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Abstract 5 

 6 
Although the last 30 years have witnessed the mapping of the wiring diagrams of the gene 7 
regulatory networks that dictate cell fate and animal body plans, specific understanding building 8 
on such network diagrams that shows how DNA regulatory regions control gene expression lags 9 
far behind. These networks have yet to yield the predictive power necessary to, for example, 10 
calculate how the concentration dynamics of input transcription factors and DNA regulatory 11 
sequence prescribes output patterns of gene expression that, in turn, determine body plans 12 
themselves. Here, we argue that reaching a predictive understanding of developmental decision-13 
making calls for an interplay between theory and experiment aimed at revealing how the 14 
regulation of the processes of the central dogma dictate network connections and how network 15 
topology guides cells toward their ultimate developmental fate. To make this possible, it is 16 
crucial to break free from the snapshot-based understanding of embryonic development 17 
facilitated by fixed-tissue approaches and embrace new technologies that capture the dynamics 18 
of developmental decision-making at the single cell level, in living embryos. 19 
 20 
Introduction 21 
 22 
A ubiquitous mystery in nature is how a single cell develops into a multicellular organism. One 23 
of the great achievements of genetics and new genome-wide technologies over the last few 24 
decades has been the identification of the regulatory molecules that underlie developmental 25 
programs. This work has revealed that animal body plans are determined by the action of 26 
activators and repressors connected in complex gene regulatory networks. One of the best-27 
studied regulatory networks drives segmentation of the early embryo of the fruit fly Drosophila 28 
melanogaster. As shown in Figure 1A, decades of concerted effort have uncovered the identities 29 
of the regulatory molecules that determine fly body segments as well as the network connections 30 
between these molecules (reviewed in Carroll et al. (2001); Davidson (2006); Peter and 31 
Davidson (2015)). However, the amassed data about regulatory proteins and network 32 
connections has been mostly descriptive and has not been accompanied by parallel successes in 33 
predictively understanding cellular decision-making in developing embryos. To be concrete, is it 34 
possible to predict developmental phenotypes from network diagrams? Clearly, if we were to 35 
change the names of the genes in the fruit fly segmentation network (Figure 1B), the network 36 
connections—the topology—would be insufficient to predict that this particular network would 37 
result in a fly. 38 

The central thesis of this article is that achieving predictive understanding of developmental 39 
decision-making requires a two-pronged approach. First, each arrow in these networks must be 40 
endowed with molecular and quantitative information that makes it possible to predict how the 41 
genome dictates developmental input-output functions: the functions relating output protein 42 
levels of a gene to the concentrations of its input transcription factors (Figure 2A). That is, how 43 
do the number, placement, and affinity of transcription-factor binding sites within enhancers 44 
establish the relation between input transcription-factor concentration and output transcription? 45 
How is mRNA processed as it forms a cytoplasmic pattern? How is this mRNA pattern 46 



translated into a protein pattern that can be subject to further post-translational regulation and 47 
that can ultimately feed back into the network? Second, we must reveal how these network 48 
connections conspire together to drive cells into discrete and stable gene expression states that in 49 
turn commit these cells to their ultimate developmental fates (Figure 2B). 50 

In order to achieve this hefty goal of predictive developmental biology, here we argue that 51 
developmental biologists urgently require new theoretical models that make precise and 52 
falsifiable predictions. Further, we posit that, in order to test the predictions from these models, 53 
developmental biology needs to break free from the static view of development shaped by 54 
widespread fixed-tissue techniques and establish new technologies that reveal the regulation of 55 
the processes of the central dogma at the single-cell level as developmental programs are 56 
deployed in real time. Here we focus on the specific case study of the segmentation of the early 57 
embryo of the fruit fly. This review is therefore not encyclopedic, and falls short of an exhaustive 58 
scholarly survey of the many exciting contributions to quantitative developmental biology in the 59 
recent literature. Rather, by focusing on a representative case study, we propose a concrete 60 
framework for establishing a quantitative and predictive developmental biology writ large that 61 
can be adopted by developmental biologists and biophysicists working on any organism. 62 

 63 

Turning the fruit fly Drosophila melanogaster into a substrate for predictive developmental 64 
biology 65 

Drosophila is already a workhorse for developmental biology and genetics research. The fruit fly 66 
is also an ideal substrate for realizing predictive developmental biology. The fly network in 67 
Figure 1A shows that many of its fundamental parts (regulatory molecules and connections) have 68 
already been identified. The picture that emerges is one of a network that is simple enough that 69 
its regulatory interactions could be enumerated, yet intricate enough that it captures the essence 70 

Figure 1: Gene regulatory networks driving development. (A) Current state of the art in mapping the 
network that drives segmentation in the fruit fly Drosophila melanogaster. (B) Close examination of a network 
with the same topology, but with different genetic actors, reveals that this description is insufficient to predict 
that this network will lead to the emergence of a segmented embryo. (Adapted from Carroll et al. (2001); Edgar 
et al. (1989); Jaeger (2011); von Dassow et al. (2000).)   



of more “complex” developmental processes. As a result, even though some regulatory 71 
interactions might remain unmapped, the fly segmentation network offers a unique opportunity 72 
to uncover the fundamental and quantitative rules behind developmental decision-making. 73 

What is required to quantitatively predict and control developmental outcomes from regulatory 74 
parameters in the fruit fly—and ultimately any organism? The bacterial lac operon showcases 75 
how to build a predictive understanding of cellular decision-making. Over the last 15 years, 76 
theoretical models of this operon, such as those shown in Figure 3A, have precisely predicted the 77 
mean rate of transcription and its cell-to-cell variability as a function of regulatory architecture 78 
invoking only a handful of free parameters (Figure 3B, reviewed in Phillips et al. (2019)). 79 

Clearly, flies differ from bacteria; even the architecture of the transcriptional process is different. 80 
While bacterial transcription only requires a handful of molecules to be present at the promoter, 81 
eukaryotic transcriptional initiation requires the assembly of vast macromolecular complexes 82 
such as the preinitiation complex, plus regulatory steps to evict nucleosomes from the DNA to 83 
render it accessible to transcription factors (reviewed by Fuda et al. (2009)). Similar complexity 84 
exists in every step of the central dogma in eukaryotes, from splicing, to transcriptional 85 
termination, to translation, to post-translational modifications (Alberts, 2015). 86 

Figure 2: A two-pronged approach to achieving predictive understanding of developmental decision-
making. (A) A quantitative and predictive description of gene regulatory networks in development demands 
uncovering how the regulation of the processes of the central dogma prescribe developmental input-output 
functions represented by network arrows. (B) Arrows define the network topology which drives cells within an 
embryo into discrete and stable developmental states. In this example, the topology defines two distinct 
developmental trajectories that lead to cells expressing engrailed or wingless, and to the adoption of distinct 
fates that establish body segments in the fly. 



However, the challenges of quantitatively dissecting development go beyond the combinatorial 87 
complexity stemming from the numerous molecular machines involved in the processes of the 88 
central dogma in eukaryotes. Biology textbooks are dominated by snapshots of static gene-89 
expression patterns. Thus, a large part of our understanding of developmental biology rests on 90 
the assumption that developmental dynamics can be easily inferred from these static pictures. 91 
However, development is a highly dynamic process: choreographed gene expression patterns are 92 
rapidly deployed in space and time, and can exist for periods of time as short as 15 minutes 93 
(Bothma et al., 2014). Thus, predicting developmental biology of Drosophila not only calls for 94 
theoretical frameworks with predictive power, but also demands experimental technologies that 95 
reveal how the processes of the central dogma are regulated in real time as single cells commit to 96 
their fates and development unfolds. 97 

 98 

  99 

Figure 3: Unraveling regulation of the lac operon through theory and experiment. (A) Examples of 
theoretical predictions for the fold-change in gene expression of simple repression by Lac repressor (defined as 
the ratio of gene expression level in the presence of repressor to the gene expression level in in the absence of 
repressor) for increasingly complex regulatory situations. Each step relies on the parameters learned in the 
previous iteration. (B) Parameter-free or one-parameter fits to the data demonstrate that simple repression is 
predictive. (B, adapted from Brewster et al. (2014); Garcia et al. (2013); Razo-Mejia et al. (2018)). 



Lighting up the central dogma to assign quantitative and predictive meaning to arrows 100 

Arrows in network diagrams encode developmental input-output functions that predict how the 101 
concentrations of input transcription factors determine output protein levels (Figure 4A). These 102 
input-output functions, which are the fundamental unit of any quantitative description of 103 
developmental programs, arise from the regulation of each step of the central dogma from 104 
transcriptional initiation, to mRNA processing, to translation and post-translational modifications 105 
(Figure 4B). There is a specific input-output function for each specific step of the central dogma. 106 

Over the last 40 years, a plethora of theoretical models have sought to predict transcriptional 107 
input-output functions: how the concentration of input activators and repressors and the 108 
arrangement of their binding sites on regulatory DNA dictate the output rate of transcription 109 
(Figure 4C) (Ackers et al., 1982; Bintu et al., 2005a; Bintu et al., 2005b; Buchler et al., 2003; 110 
Estrada et al., 2016; Fakhouri et al., 2010; Gregor et al., 2007; Hammar et al., 2014; He et al., 111 
2010; Kanodia et al., 2012; Li et al., 2018; Samee et al., 2015; Sayal et al., 2016; Scholes et al., 112 
2017; Segal et al., 2008; Sherman and Cohen, 2012; Vilar and Leibler, 2003; von Hippel et al., 113 
1974). However, despite this wide repertoire of models, only recently did the technology 114 
necessary to directly measure transcriptional input-output functions in development become 115 
available. 116 

Lighting up transcriptional dynamics 117 

For years, the state of the art for directly measuring transcriptional activity in developing 118 
embryos consisted of fixed-tissue techniques such as in situ hybridization, fluorescence in situ 119 
hybridization (FISH) or single-molecule FISH (Lawrence et al., 1989; Raj et al., 2006; Singer 120 
and Ward, 1982; Tautz and Pfeifle, 1989). In these techniques, mRNA is labeled such that sites 121 
of nascent transcript formation appear as puncta in each nucleus (O'Farrell et al., 1989; 122 

Figure 4: Regulation along the central dogma. (A) Arrows in gene regulatory networks encode developmental 
input-output functions that predict output protein concentration as a function of input transcription-factor 
concentration. (B) Developmental input-output functions are the result of the regulation of multiple steps of the 
central dogma. (C) Transcriptional input-output functions predict output transcriptional activity as a function of 
input transcription-factor concentration. 



Zenklusen et al., 2008). The signal, often fluorescence, emitted by these puncta reports on the 123 
number of mRNA molecules being actively transcribed. These technologies have been applied to 124 
many biological questions, such as the molecular nature of transcription in development and how 125 
mitosis inhibits transcription (Boettiger and Levine, 2013; Bothma et al., 2011; Little et al., 126 
2013; Shermoen and O'Farrell, 1991; Zoller et al., 2018). 127 

However, the reliance on fixed tissue in these techniques casts doubt on their suitability for 128 
measuring dynamical developmental input-output functions; using dead, fixed embryos yields 129 
stop-motion “movies” for which each frame requires a new embryo (Dubuis et al., 2013; 130 
Poustelnikova et al., 2004). To measure the output transcription rate of a cell (Figure 4C), the 131 
expression status of a single cell needs to be measured for at least two time points. But since 132 
fixed-tissue techniques necessarily only access one time point, they cannot enable the dialogue 133 
between theory and experiment advocated for in this article. As a result, previous works were 134 
constrained to assuming that transcription is in steady-state such that transcriptional dynamics 135 
remain largely unaltered during nuclear cycles (Fakhouri et al., 2010; Little et al., 2013; Park et 136 
al., 2018; Sayal et al., 2016; Xu et al., 2015; Xu et al., 2016; Zoller et al., 2018). 137 

Recently, this critical limitation was overcome by adapting the MS2 system (Bertrand et al., 138 
1998) to measure the instantaneous content of nascent RNA of a specific gene in single cells of a 139 
living, developing embryo (Garcia et al., 2013; Lucas et al., 2013). This MS2 system, and its 140 
sister PP7 system (Larson et al., 2011), integrate a repetitive DNA sequence into a gene’s 141 
untranslated region. Upon transcription, the MS2 sequence folds and forms a loop. These mRNA 142 
loops are bound by a maternally provided mRNA binding protein fused to GFP (Figure 5A). As 143 

Figure 5: Accessing transcriptional dynamics in live fly embryos. (A) Repeats of the MS2 sequence are 
added to a gene that, when transcribed, folds into a stem loop that is recognized by an mRNA binding protein 
fused to GFP; fluorescence is proportional to transcriptional activity. (B) Typical field of view showing sites of 
transcription in single nuclei for a reporter of the step-like hunchback expression pattern. (C) Number of actively 
transcribing RNA polymerase II molecules as a function of time for different positions along the embryo’s axis. 
(nc: nuclear cycle; adapted from Garcia et al. (2013)). 



a result, sites of nascent transcript formation become visible as fluorescent puncta due to the 144 
localization of active RNA polymerase II molecules to the tagged gene; these puncta are easily 145 
visualized using laser scanning two-photon or confocal microscopy, or using light-sheet 146 
microscopy (Figure 5B). Using single-molecule mRNA FISH, the fluorescence value 147 
corresponding to each punctum can be converted into an absolute number of polymerase II 148 
molecules actively transcribing the gene as a function of time and position along the embryo 149 
(Figure 5C) (Garcia et al., 2013). The result is the first-ever dynamical measurement of 150 
transcription in single cells within a living multicellular organism (Bothma and Levine, 2013). 151 

This new ability to interrogate transcriptional activity in real time during development has 152 
unveiled new insights into the fundamental and dynamical nature of developmental processes. 153 
Here we showcase a few examples: 154 

i. The gene-expression patterns that dictate cellular fate commitment are much more short-155 
lived than previously thought (Bothma et al., 2014; Lammers et al., 2018). 156 

ii. The processes by which enhancers coordinate their activities with each other and with 157 
promoters can be directly visualized (Bothma et al., 2015; Chen et al., 2018; El-Sherif 158 
and Levine, 2016; Lim et al., 2018b; Scholes et al., 2019). 159 

iii. Transcription-factor concentration is read out to generate precise output patterns (Ferraro 160 
et al., 2016; Lim et al., 2017; Tran et al., 2018). 161 

iv. Mitosis and pioneer transcription factors dictate the transcriptional dynamics of embryos 162 
(Dufourt et al., 2018; Esposito et al., 2016; Yamada et al., 2019). 163 

v. The real-time elongation rate of RNA polymerase II can be captured and quantified 164 
(Fukaya et al., 2017; Garcia et al., 2013). 165 

All of these insights afforded by MS2 will make it possible to rewrite biology textbooks by 166 
capturing the processes of cellular commitment in real time and by dramatically overturning or 167 
significantly complementing our previous knowledge stemming from fixed-embryos techniques. 168 

Perhaps one of the most captivating outcomes of the tagging of early fly developmental genes 169 
with MS2 and PP7 has been the confirmation of the long-suspected presence of transcriptional 170 
bursts in development via their real-time visualization (Little et al., 2013; Pare et al., 2009). As 171 
shown in Figures 6A and B, the existence of these bursts indicates that the rate of transcriptional 172 
initiation is non-zero only during transient, but stochastic, periods of time (Bothma et al., 2014; 173 
Chubb et al., 2006; Golding et al., 2005; Yunger et al., 2010). These live-imaging techniques 174 
have made it possible to determine the ubiquity of transcriptional bursting in development and to 175 
start revealing their molecular control mechanisms (Berrocal et al., 2018; Bothma et al., 2014; 176 
Desponds et al., 2016; Falo-Sanjuan et al., 2018; Fukaya et al., 2016; Lammers et al., 2018; Lim 177 
et al., 2018a). 178 



Although MS2 and PP7 made it possible to directly confirm the existence of transcriptional 179 
bursts in development, their precise quantitative characterization presents challenges: note that 180 
neither MS2 nor PP7 actually report on the rate of transcriptional initiation. An actively 181 
transcribing RNA polymerase molecule remains loaded on the DNA, and contributes to the 182 
overall fluorescence signal, until transcription terminates (Figure 6A,B). As a result, the signal 183 
from MS2 and PP7 reports on the integrated transcriptional activity over a time window 184 
corresponding to the dwell time of RNA polymerase on the gene (given by the time to elongate 185 
the mRNA and to terminate transcription). Thus, output fluorescence is not directly related to the 186 
instantaneous promoter state and is instead the convolution of the promoter activity over a time 187 
window (Figure 6B).  188 

Recently, this fundamental limitation has been circumvented by various strategies. First, by 189 
focusing on promoter-enhancer interactions that rarely produce transcriptional bursts, the manual 190 
identification and measurement of the properties of these bursts was achieved (Fukaya et al., 191 
2016). Second, by examining the autocorrelation of the output fluorescence signal (Coulon et al., 192 
2014; Coulon and Larson, 2016; Larson et al., 2011), average bursting dynamics (such as the 193 
burst size, frequency, and amplitude) were revealed for a wider range of promoter dynamics than 194 
those accessible by manual analysis (Desponds et al., 2016). Finally, many computational tools 195 
have been recently developed to infer the most likely bursting state of a promoter in a single cell 196 
(Bronstein et al., 2015; Corrigan et al., 2016; Featherstone et al., 2016; Hey et al., 2015; 197 
Lammers et al., 2018; Molina et al., 2013; Suter et al., 2011; Zechner et al., 2014; Zoller et al., 198 
2015). For example, techniques based on Hidden Markov Models enable queries of the 199 
instantaneous transcriptional activity of an individual promoter within a single cell as 200 
development progresses (Figure 6C). Thus, novel computational approaches are opening a direct 201 

Figure 6: Relation between MS2 fluorescence and instantaneous transcriptional activity. (A) Loading of 
RNA polymerase, and transcript elongation and termination as a gene is transiently turned on. (B) These discrete 
changes in promoter state are convolved with the elongation and termination times, resulting in a trapezoidal-
like modulation of the number of RNA polymerase molecules on the reporter, as indicated by MS2 fluorescence. 
(C) Inference of promoter state from MS2 data using Hidden Markov models. (D) Inference of promoter states 
for cells expressing a transcriptional reporter of stripe 2 of the even-skipped gene. (C,D, adapted from Lammers 
et al. (2018)). 



window into the molecular mechanisms of transcription factors by extracting promoter-switching 202 
kinetics and correlating these kinetics with the concentrations of input transcription factors 203 
(Lammers et al., 2018). 204 

As with any technology to shed light on the inner workings of cells, it is also important to be 205 
aware of the potential caveats associated with the implementation of MS2 in development. First, 206 
even though single mRNA molecules can be visualized as they are transcribed in bacteria and 207 
yeast (Golding et al., 2005; Larson et al., 2011), the signal-to-background present in embryos 208 
only allows for the detection of the fluorescence signal of, at the most, three mRNA molecules as 209 
they are being transcribed (Garcia et al., 2013). This low signal-to-background stems primarily 210 
from the thick optical sections afforded by widespread laser-scanning confocal microscopes 211 
which are much wider than the site of transcription and hence capture much of the free mRNA 212 
binding protein-GFP fusion in the nucleoplasm. The introduction of new microscopy modalities 213 
with higher axial resolution such as lattice light-sheet microscopy (Chen et al., 2014) could 214 
enable the single-molecule detection of mRNA molecules as they are being transcribed in an 215 
embryo. Further, doubts have been cast on whether the presence of MS2 loops in a transcript 216 
affect its stability (Garcia and Parker, 2015; Golding and Cox, 2004; Haimovich et al., 2016; 217 
Heinrich et al., 2017; Kim et al., 2019). While effects on mRNA stability are probably irrelevant 218 
if MS2 is used as a reporter of transcriptional activity, these effects could certainly confound 219 
downstream measurements of mRNA export and processing, and affect the reliably operation of 220 
endogenous genes. New MS2 sequences are actively being developed to circumvent these 221 
limitations (Tutucci et al., 2018). In addition, since intronic RNA is rapidly processed during 222 
transcription (Coulon et al., 2014), inserting MS2 loops inside introns could prove a reliable 223 
strategy to tag endogenous genes without affecting the life cycle of their mRNA molecules. Even 224 
if no introns are present in a gene, synthetic introns can be introduced in order to realize this 225 
labeling strategy (Bothma et al., 2018). 226 

 227 

Lighting up protein dynamics and transcriptional input-output functions 228 

Despite these encouraging breakthroughs in measuring output transcriptional dynamics in real 229 
time, biologists have until recently lacked the technology to measure the fast dynamics of 230 
translation and degradation of the input transcription factors (Figure 4). Although engineered 231 
fluorescent proteins such as GFP have chromophore maturation half-times as low as 6 min in 232 
vitro or in cultured cells (Nagai et al., 2002), maturation half-times increase to >30 min in 233 
embryos of developmental biology workhorses such as frogs, zebrafish, and flies (Little et al., 234 
2011). These time scales are much slower than many of the key processes in development. For 235 
example, the fruit fly transcription factor Fushi tarazu has a half-life of 8 min (Bothma et al., 236 
2018; Kellerman et al., 1990), and the Hes proteins that drive segmentation in vertebrates have a 237 
half-life of ~20 min (Hirata et al., 2004; Schroter et al., 2008). Thus, in many developmental 238 
contexts, by the time GFP fusions become fluorescent, the developmental processes these fusions 239 
are supposed to report on are already over. This fundamental limitation has prevented 240 
developmental biologists from following the central dogma with high spatiotemporal resolution 241 



and, more specifically, has made it impossible to measure input transcription-factor 242 
concentration dynamics in transcriptional input-output functions. 243 

To enable the real-time measurement of input transcription-factor dynamics over the fast-paced 244 
process of development, and to circumvent the confounding effects of fluorescent protein 245 
maturation kinetics, the nanobody-based LlamaTag was recently introduced to light up protein 246 
concentration dynamics (Bothma et al., 2018). Here, nanobodies, single-chain antibodies raised 247 
in llamas against GFP or mCherry variants, are fused to a transcription factor of interest. In 248 
parallel, the fluorescent protein is provided maternally such that when development begins, this 249 
protein is already mature and uniformly distributed throughout the embryo. Upon translation of 250 
the transcription-factor fusion in the cytoplasm, the LlamaTag binds the free fluorescent protein. 251 
This complex is translocated into the nucleus via the transcription factor’s nuclear localization 252 
signal, resulting in an enrichment of nuclear fluorescence that directly reports on the nuclear 253 
concentration of the complex. Thus, by leveraging localization of fluorescence proteins rather 254 
than the (more common) synthesis of new proteins, this technology becomes insensitive to 255 
fluorescent-protein maturation (Figure 7A,B). LlamaTags have already made it possible to 256 
correlate bursts in transcriptional activity with bursts in protein concentration, to measure protein 257 
degradation, and to reveal the diffusion-mediated coupling between neighboring nuclei that can 258 
drive pattern formation in the fly syncytium (Bothma et al., 2018). Excitingly, these tags have 259 
also made it possible to quantify transcriptional input-output functions at the single-cell level by 260 

Figure 7: Beating the fluorescent protein maturation speed limit with LlamaTags. (A) GFP expressed in the 
cytoplasm is (B) bound by a fusion of a LlamaTag to a transcription factor of interest. The increase in nuclear 
fluorescence upon translocation of the fusion to the nucleus reports transcription-factor concentration. (C) 
Combination of LlamaTag and MS2 tagging to simultaneously measure Krüppel repressor concentration and 
even-skipped (eve) stripe 2 transcriptional activity. (D) Snapshot of a fly embryo expressing Krüppel-LlamaTag 
and reporting on eve transcriptional activity using MS2 27 minutes into nuclear cycle 14. (E) Measured input 
and output dynamics in a nucleus within the stripe. (D,E, adapted from Bothma et al. (2018)). 



enabling real-time measurement of instantaneous input transcription factor concentration and 261 
output transcriptional activity (Figure 7C-E). 262 

Just like regular fusions of transcription factors to fluorescent proteins, LlamaTag fusions can 263 
affect endogenous protein function. Further, these tags are limited to tagging proteins that 264 
undergo translocation after translation, such as transcription factors, and cannot report on the 265 
concentration dynamics of proteins that remain in the cytoplasm to perform their function. 266 
However, due to the nascent nature of LlamaTags, the full set of potential caveats associated 267 
with these tags, and of possible solutions to those caveats, is yet to be revealed as this technique 268 
is adopted by developmental biologists. 269 

 270 

Wiring up the synthetic embryo 271 

For the first time, developmental biologists are positioned to directly measure transcriptional 272 
input-output functions that capture rapid modulations in the concentration dynamics of input 273 
transcription factors and the resulting output transcriptional activity. A crucial next step is to 274 
identify regulatory architectures amenable to theoretical modeling that can be attacked with this 275 
new arsenal of tools. 276 

Over the last three decades, a great deal of research has focused on the role of transcription factor 277 
binding sites in transcriptional input-output functions (Chen et al., 2012; Crocker et al., 2015; 278 
Crocker et al., 2016; Driever et al., 1989; Fakhouri et al., 2010; Hare et al., 2008; Harrison et al., 279 
2011; Jiang and Levine, 1993; Park et al., 2018; Sayal et al., 2016; Small et al., 1992; 280 
Stathopoulos and Levine, 2005; Swanson et al., 2010). Often, complex gene-regulatory regions 281 
featuring dozens of binding sites for several transcription factors are dissected via systematic 282 
deletions of these sites. Such approaches have revolutionized our understanding of the spatial 283 
control of developmental patterning, as exemplified by the famed dissection of the regulatory 284 
logic of the enhancer that regulates stripe 2 of the even-skipped gene, which revealed how 285 
activators and repressors work together to create precise gene expression patterns in the fly 286 
embryo (Arnosti et al., 1996; Small et al., 1992; Small et al., 1991). 287 

Figure 8: Combinatorial complexity of endogenous gene regulatory regions. The hunchback P2 enhancer is 
bound by at least six Bicoid activators to regulate hunchback. A simple model featuring only binding energies, 
pairwise interactions between bound activators, and pairwise interactions between each activator and the 
transcriptional machinery would demand the fitting of 27 unknown parameters. 



Nonetheless, these approaches often face an insurmountable barrier when moving from the 288 
qualitative realm to a quantitative understanding that makes it possible to predict transcriptional 289 
input-output functions. Complex regulatory architectures, by definition, demand complex 290 
theoretical models that in turn are plagued by a plethora of unknown regulatory parameters. 291 
Consider the hunchback P2 enhancer, perhaps one of the simplest and most studied regulatory 292 
architectures in all of development (Driever et al., 1989; Margolis et al., 1995; Park et al., 2018; 293 
Perry et al., 2012). The Bicoid activator can bind at least six sites in this enhancer (Driever et al., 294 
1989). Predicting the transcriptional input-output function of hunchback P2 activation by Bicoid 295 
using even simple models based on equilibrium statistical mechanics demands previous 296 
knowledge of at least 27 parameters (Figure 8; Garcia et al. (2016), see also Garcia et al. (2007) 297 
for an introduction to statistical mechanics for life scientists). This number only grows as 298 
assumptions regarding equilibrium are relaxed (Estrada et al., 2016). Inferring these parameters 299 
from the measurement of a transcriptional input-output function is both a massive computational 300 
and—more critically—conceptual challenge (Garcia et al., 2016). 301 

Synthetic biology could empower our dissection of developmental enhancers. Inspired by work 302 
in bacteria, an alternative to fitting complex theoretical models to complex experimental 303 
architectures in development is to bend nature to understand it (Garcia et al., 2016; Phillips et 304 
al., 2019). Specifically, building synthetic enhancers bearing only one binding site for an 305 
activator such as Dorsal or Bicoid dramatically reduces regulatory complexity. To be concrete, 306 
we consider an activator that is distributed in an exponential gradient along the embryo (Figure 307 
9A) resulting in a step-like output pattern of gene expression. As shown in Figure 9B, a 308 
thermodynamic model describing this simple regulatory architecture has only two free 309 
parameters: the binding affinity of the activator to the DNA (Kd) and a parameter that captures 310 
the strength with which a bound activator drives gene expression (𝑟𝑟𝐴𝐴𝐴𝐴) and that depends on the 311 
distance between the activator binding site and the promoter. Thus, by measuring the height and 312 
position of the activator-driven developmental boundary, these two key parameters can be 313 
obtained. 314 

This synthetic approach offers an opportunity to iteratively embrace regulatory complexity. 315 
Specifically, consider the case where the complexity of the synthetic enhancer is increased by 316 
adding a second activator binding site (Figure 9C). If we rely on the parameters obtained in the 317 
previous iteration (Figure 9B), and if we assume only pair-wise interactions between bound 318 
transcription factors, then only one new unknown parameter emerges. This new parameter, 𝜔𝜔𝐴𝐴𝐴𝐴, 319 
characterizes protein-protein interactions that lead to cooperativity and to the sharpening of the 320 
boundary. Thus, by harnessing the knowledge obtained in previous iterations, each successive 321 
iteration of this synthetic approach only requires the fitting of one or two new parameters. After 322 
multiple iterations, the synthetic architectures converge onto endogenous ones—accompanied by 323 
increasingly complex, but still predictive, theoretical models. 324 

We speculate that this approach could be used to dissect complex regulatory architectures 325 
featuring multiple activators and repressors. Crucially, the key components of synthetic 326 
dissection already exist: multiple examples of minimal regulatory architectures featuring binding 327 
sites of transcription factors such as Bicoid, Dorsal, Giant, Snail, and Twist have been shown to 328 



drive detectable levels of gene expression (Burz et al., 1998; Burz and Hanes, 2001; Driever et 329 
al., 1989; Erceg et al., 2014; Fakhouri et al., 2010; Hanes et al., 1994; Jiang and Levine, 1993; 330 
Lebrecht et al., 2005; Ma et al., 1996; Park et al., 2018; Ronchi et al., 1993; Sayal et al., 2016; 331 
Simpson-Brose et al., 1994; Szymanski and Levine, 1995). Recent work has demonstrated the 332 
feasibility of this synthetic approach to testing theoretical models of transcriptional regulation in 333 
development in the context of activation by Dorsal and Twist, repression by Giant and Snail, and 334 
for synthetic transcription factors (Crocker et al., 2016; Fakhouri et al., 2010; Sayal et al., 2016). 335 

Predicting the central dogma beyond transcription 336 

Figure 9: A synthetic approach to uncovering the governing equations of gene regulatory regions in 
development. (A) Exponential activator concentration profile along the embryo assumed for this illustrative 
example. (B, C) Equations, regulatory parameters, and developmental patterns for synthetic enhancers 
containing (B) one or (C) two activator binding sites. (B) A reporter construct with a single activator binding site 
drives a step-like pattern whose boundary position is determined only by the binding site affinity (𝐾𝐾𝑑𝑑), and 
whose boundary height is governed by the interaction between the activator and the transcriptional machinery 
(𝑟𝑟𝐴𝐴𝐴𝐴). (C) Adding a second activator binding site introduces only one new free parameter accounting for 
activator-activator interactions (𝜔𝜔𝐴𝐴𝐴𝐴). This parameter controls boundary sharpness. For simplicity, we do not 
account for the existence of a basal rate of transcription. However, the addition of this parameter to the model 
would not modify the overall synthetic strategy significantly.  



So far, we have concerned ourselves with the prediction and measurement of transcriptional 337 
input-output functions. However, it is important to keep in mind that the information encoded by 338 
each arrow in cartoons of gene regulatory networks accounts for multiple steps along the central 339 
dogma (Figure 4B). From chromatin accessibility to alternative splicing to post-translational 340 
modifications, seemingly simple arrows capture multiple molecular steps, all of which can be 341 
subject to regulation—calling, once again, for an interplay between theory and experiment to 342 
uncover the governing equations corresponding to each regulatory step. However, despite huge 343 
leaps in genomics (Goodwin et al., 2016; Koboldt et al., 2013; Shlyueva et al., 2014), 344 
technologies to measure chromatin accessibility and modifications, protein binding to the DNA, 345 
promoter-enhancer interactions, mRNA processing, translational regulation, and post-346 
translational modifications in single cells within living embryos have lagged behind (Buenrostro 347 
et al., 2015; Matera and Wang, 2014; Mayer et al., 2017; Park, 2009). 348 

First, chromatin must be accessible for transcription factors to bind DNA. However, technology 349 
to reveal this accessibility or the epigenetic state of histones in the vicinity of a binding site has 350 
been mostly limited to genome-wide or fixed-tissue approaches (Blythe and Wieschaus, 2016; 351 
Boettiger et al., 2016; Cusanovich et al., 2018; Haines and Eisen, 2018; Li et al., 2014). The 352 
recent development of genetically encoded modification-specific intracellular antibodies 353 
(mintbodies) that bind chromatin with specific modifications such as H3K9 acetylation and 354 
H4K20 methylation (Sato et al., 2016; Sato et al., 2013), as well as split-luciferase probes to 355 
image H3K9 and H3K27 methylation (Sekar et al., 2015), will enable concrete progress in the 356 
real-time monitoring of chromatin state in development at the single-cell level. 357 

New imaging technologies and improved fluorescent probes have made it possible to image 358 
individual transcription factors as they bind DNA inside living fly embryos (Chen et al., 2014; 359 
Mir et al., 2017; Tsai et al., 2017). These measurements have revealed that, while transcription 360 
factors appear to spend no more than a few seconds bound to DNA, their binding throughout the 361 
nucleus is not uniform: hubs or domains of increased local concentration (and of increased 362 
binding frequency) have been found for both Bicoid and Ultrabithorax. While some of these 363 
regions of increased binding probability may depend on the pioneer transcription factor Zelda 364 
(Mir et al., 2017), their functional role remains unclear. To make progress toward a molecular 365 
understanding of how genes read out transcription-factor concentration, it will be necessary to 366 
directly correlate this binding with output transcriptional activity—which is only now becoming 367 
possible in single cells (Cho et al., 2016; Chong et al., 2018; Donovan et al., 2019; Li et al., 368 
2019), and for which feasibility in live embryos was recently demonstrated (Mir et al., 2018). 369 

Most developmental enhancers do not reside in the vicinity of their target promoter; they are 370 
supposed to loop or to translocate over vast distances of DNA in order to carry out their 371 
regulatory function (for a recent review on the subject, see Furlong and Levine (2018)). 372 
Recently, enhancer position and promoter activity were simultaneously visualized in the early fly 373 
embryo in the context of DNA looping (Chen et al., 2018) and transvection (Lim et al., 2018b). 374 
These works demonstrated that bringing enhancers and promoters in close proximity is necessary 375 
but not sufficient to activate transcription. These results, plus speculation about larger structures 376 
involved in transcriptional regulation (Mir et al., 2017; Mir et al., 2018; Tsai et al., 2017), and 377 



reports that stable promoter-enhancer contacts might not be needed for transcriptional activation 378 
(Alexander et al., 2019; Benabdallah et al., 2017; Gu et al., 2018) suggest that the classical 379 
paradigm of direct contact between enhancers and promoters may have to be revisited. 380 

Regulation does not cease after transcription initiation: the rate of mRNA elongation can be 381 
under regulatory control, and fly embryos process mRNA through splicing as well as RNA 382 
polymerase II pausing and termination to achieve precise and rapid development (Bentley, 2014; 383 
Core and Adelman, 2019; Larschan et al., 2011; Richard and Manley, 2009). While current 384 
genome-wide techniques have been powerful for revealing correlations among large sets of 385 
genes, visualizing mRNA processing could shed further light on the role of this processing in 386 
development. By combining MS2 and PP7 to label different parts of the same nascent RNA in 387 
the human β-globin gene, the life history of an mRNA was revealed as it underwent 388 
transcription, splicing, and termination (Coulon et al., 2014). This approach is being adopted in 389 
the fly embryo to, for example, determine transcript elongation rates (Fukaya et al., 2017). 390 

The regulation of translation is also widespread in gene regulatory networks. For example, 391 
Bicoid represses Caudal translation (Dubnau and Struhl, 1996; Niessing et al., 2002; Rivera-392 
Pomar et al., 1996), while Nanos downregulates Hunchback post-transcriptionally, through either 393 
a decrease in translation or an increase in mRNA degradation (Cho et al., 2006; Irish et al., 1989; 394 
Murata and Wharton, 1995; Struhl, 1989; Wang and Lehmann, 1991; Wharton and Struhl, 1991). 395 
However, we know much less about how translation is regulated at the single mRNA level than 396 
we know about the details of transcription. For example, is the translation of specific mRNA 397 
molecules downregulated by decreasing the peptide elongation rate of all ribosomes, or by 398 
decreasing the fraction of mRNA molecules that are translated? These questions and others can 399 
be answered by implementing recently developed reporters for measuring the first round of 400 
translation (Halstead et al., 2015), and by examining the translational dynamics of individual 401 
mRNA molecules at the single-cell level (Morisaki et al., 2016; Wang et al., 2016; Wu et al., 402 
2016; Yan et al., 2016). 403 

Finally, many developmental decisions are mediated by the post-translational modification of 404 
proteins. Regulation via protein phosphorylation is ubiquitous in development (for a review on 405 
this subject see, for example, Ubersax and Ferrell (2007) and Peter and Davidson (2015)). 406 
Antibodies cannot always distinguish between phosphorylated and non-phosphorylated protein 407 
forms, which hinders our ability to determine how signaling dynamics dictate development. 408 
When phosphorylation drives the nuclear localization of a transcription factor, such as for the 409 
transcription factor Capicua (Grimm et al., 2012), tracking its nuclear localization using a fusion 410 
to a fluorescent protein or a LlamaTag directly reports on the protein’s signaling state. New 411 
sensors reveal kinase and phosphatase activity without requiring modulation of the cellular 412 
localization of their substrates; novel kinase translocation reporters can be engineered to become 413 
targets of a particular signaling pathway (Kudo et al., 2018; Oldach and Zhang, 2014; Regot et 414 
al., 2014). Upon phosphorylation by the kinase of interest, these sensors change their 415 
fluorescence or are translocated to the nucleus, where they report on signaling activity. 416 
Implementing these technologies in the embryo could open the door to systematic dissection, at 417 



the single-cell level, of the signaling cascades that underlie protein post-translational 418 
modifications during development. 419 

Technology is already available to quantify the flow of information along each step of the central 420 
dogma in real time and at the single-cell level, as highlighted by the various approaches 421 
showcased above. Thus, the main challenge ahead is not one of technology development, but one 422 
of implementing these technologies in developing embryos. The new and exciting data generated 423 
by these rising technologies must be matched with new theoretical models that draw us closer to 424 
a quantitative and predictive understanding of how the regulation of the processes of the central 425 
dogma impact cellular decision-making. 426 

 427 

Developmental programs as dynamical systems 428 

So far, we have focused on new technologies and theoretical approaches that enable the 429 
predictive dissection of the input-output functions encoded by each arrow in gene regulatory 430 
networks (Fig. 2A). However, predictive understanding of the parts that make a network does not 431 
guarantee understanding of how those arrows work together to realize developmental programs. 432 
It has been repeatedly hypothesized that the ultimate developmental fate of each cell arises from 433 
the trajectory of the gene-expression state of a cell as it traverses the regulatory landscape shaped 434 
by the network topology, the patterns of connections between network elements (Figure 2B, 435 
reviewed in Jaeger et al. (2012) and Jaeger and Monk (2014)). 436 

By borrowing tools from dynamical systems theory, multiple teams have attempted to describe 437 
how network topology prescribes these developmental trajectories. While some of these works 438 
have sought to model multiple layers of the network simultaneously, others have focused on 439 
isolated network motifs, such as the widespread mutual repression regulatory architecture (Edgar 440 
et al., 1989; Gursky et al., 2011; Jaeger et al., 2004a; Jaeger et al., 2004b; Lopes et al., 2008; 441 
Manu et al., 2009; Papatsenko and Levine, 2011; von Dassow et al., 2000; Von Dassow and 442 
Odell, 2002). Using gene expression data from fixed embryos sorted into temporal classes, these 443 
studies have, for instance, revealed how gene expression domains shift along the embryo as 444 
development progresses (Jaeger et al., 2004b), and how multiple arrows work together to “lock” 445 
individual cells into specific developmental fates (Papatsenko and Levine, 2011). 446 

These investigations have been complemented by the realization that the landscape shaped by 447 
these arrows is not static. For example, temporal changes in the concentration of transcription 448 
factors such as that of the Bicoid activator over development can propagate through the network, 449 
effectively modulating the network’s topology and impacting cellular, and therefore embryonic, 450 
phenotype (Verd et al., 2018; Verd et al., 2017; Verd et al., 2019). We urgently require 451 
theoretical tools to deal with such non-autonomous dynamical systems, where network 452 
parameters are modulated in time. Further, to test the predictions of these models, it will be 453 
necessary to simultaneously visualize the transcriptional activity and protein products of multiple 454 
genes in single cells as these networks are deployed. Currently, it is possible to simultaneously 455 
image only one input transcription factor and the transcriptional activity of one of its target genes 456 
(Bothma et al., 2018). This limitation to multiplexing underscores the need for new fluorescent 457 



probes with a large repertoire of spectral ranges, as well as advances in microscopy techniques 458 
that make it possible to spectrally resolve these different probes. 459 

 460 

Toward quantitative and predictive developmental biology 461 

The experimental technologies and theoretical approaches reviewed in this article are the means 462 
to the ultimate goal of a predictive understanding of developmental decision-making. Demanding 463 
a quantitative and predictive understanding of biological phenomena sharpens our questions and 464 
makes our inquiries more sensitive to inconsistencies that may reveal new biological insights that 465 
would have remained hidden from qualitative approaches (Cohen, 2004; Garcia et al., 2010). 466 
However, in our opinion, the discovery of new molecular players does not constitute a guiding 467 
objective in and of itself (Phillips, 2015). Even in the absence of new discoveries, we would like 468 
to define successful physical biology of embryonic development as the demonstration that 469 
developmental programs can be predictive, much as it has been shown in the context of gene 470 
regulatory programs in bacteria (Garcia et al., 2016; Phillips et al., 2019). 471 

Although such predictive understanding calls for a quantitative view of how all the processes of 472 
the central dogma are regulated in development, the topics covered in this article have been 473 
vastly biased toward the regulation of transcriptional initiation. We believe that this bias reflects 474 
the state of the art in the field, as it is now possible to monitor transcriptional initiation and the 475 
concentration dynamics of the transcription factors that direct this initiation in real time during 476 
development. However, new technologies, some of which were briefly reviewed here, enable 477 
real-time, single-cell, high-precision, in vivo measurements of other steps of the central dogma. 478 
We therefore envision that, as these technologies are unleashed to unravel development, they 479 
will yield the dialogue between theory and experiment that has been a defining factor in our 480 
understanding of the regulation of transcriptional initiation. 481 

Of course, we must not forget that development transcends regulation of the central dogma! 482 
Ultimately, expression patterns arising from gene regulatory networks drive the morphogenic 483 
movements that bring about tissue growth and biological shape, and these movements further 484 
determine, in turn, gene expression patterns (for reviews on the subject, see Chan et al. (2017); 485 
Gilmour et al. (2017); Mammoto et al. (2012); Totaro et al. (2018)). The capacity to measure and 486 
manipulate actomyosin networks is now making it possible to relate the activity of these 487 
regulatory networks to the massive cellular rearrangements that characterize morphogenesis and 488 
to control them synthetically (Campas, 2016; Farrell et al., 2017; Guglielmi et al., 2015; He et 489 
al., 2016; Kale et al., 2018; Martin et al., 2009; Streichan et al., 2018). These new measurements 490 
and allied theoretical and computational approaches promise to close the gap between our 491 
understanding of morphogen gradients and our understanding of morphogenesis. 492 

Finally, although this review limited its scope to the fruit fly, no one species holds all the keys to 493 
predictively understanding development. A key challenge will be to demonstrate that the 494 
strategies put forth here can also reveal the physical biology of embryos of other developmental 495 
biology workhorses such as worms, fish, and mice. Excitingly, the real-time visualization of 496 
transcription and mRNA processing was recently achieved in all three of these model organisms 497 



(Campbell et al., 2015; Hadzhiev et al., 2019; Lee et al., 2018; Lionnet et al., 2011). Thus, the 498 
technologies discussed in this review article are ushering in a new era in developmental biology 499 
in which the focus on spatial, almost static, control of developmental programs is being replaced 500 
by a dynamical view that embraces the quantitative spatiotemporal control of development 501 
(Berrocal et al., 2018; Bothma and Levine, 2013). This new language will empower the 502 
discourse between theory and experiment that will revolutionize our ability to predict—and 503 
ultimately manipulate—developmental programs at will. 504 

 505 

 506 

 507 

Acknowledgments 508 

The authors are grateful to Jack Bateman, Jacques Bothma, James Briscoe, Leigh Harris, 509 
Thomas Lecuit, Mustafa Mir, Rob Phillips, Clarissa Scholes, Stephen Small and Michael Stadler 510 
for discussions and/or comments on this manuscript. However, the opinions and point of view 511 
expressed here are the authors’ and those acknowledged above should not be blamed for these 512 
views. HGG was supported by the Burroughs Wellcome Fund Career Award at the Scienti1c 513 
Interface, the Sloan Research Foundation, the Human Frontiers Science Program, the Searle 514 
Scholars Program, the Shurl & Kay Curci Foundation, the Hellman Foundation, the NIH 515 
Director’s New Innovator Award (DP2 OD024541-01), and an NSF CAREER Award 516 
(1652236). Finally, the references cited throughout the text are meant as a guide to the reader to 517 
the literature, and do not attempt to provide a scholarly assessment of the whole field of fly 518 
development or of developmental biology write large. 519 

 520 

References 521 

Ackers, G.K., Johnson, A.D., and Shea, M.A. (1982). Quantitative model for gene regulation by 522 
lambda phage repressor. Proc Natl Acad Sci U S A 79, 1129-1133. 523 
Alberts, B. (2015). Molecular biology of the cell, Sixth edition. edn (New York, NY: Garland 524 
Science, Taylor and Francis Group). 525 
Alexander, J.M., Guan, J., Li, B., Maliskova, L., Song, M., Shen, Y., Huang, B., Lomvardas, S., 526 
and Weiner, O.D. (2019). Live-cell imaging reveals enhancer-dependent Sox2 transcription in 527 
the absence of enhancer proximity. eLife 8. 528 
Arnosti, D.N., Barolo, S., Levine, M., and Small, S. (1996). The eve stripe 2 enhancer employs 529 
multiple modes of transcriptional synergy. Development 122, 205-214. 530 
Benabdallah, N.S., Williamson, I., Illingworth, R.S., Boyle, S., Grimes, G.R., Therizols, P., and 531 
Bickmore, W.A. (2017). PARP mediated chromatin unfolding is coupled to long-range enhancer 532 
activation. bioRxiv, 155325. 533 
Bentley, D.L. (2014). Coupling mRNA processing with transcription in time and space. Nat Rev 534 
Genet 15, 163-175. 535 
Berrocal, A., Lammers, N.C., Garcia, H.G., and Eisen, M.B. (2018). Kinetic sculpting of the 536 
seven stripes of the Drosophila even-skipped gene. bioRxiv. 537 



Bertrand, E., Chartrand, P., Schaefer, M., Shenoy, S.M., Singer, R.H., and Long, R.M. (1998). 538 
Localization of ASH1 mRNA particles in living yeast. Mol Cell 2, 437-445. 539 
Bintu, L., Buchler, N.E., Garcia, H.G., Gerland, U., Hwa, T., Kondev, J., Kuhlman, T., and 540 
Phillips, R. (2005a). Transcriptional regulation by the numbers: applications. Curr Opin Genet 541 
Dev 15, 125-135. 542 
Bintu, L., Buchler, N.E., Garcia, H.G., Gerland, U., Hwa, T., Kondev, J., and Phillips, R. 543 
(2005b). Transcriptional regulation by the numbers: models. Curr Opin Genet Dev 15, 116-124. 544 
Blythe, S.A., and Wieschaus, E.F. (2016). Establishment and maintenance of heritable chromatin 545 
structure during early Drosophila embryogenesis. eLife 5. 546 
Boettiger, A.N., Bintu, B., Moffitt, J.R., Wang, S., Beliveau, B.J., Fudenberg, G., Imakaev, M., 547 
Mirny, L.A., Wu, C.T., and Zhuang, X. (2016). Super-resolution imaging reveals distinct 548 
chromatin folding for different epigenetic states. Nature 529, 418-422. 549 
Boettiger, A.N., and Levine, M. (2013). Rapid Transcription Fosters Coordinate snail Expression 550 
in the Drosophila Embryo. Cell reports. 551 
Bothma, J., and Levine, M. (2013). Development: Lights, Camera, Action - The Drosophila 552 
Embryo Goes Live! Curr Biol 23, R965. 553 
Bothma, J.P., Garcia, H.G., Esposito, E., Schlissel, G., Gregor, T., and Levine, M. (2014). 554 
Dynamic regulation of eve stripe 2 expression reveals transcriptional bursts in living Drosophila 555 
embryos. Proc Natl Acad Sci U S A 111, 10598–10603. 556 
Bothma, J.P., Garcia, H.G., Ng, S., Perry, M.W., Gregor, T., and Levine, M. (2015). Enhancer 557 
additivity and non-additivity are determined by enhancer strength in the Drosophila embryo. 558 
eLife 4. 559 
Bothma, J.P., Magliocco, J., and Levine, M. (2011). The Snail Repressor Inhibits Release, Not 560 
Elongation, of Paused Pol II in the Drosophila Embryo. Curr Biol. 561 
Bothma, J.P., Norstad, M.R., Alamos, S., and Garcia, H.G. (2018). LlamaTags: A Versatile Tool 562 
to Image Transcription Factor Dynamics in Live Embryos. Cell. 563 
Brewster, R.C., Weinert, F.M., Garcia, H.G., Song, D., Rydenfelt, M., and Phillips, R. (2014). 564 
The transcription factor titration effect dictates level of gene expression. Cell 156, 1312-1323. 565 
Bronstein, L., Zechner, C., and Koeppl, H. (2015). Bayesian inference of reaction kinetics from 566 
single-cell recordings across a heterogeneous cell population. Methods (San Diego, Calif 85, 22-567 
35. 568 
Buchler, N.E., Gerland, U., and Hwa, T. (2003). On schemes of combinatorial transcription 569 
logic. Proc Natl Acad Sci U S A 100, 5136-5141. 570 
Buenrostro, J.D., Wu, B., Chang, H.Y., and Greenleaf, W.J. (2015). ATAC-seq: A Method for 571 
Assaying Chromatin Accessibility Genome-Wide. Curr Protoc Mol Biol 109, 21 29 21-29. 572 
Burz, B.S., Rivera-Pomar, R., Jackle, H., and Hanes, S.D. (1998). Cooperative DNA-binding by 573 
Bicoid provides a mechanism for threshold-dependent gene activation in the Drosophila embryo. 574 
EMBO J 17, 5998--6009. 575 
Burz, D.S., and Hanes, S.D. (2001). Isolation of mutations that disrupt cooperative DNA binding 576 
by the Drosophila bicoid protein. J Mol Biol 305, 219-230. 577 
Campas, O. (2016). A toolbox to explore the mechanics of living embryonic tissues. Seminars in 578 
cell & developmental biology 55, 119-130. 579 
Campbell, P.D., Chao, J.A., Singer, R.H., and Marlow, F.L. (2015). Dynamic visualization of 580 
transcription and RNA subcellular localization in zebrafish. Development. 581 
Carroll, S.B., Grenier, J.K., and Weatherbee, S.D. (2001). From DNA to diversity: molecular 582 
genetics and the evolution of animal design (Malden, Mass.: Blackwell Science). 583 



Chan, C.J., Heisenberg, C.P., and Hiiragi, T. (2017). Coordination of Morphogenesis and Cell-584 
Fate Specification in Development. Curr Biol 27, R1024-R1035. 585 
Chen, B.C., Legant, W.R., Wang, K., Shao, L., Milkie, D.E., Davidson, M.W., Janetopoulos, C., 586 
Wu, X.S., Hammer, J.A., 3rd, Liu, Z., et al. (2014). Lattice light-sheet microscopy: imaging 587 
molecules to embryos at high spatiotemporal resolution. Science 346, 1257998. 588 
Chen, H., Levo, M., Barinov, L., Fujioka, M., Jaynes, J.B., and Gregor, T. (2018). Dynamic 589 
interplay between enhancer-promoter topology and gene activity. Nat Genet 50, 1296-1303. 590 
Chen, H., Xu, Z., Mei, C., Yu, D., and Small, S. (2012). A system of repressor gradients spatially 591 
organizes the boundaries of bicoid-dependent target genes. Cell 149, 618-629. 592 
Cho, P.F., Gamberi, C., Cho-Park, Y.A., Cho-Park, I.B., Lasko, P., and Sonenberg, N. (2006). 593 
Cap-dependent translational inhibition establishes two opposing morphogen gradients in 594 
Drosophila embryos. Curr Biol 16, 2035-2041. 595 
Cho, W.K., Jayanth, N., English, B.P., Inoue, T., Andrews, J.O., Conway, W., Grimm, J.B., 596 
Spille, J.H., Lavis, L.D., Lionnet, T., et al. (2016). RNA Polymerase II cluster dynamics predict 597 
mRNA output in living cells. eLife 5. 598 
Chong, S., Dugast-Darzacq, C., Liu, Z., Dong, P., Dailey, G.M., Cattoglio, C., Heckert, A., 599 
Banala, S., Lavis, L., Darzacq, X., et al. (2018). Imaging dynamic and selective low-complexity 600 
domain interactions that control gene transcription. Science 361. 601 
Chubb, J.R., Trcek, T., Shenoy, S.M., and Singer, R.H. (2006). Transcriptional pulsing of a 602 
developmental gene. Curr Biol 16, 1018-1025. 603 
Cohen, J.E. (2004). Mathematics is biology's next microscope, only better; biology is 604 
mathematics' next physics, only better. PLoS Biol 2, e439. 605 
Core, L., and Adelman, K. (2019). Promoter-proximal pausing of RNA polymerase II: a nexus of 606 
gene regulation. Genes Dev. 607 
Corrigan, A.M., Tunnacliffe, E., Cannon, D., and Chubb, J.R. (2016). A continuum model of 608 
transcriptional bursting. eLife 5. 609 
Coulon, A., Ferguson, M.L., de Turris, V., Palangat, M., Chow, C.C., and Larson, D.R. (2014). 610 
Kinetic competition during the transcription cycle results in stochastic RNA processing. eLife 3. 611 
Coulon, A., and Larson, D.R. (2016). Fluctuation Analysis: Dissecting Transcriptional Kinetics 612 
with Signal Theory. Methods in Enzymology. 613 
Crocker, J., Abe, N., Rinaldi, L., McGregor, A.P., Frankel, N., Wang, S., Alsawadi, A., Valenti, 614 
P., Plaza, S., Payre, F., et al. (2015). Low affinity binding site clusters confer hox specificity and 615 
regulatory robustness. Cell 160, 191-203. 616 
Crocker, J., Ilsley, G.R., and Stern, D.L. (2016). Quantitatively predictable control of Drosophila 617 
transcriptional enhancers in vivo with engineered transcription factors. Nat Genet 48, 292-298. 618 
Cusanovich, D.A., Reddington, J.P., Garfield, D.A., Daza, R.M., Aghamirzaie, D., Marco-619 
Ferreres, R., Pliner, H.A., Christiansen, L., Qiu, X., Steemers, F.J., et al. (2018). The cis-620 
regulatory dynamics of embryonic development at single-cell resolution. Nature 555, 538-542. 621 
Davidson, E.H. (2006). The regulatory genome : gene regulatory networks in development and 622 
evolution (Burlington, MA ; San Diego: Academic). 623 
Desponds, J., Tran, H., Ferraro, T., Lucas, T., Perez Romero, C., Guillou, A., Fradin, C., 624 
Coppey, M., Dostatni, N., and Walczak, A.M. (2016). Precision of Readout at the hunchback 625 
Gene: Analyzing Short Transcription Time Traces in Living Fly Embryos. PLoS Comput Biol 626 
12, e1005256. 627 



Donovan, B.T., Huynh, A., Ball, D.A., Patel, H.P., Poirier, M.G., Larson, D.R., Ferguson, M.L., 628 
and Lenstra, T.L. (2019). Live‐cell imaging reveals the interplay between transcription factors, 629 
nucleosomes, and bursting. The EMBO journal 38, e100809. 630 
Driever, W., Thoma, G., and Nusslein-Volhard, C. (1989). Determination of spatial domains of 631 
zygotic gene expression in the Drosophila embryo by the affinity of binding sites for the bicoid 632 
morphogen. Nature 340, 363-367. 633 
Dubnau, J., and Struhl, G. (1996). RNA recognition and translational regulation by a 634 
homeodomain protein. Nature 379, 694-699. 635 
Dubuis, J.O., Samanta, R., and Gregor, T. (2013). Accurate measurements of dynamics and 636 
reproducibility in small genetic networks. Molecular systems biology [electronic resource] 9, 637 
639. 638 
Dufourt, J., Trullo, A., Hunter, J., Fernandez, C., Lazaro, J., Dejean, M., Morales, L., Nait-Amer, 639 
S., Schulz, K.N., Harrison, M.M., et al. (2018). Temporal control of gene expression by the 640 
pioneer factor Zelda through transient interactions in hubs. Nature communications 9, 5194. 641 
Edgar, B.A., Odell, G.M., and Schubiger, G. (1989). A genetic switch, based on negative 642 
regulation, sharpens stripes in Drosophila embryos. Developmental genetics 10, 124-142. 643 
El-Sherif, E., and Levine, M. (2016). Shadow Enhancers Mediate Dynamic Shifts of Gap Gene 644 
Expression in the Drosophila Embryo. Curr Biol. 645 
Erceg, J., Saunders, T.E., Girardot, C., Devos, D.P., Hufnagel, L., and Furlong, E.E. (2014). 646 
Subtle changes in motif positioning cause tissue-specific effects on robustness of an enhancer's 647 
activity. PLoS Genet 10, e1004060. 648 
Esposito, E., Lim, B., Guessous, G., Falahati, H., and Levine, M. (2016). Mitosis-associated 649 
repression in development. Genes Dev 30, 1503-1508. 650 
Estrada, J., Wong, F., DePace, A., and Gunawardena, J. (2016). Information Integration and 651 
Energy Expenditure in Gene Regulation. Cell 166, 234-244. 652 
Fakhouri, W.D., Ay, A., Sayal, R., Dresch, J., Dayringer, E., and Arnosti, D.N. (2010). 653 
Deciphering a transcriptional regulatory code: modeling short-range repression in the Drosophila 654 
embryo. Molecular systems biology [electronic resource] 6, 341. 655 
Falo-Sanjuan, J., Lammers, N.C., Garcia, H.G., and Bray, S. (2018). Enhancer priming enables 656 
fast and sustained transcriptional responses to Notch signaling. bioRxiv, 497651. 657 
Farrell, D.L., Weitz, O., Magnasco, M.O., and Zallen, J.A. (2017). SEGGA: a toolset for rapid 658 
automated analysis of epithelial cell polarity and dynamics. Development 144, 1725-1734. 659 
Featherstone, K., Hey, K., Momiji, H., McNamara, A.V., Patist, A.L., Woodburn, J., Spiller, 660 
D.G., Christian, H.C., McNeilly, A.S., Mullins, J.J., et al. (2016). Spatially coordinated dynamic 661 
gene transcription in living pituitary tissue. eLife 5, e08494. 662 
Ferraro, T., Esposito, E., Mancini, L., Ng, S., Lucas, T., Coppey, M., Dostatni, N., Walczak, 663 
A.M., Levine, M., and Lagha, M. (2016). Transcriptional Memory in the Drosophila Embryo. 664 
Curr Biol 26, 212-218. 665 
Fuda, N.J., Ardehali, M.B., and Lis, J.T. (2009). Defining mechanisms that regulate RNA 666 
polymerase II transcription in vivo. Nature 461, 186-192. 667 
Fukaya, T., Lim, B., and Levine, M. (2016). Enhancer Control of Transcriptional Bursting. Cell 668 
166, 358-368. 669 
Fukaya, T., Lim, B., and Levine, M. (2017). Rapid Rates of Pol II Elongation in the Drosophila 670 
Embryo. Curr Biol 27, 1387-1391. 671 
Furlong, E.E.M., and Levine, M. (2018). Developmental enhancers and chromosome topology. 672 
Science 361, 1341-1345. 673 



Garcia, H.G., Brewster, R.C., and Phillips, R. (2016). Using synthetic biology to make cells 674 
tomorrow's test tubes. Integr Biol (Camb) 8, 431-450. 675 
Garcia, H.G., Kondev, J., Orme, N., Theriot, J.A., and Phillips, R. (2007). A first exposure to 676 
statistical mechanics for life scientists. arXiv preprint arXiv:07081899. 677 
Garcia, H.G., Sanchez, A., Kuhlman, T., Kondev, J., and Phillips, R. (2010). Transcription by the 678 
numbers redux: experiments and calculations that surprise. Trends Cell Biol 20, 723-733. 679 
Garcia, H.G., Tikhonov, M., Lin, A., and Gregor, T. (2013). Quantitative imaging of 680 
transcription in living Drosophila embryos links polymerase activity to patterning. Curr Biol 23, 681 
2140-2145. 682 
Garcia, J.F., and Parker, R. (2015). MS2 coat proteins bound to yeast mRNAs block 5' to 3' 683 
degradation and trap mRNA decay products: implications for the localization of mRNAs by 684 
MS2-MCP system. RNA (New York, NY 21, 1393-1395. 685 
Gilmour, D., Rembold, M., and Leptin, M. (2017). From morphogen to morphogenesis and back. 686 
Nature 541, 311-320. 687 
Golding, I., and Cox, E.C. (2004). RNA dynamics in live Escherichia coli cells. Proc Natl Acad 688 
Sci U S A 101, 11310-11315. 689 
Golding, I., Paulsson, J., Zawilski, S.M., and Cox, E.C. (2005). Real-time kinetics of gene 690 
activity in individual bacteria. Cell 123, 1025-1036. 691 
Goodwin, S., McPherson, J.D., and McCombie, W.R. (2016). Coming of age: ten years of next-692 
generation sequencing technologies. Nat Rev Genet 17, 333-351. 693 
Gregor, T., Tank, D.W., Wieschaus, E.F., and Bialek, W. (2007). Probing the limits to positional 694 
information. Cell 130, 153-164. 695 
Grimm, O., Sanchez Zini, V., Kim, Y., Casanova, J., Shvartsman, S.Y., and Wieschaus, E. 696 
(2012). Torso RTK controls Capicua degradation by changing its subcellular localization. 697 
Development 139, 3962-3968. 698 
Gu, B., Swigut, T., Spencley, A., Bauer, M.R., Chung, M., Meyer, T., and Wysocka, J. (2018). 699 
Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements. 700 
Science 359, 1050-1055. 701 
Guglielmi, G., Barry, J.D., Huber, W., and De Renzis, S. (2015). An Optogenetic Method to 702 
Modulate Cell Contractility during Tissue Morphogenesis. Developmental cell 35, 646-660. 703 
Gursky, V.V., Panok, L., Myasnikova, E.M., Manu, Samsonova, M.G., Reinitz, J., and 704 
Samsonov, A.M. (2011). Mechanisms of gap gene expression canalization in the Drosophila 705 
blastoderm. BMC Syst Biol 5, 118. 706 
Hadzhiev, Y., Qureshi, H.K., Wheatley, L., Cooper, L., Jasiulewicz, A., Van Nguyen, H., 707 
Wragg, J.W., Poovathumkadavil, D., Conic, S., Bajan, S., et al. (2019). A cell cycle-coordinated 708 
Polymerase II transcription compartment encompasses gene expression before global genome 709 
activation. Nature communications 10, 691. 710 
Haimovich, G., Zabezhinsky, D., Haas, B., Slobodin, B., Purushothaman, P., Fan, L., Levin, J.Z., 711 
Nusbaum, C., and Gerst, J.E. (2016). Use of the MS2 aptamer and coat protein for RNA 712 
localization in yeast: A response to "MS2 coat proteins bound to yeast mRNAs block 5' to 3' 713 
degradation and trap mRNA decay products: implications for the localization of mRNAs by 714 
MS2-MCP system". RNA (New York, NY 22, 660-666. 715 
Haines, J.E., and Eisen, M.B. (2018). Patterns of chromatin accessibility along the anterior-716 
posterior axis in the early Drosophila embryo. PLoS Genet 14, e1007367. 717 



Halstead, J.M., Lionnet, T., Wilbertz, J.H., Wippich, F., Ephrussi, A., Singer, R.H., and Chao, 718 
J.A. (2015). Translation. An RNA biosensor for imaging the first round of translation from single 719 
cells to living animals. Science 347, 1367-1671. 720 
Hammar, P., Wallden, M., Fange, D., Persson, F., Baltekin, O., Ullman, G., Leroy, P., and Elf, J. 721 
(2014). Direct measurement of transcription factor dissociation excludes a simple operator 722 
occupancy model for gene regulation. Nat Genet 46, 405-408. 723 
Hanes, S.D., Riddihough, G., Ish-Horowicz, D., and Brent, R. (1994). Specific DNA recognition 724 
and intersite spacing are critical for action of the bicoid morphogen. Molecular and cellular 725 
biology 14, 3364-3375. 726 
Hare, E.E., Peterson, B.K., Iyer, V.N., Meier, R., and Eisen, M.B. (2008). Sepsid even-skipped 727 
enhancers are functionally conserved in Drosophila despite lack of sequence conservation. PLoS 728 
Genet 4, e1000106. 729 
Harrison, M.M., Li, X.Y., Kaplan, T., Botchan, M.R., and Eisen, M.B. (2011). Zelda binding in 730 
the early Drosophila melanogaster embryo marks regions subsequently activated at the maternal-731 
to-zygotic transition. PLoS Genet 7, e1002266. 732 
He, B., Martin, A., and Wieschaus, E. (2016). Flow-dependent myosin recruitment during 733 
Drosophila cellularization requires zygotic dunk activity. Development 143, 2417-2430. 734 
He, X., Samee, M.A., Blatti, C., and Sinha, S. (2010). Thermodynamics-based models of 735 
transcriptional regulation by enhancers: the roles of synergistic activation, cooperative binding 736 
and short-range repression. PLoS Comput Biol 6. 737 
Heinrich, S., Sidler, C.L., Azzalin, C.M., and Weis, K. (2017). Stem-loop RNA labeling can 738 
affect nuclear and cytoplasmic mRNA processing. RNA (New York, NY 23, 134-141. 739 
Hey, K.L., Momiji, H., Featherstone, K., Davis, J.R., White, M.R., Rand, D.A., and Finkenstadt, 740 
B. (2015). A stochastic transcriptional switch model for single cell imaging data. Biostatistics 16, 741 
655-669. 742 
Hirata, H., Bessho, Y., Kokubu, H., Masamizu, Y., Yamada, S., Lewis, J., and Kageyama, R. 743 
(2004). Instability of Hes7 protein is crucial for the somite segmentation clock. Nat Genet 36, 744 
750-754. 745 
Irish, V., Lehmann, R., and Akam, M. (1989). The Drosophila posterior-group gene nanos 746 
functions by repressing hunchback activity. Nature 338, 646-648. 747 
Jaeger, J. (2011). The gap gene network. Cell Mol Life Sci 68, 243-274. 748 
Jaeger, J., Blagov, M., Kosman, D., Kozlov, K.N., Manu, Myasnikova, E., Surkova, S., Vanario-749 
Alonso, C.E., Samsonova, M., Sharp, D.H., et al. (2004a). Dynamical analysis of regulatory 750 
interactions in the gap gene system of Drosophila melanogaster. Genetics 167, 1721-1737. 751 
Jaeger, J., Manu, and Reinitz, J. (2012). Drosophila blastoderm patterning. Curr Opin Genet Dev 752 
22, 533-541. 753 
Jaeger, J., and Monk, N. (2014). Bioattractors: dynamical systems theory and the evolution of 754 
regulatory processes. The Journal of physiology 592, 2267-2281. 755 
Jaeger, J., Surkova, S., Blagov, M., Janssens, H., Kosman, D., Kozlov, K.N., Manu, Myasnikova, 756 
E., Vanario-Alonso, C.E., Samsonova, M., et al. (2004b). Dynamic control of positional 757 
information in the early Drosophila embryo. Nature 430, 368-371. 758 
Jiang, J., and Levine, M. (1993). Binding affinities and cooperative interactions with bHLH 759 
activators delimit threshold responses to the dorsal gradient morphogen. Cell 72, 741-752. 760 
Kale, G.R., Yang, X., Philippe, J.M., Mani, M., Lenne, P.F., and Lecuit, T. (2018). Distinct 761 
contributions of tensile and shear stress on E-cadherin levels during morphogenesis. Nature 762 
communications 9, 5021. 763 



Kanodia, J.S., Liang, H.L., Kim, Y., Lim, B., Zhan, M., Lu, H., Rushlow, C.A., and Shvartsman, 764 
S.Y. (2012). Pattern formation by graded and uniform signals in the early Drosophila embryo. 765 
Biophys J 102, 427-433. 766 
Kellerman, K.A., Mattson, D.M., and Duncan, I. (1990). Mutations affecting the stability of the 767 
fushi tarazu protein of Drosophila. Genes Dev 4, 1936-1950. 768 
Kim, S.H., Vieira, M., Kim, H.J., Kesawat, M.S., and Park, H.Y. (2019). MS2 Labeling of 769 
Endogenous Beta-Actin mRNA Does Not Result in Stabilization of Degradation Intermediates. 770 
Mol Cells 42, 356-362. 771 
Koboldt, D.C., Steinberg, K.M., Larson, D.E., Wilson, R.K., and Mardis, E.R. (2013). The next-772 
generation sequencing revolution and its impact on genomics. Cell 155, 27-38. 773 
Kudo, T., Jeknic, S., Macklin, D.N., Akhter, S., Hughey, J.J., Regot, S., and Covert, M.W. 774 
(2018). Live-cell measurements of kinase activity in single cells using translocation reporters. 775 
Nat Protoc 13, 155-169. 776 
Lammers, N.C., Galstyan, V., Reimer, A., Medin, S.A., Wiggins, C.H., and Garcia, H.G. (2018). 777 
Multimodal transcriptional control of pattern formation in embryonic development. bioRxiv. 778 
Larschan, E., Bishop, E.P., Kharchenko, P.V., Core, L.J., Lis, J.T., Park, P.J., and Kuroda, M.I. 779 
(2011). X chromosome dosage compensation via enhanced transcriptional elongation in 780 
Drosophila. Nature 471, 115-118. 781 
Larson, D.R., Zenklusen, D., Wu, B., Chao, J.A., and Singer, R.H. (2011). Real-time observation 782 
of transcription initiation and elongation on an endogenous yeast gene. Science 332, 475-478. 783 
Lawrence, J.B., Singer, R.H., and Marselle, L.M. (1989). Highly localized tracks of specific 784 
transcripts within interphase nuclei visualized by in situ hybridization. Cell 57, 493-502. 785 
Lebrecht, D., Foehr, M., Smith, E., Lopes, F.J., Vanario-Alonso, C.E., Reinitz, J., Burz, D.S., 786 
and Hanes, S.D. (2005). Bicoid cooperative DNA binding is critical for embryonic patterning in 787 
Drosophila. Proc Natl Acad Sci U S A 102, 13176-13181. 788 
Lee, C., Shin, H., and Kimble, J. (2018). Dynamics of Notch-dependent transcriptional bursting 789 
in its native context. bioRxiv, 496638. 790 
Li, C., Cesbron, F., Oehler, M., Brunner, M., and Hofer, T. (2018). Frequency Modulation of 791 
Transcriptional Bursting Enables Sensitive and Rapid Gene Regulation. Cell systems 6, 409-423 792 
e411. 793 
Li, G.W., Burkhardt, D., Gross, C., and Weissman, J.S. (2014). Quantifying absolute protein 794 
synthesis rates reveals principles underlying allocation of cellular resources. Cell 157, 624-635. 795 
Li, J., Dong, A., Saydaminova, K., Chang, H., Wang, G., Ochiai, H., Yamamoto, T., and 796 
Pertsinidis, A. (2019). Single-Molecule Nanoscopy Elucidates RNA Polymerase II Transcription 797 
at Single Genes in Live Cells. Cell. 798 
Lim, B., Fukaya, T., Heist, T., and Levine, M. (2018a). Temporal dynamics of pair-rule stripes in 799 
living Drosophila embryos. Proc Natl Acad Sci U S A 115, 8376-8381. 800 
Lim, B., Heist, T., Levine, M., and Fukaya, T. (2018b). Visualization of Transvection in Living 801 
Drosophila Embryos. Mol Cell 70, 287-296 e286. 802 
Lim, B., Levine, M., and Yamazaki, Y. (2017). Transcriptional Pre-patterning of Drosophila 803 
Gastrulation. Curr Biol 27, 286-290. 804 
Lionnet, T., Czaplinski, K., Darzacq, X., Shav-Tal, Y., Wells, A.L., Chao, J.A., Park, H.Y., de 805 
Turris, V., Lopez-Jones, M., and Singer, R.H. (2011). A transgenic mouse for in vivo detection 806 
of endogenous labeled mRNA. Nat Methods. 807 
Little, S.C., Tikhonov, M., and Gregor, T. (2013). Precise developmental gene expression arises 808 
from globally stochastic transcriptional activity. Cell 154, 789-800. 809 



Little, S.C., Tkacik, G., Kneeland, T.B., Wieschaus, E.F., and Gregor, T. (2011). The formation 810 
of the Bicoid morphogen gradient requires protein movement from anteriorly localized mRNA. 811 
PLoS Biol 9, e1000596. 812 
Lopes, F.J., Vieira, F.M., Holloway, D.M., Bisch, P.M., and Spirov, A.V. (2008). Spatial 813 
bistability generates hunchback expression sharpness in the Drosophila embryo. PLoS Comput 814 
Biol 4, e1000184. 815 
Lucas, T., Ferraro, T., Roelens, B., De Las Heras Chanes, J., Walczak, A.M., Coppey, M., and 816 
Dostatni, N. (2013). Live imaging of bicoid-dependent transcription in Drosophila embryos. Curr 817 
Biol 23, 2135-2139. 818 
Ma, X., Yuan, D., Diepold, K., Scarborough, T., and Ma, J. (1996). The Drosophila 819 
morphogenetic protein Bicoid binds DNA cooperatively. Development 122, 1195-1206. 820 
Mammoto, A., Mammoto, T., and Ingber, D.E. (2012). Mechanosensitive mechanisms in 821 
transcriptional regulation. Journal of cell science 125, 3061-3073. 822 
Manu, Surkova, S., Spirov, A.V., Gursky, V.V., Janssens, H., Kim, A.R., Radulescu, O., 823 
Vanario-Alonso, C.E., Sharp, D.H., Samsonova, M., et al. (2009). Canalization of gene 824 
expression and domain shifts in the Drosophila blastoderm by dynamical attractors. PLoS 825 
Comput Biol 5, e1000303. 826 
Margolis, J.S., Borowsky, M.L., Steingrimsson, E., Shim, C.W., Lengyel, J.A., and Posakony, 827 
J.W. (1995). Posterior stripe expression of hunchback is driven from two promoters by a 828 
common enhancer element. Development 121, 3067-3077. 829 
Martin, A.C., Kaschube, M., and Wieschaus, E.F. (2009). Pulsed contractions of an actin-myosin 830 
network drive apical constriction. Nature 457, 495-499. 831 
Matera, A.G., and Wang, Z. (2014). A day in the life of the spliceosome. Nat Rev Mol Cell Biol 832 
15, 108-121. 833 
Mayer, A., Landry, H.M., and Churchman, L.S. (2017). Pause & go: from the discovery of RNA 834 
polymerase pausing to its functional implications. Curr Opin Cell Biol 46, 72-80. 835 
Mir, M., Reimer, A., Haines, J.E., Li, X.Y., Stadler, M., Garcia, H., Eisen, M.B., and Darzacq, 836 
X. (2017). Dense Bicoid hubs accentuate binding along the morphogen gradient. Genes Dev 31, 837 
1784-1794. 838 
Mir, M., Stadler, M.R., Ortiz, S.A., Hannon, C.E., Harrison, M.M., Darzacq, X., and Eisen, M.B. 839 
(2018). Dynamic multifactor hubs interact transiently with sites of active transcription in 840 
Drosophila embryos. eLife 7. 841 
Molina, N., Suter, D.M., Cannavo, R., Zoller, B., Gotic, I., and Naef, F. (2013). Stimulus-842 
induced modulation of transcriptional bursting in a single mammalian gene. Proc Natl Acad Sci 843 
U S A 110, 20563-20568. 844 
Morisaki, T., Lyon, K., DeLuca, K.F., DeLuca, J.G., English, B.P., Zhang, Z., Lavis, L.D., 845 
Grimm, J.B., Viswanathan, S., Looger, L.L., et al. (2016). Real-time quantification of single 846 
RNA translation dynamics in living cells. Science 352, 1425-1429. 847 
Murata, Y., and Wharton, R.P. (1995). Binding of pumilio to maternal hunchback mRNA is 848 
required for posterior patterning in Drosophila embryos. Cell 80, 747-756. 849 
Nagai, T., Ibata, K., Park, E.S., Kubota, M., Mikoshiba, K., and Miyawaki, A. (2002). A variant 850 
of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. 851 
Nat Biotechnol 20, 87-90. 852 
Niessing, D., Blanke, S., and Jackle, H. (2002). Bicoid associates with the 5'-cap-bound complex 853 
of caudal mRNA and represses translation. Genes Dev 16, 2576-2582. 854 



O'Farrell, P.H., Edgar, B.A., Lakich, D., and Lehner, C.F. (1989). Directing cell division during 855 
development. Science 246, 635-640. 856 
Oldach, L., and Zhang, J. (2014). Genetically encoded fluorescent biosensors for live-cell 857 
visualization of protein phosphorylation. Chem Biol 21, 186-197. 858 
Papatsenko, D., and Levine, M. (2011). The Drosophila gap gene network is composed of two 859 
parallel toggle switches. PLoS ONE 6, e21145. 860 
Pare, A., Lemons, D., Kosman, D., Beaver, W., Freund, Y., and McGinnis, W. (2009). 861 
Visualization of individual Scr mRNAs during Drosophila embryogenesis yields evidence for 862 
transcriptional bursting. Curr Biol 19, 2037-2042. 863 
Park, J., Estrada, J., Johnson, G., Ricci-Tam, C., Bragdon, M., Shulgina, Y., Cha, A., 864 
Gunawardena, J., and DePace, A.H. (2018). Dissecting the sharp response of a canonical 865 
developmental enhancer reveals multiple sources of cooperativity. bioRxiv. 866 
Park, P.J. (2009). ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 867 
10, 669-680. 868 
Perry, M.W., Bothma, J.P., Luu, R.D., and Levine, M. (2012). Precision of hunchback 869 
expression in the Drosophila embryo. Curr Biol 22, 2247-2252. 870 
Peter, I.S., and Davidson, E.H. (2015). Genomic control process : development and evolution 871 
(London, UK ; San Diego, CA, USA: Academic Press is an imprint of Elsevier). 872 
Phillips, R. (2015). Theory in Biology: Figure 1 or Figure 7? Trends Cell Biol. 873 
Phillips, R., Belliveau, N.M., Chure, G., Garcia, H.G., Razo-Mejia, M., and Scholes, C. (2019). 874 
Figure 1 Theory Meets Figure 2 Experiments in the Study of Gene Expression. Annu Rev 875 
Biophys 48, 121-163. 876 
Poustelnikova, E., Pisarev, A., Blagov, M., Samsonova, M., and Reinitz, J. (2004). A database 877 
for management of gene expression data in situ. Bioinformatics 20, 2212-2221. 878 
Raj, A., Peskin, C.S., Tranchina, D., Vargas, D.Y., and Tyagi, S. (2006). Stochastic mRNA 879 
synthesis in mammalian cells. PLoS Biol 4, e309. 880 
Razo-Mejia, M., Barnes, S.L., Belliveau, N.M., Chure, G., Einav, T., Lewis, M., and Phillips, R. 881 
(2018). Tuning Transcriptional Regulation through Signaling: A Predictive Theory of Allosteric 882 
Induction. Cell systems 6, 456-469 e410. 883 
Regot, S., Hughey, J.J., Bajar, B.T., Carrasco, S., and Covert, M.W. (2014). High-sensitivity 884 
measurements of multiple kinase activities in live single cells. Cell 157, 1724-1734. 885 
Richard, P., and Manley, J.L. (2009). Transcription termination by nuclear RNA polymerases. 886 
Genes Dev 23, 1247-1269. 887 
Rivera-Pomar, R., Niessing, D., Schmidt-Ott, U., Gehring, W.J., and Jackle, H. (1996). RNA 888 
binding and translational suppression by bicoid. Nature 379, 746-749. 889 
Ronchi, E., Treisman, J., Dostatni, N., Struhl, G., and Desplan, C. (1993). Down-regulation of 890 
the Drosophila morphogen bicoid by the torso receptor-mediated signal transduction cascade. 891 
Cell 74, 347-355. 892 
Samee, M.A., Lim, B., Samper, N., Lu, H., Rushlow, C.A., Jimenez, G., Shvartsman, S.Y., and 893 
Sinha, S. (2015). A Systematic Ensemble Approach to Thermodynamic Modeling of Gene 894 
Expression from Sequence Data. Cell systems 1, 396-407. 895 
Sato, Y., Kujirai, T., Arai, R., Asakawa, H., Ohtsuki, C., Horikoshi, N., Yamagata, K., Ueda, J., 896 
Nagase, T., Haraguchi, T., et al. (2016). A Genetically Encoded Probe for Live-Cell Imaging of 897 
H4K20 Monomethylation. J Mol Biol 428, 3885-3902. 898 



Sato, Y., Mukai, M., Ueda, J., Muraki, M., Stasevich, T.J., Horikoshi, N., Kujirai, T., Kita, H., 899 
Kimura, T., Hira, S., et al. (2013). Genetically encoded system to track histone modification in 900 
vivo. Scientific reports 3, 2436. 901 
Sayal, R., Dresch, J.M., Pushel, I., Taylor, B.R., and Arnosti, D.N. (2016). Quantitative 902 
perturbation-based analysis of gene expression predicts enhancer activity in early Drosophila 903 
embryo. eLife 5. 904 
Scholes, C., Biette, K.M., Harden, T.T., and DePace, A.H. (2019). Signal Integration by Shadow 905 
Enhancers and Enhancer Duplications Varies across the Drosophila Embryo. Cell reports 26, 906 
2407-2418 e2405. 907 
Scholes, C., DePace, A.H., and Sanchez, A. (2017). Combinatorial Gene Regulation through 908 
Kinetic Control of the Transcription Cycle. Cell systems 4, 97-108 e109. 909 
Schroter, C., Herrgen, L., Cardona, A., Brouhard, G.J., Feldman, B., and Oates, A.C. (2008). 910 
Dynamics of zebrafish somitogenesis. Developmental dynamics : an official publication of the 911 
American Association of Anatomists 237, 545-553. 912 
Segal, E., Raveh-Sadka, T., Schroeder, M., Unnerstall, U., and Gaul, U. (2008). Predicting 913 
expression patterns from regulatory sequence in Drosophila segmentation. Nature 451, 535-540. 914 
Sekar, T.V., Foygel, K., Gelovani, J.G., and Paulmurugan, R. (2015). Genetically encoded 915 
molecular biosensors to image histone methylation in living animals. Anal Chem 87, 892-899. 916 
Sherman, M.S., and Cohen, B.A. (2012). Thermodynamic State Ensemble Models of cis-917 
Regulation. PLoS Comput Biol 8, e1002407. 918 
Shermoen, A.W., and O'Farrell, P.H. (1991). Progression of the cell cycle through mitosis leads 919 
to abortion of nascent transcripts. Cell 67, 303-310. 920 
Shlyueva, D., Stampfel, G., and Stark, A. (2014). Transcriptional enhancers: from properties to 921 
genome-wide predictions. Nat Rev Genet 15, 272-286. 922 
Simpson-Brose, M., Treisman, J., and Desplan, C. (1994). Synergy between the hunchback and 923 
bicoid morphogens is required for anterior patterning in Drosophila. Cell 78, 855-865. 924 
Singer, R.H., and Ward, D.C. (1982). Actin gene expression visualized in chicken muscle tissue 925 
culture by using in situ hybridization with a biotinated nucleotide analog. Proc Natl Acad Sci U 926 
S A 79, 7331-7335. 927 
Small, S., Blair, A., and Levine, M. (1992). Regulation of even-skipped stripe 2 in the  928 
Drosophila embryo. EMBO J 11, 4047-4057. 929 
Small, S., Kraut, R., Hoey, T., Warrior, R., and Levine, M. (1991). Transcriptional regulation of 930 
a pair-rule stripe in Drosophila. Genes Dev 5, 827-839. 931 
Stathopoulos, A., and Levine, M. (2005). Localized repressors delineate the neurogenic ectoderm 932 
in the early Drosophila embryo. Dev Biol 280, 482-493. 933 
Streichan, S.J., Lefebvre, M.F., Noll, N., Wieschaus, E.F., and Shraiman, B.I. (2018). Global 934 
morphogenetic flow is accurately predicted by the spatial distribution of myosin motors. eLife 7. 935 
Struhl, G. (1989). Differing strategies for organizing anterior and posterior body pattern in 936 
Drosophila embryos. Nature 338, 741-744. 937 
Suter, D.M., Molina, N., Gatfield, D., Schneider, K., Schibler, U., and Naef, F. (2011). 938 
Mammalian genes are transcribed with widely different bursting kinetics. Science 332, 472-474. 939 
Swanson, C.I., Evans, N.C., and Barolo, S. (2010). Structural rules and complex regulatory 940 
circuitry constrain expression of a Notch- and EGFR-regulated eye enhancer. Developmental cell 941 
18, 359-370. 942 
Szymanski, P., and Levine, M. (1995). Multiple modes of dorsal-bHLH transcriptional synergy 943 
in the Drosophila embryo. EMBO J 14, 2229-2238. 944 



Tautz, D., and Pfeifle, C. (1989). A non-radioactive in situ hybridization method for the 945 
localization of specific RNAs in Drosophila embryos reveals translational control of the 946 
segmentation gene hunchback. Chromosoma 98, 81-85. 947 
Totaro, A., Panciera, T., and Piccolo, S. (2018). YAP/TAZ upstream signals and downstream 948 
responses. Nat Cell Biol 20, 888-899. 949 
Tran, H., Desponds, J., Perez Romero, C.A., Coppey, M., Fradin, C., Dostatni, N., and Walczak, 950 
A.M. (2018). Precision in a rush: Trade-offs between reproducibility and steepness of the 951 
hunchback expression pattern. PLoS Comput Biol 14, e1006513. 952 
Tsai, A., Muthusamy, A.K., Alves, M.R., Lavis, L.D., Singer, R.H., Stern, D.L., and Crocker, J. 953 
(2017). Nuclear microenvironments modulate transcription from low-affinity enhancers. eLife 6. 954 
Tutucci, E., Vera, M., Biswas, J., Garcia, J., Parker, R., and Singer, R.H. (2018). An improved 955 
MS2 system for accurate reporting of the mRNA life cycle. Nat Methods 15, 81-89. 956 
Ubersax, J.A., and Ferrell, J.E., Jr. (2007). Mechanisms of specificity in protein phosphorylation. 957 
Nat Rev Mol Cell Biol 8, 530-541. 958 
Verd, B., Clark, E., Wotton, K.R., Janssens, H., Jimenez-Guri, E., Crombach, A., and Jaeger, J. 959 
(2018). A damped oscillator imposes temporal order on posterior gap gene expression in 960 
Drosophila. PLoS Biol 16, e2003174. 961 
Verd, B., Crombach, A., and Jaeger, J. (2017). Dynamic Maternal Gradients Control Timing and 962 
Shift-Rates for Drosophila Gap Gene Expression. PLoS Comput Biol 13, e1005285. 963 
Verd, B., Monk, N.A., and Jaeger, J. (2019). Modularity, criticality, and evolvability of a 964 
developmental gene regulatory network. eLife 8. 965 
Vilar, J.M., and Leibler, S. (2003). DNA looping and physical constraints on transcription 966 
regulation. J Mol Biol 331, 981-989. 967 
von Dassow, G., Meir, E., Munro, E.M., and Odell, G.M. (2000). The segment polarity network 968 
is a robust developmental module. Nature 406, 188-192. 969 
Von Dassow, G., and Odell, G.M. (2002). Design and constraints of the Drosophila segment 970 
polarity module: robust spatial patterning emerges from intertwined cell state switches. The 971 
Journal of experimental zoology 294, 179-215. 972 
von Hippel, P.H., Revzin, A., Gross, C.A., and Wang, A.C. (1974). Non-specific {DNA} 973 
binding of genome regulating proteins as a biological control mechanism: {I}. {The} {\it lac} 974 
operon: equilibrium aspects. Proc Natl Acad Sci U S A 71, 4808-4812. 975 
Wang, C., Han, B., Zhou, R., and Zhuang, X. (2016). Real-Time Imaging of Translation on 976 
Single mRNA Transcripts in Live Cells. Cell 165, 990-1001. 977 
Wang, C., and Lehmann, R. (1991). Nanos is the localized posterior determinant in Drosophila. 978 
Cell 66, 637-647. 979 
Wharton, R.P., and Struhl, G. (1991). RNA regulatory elements mediate control of Drosophila 980 
body pattern by the posterior morphogen nanos. Cell 67, 955-967. 981 
Wu, B., Eliscovich, C., Yoon, Y.J., and Singer, R.H. (2016). Translation dynamics of single 982 
mRNAs in live cells and neurons. Science 352, 1430-1435. 983 
Xu, H., Sepulveda, L.A., Figard, L., Sokac, A.M., and Golding, I. (2015). Combining protein and 984 
mRNA quantification to decipher transcriptional regulation. Nat Methods 12, 739-742. 985 
Xu, H., Skinner, S.O., Sokac, A.M., and Golding, I. (2016). Stochastic Kinetics of Nascent RNA. 986 
Phys Rev Lett 117. 987 
Yamada, S., Whitney, P.H., Huang, S.K., Eck, E.C., Garcia, H.G., and Rushlow, C.A. (2019). 988 
The Drosophila Pioneer Factor Zelda Modulates the Nuclear Microenvironment of a Dorsal 989 
Target Enhancer to Potentiate Transcriptional Output. Curr Biol 29, 1387-1393 e1385. 990 



Yan, X., Hoek, T.A., Vale, R.D., and Tanenbaum, M.E. (2016). Dynamics of Translation of 991 
Single mRNA Molecules In Vivo. Cell 165, 976-989. 992 
Yunger, S., Rosenfeld, L., Garini, Y., and Shav-Tal, Y. (2010). Single-allele analysis of 993 
transcription kinetics in living mammalian cells. Nat Methods 7, 631-633. 994 
Zechner, C., Unger, M., Pelet, S., Peter, M., and Koeppl, H. (2014). Scalable inference of 995 
heterogeneous reaction kinetics from pooled single-cell recordings. Nat Methods 11, 197-202. 996 
Zenklusen, D., Larson, D.R., and Singer, R.H. (2008). Single-RNA counting reveals alternative 997 
modes of gene expression in yeast. Nature structural & molecular biology 15, 1263-1271. 998 
Zoller, B., Little, S.C., and Gregor, T. (2018). Diverse Spatial Expression Patterns Emerge from 999 
Unified Kinetics of Transcriptional Bursting. Cell 175, 835-847 e825. 1000 
Zoller, B., Nicolas, D., Molina, N., and Naef, F. (2015). Structure of silent transcription intervals 1001 
and noise characteristics of mammalian genes. Molecular systems biology [electronic resource] 1002 
11, 823. 1003 

 1004 


