetime

6 from dateutil.tz import tzlocal
7 from pynwb import NWBFile

8§ import numpy as np

from

ET

Setup: Create an example NWB file

12 #HEHHHHAE AR

start_time datetime (2017, 4, 3, 11, tzinfo=tzlocal())
create_date datetime (2017, 4, 15, 12, tzinfo=tzlocal ()

16 nwbfile = NWBFile (session_description=’test file’,
17 identifier='NwWB123’,

18 session_start_time=start_time,
19 file_create_date=create_date)

20 position = Position ()

nwbfile.create_processing _module (name=’'behavior’,
description=’preprocessed behavioral data’)
nwbfile.processing[’behavior’].add(position)
with NWBHDF5IO (’example_file_ path.nwb’, 'w’)
io.write (nwbfile)

as io:

from pynwb import NWBHDFS5IO
from pynwb.behavior import SpatialSeries

1

4 HEHEAHEHEEE S HAH AR A A R A R R

5 # Append a SpatialSeries to the file

o HEHHFHEHEHFFERHEFESEHHEFEE R HH SRS

7 # Open the NWB file in append mode

8§ io NWBHDF5IO (’ example_file_path.nwb’,

9 # Read the NWB file

nwbfile io.read()

Access data as usual

12 behavior nwbfile.processing[’behavior’

position = behavior.data_interfaces[’Position’

Add data to the file as usual

data list (range (300, 400, 10)

timestamps list (range (10)

test_spatial_series SpatialSeries (’test_seria’
data,
reference_frame=’'starting_gate’,
timestamps=timestamps)

21 position.add_spatial_series (test_spatial_series)

Write the file as usual to append the new data

io.write (nwbfile)

io.close ()

mode="a’)

16

18

Fig. B.1: Example illustrating the creation of an example
NWB file (top) and process for appending a new SpatialSeries
container to an existing file using HDMF (bottom).

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:34:52 UTC from IEEE Xplore. Restrictions apply.

APPENDIX C B. Profiling Time for Lazy Data Load
PROFILING LAZY DATA LOAD

All tests for lazy data load were performed on a MacBook RO I
Pro with macOS 10.14.3, a 4-core, 3.1 GHz Intel Core i7 > import numpy as np

processor, a 1TB SSD hardrive, and 16GB of main memory. | . .. = .. i (ineiie, repeat=100) ;
. 5 # code snippet to be executed only once
A. Profiling Memory Usage for Lazy Data Load 6 mysetup = ""n

7 from pynwb import NWBHDF5IO, load_namespaces

) 8 load_namespaces ("AIBS_ophys_behavior_namespace.yaml")
1 from pynwb import NWBHDFS5IO, load_namespaces

2> from memory_profiler import profile 10 def read_nwb () :
3 }oad_namespaces ("AIBS_ophys_behavior_ namespace.yaml") 1 h5r = NWBHDF5IO(’S%s’ , 'r’)
4 EUECEEEVE B f = h5r.read()
° 13 """ g infile
6 infile = sys.argv[1l] 14
) 15 # code snippet whose execution time is to be measured
§ Cprofile 16 mycode = "read_nwb ()"
9 def read_nwb (fn): 17
10 hSr = NWBHDESIO(fn, "r’) 18 # timeit statement
1 — = hdr.read() 19 repeats = timeit.repeat (setup = mysetup,
12 i 20 stmt = mycode,
13 print ("Profiling %s" % infile) o1 repeat=repeat
2 ’
14 read_nwb (infile) » number = 1)
23
(a) Script used to evaluate memory usage for lazy data read. o i PElmE Stats
25 print (infile)
1 #!/usr/bin/env bash 26 print ("Min: %s seconds" % np.min (repeats))
2 python -m memory_profiler memprofile_lazy_open.py ecephys_session_785402239.nwb 27 print ("Mean: $s seconds" $ np mean(repeats))
3 python -m memory_profiler memprofile_lazy_open.py H19.28.012.11.05-2.nwb . . " . " e .
4 python -m memory_profiler memprofile_lazy_open.py 28 prlnt(Std: %s seconds ? np.std(repeats))
behavior_ophys_session_783928214.nwb 29 print ("Max: %s seconds" % np.max (repeats))
5 python -m memory_profiler memprofile_lazy_open.py R70_B9.nwb 30 print ("")
31
(b) Script used to run memory profiling. cgcepeait = 100 ,
33 test_files = [’ecephys_session_785402239.nwb’,
Profile D1: ecephys_session_785402239.nwb 34 "H19.28.012.11.05-2.nwb’,
. . 35 "behavior_ophys_session_783928214.nwb’,
Line# Mem usage Increment Line Contents “ "R70_B9 . nwb"]
8 84.7 MiB 84.7 MiB @profile 37 for tf in test_files:
9 def read nwb(infile): 38 time_dataset (tf, repeat)
10 85.1 MiB 0.3 MiB hS5r - NWBHDFSIO(fn, ’r’)
11 89.2 MiB 4.1 MiB _ = h5r.read()
Profile D2: H19.28.012.11.05-2.nwb (a) Script used to evaluate lazy data read performance.
Line# Mem usage Increment Line Contents Profile D1: ecephys_session_785402239.nwb
8 84.2 MiB 84.2 MiB @profile
9 def read_nwb(infile): Min: 0.15611473898752593 seconds
10 84.5 MiB 0.3 MiB h5r = NWBHDF5IO(fn, 'r’) Mean: 0.16406609811092493 seconds
Lo o6.o Mipl 1.9 MIp == hor.read() std: 0.005397679173686011 seconds
Profile D3: behavior_ ophys_session_783928214.nwb Max: 0.20559409901034087 seconds
Line# Mem usage Increment Line Contents Profile D2: H19.28.012.11.05-2.nwb
g 84.4 MiB 84.4 MiB @profile
9 def read_nwb (infile): Min: 0.8805205250100698 seconds
10 84.8 MiB 0.3 MiB h5r = NWBHDF5IO(fn, 'r’) Mean: O_ 9208410138092585 SeCOndS
il so.s iy d.PMiB == hoz:read() std: 0.02828484200246134 seconds
Profile D4: R70_B9.nwb Max: 1.0624379950168077 seconds
Line# Mem usage Increment Line Contents Profile D3: behavior_ ophys_session_783928214.nwb
8 84.4 MiB 84.4 MiB @profile
9 def read_nwb (infile): Min: 0.29385584298870526 seconds
10 84.8 MIB 0.4 MIB hSr = NWBHDFSIO(fn, ’r’) Mean: 0.3193827117001638 seconds
Ll 98.2Mip. J.4/Mip == hor.read() std: 0.01966348677270168 seconds

Max: 0.40456622300553136 seconds

(c) Memory profiling results for the four files list in Tab IIL .
Profile D4: R70_B9.nwb

Fig. C.1: Evaluating the memory usage for lazy data load for R

the files listed in Tab. II. Mean: 0.21583941377990412 seconds
Std: 0.01037254439266336 seconds
Max: 0.2417856660031248 seconds

(b) Timing results for the four files list in Tab II.

Fig. C.2: Evaluating read time for lazy data load for the files
listed in Tab. II.

176

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:34:52 UTC from IEEE Xplore. Restrictions apply.

APPENDIX D
PROFILING CHUNKING PERFORMANCE

from pynwb import NWBHDF5IO, NWBFile, TimeSeries
from hdmf.backends.hdf5.h5_utils import H5DataIO
from hdmf.data_utils import DataChunkIterator
import timeit

from numpy.random import randint

import numpy as np

import os

def

def

def

create_test_file (innwb, outname, *xkwargs):
Create a single file to test a particular chunking
Create our NWB file
nwbfile = NWBFile (innwb.session_description,
innwb.identifier,
innwb.session_start_time)
Get the polytrode data
ecog = innwb.get_processing_module (‘Wvlt_4tol1200_54band_CAR0’) .get (’ECoG’)
Wrap our data array to define I/O. Use iterative convert to save memory
ecog_data = H5DatalO(data=DataChunkIterator (ecog.data,
maxshape=ecog.data.shape,
dtype=ecog.data.dtype,
buffer_size=10000),

*xkwargs)
Create our time series
test_ts = TimeSeries (name='testseries’,

data=ecog_data,
unit=ecog.unit,
rate=ecog.rate ,
starting_time=ecog.starting_time)
nwbfile.add_acquisition (test_ts)
Write the data to file
h5w = NWBHDF5IO (outname, ’'w’)
h5w.write (nwbfile)
h5w.close ()

create_test_files():
"""Create a battery of test files
Read the input file
h5r = NWBHDFS5IO("R70_B9.nwb" , ’r’)
innwb = h5r.read()
Define I/0 example
io_options = {
"R70_B9_chunks=(32,128,54) .nwb": {’chunks’: (32,128,54)},
"R70_B9_chunks=False.nwb": {’chunks’: None},
}
Generate the various test files if necessary
for k, v in io_options.items () :
if not os.path.exists(k):
create_test_file (innwb, k, *v)
Close our input file and return
h5r.close ()
return io_options

time_chunk_read (selections, timeseries, repeat):
"""Read a set of chunks"""

mysetup = """

from numpy.random import randint

def

index randint

read_chunk (timeseries, select):
= timeseries.data[select]
(0, len(selections), 1)[0]

select = selections[index]

if _name_ == "__main

mycode = """read_chunk (timeseries, select)"""
timeit tement
repeats = timeit.repeat (setup = mysetup,
stmt = mycode,
repeat=repeat,
number = 1,
globals={’selections’: selections, ’timeseries’:

timeseries})
print ("Min: %s seconds" % np.min(repeats))
print ("Mean: %s seconds" % np.mean(repeats))
print ("Std: %s seconds" % np.std(repeats))
print ("Max: %s seconds" % np.max (repeats))

Create the test files if necessary
io_options = create_test_files()
Time reading a time slices
main_shape = (916385, 128, 54)
select_shape = (512, main_shape([l], main_shape([2])
repeats = 1000
start_index = randint (0, main_shape[0]-select_shape[0], repeats)
stop_index = start_index + select_shape[0]
decomp_chunks = [np.s_[start_index[i]: stop_index[i], :, :]
for i in range (repeats)]
for k, v in io_options.items () :
print ("Evaluating: Time slice read %s for %s" % (str(select_shape), k))
h5r = NWBHDF5IO(k, 'r’)
f = hbr.read()
ts = f.get_acquisition(’testseries’)
time_chunk_read (decomp_chunks, ts, repeats)
h5r.close ()

Fig. D.1: Code used to test chunking performance

177

Evaluating: Time slice read (512, 128, 54) for
R70_B9_chunks=(32,128,54) .nwb

Min: 0.003641556017100811 seconds

Mean: 0.012455755540286191 seconds

Std: 0.006699374489408962 seconds

Max: 0.142697595001664 seconds

Evaluating: Time slice read (512, 128, 54) for
R70_B9_chunks=False.nwb

Min: 0.08462936701835133 seconds

Mean: 0.1785103283036442 seconds

Std: 0.062357915124483104 seconds

Max: 0.7758364329929464 seconds

Fig. D.2: Timing results for reading blocks in time with and
without chunking.

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:34:52 UTC from IEEE Xplore. Restrictions apply.

DR W —

9
10
11
12
13
14
15
16

19

68

95

99
100

APPENDIX E
ITERATIVE DATA WRITE

from hdmf.data_utils import DataChunkIterator
from datetime import datetime

from dateutil.tz import tzlocal

from pynwb import NWBFile, TimeSeries,
import numpy as np

import numpy.random as random

from memory_profiler import profile
import os

NWBHDF5I0

@profile
def write_nwb(filename, nwbfile, data):
Use data chunk iterator as data
ts = TimeSeries (name='ts’,
data=data,
unit='volts’,
rate=1.0,
starting_time=0.0)
nwbfile.add_acquisition(ts)
with NWBHDF5IO(filename, ’'w’)
io.write (nwbfile)

as io:

track the number of values
num_diml = 0

num_dim2 = 128

includes chunks that have zeros but not chunks that are all zeros/not yielded
num_occupied = 0

added

max_data_block_size=400000) :
or chunks

def iter_data(chunk_length=400, max_num_blocks=20,
"""Generate chunks of random values in range [0, 1)
of zeros/None (no data)"""
global num_diml, num_dim2, num_occupied
data_shape (chunk_length, num_dim2)
num_blocks = 0
num_data_in_block = 0

False means data are missing/zeros and to yield None. Will start as True
is_gen_data = False
while num_blocks < max_num_blocks:
if num_data_in_block == 0:
end_block_ind = round(random.random() * max_data block_size) + 1

is_gen_data = not is_gen_data
if num_data_in_block + chunk_length > end_block_ind:
num_data_in_chunk = end _block_ind - num_data_in_block
partl_shape = (num_data_in_chunk, num dim2)
part2_shape = (chunk_length - num_data_in_chunk,
if is_gen_data:
add data until next_data_end and pad the rest with zeros
val =
np.zeros (part2_shape)))
elisel
add zeros until next_data_end and then add data
val = np.concatenate((np.zeros (partl_shape),
random. random (part2_shape) .astype (' f1loat32’))
num_occupied += data_shape[0] * data_shape[1]

num_dim2)

")y

num_blocks += 1 #
num_data_in_block = 0
else:
if is_gen_data:

reset counters

val = random.random(data_shape) .astype (’ float32’)

num_occupied += data_shape[0] * data_shape[1]
else:

val = None

num_data_in_block += chunk_length

num_diml += chunk_length
yield val
return

if __name__ == ’__main__':
random. seed (0)
filename = ’sparse_iterwrite_example.nwb’
data = DataChunkIterator (data=iter_data())

start_time = datetime (2019, 8, 7, 11, tzinfo=tzlocal())
nwbfile = NWBFile(’description’, ’NWB123’, start_time)
write_nwb (filename, nwbfile, data)

expected_size =
occupied_size =

num_diml * num_dim2 * np.dtype (data.dtype) .itemsize
num_occupied * np.dtype (data.dtype).itemsize

file size = os.stat (filename) .st_size
with NWBHDFS5IO(filename, ’r’) as io:
read_nwbfile = io.read()
data = read_nwbfile.acquisition([’ts’].datal()]
read_size = np.prod(data.shape).astype (np.dtype (‘uint32’)) * \

np.dtype (data.dtype) .itemsize

print ("1) Sparse Matrix Size:")

print (" Expected Size $.2f MB" % (expected_size / le6))
print (" Occupied Size $.2f MB" % (occupied_size / le6))
print ("2) NWB HDF5 file:

print (" File Size %.2f MB" % (file_size / le6))
print (" Reduction %.2£X" % (expected_size / file_size))
print("3) On read from file:")

print (" Read Size : %.2f MB" % (read_size / 1le6))

np.concatenate ((random. random (part1_shape) .astype (’ float32

)

Fig. E.1: Code used to test iterative data write performance

178

Line# Mem Incr Line Contents

11 80.8 MiB @profile

12 def write_nwb(filename, nwbfile, data):
13 # Use data chunk iterator as data
14 0.0 MiB ts = TimeSeries (name='ts’,

15 0.0 MiB data=data,

16 0.0 MiB unit='volts’,

17 0.0 MiB rate=1.0,

18 0.0 MiB starting_time=0.0)
19 0.0 MiB nwbfile.add_acquisition (ts)

20 0.9 MiB with NWBHDF5IO (filename, 'w’) as io:
21 6.6 MiB io.write (nwbfile)

Fig. E.2: Memory profiling results for iterative data write

1) Sparse Matrix Size:
Expected Size : 2569.42 MB
Occupied Size : 1233.51 MB

2) NWB HDF5 file:

File Size ¢ 1239.07 MB
Reduction : 2.07X

3) On read from file:

Read Size : 2569.42 MB

Fig. E.3: File size comparison for writing of sparse data

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:34:52 UTC from IEEE Xplore. Restrictions apply.

APPENDIX F
ZARRIO IMPLEMENTATION DETAILS

Similar to HDF5, Zarr allows us to directly map groups,
datasets, and attributes from a format specification to cor-
responding storage types. Specifically, groups are mapped
to folders on the filesystem, datasets are mapped to folders
storing a flat binary file for each array chunk, and attributes
are stored as JSON files. The latter requires that we take
particular care when creating attributes to ensure the data is
JSON serializable.

As Zarr does not natively support links and references, we
define the ZarrReference class to store the path of the
source file and referenced object. On write, we then determine
the required paths for each reference and serialize the ZarrRef-
erence objects via JSON. To identify and resolve reference on
read, we define the reserved attribute zarr_type.

To support per-dataset I/O options (e.g, for chunking),
we define ZarrDataIO. Like H5DataIO for HDFS,
ZarrDataIO implements the HDMF DataIO class to wrap
arrays for write to define I/O parameters.

Finally, NWBZarrIO extends our generic ZarrIO backend
to setup the build manager and namespace for NWB.

APPENDIX G
RESOURCES

All software and the majority of the data files used in the
manuscript are available online. Here we summarize these
resources.

A. Software

All software described in the manuscript is available online:

o HDMF: https://hdmf-dev.github.io/

o« PyNWB: https://github.com/NeurodataWithoutBorders/
pynwb

o ZarrlO: The Zarr I/O backend for HDMF and PyNWB
are available online as part of the following pull requests:

— HDMF: https://github.com/hdmf-dev/hdmf/pull/98
— PYNWB: https://github.com/
NeurodataWithoutBorders/pynwb/pull/1018

B. Data

Datasets D1, D2, and D3 (see Tab. II) are avail-
able online from the Allen Institute for Brain Sci-
ence at: http://download.alleninstitute.org/informatics-archive/
prerelease/. Here we used the following files from this collec-
tion:

e (D1): ecephys_session_785402239.nwb is a passive

viewing extracellular electrophysiology dataset,

o (D2): H19.28.012.11.05-2.nwb is an intracellular in-vitro

electrophysiology dataset,

o (D3) behavior_ophys_session_783928214.nwb is a vi-

sual behavior calcium imaging dataset.

Dataset D4 refers to R70_B9.nwb from the Neural Systems
and Data Science Lab (NSDS) led by Kristofer Bouchard at

179

Lawrence Berkeley National Laboratory https://bouchardlab.
Ibl.gov/. D4 is not available publicly yet.

In the case of (D2) as available online, compression is
used for several datasets to reduce size. To gather data sizes
without compression we used the h5repack tool available
with the HDFS library to remove compression from all datasets
via h5repack —f NONE. To illustrate the potential impact
of compression on file size we then used the h5repack
to apply GZIP compression to all datasets via h5repack
—f GZIP=4. This approach allows us to assess the expected
impact of compression on file size. Using h5repack provides
us with a convenient tool to test compression settings for
existing HDFS files. In practice, when generating new data
files, users will typically use HDMF directly to specify 1I/O
filters on a per-dataset basis, which has the advantage that it
allows us to optimize storage layout independently for each
dataset.

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:34:52 UTC from IEEE Xplore. Restrictions apply.

