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Lighting Up the Central Dogma for Predictive Developmental Biology

Hernan G. Garcia, Augusto Berrocal, Yang Joon Kim, Gabriella Martini, Jiaxi Zhao

Abstract

Although the last 30 years have witnessed the mapping of the wiring diagrams of the gene
regulatory networks that dictate cell fate and animal body plans, specific understanding building
on such network diagrams that shows how DNA regulatory regions control gene expression lags
far behind. These networks have yet to yield the predictive power necessary to, for example,
calculate how the concentration dynamics of input transcription factors and DNA regulatory
sequence prescribes output patterns of gene expression that, in turn, determine body plans
themselves. Here, we argue that reaching a predictive understanding of developmental decision-
making calls for an interplay between theory and experiment aimed at revealing how the
regulation of the processes of the central dogma dictate network connections and how network
topology guides cells toward their ultimate developmental fate. To make this possible, it is
crucial to break free from the snapshot-based understanding of embryonic development
facilitated by fixed-tissue approaches and embrace new technologies that capture the dynamics
of developmental decision-making at the single cell level, in living embryos.

Introduction

A ubiquitous mystery in nature is how a single cell develops into a multicellular organism. One
of the great achievements of genetics and new genome-wide technologies over the last few
decades has been the identification of the regulatory molecules that underlie developmental
programs. This work has revealed that animal body plans are determined by the action of
activators and repressors connected in complex gene regulatory networks. One of the best-
studied regulatory networks drives segmentation of the early embryo of the fruit fly Drosophila
melanogaster. As shown in Figure 1A, decades of concerted effort have uncovered the identities
of the regulatory molecules that determine fly body segments as well as the network connections
between these molecules (reviewed in Carroll et al. (2001); Davidson (2006); Peter and
Davidson (2015)). However, the amassed data about regulatory proteins and network
connections has been mostly descriptive and has not been accompanied by parallel successes in
predictively understanding cellular decision-making in developing embryos. To be concrete, is it
possible to predict developmental phenotypes from network diagrams? Clearly, if we were to
change the names of the genes in the fruit fly segmentation network (Figure 1B), the network
connections—the topology—would be insufficient to predict that this particular network would
result in a fly.

The central thesis of this article is that achieving predictive understanding of developmental
decision-making requires a two-pronged approach. First, each arrow in these networks must be
endowed with molecular and quantitative information that makes it possible to predict how the
genome dictates developmental input-output functions: the functions relating output protein
levels of a gene to the concentrations of its input transcription factors (Figure 2A). That is, how
do the number, placement, and affinity of transcription-factor binding sites within enhancers
establish the relation between input transcription-factor concentration and output transcription?
How is mRNA processed as it forms a cytoplasmic pattern? How is this mRNA pattern
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translated into a protein pattern that can be subject to further post-translational regulation and
that can ultimately feed back into the network? Second, we must reveal how these network
connections conspire together to drive cells into discrete and stable gene expression states that in
turn commit these cells to their ultimate developmental fates (Figure 2B).
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Figure 1: Gene regulatory networks driving development. (A) Current state of the art in mapping the
network that drives segmentation in the fruit fly Drosophila melanogaster. (B) Close examination of a network
with the same topology, but with different genetic actors, reveals that this description is insufficient to predict
that this network will lead to the emergence of a segmented embryo. (Adapted from Carroll et al. (2001); Edgar
et al. (1989); Jaeger (2011); von Dassow et al. (2000).)

In order to achieve this hefty goal of predictive developmental biology, here we argue that
developmental biologists urgently require new theoretical models that make precise and
falsifiable predictions. Further, we posit that, in order to test the predictions from these models,
developmental biology needs to break free from the static view of development shaped by
widespread fixed-tissue techniques and establish new technologies that reveal the regulation of
the processes of the central dogma at the single-cell level as developmental programs are
deployed in real time. Here we focus on the specific case study of the segmentation of the early
embryo of the fruit fly. This review is therefore not encyclopedic, and falls short of an exhaustive
scholarly survey of the many exciting contributions to quantitative developmental biology in the
recent literature. Rather, by focusing on a representative case study, we propose a concrete
framework for establishing a quantitative and predictive developmental biology writ large that
can be adopted by developmental biologists and biophysicists working on any organism.

Turning the fruit fly Drosophila melanogaster into a substrate for predictive developmental
biology

Drosophila is already a workhorse for developmental biology and genetics research. The fruit fly
is also an ideal substrate for realizing predictive developmental biology. The fly network in
Figure 1A shows that many of its fundamental parts (regulatory molecules and connections) have
already been identified. The picture that emerges is one of a network that is simple enough that
its regulatory interactions could be enumerated, yet intricate enough that it captures the essence



71  of more “complex” developmental processes. As a result, even though some regulatory
72 interactions might remain unmapped, the fly segmentation network offers a unique opportunity
73 to uncover the fundamental and quantitative rules behind developmental decision-making.
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Figure 2: A two-pronged approach to achieving predictive understanding of developmental decision-
making. (A) A quantitative and predictive description of gene regulatory networks in development demands
uncovering how the regulation of the processes of the central dogma prescribe developmental input-output
functions represented by network arrows. (B) Arrows define the network topology which drives cells within an
embryo into discrete and stable developmental states. In this example, the topology defines two distinct
developmental trajectories that lead to cells expressing engrailed or wingless, and to the adoption of distinct
fates that establish body segments in the fly.

74 What is required to quantitatively predict and control developmental outcomes from regulatory
75  parameters in the fruit fly—and ultimately any organism? The bacterial /ac operon showcases

76 how to build a predictive understanding of cellular decision-making. Over the last 15 years,

77  theoretical models of this operon, such as those shown in Figure 3A, have precisely predicted the
78  mean rate of transcription and its cell-to-cell variability as a function of regulatory architecture
79  invoking only a handful of free parameters (Figure 3B, reviewed in Phillips et al. (2019)).

80  Clearly, flies differ from bacteria; even the architecture of the transcriptional process is different.
81  While bacterial transcription only requires a handful of molecules to be present at the promoter,
82  eukaryotic transcriptional initiation requires the assembly of vast macromolecular complexes

83  such as the preinitiation complex, plus regulatory steps to evict nucleosomes from the DNA to
84  render it accessible to transcription factors (reviewed by Fuda et al. (2009)). Similar complexity
85  exists in every step of the central dogma in eukaryotes, from splicing, to transcriptional

86  termination, to translation, to post-translational modifications (Alberts, 2015).
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However, the challenges of quantitatively dissecting development go beyond the combinatorial
complexity stemming from the numerous molecular machines involved in the processes of the
central dogma in eukaryotes. Biology textbooks are dominated by snapshots of static gene-
expression patterns. Thus, a large part of our understanding of developmental biology rests on
the assumption that developmental dynamics can be easily inferred from these static pictures.
However, development is a highly dynamic process: choreographed gene expression patterns are
rapidly deployed in space and time, and can exist for periods of time as short as 15 minutes
(Bothma et al., 2014). Thus, predicting developmental biology of Drosophila not only calls for
theoretical frameworks with predictive power, but also demands experimental technologies that
reveal how the processes of the central dogma are regulated in real time as single cells commit to

their fates and development unfolds.
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Figure 3: Unraveling regulation of the lac operon through theory and experiment. (A) Examples of
theoretical predictions for the fold-change in gene expression of simple repression by Lac repressor (defined as
the ratio of gene expression level in the presence of repressor to the gene expression level in in the absence of
repressor) for increasingly complex regulatory situations. Each step relies on the parameters learned in the
previous iteration. (B) Parameter-free or one-parameter fits to the data demonstrate that simple repression is
predictive. (B, adapted from Brewster et al. (2014); Garcia et al. (2013); Razo-Mejia et al. (2018)).
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Lighting up the central dogma to assign quantitative and predictive meaning to arrows

Arrows in network diagrams encode developmental input-output functions that predict how the
concentrations of input transcription factors determine output protein levels (Figure 4A). These
input-output functions, which are the fundamental unit of any quantitative description of
developmental programs, arise from the regulation of each step of the central dogma from
transcriptional initiation, to mRNA processing, to translation and post-translational modifications
(Figure 4B). There is a specific input-output function for each specific step of the central dogma.

Over the last 40 years, a plethora of theoretical models have sought to predict transcriptional
input-output functions: how the concentration of input activators and repressors and the
arrangement of their binding sites on regulatory DNA dictate the output rate of transcription
(Figure 4C) (Ackers et al., 1982; Bintu et al., 2005a; Bintu et al., 2005b; Buchler et al., 2003;
Estrada et al., 2016; Fakhouri et al., 2010; Gregor et al., 2007; Hammar et al., 2014; He et al.,
2010; Kanodia et al., 2012; Li et al., 2018; Samee et al., 2015; Sayal et al., 2016; Scholes et al.,
2017; Segal et al., 2008; Sherman and Cohen, 2012; Vilar and Leibler, 2003; von Hippel et al.,
1974). However, despite this wide repertoire of models, only recently did the technology
necessary to directly measure transcriptional input-output functions in development become
available.
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Figure 4: Regulation along the central dogma. (A) Arrows in gene regulatory networks encode developmental
input-output functions that predict output protein concentration as a function of input transcription-factor
concentration. (B) Developmental input-output functions are the result of the regulation of multiple steps of the
central dogma. (C) Transcriptional input-output functions predict output transcriptional activity as a function of
input transcription-factor concentration.
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Lighting up transcriptional dynamics

For years, the state of the art for directly measuring transcriptional activity in developing
embryos consisted of fixed-tissue techniques such as in sifu hybridization, fluorescence in situ
hybridization (FISH) or single-molecule FISH (Lawrence et al., 1989; Raj et al., 2006; Singer
and Ward, 1982; Tautz and Pfeifle, 1989). In these techniques, mRNA is labeled such that sites
of nascent transcript formation appear as puncta in each nucleus (O'Farrell et al., 1989;
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Zenklusen et al., 2008). The signal, often fluorescence, emitted by these puncta reports on the
number of mRNA molecules being actively transcribed. These technologies have been applied to
many biological questions, such as the molecular nature of transcription in development and how
mitosis inhibits transcription (Boettiger and Levine, 2013; Bothma et al., 2011; Little et al.,
2013; Shermoen and O'Farrell, 1991; Zoller et al., 2018).

However, the reliance on fixed tissue in these techniques casts doubt on their suitability for
measuring dynamical developmental input-output functions; using dead, fixed embryos yields
stop-motion “movies” for which each frame requires a new embryo (Dubuis et al., 2013;
Poustelnikova et al., 2004). To measure the output transcription rate of a cell (Figure 4C), the
expression status of a single cell needs to be measured for at least two time points. But since
fixed-tissue techniques necessarily only access one time point, they cannot enable the dialogue
between theory and experiment advocated for in this article. As a result, previous works were
constrained to assuming that transcription is in steady-state such that transcriptional dynamics
remain largely unaltered during nuclear cycles (Fakhouri et al., 2010; Little et al., 2013; Park et
al., 2018; Sayal et al., 2016; Xu et al., 2015; Xu et al., 2016; Zoller et al., 2018).
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Figure 5: Accessing transcriptional dynamics in live fly embryos. (A) Repeats of the MS2 sequence are
added to a gene that, when transcribed, folds into a stem loop that is recognized by an mRNA binding protein
fused to GFP; fluorescence is proportional to transcriptional activity. (B) Typical field of view showing sites of
transcription in single nuclei for a reporter of the step-like hunchback expression pattern. (C) Number of actively
transcribing RNA polymerase II molecules as a function of time for different positions along the embryo’s axis.
(nc: nuclear cycle; adapted from Garcia et al. (2013)).

Recently, this critical limitation was overcome by adapting the MS2 system (Bertrand et al.,
1998) to measure the instantaneous content of nascent RNA of a specific gene in single cells of a
living, developing embryo (Garcia et al., 2013; Lucas et al., 2013). This MS2 system, and its
sister PP7 system (Larson et al., 2011), integrate a repetitive DNA sequence into a gene’s
untranslated region. Upon transcription, the MS2 sequence folds and forms a loop. These mRNA
loops are bound by a maternally provided mRNA binding protein fused to GFP (Figure 5A). As
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a result, sites of nascent transcript formation become visible as fluorescent puncta due to the
localization of active RNA polymerase Il molecules to the tagged gene; these puncta are easily
visualized using laser scanning two-photon or confocal microscopy, or using light-sheet
microscopy (Figure 5B). Using single-molecule mRNA FISH, the fluorescence value
corresponding to each punctum can be converted into an absolute number of polymerase II
molecules actively transcribing the gene as a function of time and position along the embryo
(Figure 5C) (Garcia et al., 2013). The result is the first-ever dynamical measurement of
transcription in single cells within a living multicellular organism (Bothma and Levine, 2013).

This new ability to interrogate transcriptional activity in real time during development has
unveiled new insights into the fundamental and dynamical nature of developmental processes.
Here we showcase a few examples:

1. The gene-expression patterns that dictate cellular fate commitment are much more short-
lived than previously thought (Bothma et al., 2014; Lammers et al., 2018).
ii.  The processes by which enhancers coordinate their activities with each other and with
promoters can be directly visualized (Bothma et al., 2015; Chen et al., 2018; El-Sherif
and Levine, 2016; Lim et al., 2018b; Scholes et al., 2019).
iii.  Transcription-factor concentration is read out to generate precise output patterns (Ferraro
etal., 2016; Lim et al., 2017; Tran et al., 2018).
iv.  Mitosis and pioneer transcription factors dictate the transcriptional dynamics of embryos
(Dufourt et al., 2018; Esposito et al., 2016; Yamada et al., 2019).
v.  The real-time elongation rate of RNA polymerase II can be captured and quantified
(Fukaya et al., 2017; Garcia et al., 2013).

All of these insights afforded by MS2 will make it possible to rewrite biology textbooks by
capturing the processes of cellular commitment in real time and by dramatically overturning or
significantly complementing our previous knowledge stemming from fixed-embryos techniques.

Perhaps one of the most captivating outcomes of the tagging of early fly developmental genes
with MS2 and PP7 has been the confirmation of the long-suspected presence of transcriptional
bursts in development via their real-time visualization (Little et al., 2013; Pare et al., 2009). As
shown in Figures 6A and B, the existence of these bursts indicates that the rate of transcriptional
initiation is non-zero only during transient, but stochastic, periods of time (Bothma et al., 2014;
Chubb et al., 2006; Golding et al., 2005; Yunger et al., 2010). These live-imaging techniques
have made it possible to determine the ubiquity of transcriptional bursting in development and to
start revealing their molecular control mechanisms (Berrocal et al., 2018; Bothma et al., 2014;
Desponds et al., 2016; Falo-Sanjuan et al., 2018; Fukaya et al., 2016; Lammers et al., 2018; Lim
et al., 2018a).
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Figure 6: Relation between MS2 fluorescence and instantaneous transcriptional activity. (A) Loading of
RNA polymerase, and transcript elongation and termination as a gene is transiently turned on. (B) These discrete
changes in promoter state are convolved with the elongation and termination times, resulting in a trapezoidal-
like modulation of the number of RNA polymerase molecules on the reporter, as indicated by MS2 fluorescence.
(C) Inference of promoter state from MS2 data using Hidden Markov models. (D) Inference of promoter states
for cells expressing a transcriptional reporter of stripe 2 of the even-skipped gene. (C,D, adapted from Lammers
et al. (2018)).

Although MS2 and PP7 made it possible to directly confirm the existence of transcriptional
bursts in development, their precise quantitative characterization presents challenges: note that
neither MS2 nor PP7 actually report on the rate of transcriptional initiation. An actively
transcribing RNA polymerase molecule remains loaded on the DNA, and contributes to the
overall fluorescence signal, until transcription terminates (Figure 6A,B). As a result, the signal
from MS2 and PP7 reports on the integrated transcriptional activity over a time window
corresponding to the dwell time of RNA polymerase on the gene (given by the time to elongate
the mRNA and to terminate transcription). Thus, output fluorescence is not directly related to the
instantaneous promoter state and is instead the convolution of the promoter activity over a time
window (Figure 6B).

Recently, this fundamental limitation has been circumvented by various strategies. First, by
focusing on promoter-enhancer interactions that rarely produce transcriptional bursts, the manual
identification and measurement of the properties of these bursts was achieved (Fukaya et al.,
2016). Second, by examining the autocorrelation of the output fluorescence signal (Coulon et al.,
2014; Coulon and Larson, 2016; Larson et al., 2011), average bursting dynamics (such as the
burst size, frequency, and amplitude) were revealed for a wider range of promoter dynamics than
those accessible by manual analysis (Desponds et al., 2016). Finally, many computational tools
have been recently developed to infer the most likely bursting state of a promoter in a single cell
(Bronstein et al., 2015; Corrigan et al., 2016; Featherstone et al., 2016; Hey et al., 2015;
Lammers et al., 2018; Molina et al., 2013; Suter et al., 2011; Zechner et al., 2014; Zoller et al.,
2015). For example, techniques based on Hidden Markov Models enable queries of the
instantaneous transcriptional activity of an individual promoter within a single cell as
development progresses (Figure 6C). Thus, novel computational approaches are opening a direct
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window into the molecular mechanisms of transcription factors by extracting promoter-switching
kinetics and correlating these kinetics with the concentrations of input transcription factors
(Lammers et al., 2018).

As with any technology to shed light on the inner workings of cells, it is also important to be
aware of the potential caveats associated with the implementation of MS2 in development. First,
even though single mRNA molecules can be visualized as they are transcribed in bacteria and
yeast (Golding et al., 2005; Larson et al., 2011), the signal-to-background present in embryos
only allows for the detection of the fluorescence signal of, at the most, three mRNA molecules as
they are being transcribed (Garcia et al., 2013). This low signal-to-background stems primarily
from the thick optical sections afforded by widespread laser-scanning confocal microscopes
which are much wider than the site of transcription and hence capture much of the free mRNA
binding protein-GFP fusion in the nucleoplasm. The introduction of new microscopy modalities
with higher axial resolution such as lattice light-sheet microscopy (Chen et al., 2014) could
enable the single-molecule detection of mMRNA molecules as they are being transcribed in an
embryo. Further, doubts have been cast on whether the presence of MS2 loops in a transcript
affect its stability (Garcia and Parker, 2015; Golding and Cox, 2004; Haimovich et al., 2016;
Heinrich et al., 2017; Kim et al., 2019). While effects on mRNA stability are probably irrelevant
if MS2 is used as a reporter of transcriptional activity, these effects could certainly confound
downstream measurements of mRNA export and processing, and affect the reliably operation of
endogenous genes. New MS2 sequences are actively being developed to circumvent these
limitations (Tutucci et al., 2018). In addition, since intronic RNA is rapidly processed during
transcription (Coulon et al., 2014), inserting MS2 loops inside introns could prove a reliable
strategy to tag endogenous genes without affecting the life cycle of their mRNA molecules. Even
if no introns are present in a gene, synthetic introns can be introduced in order to realize this
labeling strategy (Bothma et al., 2018).

Lighting up protein dynamics and transcriptional input-output functions

Despite these encouraging breakthroughs in measuring output transcriptional dynamics in real
time, biologists have until recently lacked the technology to measure the fast dynamics of
translation and degradation of the input transcription factors (Figure 4). Although engineered
fluorescent proteins such as GFP have chromophore maturation half-times as low as 6 min in
vitro or in cultured cells (Nagai et al., 2002), maturation half-times increase to >30 min in
embryos of developmental biology workhorses such as frogs, zebrafish, and flies (Little et al.,
2011). These time scales are much slower than many of the key processes in development. For
example, the fruit fly transcription factor Fushi tarazu has a half-life of 8 min (Bothma et al.,
2018; Kellerman et al., 1990), and the Hes proteins that drive segmentation in vertebrates have a
half-life of ~20 min (Hirata et al., 2004; Schroter et al., 2008). Thus, in many developmental
contexts, by the time GFP fusions become fluorescent, the developmental processes these fusions
are supposed to report on are already over. This fundamental limitation has prevented
developmental biologists from following the central dogma with high spatiotemporal resolution
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and, more specifically, has made it impossible to measure input transcription-factor
concentration dynamics in transcriptional input-output functions.
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Figure 7: Beating the fluorescent protein maturation speed limit with LlamaTags. (A) GFP expressed in the
cytoplasm is (B) bound by a fusion of a LlamaTag to a transcription factor of interest. The increase in nuclear
fluorescence upon translocation of the fusion to the nucleus reports transcription-factor concentration. (C)
Combination of LlamaTag and MS2 tagging to simultaneously measure Kriippel repressor concentration and
even-skipped (eve) stripe 2 transcriptional activity. (D) Snapshot of a fly embryo expressing Kriippel-LlamaTag
and reporting on eve transcriptional activity using MS2 27 minutes into nuclear cycle 14. (E) Measured input
and output dynamics in a nucleus within the stripe. (D,E, adapted from Bothma et al. (2018)).

To enable the real-time measurement of input transcription-factor dynamics over the fast-paced
process of development, and to circumvent the confounding effects of fluorescent protein
maturation kinetics, the nanobody-based LlamaTag was recently introduced to light up protein
concentration dynamics (Bothma et al., 2018). Here, nanobodies, single-chain antibodies raised
in llamas against GFP or mCherry variants, are fused to a transcription factor of interest. In
parallel, the fluorescent protein is provided maternally such that when development begins, this
protein is already mature and uniformly distributed throughout the embryo. Upon translation of
the transcription-factor fusion in the cytoplasm, the LlamaTag binds the free fluorescent protein.
This complex is translocated into the nucleus via the transcription factor’s nuclear localization
signal, resulting in an enrichment of nuclear fluorescence that directly reports on the nuclear
concentration of the complex. Thus, by leveraging localization of fluorescence proteins rather
than the (more common) synthesis of new proteins, this technology becomes insensitive to
fluorescent-protein maturation (Figure 7A,B). LlamaTags have already made it possible to
correlate bursts in transcriptional activity with bursts in protein concentration, to measure protein
degradation, and to reveal the diffusion-mediated coupling between neighboring nuclei that can
drive pattern formation in the fly syncytium (Bothma et al., 2018). Excitingly, these tags have
also made it possible to quantify transcriptional input-output functions at the single-cell level by



261  enabling real-time measurement of instantaneous input transcription factor concentration and
262  output transcriptional activity (Figure 7C-E).

263 Just like regular fusions of transcription factors to fluorescent proteins, LlamaTag fusions can
264  affect endogenous protein function. Further, these tags are limited to tagging proteins that

265  undergo translocation after translation, such as transcription factors, and cannot report on the
266  concentration dynamics of proteins that remain in the cytoplasm to perform their function.

267  However, due to the nascent nature of LlamaTags, the full set of potential caveats associated
268  with these tags, and of possible solutions to those caveats, is yet to be revealed as this technique
269  is adopted by developmental biologists.

270
271 Wiring up the synthetic embryo

272 For the first time, developmental biologists are positioned to directly measure transcriptional
273  input-output functions that capture rapid modulations in the concentration dynamics of input
274  transcription factors and the resulting output transcriptional activity. A crucial next step is to
275  identify regulatory architectures amenable to theoretical modeling that can be attacked with this
276  new arsenal of tools.

277  Over the last three decades, a great deal of research has focused on the role of transcription factor
278  binding sites in transcriptional input-output functions (Chen et al., 2012; Crocker et al., 2015;
279  Crocker et al., 2016; Driever et al., 1989; Fakhouri et al., 2010; Hare et al., 2008; Harrison et al.,
280  2011; Jiang and Levine, 1993; Park et al., 2018; Sayal et al., 2016; Small et al., 1992;

281  Stathopoulos and Levine, 2005; Swanson et al., 2010). Often, complex gene-regulatory regions
282  featuring dozens of binding sites for several transcription factors are dissected via systematic
283  deletions of these sites. Such approaches have revolutionized our understanding of the spatial
284  control of developmental patterning, as exemplified by the famed dissection of the regulatory
285 logic of the enhancer that regulates stripe 2 of the even-skipped gene, which revealed how

286 activators and repressors work together to create precise gene expression patterns in the fly

287  embryo (Arnosti et al., 1996; Small et al., 1992; Small et al., 1991).
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Figure 8: Combinatorial complexity of endogenous gene regulatory regions. The hunchback P2 enhancer is
bound by at least six Bicoid activators to regulate hunchback. A simple model featuring only binding energies,
pairwise interactions between bound activators, and pairwise interactions between each activator and the
transcriptional machinery would demand the fitting of 27 unknown parameters.
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Nonetheless, these approaches often face an insurmountable barrier when moving from the
qualitative realm to a quantitative understanding that makes it possible to predict transcriptional
input-output functions. Complex regulatory architectures, by definition, demand complex
theoretical models that in turn are plagued by a plethora of unknown regulatory parameters.
Consider the hunchback P2 enhancer, perhaps one of the simplest and most studied regulatory
architectures in all of development (Driever et al., 1989; Margolis et al., 1995; Park et al., 2018;
Perry et al., 2012). The Bicoid activator can bind at least six sites in this enhancer (Driever et al.,
1989). Predicting the transcriptional input-output function of hunchback P2 activation by Bicoid
using even simple models based on equilibrium statistical mechanics demands previous
knowledge of at least 27 parameters (Figure 8; Garcia et al. (2016), see also Garcia et al. (2007)
for an introduction to statistical mechanics for life scientists). This number only grows as
assumptions regarding equilibrium are relaxed (Estrada et al., 2016). Inferring these parameters
from the measurement of a transcriptional input-output function is both a massive computational
and—more critically—conceptual challenge (Garcia et al., 2016).

Synthetic biology could empower our dissection of developmental enhancers. Inspired by work
in bacteria, an alternative to fitting complex theoretical models to complex experimental
architectures in development is to bend nature to understand it (Garcia et al., 2016; Phillips et
al., 2019). Specifically, building synthetic enhancers bearing only one binding site for an
activator such as Dorsal or Bicoid dramatically reduces regulatory complexity. To be concrete,
we consider an activator that is distributed in an exponential gradient along the embryo (Figure
9A) resulting in a step-like output pattern of gene expression. As shown in Figure 9B, a
thermodynamic model describing this simple regulatory architecture has only two free
parameters: the binding affinity of the activator to the DNA (Ks) and a parameter that captures
the strength with which a bound activator drives gene expression (74p) and that depends on the
distance between the activator binding site and the promoter. Thus, by measuring the height and
position of the activator-driven developmental boundary, these two key parameters can be
obtained.

This synthetic approach offers an opportunity to iteratively embrace regulatory complexity.
Specifically, consider the case where the complexity of the synthetic enhancer is increased by
adding a second activator binding site (Figure 9C). If we rely on the parameters obtained in the
previous iteration (Figure 9B), and if we assume only pair-wise interactions between bound
transcription factors, then only one new unknown parameter emerges. This new parameter, w4,
characterizes protein-protein interactions that lead to cooperativity and to the sharpening of the
boundary. Thus, by harnessing the knowledge obtained in previous iterations, each successive
iteration of this synthetic approach only requires the fitting of one or two new parameters. After
multiple iterations, the synthetic architectures converge onto endogenous ones—accompanied by
increasingly complex, but still predictive, theoretical models.

We speculate that this approach could be used to dissect complex regulatory architectures
featuring multiple activators and repressors. Crucially, the key components of synthetic
dissection already exist: multiple examples of minimal regulatory architectures featuring binding
sites of transcription factors such as Bicoid, Dorsal, Giant, Snail, and Twist have been shown to
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drive detectable levels of gene expression (Burz et al., 1998; Burz and Hanes, 2001; Driever et
al., 1989; Erceg et al., 2014; Fakhouri et al., 2010; Hanes et al., 1994; Jiang and Levine, 1993;
Lebrecht et al., 2005; Ma et al., 1996; Park et al., 2018; Ronchi et al., 1993; Sayal et al., 2016;
Simpson-Brose et al., 1994; Szymanski and Levine, 1995). Recent work has demonstrated the
feasibility of this synthetic approach to testing theoretical models of transcriptional regulation in
development in the context of activation by Dorsal and Twist, repression by Giant and Snail, and
for synthetic transcription factors (Crocker et al., 2016; Fakhouri et al., 2010; Sayal et al., 2016).

Predicting the central dogma beyond transcription
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Figure 9: A synthetic approach to uncovering the governing equations of gene regulatory regions in
development. (A) Exponential activator concentration profile along the embryo assumed for this illustrative
example. (B, C) Equations, regulatory parameters, and developmental patterns for synthetic enhancers
containing (B) one or (C) two activator binding sites. (B) A reporter construct with a single activator binding site
drives a step-like pattern whose boundary position is determined only by the binding site affinity (K;), and
whose boundary height is governed by the interaction between the activator and the transcriptional machinery
(r4p)- (C) Adding a second activator binding site introduces only one new free parameter accounting for
activator-activator interactions (w,,4). This parameter controls boundary sharpness. For simplicity, we do not
account for the existence of a basal rate of transcription. However, the addition of this parameter to the model
would not modify the overall synthetic strategy significantly.
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So far, we have concerned ourselves with the prediction and measurement of transcriptional
input-output functions. However, it is important to keep in mind that the information encoded by
each arrow in cartoons of gene regulatory networks accounts for multiple steps along the central
dogma (Figure 4B). From chromatin accessibility to alternative splicing to post-translational
modifications, seemingly simple arrows capture multiple molecular steps, all of which can be
subject to regulation—calling, once again, for an interplay between theory and experiment to
uncover the governing equations corresponding to each regulatory step. However, despite huge
leaps in genomics (Goodwin et al., 2016; Koboldt et al., 2013; Shlyueva et al., 2014),
technologies to measure chromatin accessibility and modifications, protein binding to the DNA,
promoter-enhancer interactions, mRNA processing, translational regulation, and post-
translational modifications in single cells within living embryos have lagged behind (Buenrostro
et al., 2015; Matera and Wang, 2014; Mayer et al., 2017; Park, 2009).

First, chromatin must be accessible for transcription factors to bind DNA. However, technology
to reveal this accessibility or the epigenetic state of histones in the vicinity of a binding site has
been mostly limited to genome-wide or fixed-tissue approaches (Blythe and Wieschaus, 2016;
Boettiger et al., 2016; Cusanovich et al., 2018; Haines and Eisen, 2018; Li et al., 2014). The
recent development of genetically encoded modification-specific intracellular antibodies
(mintbodies) that bind chromatin with specific modifications such as H3K9 acetylation and
H4K20 methylation (Sato et al., 2016; Sato et al., 2013), as well as split-luciferase probes to
image H3K9 and H3K27 methylation (Sekar et al., 2015), will enable concrete progress in the
real-time monitoring of chromatin state in development at the single-cell level.

New imaging technologies and improved fluorescent probes have made it possible to image
individual transcription factors as they bind DNA inside living fly embryos (Chen et al., 2014;
Mir et al., 2017; Tsai et al., 2017). These measurements have revealed that, while transcription
factors appear to spend no more than a few seconds bound to DNA, their binding throughout the
nucleus is not uniform: hubs or domains of increased local concentration (and of increased
binding frequency) have been found for both Bicoid and Ultrabithorax. While some of these
regions of increased binding probability may depend on the pioneer transcription factor Zelda
(Mir et al., 2017), their functional role remains unclear. To make progress toward a molecular
understanding of how genes read out transcription-factor concentration, it will be necessary to
directly correlate this binding with output transcriptional activity—which is only now becoming
possible in single cells (Cho et al., 2016; Chong et al., 2018; Donovan et al., 2019; Li et al.,
2019), and for which feasibility in live embryos was recently demonstrated (Mir et al., 2018).

Most developmental enhancers do not reside in the vicinity of their target promoter; they are
supposed to loop or to translocate over vast distances of DNA in order to carry out their
regulatory function (for a recent review on the subject, see Furlong and Levine (2018)).
Recently, enhancer position and promoter activity were simultaneously visualized in the early fly
embryo in the context of DNA looping (Chen et al., 2018) and transvection (Lim et al., 2018b).
These works demonstrated that bringing enhancers and promoters in close proximity is necessary
but not sufficient to activate transcription. These results, plus speculation about larger structures
involved in transcriptional regulation (Mir et al., 2017; Mir et al., 2018; Tsai et al., 2017), and
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reports that stable promoter-enhancer contacts might not be needed for transcriptional activation
(Alexander et al., 2019; Benabdallah et al., 2017; Gu et al., 2018) suggest that the classical
paradigm of direct contact between enhancers and promoters may have to be revisited.

Regulation does not cease after transcription initiation: the rate of mRNA elongation can be
under regulatory control, and fly embryos process mRNA through splicing as well as RNA
polymerase II pausing and termination to achieve precise and rapid development (Bentley, 2014;
Core and Adelman, 2019; Larschan et al., 2011; Richard and Manley, 2009). While current
genome-wide techniques have been powerful for revealing correlations among large sets of
genes, visualizing mRNA processing could shed further light on the role of this processing in
development. By combining MS2 and PP7 to label different parts of the same nascent RNA in
the human [-globin gene, the life history of an mRNA was revealed as it underwent
transcription, splicing, and termination (Coulon et al., 2014). This approach is being adopted in
the fly embryo to, for example, determine transcript elongation rates (Fukaya et al., 2017).

The regulation of translation is also widespread in gene regulatory networks. For example,
Bicoid represses Caudal translation (Dubnau and Struhl, 1996; Niessing et al., 2002; Rivera-
Pomar et al., 1996), while Nanos downregulates Hunchback post-transcriptionally, through either
a decrease in translation or an increase in mRNA degradation (Cho et al., 2006; Irish et al., 1989;
Murata and Wharton, 1995; Struhl, 1989; Wang and Lehmann, 1991; Wharton and Struhl, 1991).
However, we know much less about how translation is regulated at the single mRNA level than
we know about the details of transcription. For example, is the translation of specific mRNA
molecules downregulated by decreasing the peptide elongation rate of all ribosomes, or by
decreasing the fraction of mRNA molecules that are translated? These questions and others can
be answered by implementing recently developed reporters for measuring the first round of
translation (Halstead et al., 2015), and by examining the translational dynamics of individual
mRNA molecules at the single-cell level (Morisaki et al., 2016; Wang et al., 2016; Wu et al.,
2016; Yan et al., 2016).

Finally, many developmental decisions are mediated by the post-translational modification of
proteins. Regulation via protein phosphorylation is ubiquitous in development (for a review on
this subject see, for example, Ubersax and Ferrell (2007) and Peter and Davidson (2015)).
Antibodies cannot always distinguish between phosphorylated and non-phosphorylated protein
forms, which hinders our ability to determine how signaling dynamics dictate development.
When phosphorylation drives the nuclear localization of a transcription factor, such as for the
transcription factor Capicua (Grimm et al., 2012), tracking its nuclear localization using a fusion
to a fluorescent protein or a LlamaTag directly reports on the protein’s signaling state. New
sensors reveal kinase and phosphatase activity without requiring modulation of the cellular
localization of their substrates; novel kinase translocation reporters can be engineered to become
targets of a particular signaling pathway (Kudo et al., 2018; Oldach and Zhang, 2014; Regot et
al., 2014). Upon phosphorylation by the kinase of interest, these sensors change their
fluorescence or are translocated to the nucleus, where they report on signaling activity.
Implementing these technologies in the embryo could open the door to systematic dissection, at
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the single-cell level, of the signaling cascades that underlie protein post-translational
modifications during development.

Technology is already available to quantify the flow of information along each step of the central
dogma in real time and at the single-cell level, as highlighted by the various approaches
showcased above. Thus, the main challenge ahead is not one of technology development, but one
of implementing these technologies in developing embryos. The new and exciting data generated
by these rising technologies must be matched with new theoretical models that draw us closer to
a quantitative and predictive understanding of how the regulation of the processes of the central
dogma impact cellular decision-making.

Developmental programs as dynamical systems

So far, we have focused on new technologies and theoretical approaches that enable the
predictive dissection of the input-output functions encoded by each arrow in gene regulatory
networks (Fig. 2A). However, predictive understanding of the parts that make a network does not
guarantee understanding of how those arrows work together to realize developmental programs.
It has been repeatedly hypothesized that the ultimate developmental fate of each cell arises from
the trajectory of the gene-expression state of a cell as it traverses the regulatory landscape shaped
by the network topology, the patterns of connections between network elements (Figure 2B,
reviewed in Jaeger et al. (2012) and Jaeger and Monk (2014)).

By borrowing tools from dynamical systems theory, multiple teams have attempted to describe
how network topology prescribes these developmental trajectories. While some of these works
have sought to model multiple layers of the network simultaneously, others have focused on
isolated network motifs, such as the widespread mutual repression regulatory architecture (Edgar
et al., 1989; Gursky et al., 2011; Jaeger et al., 2004a; Jaeger et al., 2004b; Lopes et al., 2008;
Manu et al., 2009; Papatsenko and Levine, 2011; von Dassow et al., 2000; Von Dassow and
Odell, 2002). Using gene expression data from fixed embryos sorted into temporal classes, these
studies have, for instance, revealed how gene expression domains shift along the embryo as
development progresses (Jaeger et al., 2004b), and how multiple arrows work together to “lock”
individual cells into specific developmental fates (Papatsenko and Levine, 2011).

These investigations have been complemented by the realization that the landscape shaped by
these arrows is not static. For example, temporal changes in the concentration of transcription
factors such as that of the Bicoid activator over development can propagate through the network,
effectively modulating the network’s topology and impacting cellular, and therefore embryonic,
phenotype (Verd et al., 2018; Verd et al., 2017; Verd et al., 2019). We urgently require
theoretical tools to deal with such non-autonomous dynamical systems, where network
parameters are modulated in time. Further, to test the predictions of these models, it will be
necessary to simultaneously visualize the transcriptional activity and protein products of multiple
genes in single cells as these networks are deployed. Currently, it is possible to simultaneously
image only one input transcription factor and the transcriptional activity of one of its target genes
(Bothma et al., 2018). This limitation to multiplexing underscores the need for new fluorescent
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probes with a large repertoire of spectral ranges, as well as advances in microscopy techniques
that make it possible to spectrally resolve these different probes.

Toward quantitative and predictive developmental biology

The experimental technologies and theoretical approaches reviewed in this article are the means
to the ultimate goal of a predictive understanding of developmental decision-making. Demanding
a quantitative and predictive understanding of biological phenomena sharpens our questions and
makes our inquiries more sensitive to inconsistencies that may reveal new biological insights that
would have remained hidden from qualitative approaches (Cohen, 2004; Garcia et al., 2010).
However, in our opinion, the discovery of new molecular players does not constitute a guiding
objective in and of itself (Phillips, 2015). Even in the absence of new discoveries, we would like
to define successful physical biology of embryonic development as the demonstration that
developmental programs can be predictive, much as it has been shown in the context of gene
regulatory programs in bacteria (Garcia et al., 2016; Phillips et al., 2019).

Although such predictive understanding calls for a quantitative view of how all the processes of
the central dogma are regulated in development, the topics covered in this article have been
vastly biased toward the regulation of transcriptional initiation. We believe that this bias reflects
the state of the art in the field, as it is now possible to monitor transcriptional initiation and the
concentration dynamics of the transcription factors that direct this initiation in real time during
development. However, new technologies, some of which were briefly reviewed here, enable
real-time, single-cell, high-precision, in vivo measurements of other steps of the central dogma.
We therefore envision that, as these technologies are unleashed to unravel development, they
will yield the dialogue between theory and experiment that has been a defining factor in our
understanding of the regulation of transcriptional initiation.

Of course, we must not forget that development transcends regulation of the central dogma!
Ultimately, expression patterns arising from gene regulatory networks drive the morphogenic
movements that bring about tissue growth and biological shape, and these movements further
determine, in turn, gene expression patterns (for reviews on the subject, see Chan et al. (2017);
Gilmour et al. (2017); Mammoto et al. (2012); Totaro et al. (2018)). The capacity to measure and
manipulate actomyosin networks is now making it possible to relate the activity of these
regulatory networks to the massive cellular rearrangements that characterize morphogenesis and
to control them synthetically (Campas, 2016; Farrell et al., 2017; Guglielmi et al., 2015; He et
al., 2016; Kale et al., 2018; Martin et al., 2009; Streichan et al., 2018). These new measurements
and allied theoretical and computational approaches promise to close the gap between our
understanding of morphogen gradients and our understanding of morphogenesis.

Finally, although this review limited its scope to the fruit fly, no one species holds all the keys to
predictively understanding development. A key challenge will be to demonstrate that the
strategies put forth here can also reveal the physical biology of embryos of other developmental
biology workhorses such as worms, fish, and mice. Excitingly, the real-time visualization of
transcription and mRNA processing was recently achieved in all three of these model organisms
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(Campbell et al., 2015; Hadzhiev et al., 2019; Lee et al., 2018; Lionnet et al., 2011). Thus, the
technologies discussed in this review article are ushering in a new era in developmental biology
in which the focus on spatial, almost static, control of developmental programs is being replaced
by a dynamical view that embraces the quantitative spatiotemporal control of development
(Berrocal et al., 2018; Bothma and Levine, 2013). This new language will empower the
discourse between theory and experiment that will revolutionize our ability to predict—and
ultimately manipulate—developmental programs at will.
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