Hernan G. Garcia, Augusto Berrocal, Yang Joon Kim, Gabriella Martini, Jiaxi Zhao

4 5

Abstract

6 7

8

9 10

11

12

13

14

15

16

17

18

Although the last 30 years have witnessed the mapping of the wiring diagrams of the gene regulatory networks that dictate cell fate and animal body plans, specific understanding building on such network diagrams that shows how DNA regulatory regions control gene expression lags far behind. These networks have yet to yield the predictive power necessary to, for example, calculate how the concentration dynamics of input transcription factors and DNA regulatory sequence prescribes output patterns of gene expression that, in turn, determine body plans themselves. Here, we argue that reaching a predictive understanding of developmental decisionmaking calls for an interplay between theory and experiment aimed at revealing how the regulation of the processes of the central dogma dictate network connections and how network topology guides cells toward their ultimate developmental fate. To make this possible, it is crucial to break free from the snapshot-based understanding of embryonic development facilitated by fixed-tissue approaches and embrace new technologies that capture the dynamics of developmental decision-making at the single cell level, in living embryos.

19 20 21

Introduction

22 23

24

25

26 27

28 29

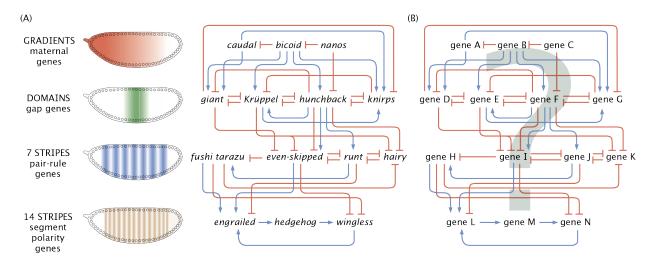
30 31

32

33

34 35

36 37


38

A ubiquitous mystery in nature is how a single cell develops into a multicellular organism. One of the great achievements of genetics and new genome-wide technologies over the last few decades has been the identification of the regulatory molecules that underlie developmental programs. This work has revealed that animal body plans are determined by the action of activators and repressors connected in complex gene regulatory networks. One of the beststudied regulatory networks drives segmentation of the early embryo of the fruit fly *Drosophila* melanogaster. As shown in Figure 1A, decades of concerted effort have uncovered the identities of the regulatory molecules that determine fly body segments as well as the network connections between these molecules (reviewed in Carroll et al. (2001); Davidson (2006); Peter and Davidson (2015)). However, the amassed data about regulatory proteins and network connections has been mostly descriptive and has not been accompanied by parallel successes in predictively understanding cellular decision-making in developing embryos. To be concrete, is it possible to predict developmental phenotypes from network diagrams? Clearly, if we were to change the names of the genes in the fruit fly segmentation network (Figure 1B), the network connections—the topology—would be insufficient to predict that this particular network would result in a flv.

The central thesis of this article is that achieving predictive understanding of developmental 39 40 decision-making requires a two-pronged approach. First, each arrow in these networks must be endowed with molecular and quantitative information that makes it possible to predict how the 41 genome dictates developmental input-output functions: the functions relating output protein 42 43 levels of a gene to the concentrations of its input transcription factors (Figure 2A). That is, how do the number, placement, and affinity of transcription-factor binding sites within enhancers 44 establish the relation between input transcription-factor concentration and output transcription? 45 46

How is mRNA processed as it forms a cytoplasmic pattern? How is this mRNA pattern

translated into a protein pattern that can be subject to further post-translational regulation and that can ultimately feed back into the network? Second, we must reveal how these network connections conspire together to drive cells into discrete and stable gene expression states that in turn commit these cells to their ultimate developmental fates (Figure 2B).

Figure 1: Gene regulatory networks driving development. (A) Current state of the art in mapping the network that drives segmentation in the fruit fly *Drosophila melanogaster*. (B) Close examination of a network with the same topology, but with different genetic actors, reveals that this description is insufficient to predict that this network will lead to the emergence of a segmented embryo. (Adapted from Carroll et al. (2001); Edgar et al. (1989); Jaeger (2011); von Dassow et al. (2000).)

In order to achieve this hefty goal of predictive developmental biology, here we argue that developmental biologists urgently require new theoretical models that make precise and falsifiable predictions. Further, we posit that, in order to test the predictions from these models, developmental biology needs to break free from the static view of development shaped by widespread fixed-tissue techniques and establish new technologies that reveal the regulation of the processes of the central dogma at the single-cell level as developmental programs are deployed in real time. Here we focus on the specific case study of the segmentation of the early embryo of the fruit fly. This review is therefore not encyclopedic, and falls short of an exhaustive scholarly survey of the many exciting contributions to quantitative developmental biology in the recent literature. Rather, by focusing on a representative case study, we propose a concrete framework for establishing a quantitative and predictive developmental biology writ large that can be adopted by developmental biologists and biophysicists working on any organism.

Turning the fruit fly *Drosophila melanogaster* into a substrate for predictive developmental biology

Drosophila is already a workhorse for developmental biology and genetics research. The fruit fly is also an ideal substrate for realizing predictive developmental biology. The fly network in Figure 1A shows that many of its fundamental parts (regulatory molecules and connections) have already been identified. The picture that emerges is one of a network that is simple enough that its regulatory interactions could be enumerated, yet intricate enough that it captures the essence

of more "complex" developmental processes. As a result, even though some regulatory interactions might remain unmapped, the fly segmentation network offers a unique opportunity to uncover the fundamental and quantitative rules behind developmental decision-making.

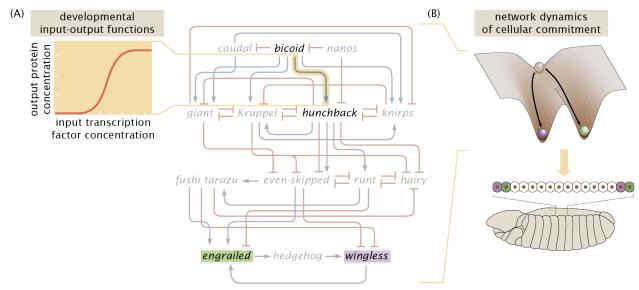


Figure 2: A two-pronged approach to achieving predictive understanding of developmental decision-making. (A) A quantitative and predictive description of gene regulatory networks in development demands uncovering how the regulation of the processes of the central dogma prescribe developmental input-output functions represented by network arrows. (B) Arrows define the network topology which drives cells within an embryo into discrete and stable developmental states. In this example, the topology defines two distinct developmental trajectories that lead to cells expressing *engrailed or wingless*, and to the adoption of distinct fates that establish body segments in the fly.

What is required to quantitatively predict and control developmental outcomes from regulatory parameters in the fruit fly—and ultimately any organism? The bacterial *lac* operon showcases how to build a predictive understanding of cellular decision-making. Over the last 15 years, theoretical models of this operon, such as those shown in Figure 3A, have precisely predicted the mean rate of transcription and its cell-to-cell variability as a function of regulatory architecture invoking only a handful of free parameters (Figure 3B, reviewed in Phillips et al. (2019)).

Clearly, flies differ from bacteria; even the architecture of the transcriptional process is different. While bacterial transcription only requires a handful of molecules to be present at the promoter, eukaryotic transcriptional initiation requires the assembly of vast macromolecular complexes such as the preinitiation complex, plus regulatory steps to evict nucleosomes from the DNA to render it accessible to transcription factors (reviewed by Fuda et al. (2009)). Similar complexity exists in every step of the central dogma in eukaryotes, from splicing, to transcriptional termination, to translation, to post-translational modifications (Alberts, 2015).

However, the challenges of quantitatively dissecting development go beyond the combinatorial complexity stemming from the numerous molecular machines involved in the processes of the central dogma in eukaryotes. Biology textbooks are dominated by snapshots of static gene-expression patterns. Thus, a large part of our understanding of developmental biology rests on the *assumption* that developmental dynamics can be easily inferred from these static pictures. However, development is a highly dynamic process: choreographed gene expression patterns are rapidly deployed in space and time, and can exist for periods of time as short as 15 minutes (Bothma et al., 2014). Thus, predicting developmental biology of *Drosophila* not only calls for theoretical frameworks with predictive power, but also demands experimental technologies that reveal how the processes of the central dogma are regulated in real time as single cells commit to their fates and development unfolds.

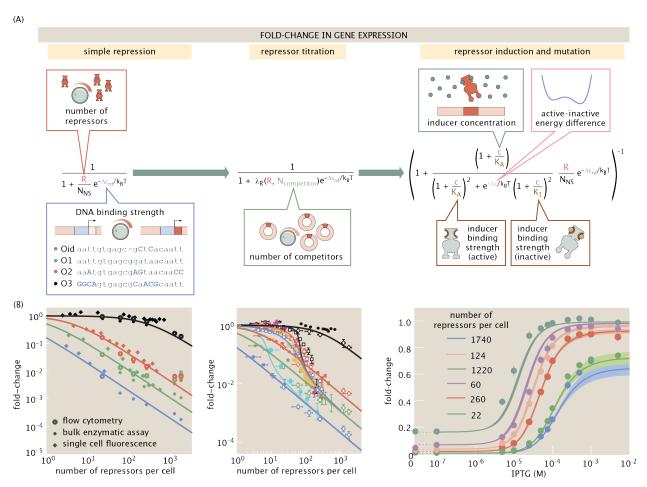
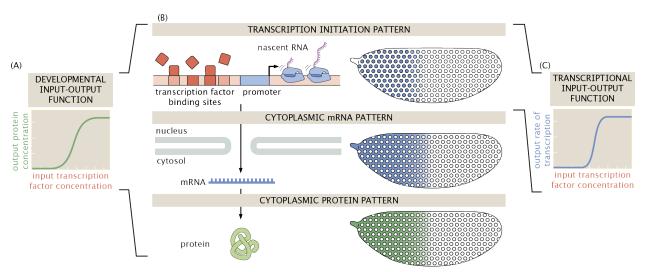


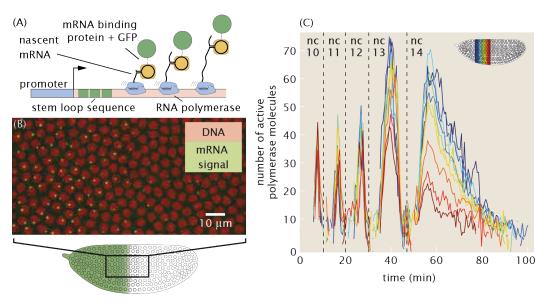
Figure 3: Unraveling regulation of the *lac* operon through theory and experiment. (A) Examples of theoretical predictions for the fold-change in gene expression of simple repression by Lac repressor (defined as the ratio of gene expression level in the presence of repressor to the gene expression level in in the absence of repressor) for increasingly complex regulatory situations. Each step relies on the parameters learned in the previous iteration. (B) Parameter-free or one-parameter fits to the data demonstrate that simple repression is predictive. (B, adapted from Brewster et al. (2014); Garcia et al. (2013); Razo-Mejia et al. (2018)).

Lighting up the central dogma to assign quantitative and predictive meaning to arrows

Arrows in network diagrams encode *developmental* input-output functions that predict how the concentrations of input transcription factors determine output protein levels (Figure 4A). These input-output functions, which are the fundamental unit of any quantitative description of developmental programs, arise from the regulation of each step of the central dogma from transcriptional initiation, to mRNA processing, to translation and post-translational modifications (Figure 4B). There is a specific input-output function for each specific step of the central dogma.

Over the last 40 years, a plethora of theoretical models have sought to predict *transcriptional* input-output functions: how the concentration of input activators and repressors and the arrangement of their binding sites on regulatory DNA dictate the output rate of transcription (Figure 4C) (Ackers et al., 1982; Bintu et al., 2005a; Bintu et al., 2005b; Buchler et al., 2003; Estrada et al., 2016; Fakhouri et al., 2010; Gregor et al., 2007; Hammar et al., 2014; He et al., 2010; Kanodia et al., 2012; Li et al., 2018; Samee et al., 2015; Sayal et al., 2016; Scholes et al., 2017; Segal et al., 2008; Sherman and Cohen, 2012; Vilar and Leibler, 2003; von Hippel et al., 1974). However, despite this wide repertoire of models, only recently did the technology necessary to directly measure transcriptional input-output functions in development become available.




Figure 4: Regulation along the central dogma. (A) Arrows in gene regulatory networks encode developmental input-output functions that predict output protein concentration as a function of input transcription-factor concentration. (B) Developmental input-output functions are the result of the regulation of multiple steps of the central dogma. (C) Transcriptional input-output functions predict output transcriptional activity as a function of input transcription-factor concentration.

Lighting up transcriptional dynamics

For years, the state of the art for directly measuring transcriptional activity in developing embryos consisted of fixed-tissue techniques such as *in situ* hybridization, fluorescence *in situ* hybridization (FISH) or single-molecule FISH (Lawrence et al., 1989; Raj et al., 2006; Singer and Ward, 1982; Tautz and Pfeifle, 1989). In these techniques, mRNA is labeled such that sites of nascent transcript formation appear as puncta in each nucleus (O'Farrell et al., 1989;

Zenklusen et al., 2008). The signal, often fluorescence, emitted by these puncta reports on the number of mRNA molecules being actively transcribed. These technologies have been applied to many biological questions, such as the molecular nature of transcription in development and how mitosis inhibits transcription (Boettiger and Levine, 2013; Bothma et al., 2011; Little et al., 2013; Shermoen and O'Farrell, 1991; Zoller et al., 2018).

However, the reliance on fixed tissue in these techniques casts doubt on their suitability for measuring dynamical developmental input-output functions; using dead, fixed embryos yields stop-motion "movies" for which each frame requires a new embryo (Dubuis et al., 2013; Poustelnikova et al., 2004). To measure the output transcription rate of a cell (Figure 4C), the expression status of a single cell needs to be measured for at least two time points. But since fixed-tissue techniques necessarily only access one time point, they cannot enable the dialogue between theory and experiment advocated for in this article. As a result, previous works were constrained to assuming that transcription is in steady-state such that transcriptional dynamics remain largely unaltered during nuclear cycles (Fakhouri et al., 2010; Little et al., 2013; Park et al., 2018; Sayal et al., 2016; Xu et al., 2015; Xu et al., 2016; Zoller et al., 2018).

Figure 5: Accessing transcriptional dynamics in live fly embryos. (A) Repeats of the MS2 sequence are added to a gene that, when transcribed, folds into a stem loop that is recognized by an mRNA binding protein fused to GFP; fluorescence is proportional to transcriptional activity. (B) Typical field of view showing sites of transcription in single nuclei for a reporter of the step-like *hunchback* expression pattern. (C) Number of actively transcribing RNA polymerase II molecules as a function of time for different positions along the embryo's axis. (nc: nuclear cycle; adapted from Garcia et al. (2013)).

Recently, this critical limitation was overcome by adapting the MS2 system (Bertrand et al., 1998) to measure the instantaneous content of nascent RNA of a specific gene in single cells of a living, developing embryo (Garcia et al., 2013; Lucas et al., 2013). This MS2 system, and its sister PP7 system (Larson et al., 2011), integrate a repetitive DNA sequence into a gene's untranslated region. Upon transcription, the MS2 sequence folds and forms a loop. These mRNA loops are bound by a maternally provided mRNA binding protein fused to GFP (Figure 5A). As

- a result, sites of nascent transcript formation become visible as fluorescent puncta due to the
- localization of active RNA polymerase II molecules to the tagged gene; these puncta are easily
- visualized using laser scanning two-photon or confocal microscopy, or using light-sheet
- microscopy (Figure 5B). Using single-molecule mRNA FISH, the fluorescence value
- 148 corresponding to each punctum can be converted into an absolute number of polymerase II
- molecules actively transcribing the gene as a function of time and position along the embryo
- 150 (Figure 5C) (Garcia et al., 2013). The result is the first-ever dynamical measurement of
- transcription in single cells within a living multicellular organism (Bothma and Levine, 2013).
- This new ability to interrogate transcriptional activity in real time during development has
- unveiled new insights into the fundamental and dynamical nature of developmental processes.
- Here we showcase a few examples:

158

159

162

163

- i. The gene-expression patterns that dictate cellular fate commitment are much more short-lived than previously thought (Bothma et al., 2014; Lammers et al., 2018).
 - ii. The processes by which enhancers coordinate their activities with each other and with promoters can be directly visualized (Bothma et al., 2015; Chen et al., 2018; El-Sherif and Levine, 2016; Lim et al., 2018b; Scholes et al., 2019).
- 160 iii. Transcription-factor concentration is read out to generate precise output patterns (Ferraro et al., 2016; Lim et al., 2017; Tran et al., 2018).
 - iv. Mitosis and pioneer transcription factors dictate the transcriptional dynamics of embryos (Dufourt et al., 2018; Esposito et al., 2016; Yamada et al., 2019).
- v. The real-time elongation rate of RNA polymerase II can be captured and quantified (Fukaya et al., 2017; Garcia et al., 2013).
- All of these insights afforded by MS2 will make it possible to rewrite biology textbooks by
- capturing the processes of cellular commitment in real time and by dramatically overturning or
- significantly complementing our previous knowledge stemming from fixed-embryos techniques.
- Perhaps one of the most captivating outcomes of the tagging of early fly developmental genes
- with MS2 and PP7 has been the confirmation of the long-suspected presence of transcriptional
- bursts in development via their real-time visualization (Little et al., 2013; Pare et al., 2009). As
- shown in Figures 6A and B, the existence of these bursts indicates that the rate of transcriptional
- initiation is non-zero only during transient, but stochastic, periods of time (Bothma et al., 2014;
- 174 Chubb et al., 2006; Golding et al., 2005; Yunger et al., 2010). These live-imaging techniques
- have made it possible to determine the ubiquity of transcriptional bursting in development and to
- start revealing their molecular control mechanisms (Berrocal et al., 2018; Bothma et al., 2014;
- Desponds et al., 2016; Falo-Sanjuan et al., 2018; Fukaya et al., 2016; Lammers et al., 2018; Lim
- 178 et al., 2018a).

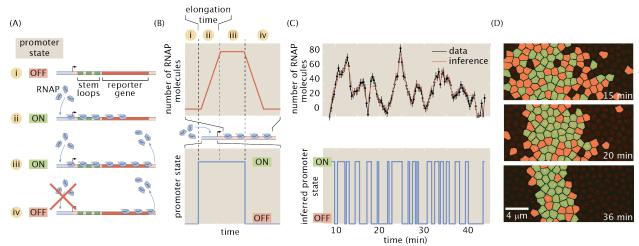


Figure 6: Relation between MS2 fluorescence and instantaneous transcriptional activity. (A) Loading of RNA polymerase, and transcript elongation and termination as a gene is transiently turned on. (B) These discrete changes in promoter state are convolved with the elongation and termination times, resulting in a trapezoidal-like modulation of the number of RNA polymerase molecules on the reporter, as indicated by MS2 fluorescence. (C) Inference of promoter state from MS2 data using Hidden Markov models. (D) Inference of promoter states for cells expressing a transcriptional reporter of stripe 2 of the *even-skipped* gene. (C,D, adapted from Lammers et al. (2018)).

Although MS2 and PP7 made it possible to directly confirm the existence of transcriptional bursts in development, their precise quantitative characterization presents challenges: note that neither MS2 nor PP7 actually report on the rate of transcriptional initiation. An actively transcribing RNA polymerase molecule remains loaded on the DNA, and contributes to the overall fluorescence signal, until transcription terminates (Figure 6A,B). As a result, the signal from MS2 and PP7 reports on the integrated transcriptional activity over a time window corresponding to the dwell time of RNA polymerase on the gene (given by the time to elongate the mRNA and to terminate transcription). Thus, output fluorescence is not directly related to the instantaneous promoter state and is instead the *convolution* of the promoter activity over a time window (Figure 6B).

Recently, this fundamental limitation has been circumvented by various strategies. First, by focusing on promoter-enhancer interactions that rarely produce transcriptional bursts, the manual identification and measurement of the properties of these bursts was achieved (Fukaya et al., 2016). Second, by examining the autocorrelation of the output fluorescence signal (Coulon et al., 2014; Coulon and Larson, 2016; Larson et al., 2011), average bursting dynamics (such as the burst size, frequency, and amplitude) were revealed for a wider range of promoter dynamics than those accessible by manual analysis (Desponds et al., 2016). Finally, many computational tools have been recently developed to infer the most likely bursting state of a promoter in a single cell (Bronstein et al., 2015; Corrigan et al., 2016; Featherstone et al., 2016; Hey et al., 2015; Lammers et al., 2018; Molina et al., 2013; Suter et al., 2011; Zechner et al., 2014; Zoller et al., 2015). For example, techniques based on Hidden Markov Models enable queries of the instantaneous transcriptional activity of an individual promoter within a single cell as development progresses (Figure 6C). Thus, novel computational approaches are opening a direct

window into the molecular mechanisms of transcription factors by extracting promoter-switching kinetics and correlating these kinetics with the concentrations of input transcription factors

204 (Lammers et al., 2018).

205 As with any technology to shed light on the inner workings of cells, it is also important to be aware of the potential caveats associated with the implementation of MS2 in development. First, 206 207 even though single mRNA molecules can be visualized as they are transcribed in bacteria and yeast (Golding et al., 2005; Larson et al., 2011), the signal-to-background present in embryos 208 209 only allows for the detection of the fluorescence signal of, at the most, three mRNA molecules as they are being transcribed (Garcia et al., 2013). This low signal-to-background stems primarily 210 from the thick optical sections afforded by widespread laser-scanning confocal microscopes 211 212 which are much wider than the site of transcription and hence capture much of the free mRNA binding protein-GFP fusion in the nucleoplasm. The introduction of new microscopy modalities 213 with higher axial resolution such as lattice light-sheet microscopy (Chen et al., 2014) could 214 enable the single-molecule detection of mRNA molecules as they are being transcribed in an 215 embryo. Further, doubts have been cast on whether the presence of MS2 loops in a transcript 216 affect its stability (Garcia and Parker, 2015; Golding and Cox, 2004; Haimovich et al., 2016; 217 Heinrich et al., 2017; Kim et al., 2019). While effects on mRNA stability are probably irrelevant 218 if MS2 is used as a reporter of transcriptional activity, these effects could certainly confound 219 downstream measurements of mRNA export and processing, and affect the reliably operation of 220 endogenous genes. New MS2 sequences are actively being developed to circumvent these 221 222 limitations (Tutucci et al., 2018). In addition, since intronic RNA is rapidly processed during transcription (Coulon et al., 2014), inserting MS2 loops inside introns could prove a reliable 223 strategy to tag endogenous genes without affecting the life cycle of their mRNA molecules. Even 224 if no introns are present in a gene, synthetic introns can be introduced in order to realize this 225 labeling strategy (Bothma et al., 2018). 226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

Lighting up protein dynamics and transcriptional input-output functions

Despite these encouraging breakthroughs in measuring output transcriptional dynamics in real time, biologists have until recently lacked the technology to measure the fast dynamics of translation and degradation of the *input* transcription factors (Figure 4). Although engineered fluorescent proteins such as GFP have chromophore maturation half-times as low as 6 min *in vitro* or in cultured cells (Nagai et al., 2002), maturation half-times increase to >30 min in embryos of developmental biology workhorses such as frogs, zebrafish, and flies (Little et al., 2011). These time scales are much slower than many of the key processes in development. For example, the fruit fly transcription factor Fushi tarazu has a half-life of 8 min (Bothma et al., 2018; Kellerman et al., 1990), and the Hes proteins that drive segmentation in vertebrates have a half-life of ~20 min (Hirata et al., 2004; Schroter et al., 2008). Thus, in many developmental contexts, by the time GFP fusions become fluorescent, the developmental processes these fusions are supposed to report on are already over. This fundamental limitation has prevented developmental biologists from following the central dogma with high spatiotemporal resolution

and, more specifically, has made it impossible to measure input transcription-factor concentration dynamics in transcriptional input-output functions.

242243

244

245

246

247

248

249

250

251

252253

254

255256

257

258

259

260

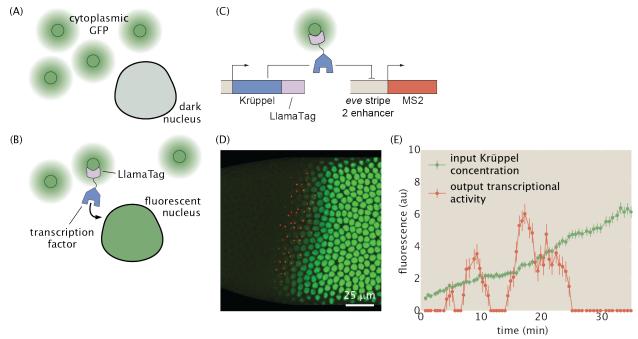
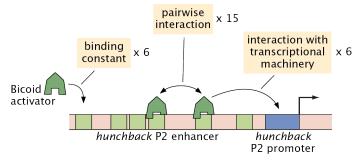


Figure 7: Beating the fluorescent protein maturation speed limit with LlamaTags. (A) GFP expressed in the cytoplasm is (B) bound by a fusion of a LlamaTag to a transcription factor of interest. The increase in nuclear fluorescence upon translocation of the fusion to the nucleus reports transcription-factor concentration. (C) Combination of LlamaTag and MS2 tagging to simultaneously measure Krüppel repressor concentration and even-skipped (eve) stripe 2 transcriptional activity. (D) Snapshot of a fly embryo expressing Krüppel-LlamaTag and reporting on eve transcriptional activity using MS2 27 minutes into nuclear cycle 14. (E) Measured input and output dynamics in a nucleus within the stripe. (D,E, adapted from Bothma et al. (2018)).

To enable the real-time measurement of input transcription-factor dynamics over the fast-paced process of development, and to circumvent the confounding effects of fluorescent protein maturation kinetics, the nanobody-based LlamaTag was recently introduced to light up protein concentration dynamics (Bothma et al., 2018). Here, nanobodies, single-chain antibodies raised in llamas against GFP or mCherry variants, are fused to a transcription factor of interest. In parallel, the fluorescent protein is provided maternally such that when development begins, this protein is already mature and uniformly distributed throughout the embryo. Upon translation of the transcription-factor fusion in the cytoplasm, the LlamaTag binds the free fluorescent protein. This complex is translocated into the nucleus via the transcription factor's nuclear localization signal, resulting in an enrichment of nuclear fluorescence that directly reports on the nuclear concentration of the complex. Thus, by leveraging localization of fluorescence proteins rather than the (more common) synthesis of new proteins, this technology becomes insensitive to fluorescent-protein maturation (Figure 7A,B). LlamaTags have already made it possible to correlate bursts in transcriptional activity with bursts in protein concentration, to measure protein degradation, and to reveal the diffusion-mediated coupling between neighboring nuclei that can drive pattern formation in the fly syncytium (Bothma et al., 2018). Excitingly, these tags have also made it possible to quantify transcriptional input-output functions at the single-cell level by


enabling real-time measurement of instantaneous input transcription factor concentration and output transcriptional activity (Figure 7C-E).

Just like regular fusions of transcription factors to fluorescent proteins, LlamaTag fusions can affect endogenous protein function. Further, these tags are limited to tagging proteins that undergo translocation after translation, such as transcription factors, and cannot report on the concentration dynamics of proteins that remain in the cytoplasm to perform their function. However, due to the nascent nature of LlamaTags, the full set of potential caveats associated with these tags, and of possible solutions to those caveats, is yet to be revealed as this technique is adopted by developmental biologists.

Wiring up the synthetic embryo

For the first time, developmental biologists are positioned to directly measure transcriptional input-output functions that capture rapid modulations in the concentration dynamics of input transcription factors and the resulting output transcriptional activity. A crucial next step is to identify regulatory architectures amenable to theoretical modeling that can be attacked with this new arsenal of tools.

Over the last three decades, a great deal of research has focused on the role of transcription factor binding sites in transcriptional input-output functions (Chen et al., 2012; Crocker et al., 2015; Crocker et al., 2016; Driever et al., 1989; Fakhouri et al., 2010; Hare et al., 2008; Harrison et al., 2011; Jiang and Levine, 1993; Park et al., 2018; Sayal et al., 2016; Small et al., 1992; Stathopoulos and Levine, 2005; Swanson et al., 2010). Often, complex gene-regulatory regions featuring dozens of binding sites for several transcription factors are dissected via systematic deletions of these sites. Such approaches have revolutionized our understanding of the spatial control of developmental patterning, as exemplified by the famed dissection of the regulatory logic of the enhancer that regulates stripe 2 of the *even-skipped* gene, which revealed how activators and repressors work together to create precise gene expression patterns in the fly embryo (Arnosti et al., 1996; Small et al., 1992; Small et al., 1991).

Figure 8: Combinatorial complexity of endogenous gene regulatory regions. The *hunchback* P2 enhancer is bound by at least six Bicoid activators to regulate *hunchback*. A simple model featuring only binding energies, pairwise interactions between bound activators, and pairwise interactions between each activator and the transcriptional machinery would demand the fitting of 27 unknown parameters.

- Nonetheless, these approaches often face an insurmountable barrier when moving from the
- qualitative realm to a quantitative understanding that makes it possible to predict transcriptional
- input-output functions. Complex regulatory architectures, by definition, demand complex
- theoretical models that in turn are plagued by a plethora of unknown regulatory parameters.
- 292 Consider the *hunchback* P2 enhancer, perhaps one of the simplest and most studied regulatory
- architectures in all of development (Driever et al., 1989; Margolis et al., 1995; Park et al., 2018;
- Perry et al., 2012). The Bicoid activator can bind at least six sites in this enhancer (Driever et al.,
- 295 1989). Predicting the transcriptional input-output function of hunchback P2 activation by Bicoid
- using even simple models based on equilibrium statistical mechanics demands previous
- knowledge of at least 27 parameters (Figure 8; Garcia et al. (2016), see also Garcia et al. (2007)
- 298 for an introduction to statistical mechanics for life scientists). This number only grows as
- assumptions regarding equilibrium are relaxed (Estrada et al., 2016). Inferring these parameters
- from the measurement of a transcriptional input-output function is both a massive computational
- and—more critically—conceptual challenge (Garcia et al., 2016).
- 302 Synthetic biology could empower our dissection of developmental enhancers. Inspired by work
- in bacteria, an alternative to fitting complex theoretical models to complex experimental
- architectures in development is to bend nature to understand it (Garcia et al., 2016; Phillips et
- al., 2019). Specifically, building synthetic enhancers bearing only one binding site for an
- activator such as Dorsal or Bicoid dramatically reduces regulatory complexity. To be concrete,
- we consider an activator that is distributed in an exponential gradient along the embryo (Figure
- 9A) resulting in a step-like output pattern of gene expression. As shown in Figure 9B, a
- thermodynamic model describing this simple regulatory architecture has only two free
- parameters: the binding affinity of the activator to the DNA (K_d) and a parameter that captures
- 311 the strength with which a bound activator drives gene expression (r_{AP}) and that depends on the
- distance between the activator binding site and the promoter. Thus, by measuring the height and
- position of the activator-driven developmental boundary, these two key parameters can be
- 314 obtained.
- 315 This synthetic approach offers an opportunity to iteratively embrace regulatory complexity.
- 316 Specifically, consider the case where the complexity of the synthetic enhancer is increased by
- adding a second activator binding site (Figure 9C). If we rely on the parameters obtained in the
- 318 previous iteration (Figure 9B), and if we assume only pair-wise interactions between bound
- transcription factors, then only one new unknown parameter emerges. This new parameter, ω_{AA} ,
- 320 characterizes protein-protein interactions that lead to cooperativity and to the sharpening of the
- boundary. Thus, by harnessing the knowledge obtained in previous iterations, each successive
- iteration of this synthetic approach only requires the fitting of one or two new parameters. After
- multiple iterations, the synthetic architectures converge onto endogenous ones—accompanied by
- increasingly complex, but still predictive, theoretical models.
- We speculate that this approach could be used to dissect complex regulatory architectures
- featuring multiple activators and repressors. Crucially, the key components of synthetic
- 327 dissection already exist: multiple examples of minimal regulatory architectures featuring binding
- sites of transcription factors such as Bicoid, Dorsal, Giant, Snail, and Twist have been shown to

drive detectable levels of gene expression (Burz et al., 1998; Burz and Hanes, 2001; Driever et al., 1989; Erceg et al., 2014; Fakhouri et al., 2010; Hanes et al., 1994; Jiang and Levine, 1993; Lebrecht et al., 2005; Ma et al., 1996; Park et al., 2018; Ronchi et al., 1993; Sayal et al., 2016; Simpson-Brose et al., 1994; Szymanski and Levine, 1995). Recent work has demonstrated the feasibility of this synthetic approach to testing theoretical models of transcriptional regulation in development in the context of activation by Dorsal and Twist, repression by Giant and Snail, and for synthetic transcription factors (Crocker et al., 2016; Fakhouri et al., 2010; Sayal et al., 2016).

Predicting the central dogma beyond transcription

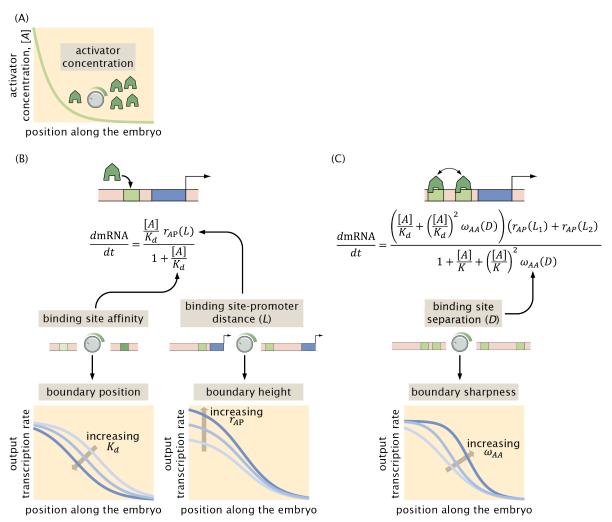


Figure 9: A synthetic approach to uncovering the governing equations of gene regulatory regions in development. (A) Exponential activator concentration profile along the embryo assumed for this illustrative example. (B, C) Equations, regulatory parameters, and developmental patterns for synthetic enhancers containing (B) one or (C) two activator binding sites. (B) A reporter construct with a single activator binding site drives a step-like pattern whose boundary position is determined only by the binding site affinity (K_d), and whose boundary height is governed by the interaction between the activator and the transcriptional machinery (r_{AP}). (C) Adding a second activator binding site introduces only one new free parameter accounting for activator-activator interactions (ω_{AA}). This parameter controls boundary sharpness. For simplicity, we do not account for the existence of a basal rate of transcription. However, the addition of this parameter to the model would not modify the overall synthetic strategy significantly.

- So far, we have concerned ourselves with the prediction and measurement of transcriptional
- input-output functions. However, it is important to keep in mind that the information encoded by
- each arrow in cartoons of gene regulatory networks accounts for multiple steps along the central
- dogma (Figure 4B). From chromatin accessibility to alternative splicing to post-translational
- modifications, seemingly simple arrows capture multiple molecular steps, all of which can be
- subject to regulation—calling, once again, for an interplay between theory and experiment to
- uncover the governing equations corresponding to each regulatory step. However, despite huge
- leaps in genomics (Goodwin et al., 2016; Koboldt et al., 2013; Shlyueva et al., 2014),
- technologies to measure chromatin accessibility and modifications, protein binding to the DNA,
- promoter-enhancer interactions, mRNA processing, translational regulation, and post-
- translational modifications in single cells within living embryos have lagged behind (Buenrostro
- et al., 2015; Matera and Wang, 2014; Mayer et al., 2017; Park, 2009).
- First, chromatin must be accessible for transcription factors to bind DNA. However, technology
- 350 to reveal this accessibility or the epigenetic state of histones in the vicinity of a binding site has
- been mostly limited to genome-wide or fixed-tissue approaches (Blythe and Wieschaus, 2016;
- Boettiger et al., 2016; Cusanovich et al., 2018; Haines and Eisen, 2018; Li et al., 2014). The
- recent development of genetically encoded modification-specific intracellular antibodies
- 354 (mintbodies) that bind chromatin with specific modifications such as H3K9 acetylation and
- 355 H4K20 methylation (Sato et al., 2016; Sato et al., 2013), as well as split-luciferase probes to
- image H3K9 and H3K27 methylation (Sekar et al., 2015), will enable concrete progress in the
- real-time monitoring of chromatin state in development at the single-cell level.
- New imaging technologies and improved fluorescent probes have made it possible to image
- individual transcription factors as they bind DNA inside living fly embryos (Chen et al., 2014;
- Mir et al., 2017; Tsai et al., 2017). These measurements have revealed that, while transcription
- factors appear to spend no more than a few seconds bound to DNA, their binding throughout the
- nucleus is not uniform: hubs or domains of increased local concentration (and of increased
- binding frequency) have been found for both Bicoid and Ultrabithorax. While some of these
- regions of increased binding probability may depend on the pioneer transcription factor Zelda
- 365 (Mir et al., 2017), their functional role remains unclear. To make progress toward a molecular
- understanding of how genes read out transcription-factor concentration, it will be necessary to
- directly correlate this binding with output transcriptional activity—which is only now becoming
- possible in single cells (Cho et al., 2016; Chong et al., 2018; Donovan et al., 2019; Li et al.,
- 369 2019), and for which feasibility in live embryos was recently demonstrated (Mir et al., 2018).
- 370 Most developmental enhancers do not reside in the vicinity of their target promoter; they are
- supposed to loop or to translocate over vast distances of DNA in order to carry out their
- 372 regulatory function (for a recent review on the subject, see Furlong and Levine (2018)).
- Recently, enhancer position and promoter activity were simultaneously visualized in the early fly
- embryo in the context of DNA looping (Chen et al., 2018) and transvection (Lim et al., 2018b).
- 375 These works demonstrated that bringing enhancers and promoters in close proximity is necessary
- but not sufficient to activate transcription. These results, plus speculation about larger structures
- involved in transcriptional regulation (Mir et al., 2017; Mir et al., 2018; Tsai et al., 2017), and

- 378 reports that stable promoter-enhancer contacts might not be needed for transcriptional activation
- (Alexander et al., 2019; Benabdallah et al., 2017; Gu et al., 2018) suggest that the classical
- paradigm of direct contact between enhancers and promoters may have to be revisited.
- Regulation does not cease after transcription initiation: the rate of mRNA elongation can be
- under regulatory control, and fly embryos process mRNA through splicing as well as RNA
- polymerase II pausing and termination to achieve precise and rapid development (Bentley, 2014;
- Core and Adelman, 2019; Larschan et al., 2011; Richard and Manley, 2009). While current
- 385 genome-wide techniques have been powerful for revealing correlations among large sets of
- genes, visualizing mRNA processing could shed further light on the role of this processing in
- development. By combining MS2 and PP7 to label different parts of the same nascent RNA in
- 388 the human β-globin gene, the life history of an mRNA was revealed as it underwent
- transcription, splicing, and termination (Coulon et al., 2014). This approach is being adopted in
- 390 the fly embryo to, for example, determine transcript elongation rates (Fukaya et al., 2017).
- 391 The regulation of translation is also widespread in gene regulatory networks. For example,
- Bicoid represses Caudal translation (Dubnau and Struhl, 1996; Niessing et al., 2002; Rivera-
- Pomar et al., 1996), while Nanos downregulates Hunchback post-transcriptionally, through either
- a decrease in translation or an increase in mRNA degradation (Cho et al., 2006; Irish et al., 1989;
- Murata and Wharton, 1995; Struhl, 1989; Wang and Lehmann, 1991; Wharton and Struhl, 1991).
- However, we know much less about how translation is regulated at the single mRNA level than
- we know about the details of transcription. For example, is the translation of specific mRNA
- molecules downregulated by decreasing the peptide elongation rate of all ribosomes, or by
- decreasing the fraction of mRNA molecules that are translated? These questions and others can
- be answered by implementing recently developed reporters for measuring the first round of
- 401 translation (Halstead et al., 2015), and by examining the translational dynamics of individual
- 402 mRNA molecules at the single-cell level (Morisaki et al., 2016; Wang et al., 2016; Wu et al.,
- 403 2016; Yan et al., 2016).
- Finally, many developmental decisions are mediated by the post-translational modification of
- proteins. Regulation via protein phosphorylation is ubiquitous in development (for a review on
- 406 this subject see, for example, Ubersax and Ferrell (2007) and Peter and Davidson (2015)).
- 407 Antibodies cannot always distinguish between phosphorylated and non-phosphorylated protein
- 408 forms, which hinders our ability to determine how signaling dynamics dictate development.
- When phosphorylation drives the nuclear localization of a transcription factor, such as for the
- 410 transcription factor Capicua (Grimm et al., 2012), tracking its nuclear localization using a fusion
- 411 to a fluorescent protein or a LlamaTag directly reports on the protein's signaling state. New
- sensors reveal kinase and phosphatase activity without requiring modulation of the cellular
- localization of their substrates; novel *kinase translocation reporters* can be engineered to become
- 414 targets of a particular signaling pathway (Kudo et al., 2018; Oldach and Zhang, 2014; Regot et
- al., 2014). Upon phosphorylation by the kinase of interest, these sensors change their
- 416 fluorescence or are translocated to the nucleus, where they report on signaling activity.
- Implementing these technologies in the embryo could open the door to systematic dissection, at

- 418 the single-cell level, of the signaling cascades that underlie protein post-translational
- 419 modifications during development.
- 420 Technology is already available to quantify the flow of information along each step of the central
- dogma in real time and at the single-cell level, as highlighted by the various approaches
- showcased above. Thus, the main challenge ahead is not one of technology development, but one
- of implementing these technologies in developing embryos. The new and exciting data generated
- by these rising technologies must be matched with new theoretical models that draw us closer to
- a quantitative and predictive understanding of how the regulation of the processes of the central
- 426 dogma impact cellular decision-making.

428

Developmental programs as dynamical systems

- So far, we have focused on new technologies and theoretical approaches that enable the
- 430 predictive dissection of the input-output functions encoded by each arrow in gene regulatory
- networks (Fig. 2A). However, predictive understanding of the parts that make a network does not
- guarantee understanding of how those arrows work together to realize developmental programs.
- It has been repeatedly hypothesized that the ultimate developmental fate of each cell arises from
- 434 the trajectory of the gene-expression state of a cell as it traverses the regulatory landscape shaped
- by the network topology, the patterns of connections between network elements (Figure 2B,
- reviewed in Jaeger et al. (2012) and Jaeger and Monk (2014)).
- By borrowing tools from dynamical systems theory, multiple teams have attempted to describe
- how network topology prescribes these developmental trajectories. While some of these works
- have sought to model multiple layers of the network simultaneously, others have focused on
- isolated network motifs, such as the widespread mutual repression regulatory architecture (Edgar
- et al., 1989; Gursky et al., 2011; Jaeger et al., 2004a; Jaeger et al., 2004b; Lopes et al., 2008;
- Manu et al., 2009; Papatsenko and Levine, 2011; von Dassow et al., 2000; Von Dassow and
- Odell, 2002). Using gene expression data from fixed embryos sorted into temporal classes, these
- studies have, for instance, revealed how gene expression domains shift along the embryo as
- development progresses (Jaeger et al., 2004b), and how multiple arrows work together to "lock"
- individual cells into specific developmental fates (Papatsenko and Levine, 2011).
- These investigations have been complemented by the realization that the landscape shaped by
- these arrows is not static. For example, temporal changes in the concentration of transcription
- factors such as that of the Bicoid activator over development can propagate through the network,
- effectively modulating the network's topology and impacting cellular, and therefore embryonic,
- 451 phenotype (Verd et al., 2018; Verd et al., 2017; Verd et al., 2019). We urgently require
- 452 theoretical tools to deal with such *non-autonomous dynamical systems*, where network
- parameters are modulated in time. Further, to test the predictions of these models, it will be
- 454 necessary to simultaneously visualize the transcriptional activity and protein products of multiple
- genes in single cells as these networks are deployed. Currently, it is possible to simultaneously
- image only one input transcription factor and the transcriptional activity of one of its target genes
- 457 (Bothma et al., 2018). This limitation to multiplexing underscores the need for new fluorescent

probes with a large repertoire of spectral ranges, as well as advances in microscopy techniques that make it possible to spectrally resolve these different probes.

Toward quantitative and predictive developmental biology

- The experimental technologies and theoretical approaches reviewed in this article are the means to the ultimate goal of a predictive understanding of developmental decision-making. Demanding a quantitative and predictive understanding of biological phenomena sharpens our questions and makes our inquiries more sensitive to inconsistencies that may reveal new biological insights that would have remained hidden from qualitative approaches (Cohen, 2004; Garcia et al., 2010). However, in our opinion, the discovery of new molecular players does not constitute a guiding objective in and of itself (Phillips, 2015). Even in the absence of new discoveries, we would like to define successful physical biology of embryonic development as the demonstration that developmental programs can be predictive, much as it has been shown in the context of gene regulatory programs in bacteria (Garcia et al., 2016; Phillips et al., 2019).
 - Although such predictive understanding calls for a quantitative view of how all the processes of the central dogma are regulated in development, the topics covered in this article have been vastly biased toward the regulation of transcriptional initiation. We believe that this bias reflects the state of the art in the field, as it is now possible to monitor transcriptional initiation and the concentration dynamics of the transcription factors that direct this initiation in real time during development. However, new technologies, some of which were briefly reviewed here, enable real-time, single-cell, high-precision, *in vivo* measurements of other steps of the central dogma. We therefore envision that, as these technologies are unleashed to unravel development, they will yield the dialogue between theory and experiment that has been a defining factor in our understanding of the regulation of transcriptional initiation.
- Of course, we must not forget that development transcends regulation of the central dogma! Ultimately, expression patterns arising from gene regulatory networks drive the morphogenic movements that bring about tissue growth and biological shape, and these movements further determine, in turn, gene expression patterns (for reviews on the subject, see Chan et al. (2017); Gilmour et al. (2017); Mammoto et al. (2012); Totaro et al. (2018)). The capacity to measure and manipulate actomyosin networks is now making it possible to relate the activity of these regulatory networks to the massive cellular rearrangements that characterize morphogenesis and to control them synthetically (Campas, 2016; Farrell et al., 2017; Guglielmi et al., 2015; He et al., 2016; Kale et al., 2018; Martin et al., 2009; Streichan et al., 2018). These new measurements and allied theoretical and computational approaches promise to close the gap between our understanding of morphogen gradients and our understanding of morphogenesis.
- Finally, although this review limited its scope to the fruit fly, no one species holds all the keys to predictively understanding development. A key challenge will be to demonstrate that the strategies put forth here can also reveal the physical biology of embryos of other developmental biology workhorses such as worms, fish, and mice. Excitingly, the real-time visualization of transcription and mRNA processing was recently achieved in all three of these model organisms

- 498 (Campbell et al., 2015; Hadzhiev et al., 2019; Lee et al., 2018; Lionnet et al., 2011). Thus, the
- 499 technologies discussed in this review article are ushering in a new era in developmental biology
- 500 in which the focus on spatial, almost static, control of developmental programs is being replaced
- by a dynamical view that embraces the quantitative spatiotemporal control of development
- 502 (Berrocal et al., 2018; Bothma and Levine, 2013). This new language will empower the
- discourse between theory and experiment that will revolutionize our ability to predict—and
- oultimately manipulate—developmental programs at will.

506

507

508

Acknowledgments

- The authors are grateful to Jack Bateman, Jacques Bothma, James Briscoe, Leigh Harris,
- 510 Thomas Lecuit, Mustafa Mir, Rob Phillips, Clarissa Scholes, Stephen Small and Michael Stadler
- for discussions and/or comments on this manuscript. However, the opinions and point of view
- expressed here are the authors' and those acknowledged above should not be blamed for these
- views. HGG was supported by the Burroughs Wellcome Fund Career Award at the Scientilc
- Interface, the Sloan Research Foundation, the Human Frontiers Science Program, the Searle
- Scholars Program, the Shurl & Kay Curci Foundation, the Hellman Foundation, the NIH
- 516 Director's New Innovator Award (DP2 OD024541-01), and an NSF CAREER Award
- 517 (1652236). Finally, the references cited throughout the text are meant as a guide to the reader to
- 518 the literature, and do not attempt to provide a scholarly assessment of the whole field of fly
- 519 development or of developmental biology write large.

520

521

References

- Ackers, G.K., Johnson, A.D., and Shea, M.A. (1982). Quantitative model for gene regulation by
- lambda phage repressor. Proc Natl Acad Sci U S A 79, 1129-1133.
- Alberts, B. (2015). Molecular biology of the cell, Sixth edition. edn (New York, NY: Garland
- 525 Science, Taylor and Francis Group).
- Alexander, J.M., Guan, J., Li, B., Maliskova, L., Song, M., Shen, Y., Huang, B., Lomvardas, S.,
- and Weiner, O.D. (2019). Live-cell imaging reveals enhancer-dependent Sox2 transcription in
- 528 the absence of enhancer proximity. eLife δ .
- Arnosti, D.N., Barolo, S., Levine, M., and Small, S. (1996). The eve stripe 2 enhancer employs
- multiple modes of transcriptional synergy. Development 122, 205-214.
- Benabdallah, N.S., Williamson, I., Illingworth, R.S., Boyle, S., Grimes, G.R., Therizols, P., and
- Bickmore, W.A. (2017). PARP mediated chromatin unfolding is coupled to long-range enhancer
- 533 activation. bioRxiv, 155325.
- Bentley, D.L. (2014). Coupling mRNA processing with transcription in time and space. Nat Rev
- 535 Genet 15, 163-175.
- Berrocal, A., Lammers, N.C., Garcia, H.G., and Eisen, M.B. (2018). Kinetic sculpting of the
- seven stripes of the Drosophila even-skipped gene. bioRxiv.

- Bertrand, E., Chartrand, P., Schaefer, M., Shenoy, S.M., Singer, R.H., and Long, R.M. (1998).
- Localization of ASH1 mRNA particles in living yeast. Mol Cell 2, 437-445.
- Bintu, L., Buchler, N.E., Garcia, H.G., Gerland, U., Hwa, T., Kondev, J., Kuhlman, T., and
- Phillips, R. (2005a). Transcriptional regulation by the numbers: applications. Curr Opin Genet
- 542 Dev 15, 125-135.
- Bintu, L., Buchler, N.E., Garcia, H.G., Gerland, U., Hwa, T., Kondev, J., and Phillips, R.
- 544 (2005b). Transcriptional regulation by the numbers: models. Curr Opin Genet Dev 15, 116-124.
- Blythe, S.A., and Wieschaus, E.F. (2016). Establishment and maintenance of heritable chromatin
- structure during early Drosophila embryogenesis. eLife 5.
- Boettiger, A.N., Bintu, B., Moffitt, J.R., Wang, S., Beliveau, B.J., Fudenberg, G., Imakaev, M.,
- Mirny, L.A., Wu, C.T., and Zhuang, X. (2016). Super-resolution imaging reveals distinct
- 549 chromatin folding for different epigenetic states. Nature 529, 418-422.
- Boettiger, A.N., and Levine, M. (2013). Rapid Transcription Fosters Coordinate snail Expression
- in the Drosophila Embryo. Cell reports.
- Bothma, J., and Levine, M. (2013). Development: Lights, Camera, Action The Drosophila
- Embryo Goes Live! Curr Biol 23, R965.
- Bothma, J.P., Garcia, H.G., Esposito, E., Schlissel, G., Gregor, T., and Levine, M. (2014).
- 555 Dynamic regulation of eve stripe 2 expression reveals transcriptional bursts in living Drosophila
- 556 embryos. Proc Natl Acad Sci U S A 111, 10598–10603.
- Bothma, J.P., Garcia, H.G., Ng, S., Perry, M.W., Gregor, T., and Levine, M. (2015). Enhancer
- additivity and non-additivity are determined by enhancer strength in the Drosophila embryo.
- 559 eLife 4.
- Bothma, J.P., Magliocco, J., and Levine, M. (2011). The Snail Repressor Inhibits Release, Not
- Elongation, of Paused Pol II in the Drosophila Embryo. Curr Biol.
- Bothma, J.P., Norstad, M.R., Alamos, S., and Garcia, H.G. (2018). LlamaTags: A Versatile Tool
- to Image Transcription Factor Dynamics in Live Embryos. Cell.
- Brewster, R.C., Weinert, F.M., Garcia, H.G., Song, D., Rydenfelt, M., and Phillips, R. (2014).
- The transcription factor titration effect dictates level of gene expression. Cell 156, 1312-1323.
- Bronstein, L., Zechner, C., and Koeppl, H. (2015). Bayesian inference of reaction kinetics from
- single-cell recordings across a heterogeneous cell population. Methods (San Diego, Calif 85, 22-
- 568 35.
- Buchler, N.E., Gerland, U., and Hwa, T. (2003). On schemes of combinatorial transcription
- 570 logic. Proc Natl Acad Sci U S A *100*, 5136-5141.
- Buenrostro, J.D., Wu, B., Chang, H.Y., and Greenleaf, W.J. (2015). ATAC-seq: A Method for
- Assaying Chromatin Accessibility Genome-Wide. Curr Protoc Mol Biol 109, 21 29 21-29.
- Burz, B.S., Rivera-Pomar, R., Jackle, H., and Hanes, S.D. (1998). Cooperative DNA-binding by
- Bicoid provides a mechanism for threshold-dependent gene activation in the Drosophila embryo.
- 575 EMBO J *17*, 5998--6009.
- 576 Burz, D.S., and Hanes, S.D. (2001). Isolation of mutations that disrupt cooperative DNA binding
- 577 by the Drosophila bicoid protein. J Mol Biol *305*, 219-230.
- 578 Campas, O. (2016). A toolbox to explore the mechanics of living embryonic tissues. Seminars in
- 579 cell & developmental biology 55, 119-130.
- 580 Campbell, P.D., Chao, J.A., Singer, R.H., and Marlow, F.L. (2015). Dynamic visualization of
- transcription and RNA subcellular localization in zebrafish. Development.
- Carroll, S.B., Grenier, J.K., and Weatherbee, S.D. (2001). From DNA to diversity: molecular
- 583 genetics and the evolution of animal design (Malden, Mass.: Blackwell Science).

- Chan, C.J., Heisenberg, C.P., and Hiiragi, T. (2017). Coordination of Morphogenesis and Cell-
- Fate Specification in Development. Curr Biol 27, R1024-R1035.
- 586 Chen, B.C., Legant, W.R., Wang, K., Shao, L., Milkie, D.E., Davidson, M.W., Janetopoulos, C.,
- 587 Wu, X.S., Hammer, J.A., 3rd, Liu, Z., et al. (2014). Lattice light-sheet microscopy: imaging
- molecules to embryos at high spatiotemporal resolution. Science *346*, 1257998.
- Chen, H., Levo, M., Barinov, L., Fujioka, M., Jaynes, J.B., and Gregor, T. (2018). Dynamic
- interplay between enhancer-promoter topology and gene activity. Nat Genet *50*, 1296-1303.
- 591 Chen, H., Xu, Z., Mei, C., Yu, D., and Small, S. (2012). A system of repressor gradients spatially
- organizes the boundaries of bicoid-dependent target genes. Cell 149, 618-629.
- 593 Cho, P.F., Gamberi, C., Cho-Park, Y.A., Cho-Park, I.B., Lasko, P., and Sonenberg, N. (2006).
- 594 Cap-dependent translational inhibition establishes two opposing morphogen gradients in
- 595 Drosophila embryos. Curr Biol *16*, 2035-2041.
- 596 Cho, W.K., Jayanth, N., English, B.P., Inoue, T., Andrews, J.O., Conway, W., Grimm, J.B.,
- 597 Spille, J.H., Lavis, L.D., Lionnet, T., et al. (2016). RNA Polymerase II cluster dynamics predict
- 598 mRNA output in living cells. eLife 5.
- 599 Chong, S., Dugast-Darzacq, C., Liu, Z., Dong, P., Dailey, G.M., Cattoglio, C., Heckert, A.,
- Banala, S., Lavis, L., Darzacq, X., et al. (2018). Imaging dynamic and selective low-complexity
- domain interactions that control gene transcription. Science 361.
- 602 Chubb, J.R., Trcek, T., Shenoy, S.M., and Singer, R.H. (2006). Transcriptional pulsing of a
- developmental gene. Curr Biol 16, 1018-1025.
- 604 Cohen, J.E. (2004). Mathematics is biology's next microscope, only better; biology is
- mathematics' next physics, only better. PLoS Biol 2, e439.
- 606 Core, L., and Adelman, K. (2019). Promoter-proximal pausing of RNA polymerase II: a nexus of
- gene regulation. Genes Dev.
- 608 Corrigan, A.M., Tunnacliffe, E., Cannon, D., and Chubb, J.R. (2016). A continuum model of
- transcriptional bursting. eLife 5.
- 610 Coulon, A., Ferguson, M.L., de Turris, V., Palangat, M., Chow, C.C., and Larson, D.R. (2014).
- Kinetic competition during the transcription cycle results in stochastic RNA processing, eLife 3.
- 612 Coulon, A., and Larson, D.R. (2016). Fluctuation Analysis: Dissecting Transcriptional Kinetics
- with Signal Theory. Methods in Enzymology.
- 614 Crocker, J., Abe, N., Rinaldi, L., McGregor, A.P., Frankel, N., Wang, S., Alsawadi, A., Valenti,
- P., Plaza, S., Payre, F., et al. (2015). Low affinity binding site clusters confer hox specificity and
- 616 regulatory robustness. Cell *160*, 191-203.
- 617 Crocker, J., Ilsley, G.R., and Stern, D.L. (2016). Quantitatively predictable control of Drosophila
- transcriptional enhancers in vivo with engineered transcription factors. Nat Genet 48, 292-298.
- 619 Cusanovich, D.A., Reddington, J.P., Garfield, D.A., Daza, R.M., Aghamirzaie, D., Marco-
- 620 Ferreres, R., Pliner, H.A., Christiansen, L., Qiu, X., Steemers, F.J., et al. (2018). The cis-
- regulatory dynamics of embryonic development at single-cell resolution. Nature 555, 538-542.
- Davidson, E.H. (2006). The regulatory genome: gene regulatory networks in development and
- evolution (Burlington, MA; San Diego: Academic).
- Desponds, J., Tran, H., Ferraro, T., Lucas, T., Perez Romero, C., Guillou, A., Fradin, C.,
- 625 Coppey, M., Dostatni, N., and Walczak, A.M. (2016). Precision of Readout at the hunchback
- 626 Gene: Analyzing Short Transcription Time Traces in Living Fly Embryos. PLoS Comput Biol
- 627 *12*, e1005256.

- Donovan, B.T., Huynh, A., Ball, D.A., Patel, H.P., Poirier, M.G., Larson, D.R., Ferguson, M.L.,
- and Lenstra, T.L. (2019). Live-cell imaging reveals the interplay between transcription factors,
- nucleosomes, and bursting. The EMBO journal 38, e100809.
- Driever, W., Thoma, G., and Nusslein-Volhard, C. (1989). Determination of spatial domains of
- 22 zygotic gene expression in the Drosophila embryo by the affinity of binding sites for the bicoid
- 633 morphogen. Nature *340*, 363-367.
- Dubnau, J., and Struhl, G. (1996). RNA recognition and translational regulation by a
- homeodomain protein. Nature 379, 694-699.
- Dubuis, J.O., Samanta, R., and Gregor, T. (2013). Accurate measurements of dynamics and
- reproducibility in small genetic networks. Molecular systems biology [electronic resource] 9,
- 638 639.
- Dufourt, J., Trullo, A., Hunter, J., Fernandez, C., Lazaro, J., Dejean, M., Morales, L., Nait-Amer,
- 640 S., Schulz, K.N., Harrison, M.M., et al. (2018). Temporal control of gene expression by the
- pioneer factor Zelda through transient interactions in hubs. Nature communications 9, 5194.
- Edgar, B.A., Odell, G.M., and Schubiger, G. (1989). A genetic switch, based on negative
- regulation, sharpens stripes in Drosophila embryos. Developmental genetics 10, 124-142.
- 644 El-Sherif, E., and Levine, M. (2016). Shadow Enhancers Mediate Dynamic Shifts of Gap Gene
- Expression in the Drosophila Embryo. Curr Biol.
- 646 Erceg, J., Saunders, T.E., Girardot, C., Devos, D.P., Hufnagel, L., and Furlong, E.E. (2014).
- Subtle changes in motif positioning cause tissue-specific effects on robustness of an enhancer's
- 648 activity. PLoS Genet 10, e1004060.
- 649 Esposito, E., Lim, B., Guessous, G., Falahati, H., and Levine, M. (2016). Mitosis-associated
- repression in development. Genes Dev 30, 1503-1508.
- Estrada, J., Wong, F., DePace, A., and Gunawardena, J. (2016). Information Integration and
- Energy Expenditure in Gene Regulation. Cell 166, 234-244.
- Fakhouri, W.D., Ay, A., Sayal, R., Dresch, J., Dayringer, E., and Arnosti, D.N. (2010).
- Deciphering a transcriptional regulatory code: modeling short-range repression in the Drosophila
- embryo. Molecular systems biology [electronic resource] 6, 341.
- 656 Falo-Sanjuan, J., Lammers, N.C., Garcia, H.G., and Bray, S. (2018). Enhancer priming enables
- fast and sustained transcriptional responses to Notch signaling, bioRxiv, 497651.
- Farrell, D.L., Weitz, O., Magnasco, M.O., and Zallen, J.A. (2017). SEGGA: a toolset for rapid
- automated analysis of epithelial cell polarity and dynamics. Development 144, 1725-1734.
- Featherstone, K., Hey, K., Momiji, H., McNamara, A.V., Patist, A.L., Woodburn, J., Spiller,
- D.G., Christian, H.C., McNeilly, A.S., Mullins, J.J., et al. (2016). Spatially coordinated dynamic
- gene transcription in living pituitary tissue. eLife 5, e08494.
- 663 Ferraro, T., Esposito, E., Mancini, L., Ng, S., Lucas, T., Coppey, M., Dostatni, N., Walczak,
- A.M., Levine, M., and Lagha, M. (2016). Transcriptional Memory in the Drosophila Embryo.
- 665 Curr Biol 26, 212-218.
- 666 Fuda, N.J., Ardehali, M.B., and Lis, J.T. (2009). Defining mechanisms that regulate RNA
- polymerase II transcription in vivo. Nature 461, 186-192.
- Fukaya, T., Lim, B., and Levine, M. (2016). Enhancer Control of Transcriptional Bursting. Cell
- 669 *166*, 358-368.
- 670 Fukaya, T., Lim, B., and Levine, M. (2017). Rapid Rates of Pol II Elongation in the Drosophila
- 671 Embryo. Curr Biol 27, 1387-1391.
- Furlong, E.E.M., and Levine, M. (2018). Developmental enhancers and chromosome topology.
- 673 Science 361, 1341-1345.

- 674 Garcia, H.G., Brewster, R.C., and Phillips, R. (2016). Using synthetic biology to make cells
- tomorrow's test tubes. Integr Biol (Camb) 8, 431-450.
- 676 Garcia, H.G., Kondev, J., Orme, N., Theriot, J.A., and Phillips, R. (2007). A first exposure to
- statistical mechanics for life scientists. arXiv preprint arXiv:07081899.
- 678 Garcia, H.G., Sanchez, A., Kuhlman, T., Kondev, J., and Phillips, R. (2010). Transcription by the
- numbers redux: experiments and calculations that surprise. Trends Cell Biol 20, 723-733.
- 680 Garcia, H.G., Tikhonov, M., Lin, A., and Gregor, T. (2013). Quantitative imaging of
- transcription in living Drosophila embryos links polymerase activity to patterning. Curr Biol 23,
- 682 2140-2145.
- 683 Garcia, J.F., and Parker, R. (2015). MS2 coat proteins bound to yeast mRNAs block 5' to 3'
- degradation and trap mRNA decay products: implications for the localization of mRNAs by
- 685 MS2-MCP system. RNA (New York, NY 21, 1393-1395.
- 686 Gilmour, D., Rembold, M., and Leptin, M. (2017). From morphogen to morphogenesis and back.
- 687 Nature *541*, 311-320.
- 688 Golding, I., and Cox, E.C. (2004). RNA dynamics in live Escherichia coli cells. Proc Natl Acad
- 689 Sci U S A 101, 11310-11315.
- 690 Golding, I., Paulsson, J., Zawilski, S.M., and Cox, E.C. (2005). Real-time kinetics of gene
- activity in individual bacteria. Cell 123, 1025-1036.
- 692 Goodwin, S., McPherson, J.D., and McCombie, W.R. (2016). Coming of age: ten years of next-
- 693 generation sequencing technologies. Nat Rev Genet 17, 333-351.
- 694 Gregor, T., Tank, D.W., Wieschaus, E.F., and Bialek, W. (2007). Probing the limits to positional
- 695 information. Cell 130, 153-164.
- 696 Grimm, O., Sanchez Zini, V., Kim, Y., Casanova, J., Shvartsman, S.Y., and Wieschaus, E.
- 697 (2012). Torso RTK controls Capicua degradation by changing its subcellular localization.
- 698 Development 139, 3962-3968.
- 699 Gu, B., Swigut, T., Spencley, A., Bauer, M.R., Chung, M., Meyer, T., and Wysocka, J. (2018).
- 700 Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements.
- 701 Science 359, 1050-1055.
- Guglielmi, G., Barry, J.D., Huber, W., and De Renzis, S. (2015). An Optogenetic Method to
- Modulate Cell Contractility during Tissue Morphogenesis. Developmental cell 35, 646-660.
- Gursky, V.V., Panok, L., Myasnikova, E.M., Manu, Samsonova, M.G., Reinitz, J., and
- Samsonov, A.M. (2011). Mechanisms of gap gene expression canalization in the Drosophila
- 706 blastoderm. BMC Syst Biol 5, 118.
- Hadzhiev, Y., Qureshi, H.K., Wheatley, L., Cooper, L., Jasiulewicz, A., Van Nguyen, H.,
- Wragg, J.W., Poovathumkadavil, D., Conic, S., Bajan, S., et al. (2019). A cell cycle-coordinated
- 709 Polymerase II transcription compartment encompasses gene expression before global genome
- activation. Nature communications 10, 691.
- Haimovich, G., Zabezhinsky, D., Haas, B., Slobodin, B., Purushothaman, P., Fan, L., Levin, J.Z.,
- Nusbaum, C., and Gerst, J.E. (2016). Use of the MS2 aptamer and coat protein for RNA
- localization in yeast: A response to "MS2 coat proteins bound to yeast mRNAs block 5' to 3'
- degradation and trap mRNA decay products: implications for the localization of mRNAs by
- 715 MS2-MCP system". RNA (New York, NY 22, 660-666.
- Haines, J.E., and Eisen, M.B. (2018). Patterns of chromatin accessibility along the anterior-
- posterior axis in the early Drosophila embryo. PLoS Genet 14, e1007367.

- Halstead, J.M., Lionnet, T., Wilbertz, J.H., Wippich, F., Ephrussi, A., Singer, R.H., and Chao,
- J.A. (2015). Translation. An RNA biosensor for imaging the first round of translation from single
- 720 cells to living animals. Science *347*, 1367-1671.
- Hammar, P., Wallden, M., Fange, D., Persson, F., Baltekin, O., Ullman, G., Leroy, P., and Elf, J.
- 722 (2014). Direct measurement of transcription factor dissociation excludes a simple operator
- occupancy model for gene regulation. Nat Genet 46, 405-408.
- Hanes, S.D., Riddihough, G., Ish-Horowicz, D., and Brent, R. (1994). Specific DNA recognition
- and intersite spacing are critical for action of the bicoid morphogen. Molecular and cellular
- 726 biology 14, 3364-3375.
- Hare, E.E., Peterson, B.K., Iyer, V.N., Meier, R., and Eisen, M.B. (2008). Sepsid even-skipped
- enhancers are functionally conserved in Drosophila despite lack of sequence conservation. PLoS
- 729 Genet 4, e1000106.
- Harrison, M.M., Li, X.Y., Kaplan, T., Botchan, M.R., and Eisen, M.B. (2011). Zelda binding in
- 731 the early Drosophila melanogaster embryo marks regions subsequently activated at the maternal-
- to-zygotic transition. PLoS Genet 7, e1002266.
- He, B., Martin, A., and Wieschaus, E. (2016). Flow-dependent myosin recruitment during
- Drosophila cellularization requires zygotic dunk activity. Development 143, 2417-2430.
- He, X., Samee, M.A., Blatti, C., and Sinha, S. (2010). Thermodynamics-based models of
- 736 transcriptional regulation by enhancers: the roles of synergistic activation, cooperative binding
- and short-range repression. PLoS Comput Biol 6.
- Heinrich, S., Sidler, C.L., Azzalin, C.M., and Weis, K. (2017). Stem-loop RNA labeling can
- affect nuclear and cytoplasmic mRNA processing. RNA (New York, NY 23, 134-141.
- Hey, K.L., Momiji, H., Featherstone, K., Davis, J.R., White, M.R., Rand, D.A., and Finkenstadt,
- B. (2015). A stochastic transcriptional switch model for single cell imaging data. Biostatistics 16,
- 742 655-669.
- Hirata, H., Bessho, Y., Kokubu, H., Masamizu, Y., Yamada, S., Lewis, J., and Kageyama, R.
- 744 (2004). Instability of Hes7 protein is crucial for the somite segmentation clock. Nat Genet 36,
- 745 750-754.
- 746 Irish, V., Lehmann, R., and Akam, M. (1989). The Drosophila posterior-group gene nanos
- functions by repressing hunchback activity. Nature 338, 646-648.
- Jaeger, J. (2011). The gap gene network. Cell Mol Life Sci 68, 243-274.
- Jaeger, J., Blagov, M., Kosman, D., Kozlov, K.N., Manu, Myasnikova, E., Surkova, S., Vanario-
- 750 Alonso, C.E., Samsonova, M., Sharp, D.H., et al. (2004a). Dynamical analysis of regulatory
- interactions in the gap gene system of Drosophila melanogaster. Genetics 167, 1721-1737.
- Jaeger, J., Manu, and Reinitz, J. (2012). Drosophila blastoderm patterning. Curr Opin Genet Dev
- 753 *22*, 533-541.
- Jaeger, J., and Monk, N. (2014). Bioattractors: dynamical systems theory and the evolution of
- regulatory processes. The Journal of physiology *592*, 2267-2281.
- Jaeger, J., Surkova, S., Blagov, M., Janssens, H., Kosman, D., Kozlov, K.N., Manu, Myasnikova,
- 757 E., Vanario-Alonso, C.E., Samsonova, M., et al. (2004b). Dynamic control of positional
- information in the early Drosophila embryo. Nature 430, 368-371.
- 759 Jiang, J., and Levine, M. (1993). Binding affinities and cooperative interactions with bHLH
- activators delimit threshold responses to the dorsal gradient morphogen. Cell 72, 741-752.
- Kale, G.R., Yang, X., Philippe, J.M., Mani, M., Lenne, P.F., and Lecuit, T. (2018). Distinct
- contributions of tensile and shear stress on E-cadherin levels during morphogenesis. Nature
- 763 communications 9, 5021.

- Kanodia, J.S., Liang, H.L., Kim, Y., Lim, B., Zhan, M., Lu, H., Rushlow, C.A., and Shvartsman,
- S.Y. (2012). Pattern formation by graded and uniform signals in the early Drosophila embryo.
- 766 Biophys J 102, 427-433.
- Kellerman, K.A., Mattson, D.M., and Duncan, I. (1990). Mutations affecting the stability of the
- fushi tarazu protein of Drosophila. Genes Dev 4, 1936-1950.
- Kim, S.H., Vieira, M., Kim, H.J., Kesawat, M.S., and Park, H.Y. (2019). MS2 Labeling of
- 770 Endogenous Beta-Actin mRNA Does Not Result in Stabilization of Degradation Intermediates.
- 771 Mol Cells *42*, 356-362.
- Koboldt, D.C., Steinberg, K.M., Larson, D.E., Wilson, R.K., and Mardis, E.R. (2013). The next-
- generation sequencing revolution and its impact on genomics. Cell 155, 27-38.
- Kudo, T., Jeknic, S., Macklin, D.N., Akhter, S., Hughey, J.J., Regot, S., and Covert, M.W.
- 775 (2018). Live-cell measurements of kinase activity in single cells using translocation reporters.
- 776 Nat Protoc 13, 155-169.
- Lammers, N.C., Galstyan, V., Reimer, A., Medin, S.A., Wiggins, C.H., and Garcia, H.G. (2018).
- 778 Multimodal transcriptional control of pattern formation in embryonic development. bioRxiv.
- Larschan, E., Bishop, E.P., Kharchenko, P.V., Core, L.J., Lis, J.T., Park, P.J., and Kuroda, M.I.
- 780 (2011). X chromosome dosage compensation via enhanced transcriptional elongation in
- 781 Drosophila. Nature *471*, 115-118.
- Larson, D.R., Zenklusen, D., Wu, B., Chao, J.A., and Singer, R.H. (2011). Real-time observation
- of transcription initiation and elongation on an endogenous yeast gene. Science 332, 475-478.
- Lawrence, J.B., Singer, R.H., and Marselle, L.M. (1989). Highly localized tracks of specific
- transcripts within interphase nuclei visualized by in situ hybridization. Cell 57, 493-502.
- Lebrecht, D., Foehr, M., Smith, E., Lopes, F.J., Vanario-Alonso, C.E., Reinitz, J., Burz, D.S.,
- and Hanes, S.D. (2005). Bicoid cooperative DNA binding is critical for embryonic patterning in
- 788 Drosophila. Proc Natl Acad Sci U S A *102*, 13176-13181.
- Lee, C., Shin, H., and Kimble, J. (2018). Dynamics of Notch-dependent transcriptional bursting
- 790 in its native context. bioRxiv, 496638.
- Li, C., Cesbron, F., Oehler, M., Brunner, M., and Hofer, T. (2018). Frequency Modulation of
- 792 Transcriptional Bursting Enables Sensitive and Rapid Gene Regulation. Cell systems 6, 409-423
- 793 e411.
- Li, G.W., Burkhardt, D., Gross, C., and Weissman, J.S. (2014). Quantifying absolute protein
- synthesis rates reveals principles underlying allocation of cellular resources. Cell 157, 624-635.
- Li, J., Dong, A., Saydaminova, K., Chang, H., Wang, G., Ochiai, H., Yamamoto, T., and
- 797 Pertsinidis, A. (2019). Single-Molecule Nanoscopy Elucidates RNA Polymerase II Transcription
- 798 at Single Genes in Live Cells. Cell.
- Lim, B., Fukaya, T., Heist, T., and Levine, M. (2018a). Temporal dynamics of pair-rule stripes in
- living Drosophila embryos. Proc Natl Acad Sci U S A 115, 8376-8381.
- Lim, B., Heist, T., Levine, M., and Fukaya, T. (2018b). Visualization of Transvection in Living
- 802 Drosophila Embryos. Mol Cell *70*, 287-296 e286.
- Lim, B., Levine, M., and Yamazaki, Y. (2017). Transcriptional Pre-patterning of Drosophila
- 804 Gastrulation. Curr Biol *27*, 286-290.
- Lionnet, T., Czaplinski, K., Darzacq, X., Shav-Tal, Y., Wells, A.L., Chao, J.A., Park, H.Y., de
- 806 Turris, V., Lopez-Jones, M., and Singer, R.H. (2011). A transgenic mouse for in vivo detection
- of endogenous labeled mRNA. Nat Methods.
- Little, S.C., Tikhonov, M., and Gregor, T. (2013). Precise developmental gene expression arises
- from globally stochastic transcriptional activity. Cell 154, 789-800.

- Little, S.C., Tkacik, G., Kneeland, T.B., Wieschaus, E.F., and Gregor, T. (2011). The formation
- of the Bicoid morphogen gradient requires protein movement from anteriorly localized mRNA.
- 812 PLoS Biol 9, e1000596.
- Lopes, F.J., Vieira, F.M., Holloway, D.M., Bisch, P.M., and Spirov, A.V. (2008). Spatial
- 814 bistability generates hunchback expression sharpness in the Drosophila embryo. PLoS Comput
- 815 Biol 4, e1000184.
- Lucas, T., Ferraro, T., Roelens, B., De Las Heras Chanes, J., Walczak, A.M., Coppey, M., and
- Dostatni, N. (2013). Live imaging of bicoid-dependent transcription in Drosophila embryos. Curr
- 818 Biol *23*, 2135-2139.
- Ma, X., Yuan, D., Diepold, K., Scarborough, T., and Ma, J. (1996). The Drosophila
- morphogenetic protein Bicoid binds DNA cooperatively. Development 122, 1195-1206.
- Mammoto, A., Mammoto, T., and Ingber, D.E. (2012). Mechanosensitive mechanisms in
- transcriptional regulation. Journal of cell science 125, 3061-3073.
- Manu, Surkova, S., Spirov, A.V., Gursky, V.V., Janssens, H., Kim, A.R., Radulescu, O.,
- Vanario-Alonso, C.E., Sharp, D.H., Samsonova, M., et al. (2009). Canalization of gene
- expression and domain shifts in the Drosophila blastoderm by dynamical attractors. PLoS
- 826 Comput Biol 5, e1000303.
- Margolis, J.S., Borowsky, M.L., Steingrimsson, E., Shim, C.W., Lengyel, J.A., and Posakony,
- 328 J.W. (1995). Posterior stripe expression of hunchback is driven from two promoters by a
- common enhancer element. Development 121, 3067-3077.
- Martin, A.C., Kaschube, M., and Wieschaus, E.F. (2009). Pulsed contractions of an actin-myosin
- network drive apical constriction. Nature 457, 495-499.
- Matera, A.G., and Wang, Z. (2014). A day in the life of the spliceosome. Nat Rev Mol Cell Biol
- 833 *15*, 108-121.
- Mayer, A., Landry, H.M., and Churchman, L.S. (2017). Pause & go: from the discovery of RNA
- polymerase pausing to its functional implications. Curr Opin Cell Biol 46, 72-80.
- Mir, M., Reimer, A., Haines, J.E., Li, X.Y., Stadler, M., Garcia, H., Eisen, M.B., and Darzacq,
- X. (2017). Dense Bicoid hubs accentuate binding along the morphogen gradient. Genes Dev 31,
- 838 1784-1794.
- Mir, M., Stadler, M.R., Ortiz, S.A., Hannon, C.E., Harrison, M.M., Darzacq, X., and Eisen, M.B.
- 840 (2018). Dynamic multifactor hubs interact transiently with sites of active transcription in
- Drosophila embryos. eLife 7.
- Molina, N., Suter, D.M., Cannavo, R., Zoller, B., Gotic, I., and Naef, F. (2013). Stimulus-
- induced modulation of transcriptional bursting in a single mammalian gene. Proc Natl Acad Sci
- 844 USA 110, 20563-20568.
- Morisaki, T., Lyon, K., DeLuca, K.F., DeLuca, J.G., English, B.P., Zhang, Z., Lavis, L.D.,
- 646 Grimm, J.B., Viswanathan, S., Looger, L.L., et al. (2016). Real-time quantification of single
- RNA translation dynamics in living cells. Science *352*, 1425-1429.
- Murata, Y., and Wharton, R.P. (1995). Binding of pumilio to maternal hunchback mRNA is
- required for posterior patterning in Drosophila embryos. Cell 80, 747-756.
- Nagai, T., Ibata, K., Park, E.S., Kubota, M., Mikoshiba, K., and Miyawaki, A. (2002). A variant
- of yellow fluorescent protein with fast and efficient maturation for cell-biological applications.
- 852 Nat Biotechnol 20, 87-90.
- Niessing, D., Blanke, S., and Jackle, H. (2002). Bicoid associates with the 5'-cap-bound complex
- of caudal mRNA and represses translation. Genes Dev 16, 2576-2582.

- 855 O'Farrell, P.H., Edgar, B.A., Lakich, D., and Lehner, C.F. (1989). Directing cell division during
- 856 development. Science 246, 635-640.
- Oldach, L., and Zhang, J. (2014). Genetically encoded fluorescent biosensors for live-cell
- visualization of protein phosphorylation. Chem Biol 21, 186-197.
- Papatsenko, D., and Levine, M. (2011). The Drosophila gap gene network is composed of two
- parallel toggle switches. PLoS ONE 6, e21145.
- Pare, A., Lemons, D., Kosman, D., Beaver, W., Freund, Y., and McGinnis, W. (2009).
- Visualization of individual Scr mRNAs during Drosophila embryogenesis yields evidence for
- transcriptional bursting. Curr Biol 19, 2037-2042.
- Park, J., Estrada, J., Johnson, G., Ricci-Tam, C., Bragdon, M., Shulgina, Y., Cha, A.,
- Gunawardena, J., and DePace, A.H. (2018). Dissecting the sharp response of a canonical
- developmental enhancer reveals multiple sources of cooperativity. bioRxiv.
- Park, P.J. (2009). ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet
- 868 10, 669-680.
- Perry, M.W., Bothma, J.P., Luu, R.D., and Levine, M. (2012). Precision of hunchback
- expression in the Drosophila embryo. Curr Biol 22, 2247-2252.
- Peter, I.S., and Davidson, E.H. (2015). Genomic control process: development and evolution
- 872 (London, UK; San Diego, CA, USA: Academic Press is an imprint of Elsevier).
- Phillips, R. (2015). Theory in Biology: Figure 1 or Figure 7? Trends Cell Biol.
- Phillips, R., Belliveau, N.M., Chure, G., Garcia, H.G., Razo-Mejia, M., and Scholes, C. (2019).
- Figure 1 Theory Meets Figure 2 Experiments in the Study of Gene Expression. Annu Rev
- 876 Biophys 48, 121-163.
- Poustelnikova, E., Pisarev, A., Blagov, M., Samsonova, M., and Reinitz, J. (2004). A database
- for management of gene expression data in situ. Bioinformatics 20, 2212-2221.
- 879 Raj, A., Peskin, C.S., Tranchina, D., Vargas, D.Y., and Tyagi, S. (2006). Stochastic mRNA
- synthesis in mammalian cells. PLoS Biol 4, e309.
- Razo-Mejia, M., Barnes, S.L., Belliveau, N.M., Chure, G., Einav, T., Lewis, M., and Phillips, R.
- 882 (2018). Tuning Transcriptional Regulation through Signaling: A Predictive Theory of Allosteric
- 883 Induction. Cell systems *6*, 456-469 e410.
- Regot, S., Hughey, J.J., Bajar, B.T., Carrasco, S., and Covert, M.W. (2014). High-sensitivity
- measurements of multiple kinase activities in live single cells. Cell 157, 1724-1734.
- Richard, P., and Manley, J.L. (2009). Transcription termination by nuclear RNA polymerases.
- 887 Genes Dev 23, 1247-1269.
- Rivera-Pomar, R., Niessing, D., Schmidt-Ott, U., Gehring, W.J., and Jackle, H. (1996). RNA
- binding and translational suppression by bicoid. Nature 379, 746-749.
- 890 Ronchi, E., Treisman, J., Dostatni, N., Struhl, G., and Desplan, C. (1993). Down-regulation of
- the Drosophila morphogen bicoid by the torso receptor-mediated signal transduction cascade.
- 892 Cell 74, 347-355.
- 893 Samee, M.A., Lim, B., Samper, N., Lu, H., Rushlow, C.A., Jimenez, G., Shvartsman, S.Y., and
- 894 Sinha, S. (2015). A Systematic Ensemble Approach to Thermodynamic Modeling of Gene
- 895 Expression from Sequence Data. Cell systems 1, 396-407.
- 896 Sato, Y., Kujirai, T., Arai, R., Asakawa, H., Ohtsuki, C., Horikoshi, N., Yamagata, K., Ueda, J.,
- Nagase, T., Haraguchi, T., et al. (2016). A Genetically Encoded Probe for Live-Cell Imaging of
- 898 H4K20 Monomethylation. J Mol Biol 428, 3885-3902.

- 899 Sato, Y., Mukai, M., Ueda, J., Muraki, M., Stasevich, T.J., Horikoshi, N., Kujirai, T., Kita, H.,
- 900 Kimura, T., Hira, S., et al. (2013). Genetically encoded system to track histone modification in
- 901 vivo. Scientific reports 3, 2436.
- Sayal, R., Dresch, J.M., Pushel, I., Taylor, B.R., and Arnosti, D.N. (2016). Quantitative
- 903 perturbation-based analysis of gene expression predicts enhancer activity in early Drosophila
- 904 embryo. eLife 5.
- Scholes, C., Biette, K.M., Harden, T.T., and DePace, A.H. (2019). Signal Integration by Shadow
- Enhancers and Enhancer Duplications Varies across the Drosophila Embryo. Cell reports 26,
- 907 2407-2418 e2405.
- 908 Scholes, C., DePace, A.H., and Sanchez, A. (2017). Combinatorial Gene Regulation through
- 909 Kinetic Control of the Transcription Cycle. Cell systems 4, 97-108 e109.
- 910 Schroter, C., Herrgen, L., Cardona, A., Brouhard, G.J., Feldman, B., and Oates, A.C. (2008).
- 911 Dynamics of zebrafish somitogenesis. Developmental dynamics : an official publication of the
- 912 American Association of Anatomists 237, 545-553.
- 913 Segal, E., Raveh-Sadka, T., Schroeder, M., Unnerstall, U., and Gaul, U. (2008). Predicting
- expression patterns from regulatory sequence in Drosophila segmentation. Nature 451, 535-540.
- 915 Sekar, T.V., Foygel, K., Gelovani, J.G., and Paulmurugan, R. (2015). Genetically encoded
- molecular biosensors to image histone methylation in living animals. Anal Chem 87, 892-899.
- 917 Sherman, M.S., and Cohen, B.A. (2012). Thermodynamic State Ensemble Models of cis-
- 918 Regulation. PLoS Comput Biol 8, e1002407.
- 919 Shermoen, A.W., and O'Farrell, P.H. (1991). Progression of the cell cycle through mitosis leads
- 920 to abortion of nascent transcripts. Cell 67, 303-310.
- 921 Shlyueva, D., Stampfel, G., and Stark, A. (2014). Transcriptional enhancers: from properties to
- genome-wide predictions. Nat Rev Genet 15, 272-286.
- 923 Simpson-Brose, M., Treisman, J., and Desplan, C. (1994). Synergy between the hunchback and
- bicoid morphogens is required for anterior patterning in Drosophila. Cell 78, 855-865.
- 925 Singer, R.H., and Ward, D.C. (1982). Actin gene expression visualized in chicken muscle tissue
- 926 culture by using in situ hybridization with a biotinated nucleotide analog. Proc Natl Acad Sci U
- 927 S A 79, 7331-7335.
- 928 Small, S., Blair, A., and Levine, M. (1992). Regulation of even-skipped stripe 2 in the
- 929 *Drosophila* embryo. EMBO J 11, 4047-4057.
- 930 Small, S., Kraut, R., Hoey, T., Warrior, R., and Levine, M. (1991). Transcriptional regulation of
- a pair-rule stripe in Drosophila. Genes Dev 5, 827-839.
- 932 Stathopoulos, A., and Levine, M. (2005). Localized repressors delineate the neurogenic ectoderm
- 933 in the early Drosophila embryo. Dev Biol 280, 482-493.
- 934 Streichan, S.J., Lefebvre, M.F., Noll, N., Wieschaus, E.F., and Shraiman, B.I. (2018). Global
- morphogenetic flow is accurately predicted by the spatial distribution of myosin motors. eLife 7.
- 936 Struhl, G. (1989). Differing strategies for organizing anterior and posterior body pattern in
- 937 Drosophila embryos. Nature 338, 741-744.
- 938 Suter, D.M., Molina, N., Gatfield, D., Schneider, K., Schibler, U., and Naef, F. (2011).
- 939 Mammalian genes are transcribed with widely different bursting kinetics. Science 332, 472-474.
- 940 Swanson, C.I., Evans, N.C., and Barolo, S. (2010). Structural rules and complex regulatory
- oircuitry constrain expression of a Notch- and EGFR-regulated eye enhancer. Developmental cell
- 942 18, 359-370.
- 943 Szymanski, P., and Levine, M. (1995). Multiple modes of dorsal-bHLH transcriptional synergy
- 944 in the Drosophila embryo. EMBO J *14*, 2229-2238.

- Tautz, D., and Pfeifle, C. (1989). A non-radioactive in situ hybridization method for the
- localization of specific RNAs in Drosophila embryos reveals translational control of the
- segmentation gene hunchback. Chromosoma 98, 81-85.
- 948 Totaro, A., Panciera, T., and Piccolo, S. (2018). YAP/TAZ upstream signals and downstream
- 949 responses. Nat Cell Biol 20, 888-899.
- 950 Tran, H., Desponds, J., Perez Romero, C.A., Coppey, M., Fradin, C., Dostatni, N., and Walczak,
- A.M. (2018). Precision in a rush: Trade-offs between reproducibility and steepness of the
- hunchback expression pattern. PLoS Comput Biol 14, e1006513.
- Tsai, A., Muthusamy, A.K., Alves, M.R., Lavis, L.D., Singer, R.H., Stern, D.L., and Crocker, J.
- 954 (2017). Nuclear microenvironments modulate transcription from low-affinity enhancers. eLife 6.
- 955 Tutucci, E., Vera, M., Biswas, J., Garcia, J., Parker, R., and Singer, R.H. (2018). An improved
- 956 MS2 system for accurate reporting of the mRNA life cycle. Nat Methods 15, 81-89.
- Ubersax, J.A., and Ferrell, J.E., Jr. (2007). Mechanisms of specificity in protein phosphorylation.
- 958 Nat Rev Mol Cell Biol *8*, 530-541.
- 959 Verd, B., Clark, E., Wotton, K.R., Janssens, H., Jimenez-Guri, E., Crombach, A., and Jaeger, J.
- 960 (2018). A damped oscillator imposes temporal order on posterior gap gene expression in
- 961 Drosophila. PLoS Biol *16*, e2003174.
- Verd, B., Crombach, A., and Jaeger, J. (2017). Dynamic Maternal Gradients Control Timing and
- 963 Shift-Rates for Drosophila Gap Gene Expression. PLoS Comput Biol 13, e1005285.
- Verd, B., Monk, N.A., and Jaeger, J. (2019). Modularity, criticality, and evolvability of a
- 965 developmental gene regulatory network. eLife 8.
- Vilar, J.M., and Leibler, S. (2003). DNA looping and physical constraints on transcription
- 967 regulation. J Mol Biol *331*, 981-989.
- von Dassow, G., Meir, E., Munro, E.M., and Odell, G.M. (2000). The segment polarity network
- is a robust developmental module. Nature 406, 188-192.
- Von Dassow, G., and Odell, G.M. (2002). Design and constraints of the Drosophila segment
- polarity module: robust spatial patterning emerges from intertwined cell state switches. The
- Journal of experimental zoology 294, 179-215.
- von Hippel, P.H., Revzin, A., Gross, C.A., and Wang, A.C. (1974). Non-specific {DNA}
- binding of genome regulating proteins as a biological control mechanism: {I}. {The} {\it lac}
- operon: equilibrium aspects. Proc Natl Acad Sci U S A 71, 4808-4812.
- Wang, C., Han, B., Zhou, R., and Zhuang, X. (2016). Real-Time Imaging of Translation on
- 977 Single mRNA Transcripts in Live Cells. Cell *165*, 990-1001.
- Wang, C., and Lehmann, R. (1991). Nanos is the localized posterior determinant in Drosophila.
- 979 Cell 66, 637-647.
- 980 Wharton, R.P., and Struhl, G. (1991). RNA regulatory elements mediate control of Drosophila
- body pattern by the posterior morphogen nanos. Cell 67, 955-967.
- 982 Wu, B., Eliscovich, C., Yoon, Y.J., and Singer, R.H. (2016). Translation dynamics of single
- 983 mRNAs in live cells and neurons. Science 352, 1430-1435.
- 984 Xu, H., Sepulveda, L.A., Figard, L., Sokac, A.M., and Golding, I. (2015). Combining protein and
- 985 mRNA quantification to decipher transcriptional regulation. Nat Methods 12, 739-742.
- 386 Xu, H., Skinner, S.O., Sokac, A.M., and Golding, I. (2016). Stochastic Kinetics of Nascent RNA.
- 987 Phys Rev Lett *117*.
- 988 Yamada, S., Whitney, P.H., Huang, S.K., Eck, E.C., Garcia, H.G., and Rushlow, C.A. (2019).
- The Drosophila Pioneer Factor Zelda Modulates the Nuclear Microenvironment of a Dorsal
- 990 Target Enhancer to Potentiate Transcriptional Output. Curr Biol 29, 1387-1393 e1385.

- 991 Yan, X., Hoek, T.A., Vale, R.D., and Tanenbaum, M.E. (2016). Dynamics of Translation of
- 992 Single mRNA Molecules In Vivo. Cell 165, 976-989.
- 993 Yunger, S., Rosenfeld, L., Garini, Y., and Shav-Tal, Y. (2010). Single-allele analysis of
- transcription kinetics in living mammalian cells. Nat Methods 7, 631-633.
- 295 Zechner, C., Unger, M., Pelet, S., Peter, M., and Koeppl, H. (2014). Scalable inference of
- heterogeneous reaction kinetics from pooled single-cell recordings. Nat Methods 11, 197-202.
- 297 Zenklusen, D., Larson, D.R., and Singer, R.H. (2008). Single-RNA counting reveals alternative
- modes of gene expression in yeast. Nature structural & molecular biology 15, 1263-1271.
- 2018, Zoller, B., Little, S.C., and Gregor, T. (2018). Diverse Spatial Expression Patterns Emerge from
- 1000 Unified Kinetics of Transcriptional Bursting. Cell 175, 835-847 e825.
- Zoller, B., Nicolas, D., Molina, N., and Naef, F. (2015). Structure of silent transcription intervals
- and noise characteristics of mammalian genes. Molecular systems biology [electronic resource]
- 1003 11, 823.