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Abstract—Co-exploration of neural architectures and hard-
ware design is promising due to its capability to simultaneously
optimize network accuracy and hardware efficiency. However,
state-of-the-art neural architecture search algorithms for the co-
exploration are dedicated for the conventional von-Neumann
computing architecture, whose performance is heavily limited
by the well-known memory wall. In this paper, we are the
first to bring the computing-in-memory architecture, which can
easily transcend the memory wall, to interplay with the neural
architecture search, aiming to find the most efficient neural
architectures with high network accuracy and maximized hard-
ware efficiency. Such a novel combination makes opportunities
to boost performance, but also brings a bunch of challenges:
The optimization space spans across multiple design layers from
device type and circuit topology to neural architecture; and the
presence of device variation may drastically degrade the neural
network performance. To address these challenges, we propose
a cross-layer exploration framework, namely NACIM, which
jointly explores device, circuit and architecture design space and
takes device variation into consideration to find the most robust
neural architectures, coupled with the most efficient hardware
design. Experimental results demonstrate that NACIM can find
the robust neural network with 0.45% accuracy loss in the
presence of device variation, compared with a 76.44% loss
from the state-of-the-art NAS without consideration of variation;
in addition, NACIM achieves an energy efficiency up to 16.3
TOPs/W, 3.17 x higher than the state-of-the-art NAS.

Index Terms—Hardware/Software Co-Design; Computing-in-
Memory Architecture; Neural Architecture Search; Neural Net-
work Accelerator.

I. INTRODUCTION

After deep neural network achieved great success, we are
now witnessing the process of Artificial Intelligence (AI)
democratization, which involves various machine learning
tasks (e.g., image classification, video segmentation, speech
recognition) [1], [2], tremendous applications (e.g., automotive
vehicle, robot, health care) [3], [4] and different hardware
platforms (e.g., CPUs, GPUs, FPGAs, ASICs) [5], [6], [7],
[8], [9]. One of the most important questions in the Al
democratization era is: Given a dataset with a specified
machine learning task, how to efficiently identify the best
neural network architecture and hardware design, such that the
network accuracy and hardware efficiency can be maximized
simultaneously.
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To solve this problem, Neural Architecture Search (NAS)
[10], [11], [12], [13], [14], [15] has been proposed to liberate
human labor in the design of neural architectures by auto-
matically identifying their hyperparameters. However, such an
approach does not take hardware into consideration, which
may easily lead the identified architecture to be useless due
to the violation of the required hardware specifications. To
address this deficiency, hardware-aware NAS [16], [17], [18],
[19], [20], [21] has been proposed, in which the hardware
specifications are considered during the search process. To
further improve hardware efficiency, co-exploration of neural
architectures and hardware design is proposed in [22], [23],
[24], which proves that the Pareto frontiers between network
accuracy and hardware efficiency can be further pushed forward
by opening the hardware design space. However, all the works
are based on the conventional von-Neumann architecture (e.g.,
mobile platform or FPGAs), leading the memory accesses
inevitably becoming the performance bottleneck due to the
well-known memory wall.

Computing-in-memory (CiM) has been proved to be able to
effectively transcend such a memory wall [25], and has been
considered to be a promising candidate for neural network
computations due to the incomparable architectural benefits.
(i) CiM architecture can benefit from the fixed memory access
pattern within neural network computation [26] to execute
operations in place. (ii) Emerging devices (e.g., ReRAM,
STT-RAM) can be efficiently leveraged in the in-memory
computing architecture [27] to provide high performance and
energy efficiency. In [28], [29], MOSFET based in-memory
processing has been employed for neural network computation,
and the improvement in terms of energy and delay are observed
compared with the conventional von-Neumann architectures.
Research works [27], [30] leverage emerging devices based in-
memory computing scheme to construct crossbar architectures
that can perform the matrix multiplication in analog domain,
which further optimizes the computation metrics such as area,
energy, and delay.

Most of the existing works on CiM neural accelerator design
simply map classic neural networks (e.g., LeNet, AlexNet)
to the CiM platform to evaluate their design and compare
against other counterparts. However, without the optimization
on neural architectures, these reported metrics (i.e., accuracy,
latency, energy, etc.) may be far from the optimal. In this work,
we bring the CiM neural accelerator design to interplay with
the neural architecture search, aiming to automatically identify
the best device, circuit, and neural architecture coupled with
the maximized network accuracy and hardware efficiency. To
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the best of our knowledge, this is the first work to carry out
the device-circuit-architecture co-exploration for CiM neural
accelerators.

The novel device-circuit-architecture co-exploration brings
opportunities to boost performance; however, it also incurs
many new challenges. First of all, unlike the conventional von-
Neumann architecture based neural architecture co-exploration
[24], the design space of CiM-based neural accelerator spans
across multiple layers from device type, circuit topology to
neural architecture. Second, limited by the computing capacity
of each device cell, quantization is essential to improve the
hardware efficiency [31], [32], [33]; as such, quantization has
to be automatically determined during the search process. Third,
in addition to the optimization goals of hardware efficiency used
in the existing co-exploration framework for mobile platform
and FPGAs, CiM has extra objectives, such as minimizing
area, maximizing lifetime, etc. Last but not least, emerging
devices commonly have non-ideal behaviors (known as device
variation); that is, if we directly map the trained DNN models
to the architecture without considering the device variation,
a dramatic accuracy loss will be observed, rendering the
architecture useless.

This paper proposes a device-circuit-architecture co-
exploration framework, namely NACIM, to automatically
identify the best CiM neural accelerators, including the device
type, circuit topology, and neural architecture hyperparamters.
NACIM framework will iteratively conduct explorations based
on a reward function, which is suitable for reinforcement
learning approaches or evolutionary algorithms. By configuring
the parameters of the framework, designers can customize the
optimization goals in terms of their demands. Furthermore, we
have considered the device variation in the framework. In the
forward path of our training framework, we incorporate the
variation in the computation, which is based on the device
noise model [34]. Experimental results show that the proposed
NACIM framework can find the robust neural network with
only 0.45% accuracy loss in the presence of device variation,
compare with a 76.44% loss from the state-of-the-art NAS
without considering device variation. In addition, NACIM can
significantly push forward the Pareto frontier in terms of the
tradeoff between accuracy and hardware efficiency, achieving
up to 16.3 TOPs/W energy efficiency for a 3.17x improvement.

The main contributions of this work are listed as follows.

« We formally define the optimization problem of identifying
the best computing-in-memory (CiM) neural accelerator,
whose design space spans across device type, circuit
topology to neural architecture. To the best of our
knowledge, this is the first work on optimizing CiM neural
accelerators together with neural architecture search.

« We have proposed a novel device-circuit-architecture co-
exploration framework, namely NACIM, to simultaneously
optimize network accuracy and hardware efficiency. The
framework further optimizes the quantization to boost the
hardware efficiency and considers the device variation to
identify the robust neural architectures.

« We implement the NACIM framework using a rein-
forcement learning approach and evaluate it on the
commonly used datasets. Experimental results demonstrate
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Figure 1. An overview of neural architecture search phase and the accelerated
inference phase: (a) we based on GPU to train child networks during the NAS,
and (b) the identified neural network will be finally deployed to the target
Computing-in-Memory (CiM) architecture to accelerate the inference.
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the efficacy of the proposed framework in identifying the
robust neural architectures in terms of device variation
and pushing forward the Pareto frontier between accuracy
and efficiency.

The remainder of the paper is organized as follows. Section II
presents the background of both neural architecture search and
computing-in-memory architectures. Section III demonstrates
the search space of five layers, and formally defines the cross-
layer optimization problem. The proposed novel cross-layer
optimization framework is presented in Section IV. Experimen-
tal results are shown in Section V. Finally, concluding remarks
are given in Section VI.

II. BACKGROUND
A. System-Level Overview

Figure 1 demonstrates the overview of extending the conven-
tional framework of neural architecture search to optimize neu-
ral architectures for the non-volatile devices based computing-
in-memory architecture. Specifically, the neural architecture
search process is first performed on GPUs, which involves the
training of new models from scratch to generate the reward.
After the search process is convergent, the identified neural
network architecture will finally be deployed on the target
computing-in-memory architecture. However, as shown in
Figure 1, there is a missing link between the neural architecture
search process and the computing-in-memory neural accelerator
design. We will introduce the neural architecture search and
computing-in-memory platform in the following subsections.

B. Neural Architecture Search

Most recently, Neural Architecture Search (NAS) has been
consistently achieving breakthroughs in different machine
learning applications, such as image classifications [10], image
segmentation [35], video action recognition [36], etc. NAS
attracts large attentions mainly because it successfully releases
human expertise and labor to identify high-accuracy neural
architectures.

A typical NAS, such as that in [10], is composed of a
controller and a trainer. The controller will iteratively predict
neural architecture parameters, called child network, and the
trainer will train the child network from scratch on a held-
out data set to obtain its accuracy. Then, the accuracy will
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be feedback to update controller. Finally, after the number of
child networks predicted by the controller exceeds a predefined
threshold, the search process will be terminated. Among all
of the searched neural architectures, the one with the highest
accuracy will be finally identified.

It has been demonstrated in existing works that the automati-
cally searched neural architectures can achieve similar accuracy
to the best human-invented architectures [10], [11]. However,
the identified architectures may have more complicated struc-
tures, which reduse their usefulness in real-world applications.
For instance, it will result in excessive bandwidth requirement
to perform secured inference.

C. Computing-in-Memory

In this paper, we consider the crossbar as the basic compute-
in-memory engine. We discuss the devices used in this
work, and the non-ideal behavior of the device. We also
adopt NeuroSim, the framework we used to simulate crossbar
computation.

1) Device and its variations: Non-volatile devices have been
widely adopted in the crossbar computations. When considering
using the crossbar to perform inference, different device
implementations lead to distinct energy, latency, etc. Here, we
consider two factors (1) how many levels of precision the non-
volatile device can be configured; (2) the non-ideal behavior
of the devices. Both binary devices and multi-level devices
are used in existing crossbar-based computation platforms. For
the multi-level device, there are existing works with 4-bit
(i.e., 16 levels) devices, with good distinction among different
levels [34]. Besides the multi-level devices, binary devices
(STT-MRAM, etc.) are also considered in our implementation.
Different kinds of devices may affect the on and off current for
the crossbar computation, and ultimately impact delay, energy,
etc. Different number of levels in these devices also requires
different peripheral circuitries in the crossbar architecture,
which is another design space we will consider in this work.

These emerging devices also suffer from various errors
[37]. When the circuitry is used for inference, device-to-device
variations could be the dominant error source. The variation
could be caused in the fabrication process and in the device
programming phase. The other dominant sources of error come
from noises. Among the noise sources, random telegraph noise
(RTN) [37] in particular, is a main source of noise caused by
electrons temporarily being trapped within the device which in
turn changes the effective conductance of device. Other noise
sources include thermal noise and shot noise. However, they
typically are much smaller compared with RTN [37]. In this
work, we model the device variation as a whole, and use a
Gaussian distribution to represent the variation. The magnitude
of the variation can be referred from [34], where the variations
are from actual measurements.

2) Crossbar Architecture: Different crossbar based archi-
tectures are proposed [27], [30]. We assume an ISAAC-like
architecture [27] in our simulation. The architecture is highly
parallel with multiple tiles. Within each tile, there are multiple
crossbar arrays. The computation here is performed in analog
domain. However, ADC and DAC are used to convert the signal
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Figure 2. Cross-layer optimization to identify the best neural architecture
on computing-in-memory platform: (a) neural architecture; (b) 2 possible
quantization for 4 layers; (c) data flow of generating output feature maps by
using the input feature maps and weights; (d) layout of circuit; (e) different
computing-in-memory devices.

from and to the analog domain computation. We assume that
all the weights can be mapped to the crossbar arrays. Therefore,
no programming of the weights is needed in the computation.

3) NeuroSim: DNN+NeuroSim [38] is an integrated frame-
work built for emulating the deep neural networks (DNN)
inference performance or on-chip training performance on the
hardware accelerator based on near-memory computing or in-
memory computing architectures. Various device technologies
are supported, including SRAM, emerging non-volatile memory
(eNVM) based on resistance switching (e.g. RRAM, PCM, STT-
MRAM), and ferroelectric FET (FeFET). SRAM is by nature
1-bit per cell, eNVMs and FeFET in this simulator can support
either 1-bit or multi-bit per cell. NeuroSim [39] is a circuit-level
macro model for benchmarking neuro-inspired architectures
(including memory array, peripheral logic, and interconnect
routing) in terms of circuit-level performance metrics, such as
chip area, latency, dynamic energy and leakage power. With
Pytorch and TensorFlow wrapper, DNN+ NeuroSim framework
can support hierarchical organization from the device level
(transistors from 130 nm down to 7 nm, eNVM and FeFET
device properties) to the circuit level (periphery circuit modules
such as analog-to-digital converters, ADCs), to chip level (tiles
of processing-elements built up by multiple sub-arrays, and
global interconnect and buffer) and then to the algorithm level
(different convolutional neural network topologies), enabling
instruction-accurate evaluation on the inference accuracy as
well as the circuit-level performance metrics at the run-time
of inference.

III. PROBLEM DEFINITION

Figure 2 illustrates the cross-layer optimization from ap-
plication to hardware. Our ultimate goal is to implement the
inference of a neural network on computing-in-memory (CiM)
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systems. Optimization decisions need to be made in five design
layers, including (a) neural architecture search, (b) quantization
determination, (c) data flow, (d) circuit design, and (e) device
selection. In this section, we first introduce the detailed design
options in all five design layers. Then, we discuss the search
space derived from these design layers, and formally define
the optimization problem.

A. Definitions of Cross-Layer CiM System

(a) Neural Architecture: As shown in Figure 2, a neural
architecture is composed of multiple layers, which is defined as
A = (L, para, acc). It consists of a set of layers L. The number
of layers in the neural architecture is the size of set L, i.e., |L|.
A layer can be a convolutional layer, a fully connected layer,
etc. In order to automatically identify the neural architecture,
we parameterize each layer to form a search space. For the
it" layer I; € L, set para; contains the predictable parameters,
such as the number of filters and the filter size for convolution
layer, and the number of neurons in the fully connected layer.
After we determined the parameters of all layers, we obtain a
neural architecture, called child network. The accuracy of the
child network is named acc, which can be obtained by training
A on a held-out dataset. For illustration purpose, we use a
linear chain of layers as an example. However, the proposed
technique is not limited to such structure and is applicable to
more complicated structures, such as Directed Acyclic Graph
(DAG), which can represent the residual connections.

(b) Quantization: For each layer of the neural architecture, we
can apply different data precision for computation. We define
the quantization of a neural architecture A = (L, para, acc) as
Q(A) = (qa, qw), where ga and qw represent the quantization
for activation and weights, respectively. For a layer /; € L,
ga; = (M, N) indicates that we apply M bits to represent the
integer part and N bits to represent the fraction part of the
activation data; similarly, qw; = (P, Q) is defined for weights.
Figure 1 (b) illustrates two quantization instances for a 4-layer
neural architecture, where the number above x-axis indicates
the bit-width for integer part and the number below x-axis
indicates the fraction part.

(c) Data Flow: The data flow layer is the intermediate layer
between software (neural architecture) and hardware (circuit
and device). In terms of the pattern of data reuse, data flow can
be classified into four categories: i) weight stationary; ii) output
stationary; iii) row stationary; and iv) no local reuse. Taking
weight stationary as an example, its basic idea is described as
follows. First, for the convolution operation, the weights of a
kernel are expanded and spread on the memory cells of cross-
bar vertically; while for fully connection, the weights for each
output neural are vertically spread on the cross-bar. Second, the
activation (i.e., IFM or input neural) is fed horizontally into the
cross-bar. Third, at each cycle, dot product is performed on the
fed activation and the stationed weights to get the partial sums
of outputs, and the accumulation operation is conducted on top
of the previous obtained partial sums. Figure 2 (c) shows the
above details for both convolution operation (left-hand side)
and fully connection operation (right-hand side).

(d) Circuit: Figure 2 (d) shows the chip hierarchy. A chip is
defined as C' = (T, PE, S, D), which is composed of tile array

T, PE array PF, and synaptic array S, and the device D. The
top-level of the chip is a network-on-chip (NoC) based M x N
tile array, which is defined as T' = (M, N, buf, band), where
buf is the size of the global buffer, and band is the bandwidth
of a link on NoC. Similarly, a tile is composed of a P x Q PE
array, which is defined as PE = (P, @, buf,band); and a PE
is composed of a U x V synaptic array, which is defined as
S = (U, V). In the synaptic array, each cell is a device, which
is specified from a set of available devices defined as follows.

(e) Device: We will have different choices of devices to
be employed in the circuit. We define DT = (T, bit,var),
where T is a set of available devices (e.g., ReRAM, FeFET,
STT-MRAM, as shown in Figure 2 (e)). For a specific device
t; € T, say ReRAM, bit; = 4 indicates the applied ReRAM
has the ability to store 4 bits in one cell; and var; refers to
the variation function, which is based on the existing work
(e.g., [34] for ReRAM). Kindly note that if the bit-width of
a layer (in terms of Q(C)) is larger than bit;, we adopt a
shift-and-add circuitry at the peripheral, and we use multiple
devices to represent the weights. Otherwise if the bit-width is
less than bit;, we employ one device to store the weights. By
leveraging the shift-and-add operation, we can achieve arbitrary
the number of bits, which can well support the design space
exploration when applying NAS to the crossbar.

B. Search Space and Problem Definition

Search Space: The design spaces of all the layers form an
integrated search space. Among the five design layers, the data
flow design layer has the fewest options. Although there are
different types of data flows in terms of the data reuse pattern,
the weight-stationary data flow is commonly used for the CiM
platform. In this work, we also apply weight-stationary data
flow in the exploration. All the other design layers provide
various design options. For the neural architecture layer, the
size of the neural architecture can be adjusted to fit the
hardware, which can be implemented by searching for the
hyperparameters of the backbone neural architecture. For the
quantization layer, different bit-widths for both integer and
fraction parts can be employed for network layers. For the
circuit layer, tile size, buffer size, and bandwidth should be
determined. Finally, for the device layer, we have choices in
different types of devices.

Problem Statement: Based on the definition of each layer,
we formally define the problem solved in this work as follows:
Given a dataset (e.g., CIFAR-10), a machine learning task (e.g.,
image classification), and a set of available devices DT, we
are going to determine:

o A: the neural architecture for the machine learning task;
o (Q: the quantization of each layer in the architecture A;
o D: the device in set DT used for the chip design;

e (' the circuit design based on the selected device D;

Objective: such that the inference accuracy of the machine
learning task on the resultant circuit can be maximized, while
the hardware efficiency (e.g., latency, energy efficiency, area,
etc.) can be optimized. Kindly note that since the above
optimization problem has multiple objectives, we further
propose a framework in the next section, which can support
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Figure 3. Overview of the proposed NACIM framework: @ a reward-based controller; @ an optimizer selector for architecture A, quantization Q, device D,
and circuit C; 3 an accuracy evaluator for identified neural architecture; @ a hardware performance evaluator with the circuit optimization.

designers to specify the metrics to be optimized (e.g., simultane-
ously maximizing accuracy, latency, and area—simultaneously
maximizing accuracy, and minimizing latency and area.

IV. CROSS-LAYER EXPLORATION FRAMEWORK

Figure 3 demonstrates the overview of the proposed Neu-
ral Architecture and Computing-in-Memory Architecture Co-
Exploration Framework, named NACIM, to solve the problem
defined in Section III. NACIM contains 4 components: D
a controller @ an optimizer selector, @ a network accuracy
evaluator, @ a hardware performance evaluator.

@ Controller. The controller is a core component in
NACIM framework. It conducts optimizations on the neural
architecture search and the CiM hardware design, where the
optimizations can be implemented by different solvers, such as
the reinforcement learning approach or evolutionary algorithm.
Specifically, the controller predicts the hyperparameters of
neural architecture, quantization, and device, according to the
network accuracy and hardware performance from evaluators.
These metrics form a reward function for updating the controller.
The reward function is formulated as follows.

R(e, B) = B x a+ (1 =) x f(Lat, Eng, Area), (1)

where « is the prediction accuracy, 3 is a scaling parameter,
and Lat, Eng, Area represent three hardware performance
metrics: latency, energy, area. These performance metrics will
be determined by the design parameters related to architecture,
quantization, and circuit. We will introduce how to obtain these
metrics later, in @ Accuracy Evaluator and @ Performance
Evaluator. The merge function f can either be a simple
weighted sum or other more advanced functions defined by
the user. In Sec. V, we adopt weighted sum for this function.

In terms of the reward, the controller will predict hyper-
paramters, which can be implemented by different techniques,
such as the reinforcement learning approach or evolutionary
algorithm. In this work, we employ the reinforcement learning
method in the controller. Like the existing reinforcement learn-
ing based on neural architecture search [10], [22], a recurrent
neural network (RNN) is implemented in the controller for
the prediction of the hyperparameters of a child network. In
our framework, as shown in Figure 3, there are three kinds
of hyperparameters: architecture parameters (e.g., the number
of channels for each layer), the quantization parameters (e.g.,

the bit-width of integer and fraction part), and circuit/device
parameters (e.g., which device to be used). All possible
combinations of these parameters form the state space in
reinforcement learning. In each iteration, the RNN predicts a
set of hyperparameters, which is the action of reinforcement
learning. At the end of an iteration, we update the RNN
network for better prediction in terms of the reward. The
update procedure is the interaction of the controller with the
environment, which is modeled as a Markov Decision Process
(MDP) for optimization. Specifically, the Monte Carlo policy
gradient algorithm [40] is employed:

m T

VJ(0) = 7'V log mg(atlag—1y.1)(Re—b) (2)

1
==
where m is the batch size and T is the total number of steps
in each episode. The rewards are discounted at every step
by an exponential factor v and the baseline b is the average
exponential moving of the reward.

@ Optimizer Selector. The optimizer selector will deter-
mine the flow in NACIM framework. As shown in Figure 3 @,
there are four switches S A, SQ, SD, SC corresponding to four
determination variables of neural architecture A, quantization
Q, device D, and circuit C. In terms of the status of switches,
NACIM can perform different functions as listed in the
following:

¢« SA=1,5Q=0,SD=0,5C=0

In the first case, NACIM performs the conventional neural
architecture search, like [10], which aims to maximize
accuracy without considering the hardware efficiency.

¢« SA=1,5Q=1,SD=0,5C=0

In the second case, NACIM considers the quantization
during the neural architecture search, like [41], which will
simultaneously determine the neural architecture and the
quantization for each network layer.

« SA=1,5Q=1,SD=1,5C=0

In the third case, NACIM additionally involves the devices
in the search process where the device variation will be
considered to guarantee no accuracy loss after implement-
ing the identified network on the target hardware.

¢« SA=0,5Q=1,SD=0,5C=1

In the fourth case, NACIM further explores the circuit
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design space for circuit optimization together with quan-
tization in terms of a given architecture and device.

In this work, in order to conduct cross-layer optimization,
we first set the switch combinations to the third case (called
“hardware perturbation aware NAS”, abbreviating as “ptbNAS”),
such that we can identify neural architectures with high
accuracy on the target devices with variation. Second, we
apply the fourth switch combination (called “hardware resource
aware NAS”, abbreviating as “rNAS”) to further explore the
circuit optimization to involve the hardware performance into
consideration. The details for ptbNAS and rNAS will be
introduced in the following two evaluators.

® Accuracy Evaluator. The accuracy evaluator is the key
component to execute ptbNAS. In the conventional neural
architecture search based on the mobile or FPGA platforms,
there is no need to consider hardware perturbation; however,
when it comes to computing-in-memory based platform, the
fundamental devices will have variations in their characteristics
(i.e., device non-idealities), which in turn will affect the
accuracy. As a result, if we do not consider the variation
during training, as shown in the left component in Figure 3
®, there will be a dramatic accuracy loss when the identified
architecture is deployed to the circuit.

The crossbar architecture is assumed for inference in this
paper. However, the non-ideal behavior of the device in the
inference stage may significantly decrease the application
level accuracy [42], which is a main concern when using
the emerging devices in the crossbar architecture. In this work,
we propose to use a modified training method to alleviate the
impact of non-ideal behavior of the device and circuit, as shown
in the right component of Figure 3 ®. When considering device
variation in the training phase, the training typically requires a
much longer time [42] than a conventional training method. As
a result, leveraging existing methods will dramatically increase
the search time. This will further extend the NAS search
process, leading the framework inefficient. In this paper, we
propose a method to reduce the effects of device variation
in a more efficient way. Specifically, we propose a novel
training method that invloves the device variation in the training
procedure. The method is composed of two steps: First, we use
Monte Carlo method to obtain samples for each weight based
on a Gaussian distribution, whose mean is 0 and variance is
equivalent to the device variance; Second, these samples will
be added to the corresponding weights in the forward path
in the training stage. Since only one Monte Carlo sample for
each weight is required in each forward path, we can obtain
the reasonable accuracy with the minor extra training time
introduced by our proposed method.

Based on the proposed trainer, ptbNAS is executed as follows.
The controller, trainer, and accuracy evaluator collaboratively
search the parameters of neural architecture, quantization,
and devices for higher accuracy while taking noises caused
by hardware perturbation into account and proposing a vari-
ety of candidate architectures. This searching step includes
four phases. First, the controller predicts a quantized neural
architecture and a type of device. Second, the identified
architecture is trained by the trainer using the proposed weight
perturbation aware training method. Third, the trained model is

Table 1
EXPERIMENTAL SETTINGS FOR THREE TYPES OF BACKBONE ON TWO
DATASETS, CIFAR-10 AND NUCLEI.

Spaces # Layer # Filter Filter H/'W FC Neuros
Res. Lim. 8 24,36,48,64 1,3,5,7 64,128,256,512
VGG-Like Space| 11 |128, 256,512,1024| 1,3,5,7 [256,512,1024,2048
Enc-Dec-Like |4,6,8,10| 16,32,64,128 3 -

e Filter H/W: Height and width of filter; FC: Fully connection layer

then evaluated by the accuracy evaluator to generate inference
accuracy with noise. Finally, the accuracy will be the reward
to update the controller for predicting new hyperparameters.

@ Performance Evaluator. Before entering the perfor-
mance evaluator, we first conduct the circuit optimization.
We base the circuit optimization on NeuroSim [39], and make
modifications to support different quantization for network
layers. Based on the modified model, given a neural architecture
A, a quantization (), a device D, we can optimize the circuit
and determine the parameters in circuit design C. Then, based
on C and the evaluation tool in [38], we can estimate the
latency (Lat), energy efficiency (Eng), and area (Area) for the
implementation, which will be used in calculating the reward,
as shown in Formula 1.

Based on the above performance evaluator, the rNAS will
fine tune quantization parameters of the candidate architectures
to further integrate hardware metrics, including area, energy
and latency into consideration. In the exploration, we will fix
the neural architecture and device, so that there is no need to
train the network from scratch to accelerate the search process.
Specifically, we open the switches SA and SD, and close
switches S@ and SC. In each iteration, we will predict new
quantization parameters for the identified neural architecture
and device. Then, we will first obtain the inference accuracy
via accuracy evaluator using the saved weights and the new
quantization parameters. Next, we will conduct the circuit
optimization and obtain the hardware metrics including latency,
energy, and area. Finally, we generate the reward in terms of
the reward function, and update the controller based on the
reward for the prediction in the next iteration.

V. EXPERIMENTS AND RESULTS

In this section, we will first present the experiment setup.
Then the experimental results will be presented.

A. Experiment Setup

In this work, we explore two machine learning tasks, image
classification and object segmentation, to evaluate the proposed
framework, NACIM. For the image classification task, similar
to most existing works on CiM based neural accelerators
[43], [44], we use the CIFAR-10 dataset [45]; while for the
object segmentation, we apply the Nuclei dataset [46] Table I
shows the neural architecture search spaces for these datasets.
For CIFAR-10, we use a VGG-Like Space (VLS) backbone
architecture, and an in-house constructed Resource Limited
Space (RLS) backbone architecture. As to be shown in the
results, the architectures in VLS require a large number of
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STATE-OF-THE-ART QUANTNAS WITHOUT THE CONSIDERATION OF THE
DEVICE DURDING THE SEARCH PROCESS.

Table I1I

IDENTIFIED NEURAL ARCHITECTURE WITH QUANTIZATION INFORMATION

FOR NACIMj, AND NACI Mgy .

NACT My,

NACI Mgy

Layer
Acc w/ Area EDP Speed | E.-E. convl

Approach |Accuracy
variation (,um2) (pJ *ns) |(TOPs)|(TOPs/W) conv2
QuantNAS | 84.92% | 8.48% | 3.24 105 | 8.08 « 1012 | 0.285 | 5.14 C"“Vi
conv
ptbNAS | 74.28% | 72.18% | 2.57 + 108 | 7.9 %1012 | 0.117 | 4.99 convs
NACIM},, | 73.58% | 70.12% |1.78 % 106|2.21 % 1012| 0.204 | 12.3 convé
NACIM,,, | 73.88% |73.45% | 1.97 + 106 | 3.76 % 1012 | 0.234 | 16.3 fel
fc2

(3,5,64,0,2,6,2,6)
(3,1,48,0,1,2, 1, 2)
(1,3,48,1,2,6, 1, 3)
(5,3,64,1,1,2,0,4)
(1,1,64,1,0,1, 1, 3)

(3,3,24,0,1,1,2,5)
(256, -, -, -, 3,5, 1, 3)
64, -,-,-1,3,2,6)

(5,5,64,0,1,5,3,6)
(3,1,48,0,3,2, 1, 6)
(1,3,48,1,2,0,3,5)
(5,5,64,1,2,0,0,4)
(1,1,64,1,1, 4, 2, 3)
(3,3,24,0,0,1,0,5)
(256, -,-,1,2,2,3,6)
64,-,-,0,0,2,0,2)

resources, which is not practical; and therefore, we introduced
the RLS, which is designed for a resource limited scenario with
sacrifices in accuracy. For Nuclei, the backbone architecture is
encoder-decoder (Enc-Dec-Like, EDS), we explored different
number of layers, and number of filters in each layer.

For the resource limited scenario (RLS), we also explore the
Quantization space. The quantization bit width of the activation
and weight of each layer are searched separately. For each type
of data, we determine the number of integer bits range from O
to 3, and the number of fraction bits range from 0 to 6.

For the device and circuit, in this section, we use 4-bit
ReRAM devices in the crossbar computation. The noise model
of the device is from [34]. We assume the current range of
the device to be [0, 16 uA]. In each level of the device, the
variation follows a Gaussian distribution, with a mean of 0 and
standard deviation of 800nA. We assume the array size for
crossbar to be 64 x 64. The updating rate of the controller is set
to be 0.2 and the framework trains each candidate architecture
for 30 epochs and searches for the optimal architecture for 500
episodes. We pick the architectures with top 40 hardware noise
aware inference accuracy from the searching results, and further
fine-tune them with 200 training epochs for each network.

We search through layer-wise quantization parameters for
each candidate architecture while assuming the underlying
hardware to have the properties listed as follows: we use 4-bit
ReRAMs as our CiM device and 16 level (4-bit) ADCs for
the crossbar, chip clock frequency is 1 GHz, chip technology
node is 32 nm. The memory voltage is 0.5 V and the chip
voltage is 1.1 V. For each candidate architecture, the controller
starts from the specifications provided by the previous search
step, then performs 100 search steps to generate an optimized
quantization scene for this architecture.

B. Exploration for Resource Limited Scenarios

In this subsection, we report the exploration results of em-
ploying the resource limited search space (RLS) for CIFAR-10
dataset. We first compare the proposed NACIM to the existing
approach; then, we demonstrate design space exploration results
with the tradeoffs in terms of multiple metrics.

(1) Comparison Results to State-of-the-Art NAS

First, we show the exploration results of different searching
methods in Table II. “QuantNAS” indicates the state-of-the-
art quantization-architecture co-exploration method proposed
in [41], where the standard training procedure is conducted.
“ptbNAS” indicates the noise-aware training and searching

Parameters are (FH,FW,#F,P,WQ_int, WQ_frac,AQ_int,AQ_frac)

o FH/FW: Filter Height/Width; #F: Num of Filter; P: Pooling or not
e xQ_int: # bits in weight (x=W) or activation (x=A) for integer

e xQ_frac: # bits in weight (x=W) or activation (x=A) for fraction

method proposed in this work, where the switch combination
issetas SA=1,5Q =1,5D =1,5C = 0. Kindly note that
the QuantNAS is the basis of ptbNAS, but ptbNAS integrate the
noise-awareness during the search process. “NACIM” indicates
the noise-aware training and searching method along with the
hardware resource-aware quantization search, which combines
ptbN AS and r N AS. Please note that “NACIM” can obtain
a serials of solutions on Pareto frontier. We use notation
“NACIMy,,,” and “NACIMy,,” to represent the solution with
maximum hardware efficiency and that with maximum accuracy,
respectively. The detailed architectures identified by these two
approaches are summarized in Table III. For comparison, we
obtain the accuracy of all architectures without noise, as shown
in column “Accuracy”. We then compare the accuracy after
considering the device variation in column “Acc w/ variation”.
We employ the same circuit optimization procedure, and obtain
the hardware efficiency metrics, including area and energy
delay product (EDP), speed (TOPs), and energy efficiency
(TOPs/W).

Results in Table II shows that QuantNAS can find architec-
ture with the highest accuracy. However, when it is employed
for computing-in-memory circuit with variation, it has a drastic
accuracy loss from 84.92% to 8.48%, rendering the architecture
to be useless. On the contrary, with consideration of device
variation in training process, the network accuracies of ptbNAS,
NACIMy,,,, NACIM,,, on computing-in-memory circuit are
72.18%, 70.12%, 73.45%, respectively. What is more, the
accuracy loss for NACIMy,, is only 0.43%.

We can also observe from the table that by employing
the cross-layer optimization, NACIMy,,, can obtain the best
hardware efficiency. Compared with QuantNAS, NACIMy,,
achieves 1.82x reduction on area and 3.66x improvement on
energy delay product. Compared with ptbNAS, these figures are
14.01% and 1.89x, respectively. Compared with NACIMy,,,
these figures are 9.64% and 1.70x, respectively. These results
demonstrate the capability of NACIM to synthesize the cost-
effective computing-in-memory chips.

Another observation is that the architectures identified by
both QuantNAS and NACIMy,, achieve slightly higher speed
than that by NACIMy,,,. This is because NACIMy,,, finds many
simple structures with fewer operations, but the latency is
not improved accordingly since other designs can have more
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Figure 4. Inference results by applying bi-objective optimizations: (left) accuracy vs. latency; (middle) accuracy vs. chip area; (right) accuracy vs. energy.
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Figure 5. Multi-objective optimization: inference error vs. normalized hardware
efficiency. The hardware efficiency is the weighted sum of hardware area,
energy and latency.

processing elements. In the comparison of energy efficiency,
NACIMy,,, achieves 2.39x higher energy efficiency than
QuantNAS. NACIMy,, achieves 3.17x higher energy efficiency,
reaching up to 16.3 TOPs/W. The above observations clearly
show the importance of conducting cross-layer optimization
to obtain useful neural architectures for hardware efficient
computing-in-memory architecture.

(2) Results of Bi-Objective Optimization

Next, we report the design space exploration results of
both ptbNAS and NACIM with bi-objective optimization:
maximizing the accuracy and hardware performance. Here,
the accuracy is obtained by executing the neural network on
computing-in-memory chip with variation. And we carry out
three sets of experiments to optimize each hardware perfor-
mance metric, including latency, area, and energy, separately.
The reward function is calculated based on these metrics, as
shown in Formula 3, where we set 3 to be 0.5 to co-optimize
network accuracy and hardware efficiency. In the bi-objective
optimization, function f will only return the value of one
metric, and we will extend to multi-objective optimization in
the next subsection.

Figure 4 shows the design space exploration in terms of
accuracy and latency. In this figure, the x-aixs and y-aixs
represent the latency and error, respectively. Each rectangle
stands for a design identified by NACIM and each cross stands
for a design identified by ptbNAS. For all multi-objective
results, the ideal solutions will be on the bottom-left corner,
as shown in this figure.

From the results, we can see that by considering the cross-
layer optimization, NACIM can significantly push forward the
Pareto frontier between accuracy and latency. This is because
NACIM will generate the reward using the weighted accuracy
and latency, which can improve the latency by find better circuit

100%

> 80% fmmmmmmmmemeeeeee o R --
o

e

3 60% f------ { ——————————————————— --
< ) — )
PO = [ = | (|
0%

RLS VLS EDS

Ovariation-unaware training ONACIM

Figure 6. On RLS (Resource Limited), VLS (VGG-like), EDS (Encoder-
decoder-like) search spaces, the comparison results in accuracy obtained by
three approaches, where variation-unaware and variation-aware training are
based on a same fixed architecture; NACIM opens architecture search space.

O variation-aware training

design and guarantee accuracy at the same time. Specifically,
for the comparison between solutions with the highest accuracy
(design A for NACIM , and B for ptbNAS), we can see that
A’s accuracy (73.77%) is higher than B’s accuracy (73.69%).
What is more, design A reduces latency by 16.63%. For the
comparison between solutions with the lowest latency, we can
see that NACIM (design C) achieves the same accuracy but
32.49% lower latency, compared with ptbNAS (design D).

We further conduct experiments on optimizing area and
energy. We observed similar results. The results are shown
in Figures 4 and 4. There is one interesting observation in
exploring the design space for accuracy and energy tradeoffs,
which is shown in Figure 4. The figure shows that ptbNAS can
find solutions with higher accuracy against the NACIM. For
example, in the figure, design A identified by NACIM has 1%
accuracy loss against design B, which is identified by ptbNAS.
However, NACIM achieves 1.73x higher energy efficiency.
Here, both designs have the same neural architecture but
different quantization. In order to obtain high energy efficiency,
NACIM employs lower bit-width precision. We can avoid such
accuracy loss by increasing the scaling variable 3 in the reward
function in Formula 3.

All above observations verify the importance of conducting
bi-objective optimization instead of mono-objective optimiza-
tion on accuracy.

(3) Results of Multi-Objective Optimization

Figure 5 shows the design space exploration tradeoffs
between accuracy and the normalized hardware efficiency. The
normalized hardware efficiency is calculated based on weighted
hardware metrics, including latency, area, and energy, which
is represented by the x-axis. Each hardware component has a
same weight and the total normalized hardware efficiency has
the consists of half of the reward and inference accuracy takes
another half. An interesting observation from the results is that
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Table IV
COMPARISON RESULTS OF ACCURACY AND HARDWARE USAGE OF
ARCHITECTURES FROM FIGURE 6 AND THEIR CIM IMPLEMENTATIONS.

A A EDP
Search Space | Approach ceuracy reg
or IOU (pm=) (pJ *ns)
Baseline | 72.18% | 2.57 % 10° 7.9 % 1012
RLS
NACIM | 73.45% | 1.97 %10° | 3.76 » 1012
Baseline | 90.06% | 4.57 %108 1.42 % 1015
VLS
NACIM | 93.12% | 4.75 %108 | 5.54 %= 1015
Baseline 0.788 7.88% 107 | 3.86 % 1014
EDS
NACIM 0.824 4.05 %107 | 1.96 + 1014

compared with the bi-objective optimization, NACIM found
more architectures with lower accuracy. This is because the
weights for accuracy in calculating the reward is decreased.
However, we can still can find the solution with the highest
accuracy, and achieves 1.65x improvement on hardware
efficiency.

C. Scalability of NACIM

The previous subsection has shown the advantages of
NACIM over the existing techniques. In this subsection, we
further evaluate the scalability of NACIM on (1) a larger
backbone architecture on CIFAR-10; (2) a more complicated
machine learning task, object segmentation.

Figure 6 demonstrates the results of accuracy comparison
among (1) variation-unaware training, (2) variation-aware
training, (3) NACIM for three different backbone architectures
in terms of the search space, where inference is conducted on a
CiM system with non-negligible devices variation. Note that the
first two methods are based on a fixed neural architecture while
NACIM explores different neural architectures; specifically,
RLS uses an architecture explored by ptbNAS, VLS is based
on the original VGG-11 architecture, and EDS employs 4 layers
encoder-decoder.

Our experimental results clearly show that if device variation
is not considered during training, inference accuracy will be
unacceptable; for RLS, VLS and EDS, the accuracy results are
9.8%, 9.6%, 0.525, respectively. Another observation is that the
proposed variation-aware training can significantly improve the
accuracy. In addition, after we enlarge the architecture search
space, we can identify neural architectures with better accuracy
(details can be found in Table IV).

Finally, we report the accuracy and hardware trade-off in
Table IV, where Baseline indicates the solution that applies the
fixed architecture and the proposed variation-aware training
procedure. Results from this table clearly show that taking
VGG-11 in VLS as a backbone leads to excessive (i.e.,
larger than 100 times) area and energy-delay-product (EDP),
compared with the solution generated in RLS. Second, the
proposed NACIM framework can be applied and be effect in
different backbones. Specifically, with a larger backbone, like

VLS, the proposed NACIM can achieve up to 93.13% accuracy.

But it consumes much more hardware compared with a smaller
backbone, like that in RLS.

VI. CONCLUSION AND FUTURE WORK

In this work, we formally defined cross-layer optimization
problem for automatically identifying neural architectures on

computing-in-memory (CiM) platform. We devised a novel
neural architecture search framework that gives flexibility
for designers to set different optimization goal. We further
integrate a trainer with the consideration of device variation
in our framework. In experiments, we first demonstrated the
importance of finding a robust neural architecture in terms
of the device variation in CiM, which may lead the neural
architectures that apply the existing NAS to be useless due to
dramatic accuracy loss. We further showed that the cross-layer
optimization can identify the robust neural architecture with
0.45% accuracy loss after considering variation, and maximize
hardware efficiency to achieve 16.3 TOPs/W energy efficiency.
Our experimental results have demonstrated the effectiveness
of the hardware perturbation aware training procedure. As
future work, we will investigate how to optimize the trainer
to speed up the training procedure and improve accuracy.
One potential way for speedup is to replace the Monte Carlo
sampling method by the Quasi-Monte Carlo method.
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